JP7232308B2 - 蛍光画像分析装置および蛍光画像分析方法 - Google Patents

蛍光画像分析装置および蛍光画像分析方法 Download PDF

Info

Publication number
JP7232308B2
JP7232308B2 JP2021191406A JP2021191406A JP7232308B2 JP 7232308 B2 JP7232308 B2 JP 7232308B2 JP 2021191406 A JP2021191406 A JP 2021191406A JP 2021191406 A JP2021191406 A JP 2021191406A JP 7232308 B2 JP7232308 B2 JP 7232308B2
Authority
JP
Japan
Prior art keywords
index
cells
sample
fluorescence image
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021191406A
Other languages
English (en)
Other versions
JP2022037000A (ja
Inventor
和宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Publication of JP2022037000A publication Critical patent/JP2022037000A/ja
Application granted granted Critical
Publication of JP7232308B2 publication Critical patent/JP7232308B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N15/1436Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1468Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Electro-optical investigation, e.g. flow cytometers with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G01N15/01
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • G01N2021/6441Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、蛍光画像分析装置および蛍光画像分析方法に関する。
特許文献1には、蛍光インサイチュハイブリダイゼーション法(FISH法)の検出にフローサイトメータ等を適用する際の細胞の処理方法が記載されている。FISH法によれば、細胞中の検出対象のDNA配列領域に標識プローブをハイブリダイズさせる前処理により細胞を染色し、標識プローブに起因して生じた蛍光を検出することにより、異常細胞の検出を行うことができる。
特表2005-515408号公報
上記のような異常細胞の検出を行う手法を用いて、採取した検体が特定の疾患について陽性または陰性のいずれであるかを精度よく判定しようとすると、例えば、千個から一万個といった膨大な数の細胞を観察して異常細胞の検出を行う必要がある。この場合、オペレータが異常細胞を検出する負担が増大するとともに、異常細胞の検出がオペレータの感覚に依存するため、試料が陽性または陰性のいずれであるかの判定精度の維持が困難になる。
本発明の第1の態様は、蛍光色素により細胞の標的部位を標識する工程を含む前処理を行い調製された試料を測定して分析を行う蛍光画像分析装置に関する。本態様に係る蛍光画像分析装置は、試料に光を照射する光源と、光が照射された試料中の細胞の蛍光画像を撮像する撮像部と、撮像部により撮像された蛍光画像を処理する処理部と、を備える。処理部は、第1の色の輝点の数と、第1の色とは異なる第2の色の輝点の数と、第1の色の輝点および第2の色の輝点が融合した輝点の数とに基づいて、蛍光画像中の細胞を分類し、第1の色の輝点及び第2の色の輝点の輝度、形状、大きさ又は輝点の数に基づいて、前処理の適否を判定するための指標を取得する。
本発明の第2の態様は、蛍光色素により細胞の標的部位を標識する工程を含む前処理を行い調製された試料を測定して分析を行う蛍光画像分析装置に関する。本態様に係る蛍光画像分析装置は、試料に光を照射する光源と、光が照射された試料中の細胞の蛍光画像を撮像する撮像部と、撮像部により撮像された蛍光画像を処理する処理部と、表示部と、を備える。処理部は、第1の色の輝点の数と、第1の色とは異なる第2の色の輝点の数と、第1の色の輝点および第2の色の輝点が融合した輝点の数とに基づいて、蛍光画像中の細胞を分類し、第1の色の輝点及び第2の色の輝点の輝度、形状、大きさ又は輝点の数に基づいて、前処理の適否を判定するための指標を取得し、取得した指標に基づく情報を表示部に表示させる。
本発明の第3の態様は、蛍光色素により細胞の標的部位を標識する工程を含む前処理を行い調製された試料を測定して分析を行う蛍光画像分析方法に関する。本態様に係る蛍光画像分析方法は、試料に光を照射する工程と、光が照射された試料中の細胞の蛍光画像を撮像する工程と、第1の色の輝点の数と、第1の色とは異なる第2の色の輝点の数と、第1の色の輝点および第2の色の輝点が融合した輝点の数とに基づいて、蛍光画像中の細胞を分類する工程と、第1の色の輝点及び第2の色の輝点の輝度、形状、大きさ又は輝点の数に基づいて、前処理の適否を判定するための指標を取得する工程と、を含む。
本発明によれば、試料が陽性または陰性のいずれであるかを高精度に判定できる。
図1は、実施形態に係る蛍光画像分析装置および前処理ユニットの構成を模式的に示す図である。 図2(a)は、実施形態に係る蛍光画像分析装置により取得される第1~第3画像および明視野画像を例示する図である。図2(b)は、実施形態に係る蛍光画像分析装置が行う核の領域の抽出を説明するための図である。図2(c)、(d)は、実施形態に係る蛍光画像分析装置が行う輝点の領域の抽出を説明するための図である。 図3(a)~(d)は、それぞれ、実施形態に係る陰性パターン、陽性パターン1、陽性パターン2、陽性パターン3の輝点の配置例を模式的に示す図である。 図4は、実施形態に係る第1指標を説明するための図である。 図5は、実施形態に係る第2指標を説明するための図である。 図6は、実施形態に係る第3指標を説明するための図である。 図7は、実施形態に係る第3指標を説明するための図である。 図8は、実施形態に係る第4指標を説明するための図である。 図9は、実施形態に係る第5指標を説明するための図である。 図10は、実施形態に係る第6指標を説明するための図である。 図11(a)は、実施形態1に係る前処理の適否の判定結果を表示する処理を示すフローチャートである。図11(b)は、実施形態1に係る表示部に表示される画面の構成を模式的に示す図である。 図12(a)は、実施形態1に係る分析結果を表示する処理を示すフローチャートである。図12(b)は、実施形態1に係る表示部に表示される画面の構成を模式的に示す図である。 図13(a)は、実施形態2に係る前処理の適否の判定結果および分析結果を表示する処理を示すフローチャートである。図13(b)は、実施形態2に係る表示部に表示される画面の構成を模式的に示す図である。 図14(a)、(b)は、実施形態3に係る記憶部に記憶されているデータベースの構成を概念的に示す図である。 図15(a)は、実施形態3に係る前処理の適否の判定結果を表示する処理を示すフローチャートである。図15(b)は、実施形態3に係る表示部に表示される画面の構成を模式的に示す図である。 図16(a)は、実施形態4に係る前処理の適否の判定結果に関するグラフを表示する処理を示すフローチャートである。図16(b)は、実施形態4に係る表示部に表示される画面の構成を模式的に示す図である。 図17は、実施形態5に係る表示部に表示される画面の構成を模式的に示す図である。 図18は、実施形態6に係る撮像ユニットの構成を模式的に示す図である。 図19は、実施形態7に係る蛍光画像分析装置の構成を模式的に示す図である。 図20(a)は、実施形態8に係る記憶部に記憶された輝点のパターンおよび輝点のパターンに対応付けられた判定を模式的に示す図である。図20(b)は、実施形態8に係る表示部に表示される画面の構成を模式的に示す図である。
以下の実施形態は、蛍光色素により標識した核酸プローブと核酸中の標的部位とをハイブリダイズさせる工程を含む前処理において調製された試料を測定して分析を行う装置に、本発明を適用したものである。具体的には、以下の実施形態では、核酸中の標的部位を22番染色体にあるBCR遺伝子および9番染色体にあるABL遺伝子とし、FISH法に基づいて、慢性骨髄性白血病に見られる9番染色体と22番染色体との間における転座が生じている細胞を異常細胞として検出する。すなわち、以下の実施形態では、BCR遺伝子またはABL遺伝子が転座してBCR-ABL融合遺伝子を生成している細胞を異常細胞として検出する。また、以下の実施形態では、検出対象となる細胞は、血液検体中の白血球である。
<装置構成>
図1に示すように、蛍光画像分析装置10は、前処理ユニット20による前処理により調製された試料20aを測定して分析を行う。オペレータは、被検者から採取した血液検体に対して遠心分離等の処理を行って、検出対象細胞である白血球を抽出する。白血球の抽出にあたっては、遠心分離に代えて溶血剤を用いてその他の血球を溶血させることにより白血球を抽出してもよい。前処理ユニット20は、試薬と遠心分離等の処理が行われた検体とを混合させるための混合容器、検体と試薬を混合容器に分注するための分注ユニット、混合容器を加温するための加温部等を含む。前処理ユニット20は、被検者から採取した検出対象細胞の標的部位を蛍光色素により標識する工程と、細胞の核を核染色用色素により特異的に染色する工程と、を含む前処理を行って試料20aを調製する。具体的には、標的部位を蛍光色素により標識する工程では、蛍光色素により標識された核酸プローブと核酸中の標的部位とがハイブリダイズされる。
BCR遺伝子とハイブリダイズする核酸プローブは、波長λ11の励起光が照射されることにより波長λ21の蛍光を生じる第1蛍光色素によって標識される。これにより、BCR遺伝子が、第1蛍光色素によって標識される。ABL遺伝子とハイブリダイズする核酸プローブは、波長λ12の励起光が照射されることにより波長λ22の蛍光を生じる第2蛍光色素によって標識される。これにより、ABL遺伝子が、第2蛍光色素によって標識される。核は、波長λ13の励起光が照射されることにより波長λ23の蛍光を生じる核染色用色素によって染色される。
より具体的には、前処理ユニット20は、脱水により細胞が収縮しないよう細胞を固定する処理、核酸プローブを細胞内に導入できる大きさの穴を細胞に開ける膜透過処理、細胞に熱を加える熱変性処理、標的部位と核酸プローブとをハイブリダイゼーションさせる処理、細胞から不要な核酸プローブを除去する洗浄処理、および、核を染色する処理を含んでいる。
蛍光画像分析装置10は、撮像ユニット100と、処理部11と、記憶部12と、表示部13と、入力部14と、を備える。撮像ユニット100は、フローセル110と、光源121~124と、集光レンズ131~134と、ダイクロイックミラー141、142と、集光レンズ151と、光学ユニット152と、集光レンズ153と、撮像部154と、を備える。フローセル110の流路111には、試料20aが流される。
光源121~124は、フローセル110を流れる試料20aに光を照射する。光源121~124は、半導体レーザ光源により構成される。光源121~124から出射される光は、それぞれ、波長λ11~λ14のレーザ光である。集光レンズ131~134は、それぞれ、光源121~124から出射された光を集光する。ダイクロイックミラー141は、波長λ11の光を透過させ、波長λ12の光を反射する。ダイクロイックミラー142は、波長λ11、λ12の光を透過させ、波長λ13の光を反射する。こうして、波長λ11~λ14の光が、フローセル110の流路111を流れる試料に照射される。
フローセル110を流れる試料に波長λ11~λ13の光が照射されると、細胞を染色している蛍光色素から蛍光が生じる。具体的には、波長λ11の光がBCR遺伝子を標識する第1蛍光色素に照射されると、第1蛍光色素から波長λ21の蛍光が生じる。波長λ12の光がABL遺伝子を標識する第2蛍光色素に照射されると、第2蛍光色素から波長λ22の蛍光が生じる。波長λ13の光が核を染色する核染色用色素に照射されると、核染色用色素から波長λ23の蛍光が生じる。フローセル110を流れる試料に波長λ14の光が照射されると、この光は細胞を透過する。細胞を透過した波長λ14の光は、明視野画像の生成に用いられる。実施形態では、波長λ21は緑色の光の波長帯域であり、波長λ22は赤色の光の波長帯域であり、波長λ23は、青色の光の波長帯域である。
集光レンズ151は、フローセル110の流路111を流れる試料から生じた波長λ21~λ23の蛍光と、フローセル110の流路111を流れる試料を透過した波長λ14の光とを集光する。光学ユニット152は、4枚のダイクロイックミラーが組み合わせられた構成を有する。光学ユニット152の4枚のダイクロイックミラーは、波長λ21~λ23の蛍光と波長λ14の光とを、互いに僅かに異なる角度で反射し、撮像部154の受光面上において分離させる。集光レンズ153は、波長λ21~λ23の蛍光と波長λ14の光とを集光する。
撮像部154は、TDI(Time Delay Integration)カメラにより構成される。撮像部154は、波長λ21~λ23の蛍光と波長λ14の光とを撮像して、波長λ21~λ23の蛍光にそれぞれ対応した蛍光画像と、波長λ14の光に対応した明視野画像とを、撮像信号として出力する。波長λ21~λ23の蛍光に対応する蛍光画像を、以下、それぞれ「第1画像」、「第2画像」、「第3画像」と称する。
図2(a)の例において、第1画像では、波長λ21の蛍光の輝点が黒く点状に分布しており、第2画像では、第1画像の場合に比べてやや薄いものの、波長λ22の蛍光の輝点が黒く点状に分布している。第3画像では、核の領域が黒く分布している。明視野画像では、実際の細胞の状態を確認できる。なお、図2(a)の各画像は、前処理後の白血球をスライドガラス上に配置して顕微鏡で観察したものを例として示す画像であり、図2(a)の第1~第3画像は、階調を反転させた後、色調をグレーに変更したものである。上記のようにフローセル110を流れる試料20aを撮像部154により撮像した場合は、細胞が互いに分離した状態で流路111を流れるため、蛍光画像および明視野画像は、細胞ごとに取得されることになる。
図1に戻り、処理部11は、CPUにより構成される。処理部11は、CPUとマイクロコンピュータにより構成されてもよい。処理部11は、記憶部12に記憶されたプログラムに基づいて各種の処理を行う。処理部11は、撮像ユニット100と、記憶部12と、表示部13と、入力部14とに接続されており、各部からの信号を受信し、各部を制御する。記憶部12は、RAM、ROM、ハードディスク等により構成される。表示部13は、ディスプレイにより構成される。入力部14は、マウスおよびキーボードにより構成される。
処理部11は、撮像部154により撮像された第1~第3画像を処理する。具体的には、処理部11は、波長λ21の蛍光に基づく第1画像から波長λ21の蛍光の輝点を抽出し、波長λ22の蛍光に基づく第2画像から波長λ22の蛍光の輝点を抽出する。また、処理部11は、波長λ23の蛍光に基づく第3画像から、核の範囲を抽出する。
処理部11は、第1画像と第2画像における輝点の分布状況に基づいて、細胞ごとにBCR遺伝子またはABL遺伝子が転座している異常細胞であるか否かを判定し、異常細胞を検出する。異常細胞の判定については、追って図3(a)~(d)を参照して説明する。
また、処理部11は、複数の細胞ごとに抽出した輝点に基づいて、試料20aが陽性または陰性のいずれであるかの判定に用いられる情報を生成する。上記構成によれば、オペレータが膨大な数の細胞を観察して異常細胞を検出する必要がなく、異常細胞の検出がオペレータの感覚に依存しないため、異常細胞の検出精度が高められる。したがって、試料20aが陽性または陰性のいずれであるかの判定に用いられる情報の精度が高められるため、医師等は、この情報を参照して、試料20aが陽性または陰性のいずれであるかを高精度に判定できる。この情報については、追って図20(b)を参照して説明する。
次に、蛍光画像分析装置10が行う核の領域の抽出および輝点の領域の抽出について説明する。
図2(b)の左端に示す第3画像と、図2(c)の左端に示す第1画像と、図2(d)の左端に示す第2画像は、フローセル110を流れる試料20aの同じ領域から取得されたものである。
図2(b)の左端に示すように第3画像が取得された場合、処理部11は、第3画像上の各画素における輝度に基づいて、図2(b)の中央に示すように輝度と度数のグラフを作成する。縦軸の度数は、画素の個数を示している。処理部11は、このグラフにおいて輝度の閾値を設定する。そして、処理部11は、閾値よりも大きい輝度を有する画素が分布する範囲を、図2(b)の右端において破線で示すように、核の領域として抽出する。なお、第3画像において、2つの核が重なり合っている場合、重なった細胞に関する第1~第3画像は、前処理の適否判定および異常細胞の判定には用いられず除外される。
図2(c)の左端に示すように第1画像が取得された場合、処理部11は、第1画像上の各画素における輝度に基づいて、図2(c)の中央に示すように輝度と度数のグラフを作成する。処理部11は、このグラフにおいて、たとえば大津法に基づいて輝点とバックグランドとの境界として輝度の閾値を設定する。そして、処理部11は、閾値よりも大きい輝度を有する画素が分布する範囲を、図2(c)の右端において破線で示すように、輝点の領域として抽出する。なお、第1画像から輝点の領域を抽出する場合に、極端に小さい領域を有する輝点、極端に大きい領域を有する輝点、および、図2(b)の右端に示した核の領域に含まれない輝点は除外される。
図2(d)の左端に示すように第2画像が取得された場合、第1画像の場合と同様、処理部11は、第2画像上の各画素における輝度に基づいて、図2(d)の中央に示すように輝度と度数のグラフを作成する。処理部11は、このグラフにおいて、輝度の閾値を設定し、閾値よりも大きい輝度を有する画素が分布する範囲を、図2(d)の右端において破線で示すように、輝点の領域として抽出する。なお、第2画像から輝点の領域を抽出する場合に、極端に小さい領域を有する輝点、極端に大きい領域を有する輝点、および、図2(b)の右端に示した核の領域に含まれない輝点は除外される。
なお、処理部11は、図2(b)~(d)の中央に示すようにグラフを作成することなく、上記のような手順に沿って、演算により、第3画像から核の領域を抽出し、第1画像および第2画像輝点から輝点の領域を抽出してもよい。また、輝点の抽出は、正常とされる輝点の分布波形と判定対象の領域との整合の度合いを判定し、整合の度合いが高い場合に、判定対象の領域を輝点として抽出してもよい。処理部11は、第3画像から核の領域を抽出することにより細胞を検出したが、明視野画像に基づいて細胞を検出してもよい。明視野画像に基づいて細胞が検出される場合、第3画像の取得を省略することもできる。本実施の形態における輝点とは、蛍光画像に生じる小さな蛍光の点を意味している。より具体的には、輝点とは、核中の標的部位となる遺伝子に結合した核酸プローブの蛍光色素から得られる蛍光の点を意味している。
次に、図3(a)~(d)を参照して、蛍光画像分析装置10が行う異常細胞の判定について説明する。
図3(a)は、陰性パターンの輝点の配置例を示し、図3(b)~(d)は陽性パターン1~3の輝点の配置例を示している。なお、本実施形態では、異常細胞における輝点の配置パターンは、ほぼ、図3(b)~(d)に示す陽性パターン1~3のいずれかに合致することになる。
図3(a)に示すように、BCR遺伝子とABL遺伝子について転座が生じていない場合、第1画像において、波長λ21の蛍光、すなわち緑色の蛍光の輝点は、核内に2点存在し、第2画像において、波長λ22の蛍光、すなわち赤色の蛍光の輝点は、核内に2点存在する。この場合に、第1画像と第2画像を合成すると、合成画像において、2つの緑色の輝点と、2つの赤色の輝点とが、1つの核内に存在することになる。このように、図3(a)に示すように各輝点が存在する場合、処理部11は、この細胞について、BCR遺伝子とABL遺伝子について転座が生じていない、すなわち陰性であると判定する。
図3(b)に示すように、転座によりABL遺伝子の一部が9番染色体に移動している場合、第1画像において、緑色の蛍光の輝点は核内に2点存在し、第2画像において、赤色の輝点は核内に3点存在する。この場合に、第1画像と第2画像を合成すると、合成画像において、1つの緑色の輝点と、2つの赤色の輝点と、1つの黄色の輝点とが、1つの核内に存在することになる。図3(b)に示すように各輝点が存在する場合、処理部11は、この細胞について、BCR遺伝子とABL遺伝子について転座が生じている、すなわち陽性であると判定する。
図3(c)に示すように、転座によりBCR遺伝子の一部が22番染色体に移動し、ABL遺伝子の一部が9番染色体に移動している場合、第1画像において、緑色の輝点は核内に3点存在し、第2画像において、赤色の輝点は核内に3点存在する。この場合に、第1画像と第2画像を合成すると、合成画像において、1つの緑色の輝点と、1つの赤色の輝点と、2つの黄色の輝点とが、1つの核内に存在することになる。図3(c)に示すように各輝点が存在する場合、処理部11は、この細胞について、BCR遺伝子とABL遺伝子について転座が生じている、すなわち陽性であると判定する。
図3(d)に示すように、転座によりABL遺伝子が9番染色体に移動している場合、第1画像において、緑色の輝点は核内に2点存在し、第2画像において、赤色の輝点は核内に2点存在する。この場合に、第1画像と第2画像を合成すると、合成画像において、1つの緑色の輝点と、1つの赤色の輝点と、1つの黄色の輝点とが、1つの核内に存在することになる。図3(d)に示すように各輝点が存在する場合、処理部11は、この細胞について、BCR遺伝子とABL遺伝子について転座が生じている、すなわち陽性であると判定する。
検出対象の核酸配列領域である標的部位を蛍光色素で標識する場合、前処理において、たとえば、細胞に熱を加える処理、標的部位に核酸プローブをハイブリダイズさせる処理、細胞から不要な核酸プローブを除去する処理等の複雑な工程を行う必要がある。前処理の各工程において、処理温度、処理時間、試薬濃度、試薬量等が僅かに変化するだけで、染色体が破壊されたり、標的部位が核酸プローブにより適正に標識されなくなるおそれがある。分析は核酸プローブに基づく標的部位の観察により行われるため、前処理が適正に行われていないと、分析結果にばらつきが生じ分析の信頼性が低下するおそれがある。また、オペレータが前処理の適否を判定しようとすると、膨大な数の細胞を観察する必要が生じるとともに、適否判定がオペレータの感覚に依存することになり判定精度の維持が困難になる。
蛍光画像分析装置10が前処理の適否を判定する機能を有していれば、上記の課題に対応可能となる。
蛍光画像分析装置10の処理部11は、抽出した輝点に基づいて、前処理の状態に応じて変化する輝点の状態を反映した指標を取得し、取得した指標と前処理の適否を区分する閾値とを比較することにより、前処理の適否を判定する。指標および前処理の適否の判定については、追って図4~10を参照して説明する。
このように、前処理の状態に応じて変化する輝点の状態を反映した指標が、蛍光画像分析装置10により取得され、取得された指標に基づいて前処理の適否が判定される。これにより、精度よく前処理の適否を判定できる。また、前処理が不適正である場合に、前処理の手順を見直すなど前処理を適正なものとする契機となり得るため、蛍光画像分析装置10による分析の信頼性を高めることができる。また、オペレータによって感覚的に前処理の適否判定が行われる場合に比べて、オペレータの手間を省略し、ばらつきなく前処理の適否を判定できる。
次に、蛍光画像分析装置10により取得される、前処理の状態に応じて変化する輝点の状態を反映した指標について説明する。
前処理が適正に行われなかった場合には、標的部位以外の核酸部位に対する核酸プローブの結合、いわゆる非特異的な結合により、標的部位以外の核酸部位が蛍光標識される場合や、標的部位に核酸プローブが結合しなかったことにより、標的部位が十分に蛍光標識されない場合がある。
発明者は、前処理を行うときの温度や濃度等の条件すなわち制御因子をどのように設定すれば、標的部位を適正に蛍光標識できるかを調査した。この過程で、発明者は、最も輝点の状態が良好となる場合から制御因子を変更すると輝点の状態が悪化することに着目し、最も輝点の状態が良好となる場合から、どの程度輝点の状態が変化したかを判定することにより、前処理の状態を判定できることを見いだした。以下、前処理の状態を判定するための第1~第6指標について説明する。
<第1指標>
第1指標は、前処理が適正に行われれば、標的部位が適正に蛍光標識され、第1画像および第2画像における輝点数が想定される数になることに着目した指標である。
図4に示すように、発明者は、ナンバー1~8に示す前処理条件のもとで、標準試料である陰性検体に対して前処理を行った。ナンバー1~8の前処理条件には、それぞれ、A~Gに示す7つの制御因子が設定されている。A~Gに示す7つの制御因子は、それぞれ、熱変性温度、熱変性時間、熱変性方法、ハイブリ温度、プローブ量、洗浄液温度、および洗浄液塩濃度である。
制御因子Aは、ハイブリダイゼーションの前に核酸および核酸プローブを熱変性させるときの温度であり、単位は摂氏である。制御因子Bは、核酸および核酸プローブを熱変性させる時間であり、単位は分である。制御因子Cは、核酸および核酸プローブを熱変性させる方法である。方法2は、核酸の熱変性と核酸プローブの熱変性とを同時に行う方法である。制御因子Dは、核酸と核酸プローブとをハイブリダイズさせるときの温度であり、単位は摂氏である。制御因子Eは、規定量に対する核酸プローブ量の倍率である。制御因子Fは、ハイブリダイゼーションの後に試料を洗浄する洗浄液の温度であり、単位は摂氏である。制御因子Gは、規定量に対する洗浄液の塩濃度の倍率である。
発明者は、ナンバー1~8に示す前処理条件のもとで陰性検体に対して前処理を施して試料を調製し、調製した試料を測定して第1~第3画像を取得した。そして、発明者は、第1画像および第2画像における輝点が、図3(a)~(d)に示すように陰性パターンおよび陽性パターン1~3の何れかである細胞数を、第3画像に基づいて適正に核の領域を抽出できた細胞数で除算することにより、各ナンバーにおいて割合を算出した。すなわち、発明者は、検出した細胞のうち分析対象となり得る細胞の割合を算出した。以下、検出した細胞のうち分析対象となり得る細胞の割合を、「第1指標」と称する。発明者による検証の結果、ナンバー5の場合に、第1指標が68%となり、他の前処理条件に比べて最も高い値となった。
発明者は、ナンバー5の前処理条件を最も適正に前処理を行うことができる条件であるとして、このときの第1指標の値である68%を基準に、前処理の適否を判定するための閾値を設定した。具体的には、発明者は、前処理の状態が警告レベルであることを判定する閾値を50%に設定し、前処理の状態が異常レベルであることを判定する閾値を30%に設定した。なお、警告レベルの閾値は、最も適正に前処理が行われたと考えられる場合に取得される第1指標の値よりも所定の値だけ小さい値に設定され、異常レベルの閾値は、警告レベルの閾値よりも所定の値だけ小さい値に設定されればよい。
図4に示す発明者が実際に行った前処理では、陰性検体が用いられているため、分析対象となり得る細胞は陰性パターンの細胞に限られる。しかしながら、実際の検体を用いて前処理を行う場合、分析対象となり得る細胞の多くは、陰性パターンおよび陽性パターン1~3の何れかの細胞となる。したがって、上記のように陰性パターンおよび陽性パターン1~3の何れかである細胞数を、核の領域を抽出できた細胞数で除算することにより算出される第1指標は、陰性検体に限らず実際の検体を用いて前処理の適否を行う場合にも利用可能な指標となる。なお、検出した細胞のうち分析対象となり得ない細胞とは、前処理が適正に行われなかったことにより、陰性パターンおよび陽性パターン1~3の何れにも該当しなかった細胞のことである。
第1指標を用いて実際に前処理の適否を判定する手順について、以下に説明する。
まず、所定のタイミング、たとえば1日において蛍光画像分析装置10の使用を開始する直前のタイミングにおいて、オペレータは、前処理ユニット20を用いて標準試料である陰性検体に対して前処理を行う。続いて、オペレータは、標準試料を前処理することにより調製された試料20aを蛍光画像分析装置10にセットし、試料20aの測定を行う。処理部11は、細胞ごとに第1~第3画像を取得し、核の領域および輝点の領域の抽出を行う。
続いて、処理部11は、第3画像に基づいて適正に核の領域を抽出できた細胞数を第1の数として取得し、第1画像および第2画像における輝点が陰性パターンおよび陽性パターン1~3の何れかである細胞の数を第2の数として取得する。そして、処理部11は、第1の数に対する第2の数の割合を、第1指標として取得する。処理部11は、警告レベルおよび異常レベルに対応する閾値と、第1指標とを比較することにより、前処理の適否を判定する。具体的には、処理部11は、第1指標が警告レベル未満であり異常レベル以上である場合、前処理の状態が警告レベルであると判定し、第1指標が異常レベル未満である場合、前処理の状態が異常レベルであると判定する。
このように、検証の結果から最も適正に前処理が行われたと考えられる第1指標に基づいて閾値が設定され、実際に標準試料に基づいて取得された第1指標が、設定された閾値と比較され、前処理の適否が判定される。これにより、前処理が適正に行われなかった場合は、実際に取得した第1指標の値が、適正に前処理が行われた場合の第1指標よりも小さくなる。よって、実際に取得した第1指標の値を閾値と比較することにより、前処理の適否を精度よく判定できる。
なお、被検者から採取した実際の検体を前処理することにより調製された試料20a、すなわち、実際に分析を行う場合に調製された試料20aを用いても、前処理の適否を判定できる。実際の検体に基づく試料20aは、第1画像および第2画像における輝点が、図3(a)に示す陰性パターンである細胞、および、図3(b)~(d)に示す陽性パターン1~3である細胞を含んでいる。
この場合も、処理部11は、第1画像および第2画像における輝点が陰性パターンと陽性パターン1~3の何れかである細胞の数を第2の数として取得する。この場合の第2の数も、検出した細胞のうち分析対象となり得る細胞の数である。したがって、この場合も、処理部11は、第2の数を検出細胞数である第1の数で除算することにより、上述した陰性検体に基づく試料20aの場合と同様に、第1の指標を取得する。そして、処理部11は、取得した第1の指標と、上述した陰性検体に基づく試料20aの場合と同様の警告レベルの閾値および異常レベルの閾値とを比較して、前処理の適否を判定する。
<第2指標>
上述したように、前処理が適正に行われなかった場合には、標的部位が十分に蛍光標識されない場合がある。第2指標は、前処理が適正に行われなかった場合、第1画像および第2画像における輝点の輝度が低下することに着目した指標である。第2指標を用いて実際に前処理の適否を判定する手順について、以下に説明する。
まず、オペレータは、前処理ユニット20を用いて標準試料である陰性検体に対して前処理を行う。続いて、オペレータは、標準試料を前処理することにより調製された試料20aを蛍光画像分析装置10にセットし、試料20aの測定を行う。処理部11は、細胞ごとに第1~第3画像を取得し、核の領域および輝点の抽出を行う。
続いて、処理部11は、図5に示すように、複数の第1画像から核内の輝点の輝度を取得し、取得した輝点の輝度に基づいて第1画像についての輝点の平均輝度を算出する。同様に、処理部11は、複数の第2画像から核内の輝点の輝度を取得し、取得した輝点の輝度に基づいて第2画像についての輝点の平均輝度を算出する。そして、処理部11は、第1画像についての平均輝度と、第2画像についての平均輝度とに基づいて、全細胞における輝点の平均輝度を算出する。以下、全細胞における輝点の平均輝度を、「第2指標」と称する。
続いて、処理部11は、警告レベルの閾値および異常レベルの閾値と、第2指標とを比較することにより、前処理の適否を判定する。具体的には、処理部11は、第2指標が警告レベルより小さく異常レベル以上である場合、前処理の状態が警告レベルであると判定し、第2指標が異常レベルより小さい場合、前処理の状態が異常レベルであると判定する。
なお、この場合も、オペレータは、あらかじめ複数の前処理条件のもとで陰性検体に対して前処理を行っておき、最も適正に前処理が行われた場合、すなわち最も値が大きくなる場合の第2指標を取得しておく。そして、オペレータは、あらかじめ警告レベルの閾値を、最も大きい値の第2指標よりも所定の値だけ小さい値に設定し、あらかじめ異常レベルの閾値を、警告レベルの閾値よりも所定の値だけ小さい値に設定しておく。
なお、第2指標を、輝度が所定値よりも小さい輝点を含む細胞数を、全体の細胞数で除算した値としてもよい。この場合、前処理が適正に行われないと、第2指標は大きくなる。また、第2指標を用いる場合においても、第1指標と同様、被検者から採取した実際の検体を前処理することにより調製された試料20aを用いて、前処理の適否を判定できる。
<第3指標>
第3指標は、前処理が適正に行われなかった場合、第1画像および第2画像における輝点の輝度が低下し、第1画像および第2画像に基づくS/N比が低下することに着目した指標である。第3指標を用いて実際に前処理の適否を判定する手順について、以下に説明する。
まず、オペレータは、前処理ユニット20を用いて標準試料である陰性検体に対して前処理を行う。続いて、オペレータは、標準試料を前処理することにより調製された試料20aを蛍光画像分析装置10にセットし、試料20aの測定を行う。処理部11は、細胞ごとに第1~第3画像を取得し、核の領域および輝点の抽出を行う。
続いて、処理部11は、図6に示すように、複数の第1画像から核内の輝点の平均輝度と、核内の輝点領域以外の領域、すなわち輝点の背景領域の平均輝度とを算出する。同様に、処理部11は、複数の第2画像から核内の輝点の平均輝度と、輝点の背景領域の平均輝度とを取得する。処理部11は、各画像において、輝点の平均輝度を背景の平均輝度で除算することにより、S/N比を算出する。そして、処理部11は、各画像に基づくS/N比を平均し、全細胞における平均S/N比を算出する。以下、全細胞における平均S/N比を、「第3指標」と称する。
続いて、処理部11は、警告レベルの閾値および異常レベルの閾値と、第3指標とを比較することにより、前処理の適否を判定する。具体的には、処理部11は、第3指標が警告レベルより小さく異常レベル以上である場合、前処理の状態が警告レベルであると判定し、第3指標が異常レベルより小さい場合、前処理の状態が異常レベルであると判定する。
なお、この場合も、オペレータは、あらかじめ複数の前処理条件のもとで陰性検体に対して前処理を行っておき、最も適正に前処理が行われた場合、すなわち、最も値が大きくなる場合の平均S/N比を取得しておく。そして、オペレータは、あらかじめ警告レベルの閾値を、最も大きい値の第3指標よりも所定の値だけ小さい値に設定し、あらかじめ異常レベルの閾値を、警告レベルの閾値よりも所定の値だけ小さい値に設定しておく。
ここで、図7に示すように、発明者は、前処理において熱変性温度と熱変性時間とを変えて、緑の輝点を含む第1画像に基づいて平均S/N比を算出し、赤の輝点を含む第2画像に基づいて平均S/N比を算出した。図7に示す例では、熱変性温度が95℃で熱変性時間が20分の場合に、第1画像に基づく平均S/N比および第2画像に基づく平均S/N比の両方が最も高くなった。したがって、熱変性温度が95℃で熱変性時間が20分の場合、すなわち最も適正に前処理が行われた場合の第3指標は、第1画像に基づく平均S/N比が約400%であり、第2画像に基づく平均S/N比が約370%であることから、約385%となった。したがって、図7に示す検証結果によれば、警告レベルであることを示す閾値として250%を設定し、異常レベルであることを示す閾値として200%を設定できる。
なお、第3指標を、平均S/N比が所定値よりも小さい細胞数を、全体の細胞数で除算した値としてもよい。この場合、前処理が適正に行われないと、第2指標は大きくなる。また、第3指標を用いる場合においても、第1指標と同様、被検者から採取した実際の検体を前処理することにより調製された試料20aを用いて、前処理の適否を判定できる。
<第4指標>
前処理が適正に行われた場合には、標的部位の1点から蛍光が生じている状態として輝点が撮像され、蛍光画像上の輝点は略円形状となる。一方、上述したように、前処理が適正に行われなかった場合には、非特異的な結合が生じ、標的部位の周辺部位から蛍光が生じる場合がある。第4指標は、前処理が適正に行われなかった場合、第1画像および第2画像における輝点の円形度が低下することに着目した指標である。第4指標を用いて実際に前処理の適否を判定する手順について、以下に説明する。
まず、オペレータは、前処理ユニット20を用いて標準試料である陰性検体に対して前処理を行う。続いて、オペレータは、標準試料を前処理することにより調製された試料20aを蛍光画像分析装置10にセットし、試料20aの測定を行う。処理部11は、細胞ごとに第1~第3画像を取得し、核の領域および輝点の抽出を行う。
続いて、処理部11は、図8に示すように、第1画像および第2画像において核内の各輝点の円形度を算出し、各細胞において、円形度が所定値より低い輝点すなわち円形ではない輝点が所定数以上存在するか否かを判定する。図8に示す例では、処理部11は、円形度が所定値より低い輝点が1個以上存在するか否かを判定している。処理部11は、円形度が低い輝点を含む細胞数を、全体の細胞数で除算することにより、円形度が低い輝点を含む細胞の割合を算出する。以下、円形度が低い輝点を含む細胞の割合を、「第4指標」と称する。
続いて、処理部11は、警告レベルの閾値および異常レベルの閾値と、第4指標とを比較することにより、前処理の適否を判定する。具体的には、処理部11は、第4指標が警告レベルより大きく異常レベル以下である場合、前処理の状態が警告レベルであると判定し、第4指標が異常レベルより大きい場合、前処理の状態が異常レベルであると判定する。
なお、この場合も、オペレータは、あらかじめ複数の前処理条件のもとで陰性検体に対して前処理を行っておき、最も適正に前処理が行われた場合、すなわち、最も値が小さくなる場合の第4指標を取得しておく。そして、オペレータは、あらかじめ警告レベルの閾値を、最も小さい値の第4指標よりも所定の値だけ大きい値に設定し、あらかじめ異常レベルの閾値を、警告レベルの閾値よりも所定の値だけ大きい値に設定しておく。
なお、第4指標を、全細胞における全輝点の円形度の平均としてもよい。この場合、前処理が適正に行われないと、第4指標は小さくなる。また、第4指標を用いる場合においても、第1指標と同様、被検者から採取した実際の検体を前処理することにより調製された試料20aを用いて、前処理の適否を判定できる。
<第5指標>
上述したように、前処理が適正に行われなかった場合には、非特異的な結合により輝点が大きくなる場合がある。第5指標は、前処理が適正に行われなかった場合、第1画像および第2画像における輝点が大きくなることに着目した指標である。第5指標を用いて実際に前処理の適否を判定する手順について、以下に説明する。
まず、オペレータは、前処理ユニット20を用いて標準試料である陰性検体に対して前処理を行う。続いて、オペレータは、標準試料を前処理することにより調製された試料20aを蛍光画像分析装置10にセットし、試料20aの測定を行う。処理部11は、細胞ごとに第1~第3画像を取得し、核の領域および輝点の抽出を行う。
続いて、処理部11は、図9に示すように、第1画像および第2画像において核内の各輝点の大きさを算出し、各細胞において、大きさが所定値より大きい輝点が所定数以上存在するか否かを判定する。図9に示す例では、処理部11は、大きさが所定値より大きい輝点が1個以上存在するか否かを判定している。なお、輝点の大きさは、輝点画像における輝点領域の面積により取得される。処理部11は、大きさが大きい輝点を含む細胞数を、全体の細胞数で除算することにより、大きさが大きい輝点を含む細胞の割合を算出する。以下、大きさが大きい輝点を含む細胞の割合を、「第5指標」と称する。
続いて、処理部11は、警告レベルの閾値および異常レベルの閾値と、第5指標とを比較することにより、前処理の適否を判定する。具体的には、処理部11は、第5指標が警告レベルより大きく異常レベル以下である場合、前処理の状態が警告レベルであると判定し、第5指標が異常レベルより大きい場合、前処理の状態が異常レベルであると判定する。
なお、この場合も、オペレータは、あらかじめ複数の前処理条件のもとで陰性検体に対して前処理を行っておき、最も適正に前処理が行われた場合、すなわち、最も値が小さくなる場合の第5指標を取得しておく。そして、オペレータは、あらかじめ警告レベルの閾値を、最も小さい値の第5指標よりも所定の値だけ大きい値に設定し、あらかじめ異常レベルの閾値を、警告レベルの閾値よりも所定の値だけ大きい値に設定しておく。
なお、第5指標を、全細胞における全輝点の大きさの平均としてもよい。この場合、前処理が適正に行われないと、第5指標は大きくなる。また、第5指標を用いる場合においても、第1指標と同様、被検者から採取した実際の検体を前処理することにより調製された試料20aを用いて、前処理の適否を判定できる。
<第6指標>
上述したように、前処理が適正に行われなかった場合には、標的部位が十分に蛍光標識されない場合がある。第6指標は、前処理が適正に行われなかった場合、第1画像および第2画像における輝点の数が減少することに着目した指標である。
まず、オペレータは、前処理ユニット20を用いて標準試料である陰性検体に対して前処理を行う。続いて、オペレータは、標準試料を前処理することにより調製された試料20aを蛍光画像分析装置10にセットし、試料20aの測定を行う。処理部11は、細胞ごとに第1~第3画像を取得し、核の領域および輝点の抽出を行う。
続いて、処理部11は、図10に示すように、第1画像および第2画像において核内の輝点の数を算出する。そして、処理部11は、各画像に基づく輝点数を平均し、全細胞における輝点数の平均値を算出する。以下、全細胞における輝点数の平均値を、「第6指標」と称する。
続いて、処理部11は、警告レベルの閾値および異常レベルの閾値と、第6指標とを比較することにより、前処理の適否を判定する。具体的には、処理部11は、第6指標が警告レベルより小さく異常レベル以上である場合、前処理の状態が警告レベルであると判定し、第6指標が異常レベルより小さい場合、前処理の状態が異常レベルであると判定する。なお、この場合、前処理が適正に行われていれば、第6指標の値は2となる。したがって、オペレータは、あらかじめ警告レベルの閾値を、2よりも所定の値だけ小さい値に設定し、あらかじめ異常レベルの閾値を、警告レベルの閾値よりも所定の値だけ小さい値に設定しておく。
なお、第6指標を、前処理が適正に行われた場合の理想値である2からの乖離度としてもよい。この場合、前処理が適正に行われないと、第6指標は大きくなる。また、第6指標を、輝点数が2個より少ない細胞数を、全体の細胞数で除算した値としてもよい。この場合、前処理が適正に行われないと、第6指標は大きくなる。
また、第6指標を用いる場合においても、第1指標と同様、被検者から採取した実際の検体を前処理することにより調製された試料20aを用いて、前処理の適否を判定できる。この場合、試料に陽性細胞が混ざる場合があるため、前処理が適正に行われた場合の第6指標の理想値は2よりも僅かに大きくなる。しかしながら、実際に陽性細胞が存在する確率等を考慮すれば、上記のように陰性細胞に基づく場合と同様の警告レベルの閾値および異常レベルの閾値を用いることができる。
なお、上記の第1~第6指標は、第1画像および第2画像の両方に基づいて算出されたが、何れか一方の蛍光画像により算出されてもよい。
次に、第1~第6指標を用いて前処理の適否を判定するとともに、検体を分析して異常細胞を検出する実施形態1~7について説明する。実施形態1~7において、特に言及しない限り、図1に示す蛍光画像分析装置10と前処理ユニット20とが用いられる。
<実施形態1>
図11(a)に示すように、ステップS11において、前処理ユニット20は、標準試料である陰性検体に対して前処理を行い、試料20aを調製する。ステップS11は、蛍光色素により標識された核酸プローブと、陰性検体の核酸中のBCR領域およびABL領域とをハイブリダイズさせる工程を含む。ステップS12において、処理部11は、ステップS11の前処理により調製された試料20aを測定する。具体的には、処理部11は、陰性検体からなる試料20aをフローセル110の流路111に流して、光源121~124からの光を流路111に照射し、試料20aから生じた蛍光および試料20aを透過した光を撮像部154により撮像して、第1~第3画像と明視野画像を取得する。処理部11は、第1~第3画像と明視野画像を記憶部12に記憶させる。
ステップS13において、処理部11は、第1~第6指標と前処理の適否の判定結果とを、指標に基づく情報として取得する。具体的には、処理部11は、第1~第3画像に基づいて核の領域および輝点の領域を抽出する。そして、処理部11は、上述したように第1~第6指標を算出し、算出した第1~第6指標に基づいて前処理の適否の判定を行う。なお、第1~第6指標に基づく判定に用いられる警告レベルの閾値および異常レベルの閾値は、記憶部12に記憶されている。処理部11は、第1~第6指標の値、および、第1~第6指標に基づく判定結果等を、記憶部12に記憶させる。ステップS14において、処理部11は、指標に基づく情報を表示部13に表示する。具体的には、処理部11は、ステップS13で取得した第1~第6指標と判定結果とを含む画面210を、表示部13に表示する。
図11(b)に示すように、画面210は、第1~第6指標の値と、第1~第6指標にそれぞれ基づく判定結果と、を表示する。このように画面210が構成されると、オペレータは、前処理が適正に行われたか否かを各指標に基づいて判断できる。オペレータは、前処理が不適正であったと判断した場合は、前処理に含まれる各工程を見直し、再度前処理を行うなどの措置をとることができる。オペレータは、前処理が適正であったと判断した場合は、図12(a)に示すように、被検者から採取した実際の検体に対する分析を行う。
図12(a)に示すように、ステップS21において、前処理ユニット20は、被検者から採取され遠心分離等の処理が行われた検体に対して、図11(a)のステップS11と同様の前処理を行い、試料20aを調製する。ステップS22において、処理部11は、ステップS21の前処理により調製された試料20aを、図11(a)のステップS12と同様に測定する。
ステップS23において、処理部11は、分析を行う。具体的には、処理部11は、第1~第3画像に基づいて、輝点が図3(a)に示す陰性パターンとなっている細胞、すなわち陰性細胞を計数する。また、処理部11は、第1~第3画像に基づいて、輝点が図3(b)~(d)に示す陽性パターン1~3の何れかである細胞、すなわち陽性細胞を計数する。また、処理部11は、陽性細胞数を全細胞数で除算することにより、陽性細胞の全細胞に占める割合を算出する。ステップS24において、処理部11は、ステップS23で取得した分析結果を含む画面220を、表示部13に表示する。
図12(b)に示すように、画面220は、検体を識別するための検体IDと、陽性細胞数と、陰性細胞数と、陽性細胞の全細胞に占める割合と、を表示する。このように画面220が構成されると、医師等は、画面220の表示内容を、検体について陽性と陰性の何れであるかの判定に役立てることができる。なお、処理部11は、陽性細胞の割合が所定の閾値を超えている場合に、たとえば「陽性の可能性?」といった検体が陽性であることを示唆するような表示を行ってもよい。
なお、処理部11は、ステップS13において、前処理の適否に関する判定を行わずに第1~第6指標を算出し、ステップS14において、第1~第6指標の値のみを含む画面210を表示部13に表示してもよい。この場合、たとえば、オペレータが、第1~第6指標の値を確認して前処理の適否の判定を行う。
<実施形態2>
実施形態2では、被検者から採取した実際の検体に対して前処理を行って、前処理が行われた実際の検体からなる試料20aに基づいて、前処理の適否を判定する。
図13(a)に示すように、ステップS31において、前処理ユニット20は、図12(a)のステップS21と同様に、被検者から採取され遠心分離等の処理が行われた検体に対して前処理を行い、試料20aを調製する。ステップS32において、処理部11は、ステップS31の前処理により調製された試料20aを、図12(a)のステップS22と同様に測定する。
ステップS33において、処理部11は、図11(a)のステップS13と同様に指標に基づく情報を取得し、図12(a)のステップS23と同様に分析を行う。ステップS34において、処理部11は、図11(a)のステップS14と同様に指標に基づく情報を表示部13に表示し、図12(a)のステップS24と同様に分析結果を表示部13に表示する。具体的には、ステップS34において、処理部11は、指標、判定結果、および分析結果を含む画面230を、表示部13に表示する。
図13(b)に示すように、画面230は、第1~第6指標の値と、第1~第6指標にそれぞれ基づく判定結果と、検体を識別するための検体IDと、陽性細胞数と、陰性細胞数と、陽性細胞の全細胞に占める割合と、を表示する。このように、画面230が構成されると、医師等は、検体の前処理の適否を確認しながら、検体について陽性と陰性の何れであるかの判定を行うことができる。たとえば、前処理の適否の判定結果が適正である場合、医師等は、分析結果の信頼性が高いと判断して、検体に対する診断を精度よく行うことができる。他方、前処理の適否の判定結果が不適正である場合、医師等は、分析結果の信頼性が低いと判断して、検体に対する診断を保留するなどの措置をとることができる。また、前処理の適否判定に、標準試料を用いる必要がなくなる。
なお、処理部11は、ステップS33において、前処理の適否に関する判定を行わずに第1~第6指標を算出し、ステップS34において、第1~第6指標の値と分析結果とを含む画面230を表示部13に表示してもよい。
<実施形態3>
実施形態3では、実施形態2と同様、被検者から採取した実際の検体に対して前処理を行って前処理の適否を判定する。そして、実施形態3では、所定の期間における第1~第6指標を算出して、前処理の適否を判定する。
処理部11は、前処理を行うごとに、前処理を行った日時、検体ID、第1~第3画像、および明視野画像を、輝点に関する情報として、図14(a)に示すデータベース12aに記憶させる。データベース12aは、記憶部12に記憶されている。なお、処理部11は、輝点の領域、輝点の輝度、および背景領域を第1~第3画像から抽出し、抽出したこれらの情報を、輝点に関する情報としてデータベース12aに記憶させてもよい。
また、処理部11は、前処理を行うごとに、第1~第3画像に基づいて第1~第6指標を取得し、取得した第1~第6指標を、図14(b)に示すデータベース12bに記憶させる。すなわち、処理部11は、前処理により調製した試料20aごとに、第1~第6指標を取得し、取得した第1~第6指標を試料20aに関連付けてデータベース12bに記憶させる。データベース12bは、記憶部12に記憶されている。処理部11は、第1~第6指標に基づく判定結果をデータベース12bに記憶させてもよい。このように試料20aごとに第1~第6指標が記憶されると、処理部11は、過去に行った前処理について第1~第6指標を円滑に表示部13に表示できる。なお、処理部11は、第1~第6指標を、所定のタイミング、たとえば1日の分析が終了したタイミングで、データベース12bに記憶してもよい。
図15(a)に示すように、ステップS41において、処理部11は、オペレータにより入力部14を介して入力された期間を受け付ける。期間は、開始日時および終了日時からなる。
ステップS42において、処理部11は、図14(a)に示すデータベース12aから、ステップS41で受け付けた期間に含まれる第1~第3画像に基づいて、期間内における指標に基づく情報を取得する。具体的には、処理部11は、受け付けた期間に含まれる全ての第1~第3画像に基づいて、上記と同様に第1~第6指標を算出し、算出した第1~第6指標に基づいて上記と同様に前処理の適否を判定する。なお、処理部11は、図14(b)に示すデータベース12bに基づいて、受け付けた期間に含まれる同じ指標同士を平均することにより、受け付けた期間の第1~第6指標を取得してもよい。ステップS43において、処理部11は、ステップS42で取得した指標に基づく情報、すなわち第1~第6指標と前処理の適否の判定結果とを含む画面240を、表示部13に表示する。
図15(b)に示すように、画面240は、オペレータにより入力された期間と、受け付けた期間の第1~第6指標と、第1~第6指標に基づく判定結果と、を表示する。このように画面240が構成されると、オペレータは、所定の時間幅で、第1~第6指標と前処理の適否の判定結果を知ることができる。図15(b)に示す例では、オペレータは、“2016/05/10”の1日における指標と判定結果を知ることができる。
なお、処理部11は、ステップS42において、前処理の適否に関する判定を行わずに第1~第6指標を算出し、ステップS43において、第1~第6指標の値のみを含む画面240を表示部13に表示してもよい。また、処理部11は、ステップS41において、オペレータにより入力された期間に基づいて指標に基づく情報の取得および表示を行ったが、オペレータの開始指示に応じて、自動的に当日の0時~24時までの1日を期間として設定してもよい。
<実施形態4>
実施形態4では、実施形態3においてさらに、指標の時間的経過をグラフにして表示する。
図16(a)に示すように、ステップS51において、処理部11は、オペレータにより入力部14を介して入力された期間、表示単位、および選択指標を受け付ける。期間は、実施形態3と同様、開始日時および終了日時からなる。表示単位は、1日、1時間などの時間幅である。選択指標は、第1~第6指標の何れかの指標である。
ステップS52において、処理部11は、図14(a)に示すデータベース12aから、ステップS51で受け付けた期間に含まれる全ての第1~第3画像に基づいて、表示単位ごとの選択指標に基づく情報を取得する。たとえば、表示単位が1日、選択指標が第1指標である場合、処理部11は、期間内において、1日ごとに第1指標および第1指標に基づく前処理の判定結果を取得する。なお、処理部11は、図14(b)に示すデータベース12bに基づいて、期間内における表示単位ごとの選択指標に基づく情報を取得してもよい。ステップS53において、処理部11は、ステップS52で取得した情報に基づくグラフを含む画面250を、表示部13に表示する。
図16(b)に示すように、画面250は、オペレータにより入力された期間、表示単位、および選択指標を表示する領域と、ステップS52で取得した情報に基づくグラフと、を表示する。図16(b)に示す例では、10日間にわたる日ごとの第1指標の時間的推移がグラフ上に示されており、グラフには、警告レベルと異常レベルとが合わせて示されている。このように画面250が構成されると、オペレータは、所定の期間内において第1~第6指標の時間的推移を視覚的に把握できるため、前処理の状態をより正確に把握できる。
なお、処理部11は、ステップS51においてオペレータにより入力された情報に基づいてグラフを作成したが、自動的に当日から過去10日間を期間とし、表示単位を1日としてもよい。処理部11は、選択指標を受け付けることなく、第1~第6指標に基づく6つのグラフを画面250に表示してもよい。また、処理部11は、グラフの各点における指標の値を、グラフ内に合わせて表示してもよい。
<実施形態5>
実施形態5では、図11(b)に示す実施形態1の画面210に代えて、図17に示す画面260が表示部13に表示される。図17に示すように、画面260は、第1~第6指標と判定結果に加えて、第1~第6指標の相関関係を視覚的に示すレーダーチャートを表示する。なお、この場合、第1~第6指標の値が大きくなるとプロットされる点が外側に移動するように、各指標の算出が行われる。たとえば、上記第4指標は、円形度が低い輝点を含む細胞の割合であったが、この場合の第4指標は、円形度が低い輝点を含まない細胞の割合とされる。
このように画面260が構成されると、オペレータは、第1~第6指標の相関関係を視覚的に把握できるようになる。なお、図13(b)に示す実施形態2の画面230においても、図17に示すレーダーチャートが合わせて表示されてもよい。
<実施形態6>
図18に示すように、実施形態6の蛍光画像分析装置10は、図1に示す撮像ユニット100に代えて、蛍光顕微鏡を含む撮像ユニット300を備える。実施形態6の他の構成は、図1に示す構成と同様である。
撮像ユニット300は、光源301~303と、ミラー304と、ダイクロイックミラー305、306と、シャッター311と、1/4波長板312と、ビームエキスパンダ313と、集光レンズ314と、ダイクロイックミラー315と、対物レンズ316と、ステージ320と、集光レンズ331と、撮像部332と、コントローラ341、342と、を備える。ステージ320には、スライドガラス321が設置される。スライドガラス321には、前処理ユニット20による前処理により調製された試料20aが載せられる。
光源301~303は、それぞれ、図1に示す光源121~123と同様である。ミラー304は、光源301からの光を反射する。ダイクロイックミラー305は、光源301からの光を透過し、光源302からの光を反射する。ダイクロイックミラー306は、光源301、302からの光を透過し、光源303からの光を反射する。光源301~303からの光の光軸は、ミラー304とダイクロイックミラー305、306により、互いに一致させられる。
シャッター311は、コントローラ341により駆動され、光源301~303から出射された光を通過させる状態と、光源301~303から出射された光を遮断する状態とに切り替える。これにより、試料20aに対する光の照射時間が調整される。1/4波長板312は、光源301~303から出射された直線偏光の光を円偏光に変換する。核酸プローブに結合している蛍光色素は、所定の偏光方向の光に反応する。よって、光源301~303から出射された励起用の光を円偏光に変換することにより、励起用の光の偏光方向が、蛍光色素が反応する偏光方向に一致し易くなる。これにより、蛍光色素に効率良く蛍光を励起させることができる。ビームエキスパンダ313は、スライドガラス321上における光の照射領域を広げる。集光レンズ314は、対物レンズ316からスライドガラス321に平行光が照射されるよう光を集光する。
ダイクロイックミラー315は、光源301~303から出射された光を反射し、試料20aから生じた蛍光を透過する。対物レンズ316は、ダイクロイックミラー315で反射された光を、スライドガラス321に導く。ステージ320は、コントローラ342により駆動される。試料20aから生じた蛍光は、対物レンズ316を通り、ダイクロイックミラー315を透過する。集光レンズ331は、ダイクロイックミラー315を透過した蛍光を集光して、撮像部332の撮像面332aに導く。撮像部332は、撮像面332aに照射された蛍光の像を撮像し、蛍光画像を生成する。撮像部332は、たとえばCCD等により構成される。
コントローラ341、342と撮像部332は、図1に示す処理部11と接続されており、処理部11は、コントローラ341、342と撮像部332を制御し、撮像部332により撮像された蛍光画像を受信する。なお、撮像部332により撮像される蛍光画像は、図1に示すようにフローセル110が用いられる場合とは異なり、図2(a)に示すように細胞が密接した状態となっている場合がある。このため、処理部11は、取得した蛍光画像を、細胞の核ごとに分割する処理、または、蛍光画像において1つの細胞の核に対応する領域を設定する処理等を行う。
実施形態6においても、他の実施形態と同様、第1~第3画像を取得できるため、第1~第3画像に基づいて第1~第6指標を取得し、取得した第1~第6指標に基づいて前処理の適否を判定できる。
<実施形態7>
図19に示すように、実施形態7の蛍光画像分析装置10は、図1に示す前処理ユニット20を備える。処理部11は、前処理ユニット20に接続されており、前処理ユニット20からの信号を受信し、前処理ユニット20を制御する。前処理ユニット20は、被検者から採取され遠心分離等の処理が行われた検体10aを受け付けると、検体10aに対して前処理を行い、試料20aを調製する。撮像ユニット100は、前処理ユニット20で調製された試料20aを測定し、第1~第3画像と明視野画像を取得する。実施形態7の他の構成は、図1に示す構成と同様である。
このように蛍光画像分析装置10が前処理ユニット20を備えると、オペレータは、蛍光画像分析装置10に検体10aをセットするだけで、自動的に前処理を行い、前処理によって調製された試料20aを自動的に分析できる。また、処理部11は、第1~第6指標を取得して、前処理ユニット20による前処理の適否を判定する。これにより、オペレータは、蛍光画像分析装置10により自動で行われる検体の分析において、前処理が適正であったか否かを把握できる。
<実施形態8>
図20(a)に示すように、実施形態8の記憶部12は、細胞が陽性または陰性のいずれであるかを判定するための輝点のパターンを記憶している。図20(a)の輝点パターンは、図3(a)~(d)に例示される蛍光画像における輝点の状態を示している。図20(a)に示す輝点のパターンにおいて、「G」は第1画像における緑色の輝点を示し、「R」は第2画像における赤色の輝点を示し、「F」はフュージョンの輝点、すなわち合成画像における黄色の輝点を示している。G、R、Fの直後に続く数字は、それぞれ、G、R、Fの輝点の数を示している。たとえば、「G2R2F0」の場合、第1画像における緑色の輝点が2個であり、第2画像における赤色の輝点が2個であり、合成画像における黄色の輝点が0個であることを示している。
なお、Gは合成画像の緑色の輝点を示し、Rは合成画像における赤色の輝点を示してもよい。この場合、図20(a)の1~4行目に示す輝点のパターンは、それぞれ、「G2R2F0」、「G1R2F1」、「G1R1F2」、「G1R1F1」となる。
図20(a)の1~4行目に示す輝点のパターンは、それぞれ、図3(a)~(d)に示す蛍光画像の輝点に対応している。図20(a)に示す輝点のパターンには、当該輝点のパターンに基づく判定が対応付けられている。たとえば、1行目の輝点のパターンには「陰性」が対応付けられており、2行目の輝点のパターンには「陽性」が対応付けられている。なお、記憶部12には、図20(a)に示す4つの輝点のパターンに限らず、生じ得る複数の組み合わせが記憶されている。
実施形態8では、図12(a)に示す実施形態1の処理と同様の処理が行われる。以下、実施形態1と相違する処理について説明する。
ステップS23において、処理部11は、図2(a)~(d)を参照して説明した手順と同様にして、試料20aに含まれる複数の細胞ごとに蛍光画像から輝点を抽出する。そして、処理部11は、複数の細胞の各々を輝点のパターンに基づいて分類し、複数の細胞の分類結果に基づいて、試料20aが陽性または陰性のいずれであるかの判定に用いられる情報を生成する。
具体的には、ステップS23において、処理部11は、細胞の輝点のパターンと、図20(a)に示す記憶部12に記憶された輝点のパターンとを比較して、複数の細胞ごとに細胞が陽性または陰性のいずれであるかを判定する。処理部11は、細胞の輝点のパターンが陽性パターンに合致する場合に、当該細胞が陽性であると判定し、細胞の輝点のパターンが陰性パターンに合致する場合に、当該細胞が陰性であると判定する。そして、処理部11は、複数の細胞ごとの判定結果に基づいて、陽性細胞の数、陰性細胞の数、検出細胞の数に対する陽性細胞の数の割合、検出細胞に対する陰性細胞の数の割合、輝点の数と色に基づいて定められるパターンに関する情報、および、試料20aが陽性または陰性のいずれであるかを示唆する情報、を生成する。ステップS23で生成される情報については、追って図20(b)を参照して説明する。
ステップS24において、処理部11は、ステップS23で生成した情報を含む画面221を、表示部13に表示する。図20(b)に示すように、画面221の表示内容は、いずれも、試料20aが陽性または陰性のいずれであるかの判定に用いられる情報である。
図20(b)に示すように、輝点の数と色に基づいて定められるパターンに関する情報は、図20(a)に示した輝点のパターンと、当該輝点のパターンに合致した細胞の数と、当該輝点のパターンに合致した細胞の数の全細胞数に対する割合と、を含む。このように、輝点の数と色に基づいて定められるパターンに関する情報は、複数の細胞の各々を輝点のパターンに基づいて分類した結果を含む。
なお、図20(b)に示す画面221が表示される場合、あらかじめ、陽性とみなす輝点のパターンが、図20(a)に示す陽性の輝点パターンから選択される。そして、選択された陽性の輝点パターンに合致する細胞が、陽性細胞と判定される。画面221に表示される陽性細胞数は、選択された陽性の輝点パターンに合致する細胞の数である。したがって、陰性細胞数をN1とし、この場合の陽性細胞数をN2とすると、陽性細胞の割合は、N2をN1+N2で除算したものであり、陰性細胞の割合は、N1をN1+N2で除算したものとなる。
試料20aが陽性と陰性の何れであるかを示唆する情報は、「陽性の可能性?」や「陰性の可能性?」などの文字情報により構成される。たとえば、陽性細胞の割合が所定の閾値より大きい場合や、陰性細胞の割合が所定の閾値より小さい場合に、「陽性の可能性?」が表示される。陰性細胞の割合が所定の閾値より大きい場合や、陽性細胞の割合が所定の閾値より小さい場合に、「陰性の可能性?」が表示される。「陰性の可能性?」に代えて、表示が行われないようにしてもよい。また、画面221において、図13(b)と同様に、指標に基づく情報が併せて表示されてもよい。
実施形態8によれば、医師等は、画面221の表示内容を参照して、試料20aおよび試料20aの元となった検体が、陽性と陰性のいずれであるかを高精度に判定できる。
<他の実施形態>
上記実施形態では、標的部位はBCR遺伝子とABL遺伝子であったが、これに限らず、他の遺伝子領域であってもよい。慢性骨髄性白血病の場合、BCR遺伝子とABL遺伝子に転座が生じる場合があるが、これと同様に、特定の疾患においても、特定の遺伝子領域に異常が見られることがある。標的部位が他の遺伝子領域の場合も、処理部11は、特定の疾患に対する陽性細胞の数または検出細胞の数に対する陽性細胞の数の割合を算出し、算出した数または割合を試料20aの分析結果として表示部13に表示させる。この場合も、処理部11は、実施形態8と同様、図20(b)に示すような、試料20aが陽性または陰性のいずれであるかの判定に用いられる情報を生成し、生成した情報を表示部13に表示してもよい。
標的部位は、たとえば、HER2遺伝子と、17番染色体のセントロメア領域であるCEP17であってもよい。HER2遺伝子は、細胞の癌化に伴って増幅し、CEP17は、細胞の癌化に伴って増幅することはない。したがって、HER2遺伝子とCEP17を標的部位とする場合、たとえば、陰性検体を前処理することで調製した試料20aに基づいて、前処理の適否を判定できる。すなわち、陰性検体の場合、核内にHER2遺伝子の輝点とCEP17の輝点とがそれぞれ2個存在することに基づいて、前処理の適否を判定できる。また、被検者から採取した実際の検体を前処理の適否判定に用いる場合には、CEP17の輝点に基づいて前処理の適否判定を行うことができる。
また、標的部位は、核酸に限らず、細胞表面等や、細胞以外の物質でもよい。標的部位の標識は、ハイブリダイゼーションに限らず、抗原抗体反応により行われてもよい。また、前処理ユニット20は、遠心分離等の処理を自動的に行うよう構成されてもよい。前処理ユニット20で前処理が行われる検体は、血液検体に限らず、たとえば血漿検体や、病変組織から採取された検体等であってもよい。分析対象とする細胞は、白血球に限らず、たとえば上皮細胞であってもよい。
10 蛍光画像分析装置
11 処理部
12 記憶部
13 表示部
20 前処理ユニット
20a 試料
121~124、301~303 光源
154、332 撮像部

Claims (21)

  1. 蛍光色素により細胞の標的部位を標識する工程を含む前処理を行い調製された試料を測定して分析を行う蛍光画像分析装置であって、
    前記試料に光を照射する光源と、
    前記光が照射された前記試料中の前記細胞の蛍光画像を撮像する撮像部と、
    前記撮像部により撮像された蛍光画像を処理する処理部と、を備え、
    前記処理部は、
    第1の色の輝点の数と、前記第1の色とは異なる第2の色の輝点の数と、前記第1の色の輝点および前記第2の色の輝点が融合した輝点の数とに基づいて、前記蛍光画像中の細胞を分類し、
    前記第1の色の輝点及び前記第2の色の輝点の輝度、形状、大きさ又は輝点の数に基づいて、前記前処理の適否を判定するための指標を取得する、蛍光画像分析装置。
  2. 前記処理部は、前記撮像部により撮像された画像に基づいて細胞を検出し、検出した細胞を計数して第1の数を取得し、前記輝点に基づいて分析対象とされた細胞を計数して第2の数を取得し、前記第1の数に対する前記第2の数の割合を前記指標として取得する、請求項1に記載の蛍光画像分析装置。
  3. 前記処理部は、前記撮像部により撮像された画像に基づいて細胞を検出し、前記輝点の輝度と前記細胞における前記輝点の背景領域の輝度との比に基づく値を、前記指標として取得する、請求項1または2に記載の蛍光画像分析装置。
  4. 表示部を備え、
    前記処理部は、前記前処理の適否の判定結果を前記表示部に表示させる、請求項1ないし3の何れか一項に記載の蛍光画像分析装置。
  5. 前記処理部は、標準試料を測定して前記指標を取得し、取得した前記指標に基づく前記前処理の適否の判定結果を前記表示部に表示させる、請求項4に記載の蛍光画像分析装置。
  6. 測定動作において取得された前記輝点に関する情報を記憶する記憶部を備え、
    前記処理部は、所定期間内に前記記憶部に記憶された前記輝点に関する情報に基づいて前記指標を取得し、取得した前記指標に基づく前記前処理の適否の判定結果を前記表示部に表示させる、請求項4または5に記載の蛍光画像分析装置。
  7. 記憶部を備え、
    前記処理部は、測定動作において取得された前記輝点に関する情報に基づいて、前記試料ごとに前記指標を取得し、取得した前記指標を前記試料に関連づけて前記記憶部に記憶させる、請求項4ないし6の何れか一項に記載の蛍光画像分析装置。
  8. 前記処理部は、前記試料を測定するごとに、前記指標を取得し、取得した前記指標に基づく前記前処理の適否の判定結果を前記表示部に表示させる、請求項4ないし7の何れか一項に記載の蛍光画像分析装置。
  9. 前記処理部は、前記指標を前記表示部に表示させる、請求項4ないし8の何れか一項に記載の蛍光画像分析装置。
  10. 前記処理部は、前記指標の時間的遷移を示すグラフを前記表示部に表示させる、請求項4ないし9の何れか一項に記載の蛍光画像分析装置。
  11. 前記処理部は、所定の閾値と前記指標とを比較することにより、前記前処理の適否を判定する、請求項1ないし10の何れか一項に記載の蛍光画像分析装置。
  12. 前記試料が流れるフローセルを備え、
    前記光源は、前記フローセルを流れる前記試料に光を照射し、
    前記撮像部は、前記フローセルを流れる試料から生じた蛍光を撮像する、請求項1ないし11の何れか一項に記載の蛍光画像分析装置。
  13. 前記前処理を行うための前処理ユニットを備える、請求項1ないし12の何れか一項に記載の蛍光画像分析装置。
  14. 前記蛍光色素により標識された核酸プローブと前記標的部位とをハイブリダイズさせる工程を含む前記前処理において調製された試料を測定して分析を行う、請求項1ないし13の何れか一項に記載の蛍光画像分析装置。
  15. 前記処理部は、前記蛍光画像における前記輝点の分布状況に基づいて、異常細胞を検出する、請求項1ないし14の何れか一項に記載の蛍光画像分析装置。
  16. 前記処理部は、BCR遺伝子またはABL遺伝子が転座してBCR-ABL融合遺伝子を生成している細胞を異常細胞として検出する、請求項15に記載の蛍光画像分析装置。
  17. 蛍光色素により細胞の標的部位を標識する工程を含む前処理を行い調製された試料を測定して分析を行う蛍光画像分析装置であって、
    前記試料に光を照射する光源と、
    前記光が照射された前記試料中の前記細胞の蛍光画像を撮像する撮像部と、
    前記撮像部により撮像された蛍光画像を処理する処理部と、
    表示部と、を備え、
    前記処理部は、
    第1の色の輝点の数と、前記第1の色とは異なる第2の色の輝点の数と、前記第1の色の輝点および前記第2の色の輝点が融合した輝点の数とに基づいて、前記蛍光画像中の細胞を分類し、
    前記第1の色の輝点及び前記第2の色の輝点の輝度、形状、大きさ又は輝点の数に基づいて、前記前処理の適否を判定するための指標を取得し、
    取得した前記指標に基づく情報を前記表示部に表示させる、蛍光画像分析装置。
  18. 記憶部を備え、
    前記処理部は、測定動作において取得された前記輝点に関する情報に基づいて、前記試料ごとに前記指標を取得し、取得した前記指標を前記試料に関連づけて前記記憶部に記憶させる、請求項17に記載の蛍光画像分析装置。
  19. 前記処理部は、前記蛍光画像に基づいて、特定の疾患に対する陽性細胞の数または検出細胞の数に対する前記陽性細胞の数の割合を算出し、前記試料の分析結果として前記表示部に表示させる、請求項17または18に記載の蛍光画像分析装置。
  20. 前記処理部は、前記指標に基づく情報および記試料の分析結果を関連付けて前記表示部に表示させる、請求項19に記載の蛍光画像分析装置。
  21. 蛍光色素により細胞の標的部位を標識する工程を含む前処理を行い調製された試料を測定して分析を行う蛍光画像分析方法であって、
    前記試料に光を照射する工程と、
    前記光が照射された前記試料中の前記細胞の蛍光画像を撮像する工程と、
    第1の色の輝点の数と、前記第1の色とは異なる第2の色の輝点の数と、前記第1の色の輝点および前記第2の色の輝点が融合した輝点の数とに基づいて、前記蛍光画像中の細胞を分類する工程と、
    前記第1の色の輝点及び前記第2の色の輝点の輝度、形状、大きさ又は輝点の数に基づいて、前記前処理の適否を判定するための指標を取得する工程と、を含む、蛍光画像分析方法。
JP2021191406A 2016-05-31 2021-11-25 蛍光画像分析装置および蛍光画像分析方法 Active JP7232308B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016109005 2016-05-31
JP2016109005 2016-05-31
JP2017202959A JP7061446B2 (ja) 2016-05-31 2017-10-19 蛍光画像分析装置、分析方法および前処理の評価方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017202959A Division JP7061446B2 (ja) 2016-05-31 2017-10-19 蛍光画像分析装置、分析方法および前処理の評価方法

Publications (2)

Publication Number Publication Date
JP2022037000A JP2022037000A (ja) 2022-03-08
JP7232308B2 true JP7232308B2 (ja) 2023-03-02

Family

ID=60321194

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017045666A Active JP6231709B1 (ja) 2016-05-31 2017-03-10 蛍光画像分析装置および分析方法
JP2017202959A Active JP7061446B2 (ja) 2016-05-31 2017-10-19 蛍光画像分析装置、分析方法および前処理の評価方法
JP2017202960A Active JP6895362B2 (ja) 2016-05-31 2017-10-19 蛍光画像分析装置および分析方法
JP2021191406A Active JP7232308B2 (ja) 2016-05-31 2021-11-25 蛍光画像分析装置および蛍光画像分析方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2017045666A Active JP6231709B1 (ja) 2016-05-31 2017-03-10 蛍光画像分析装置および分析方法
JP2017202959A Active JP7061446B2 (ja) 2016-05-31 2017-10-19 蛍光画像分析装置、分析方法および前処理の評価方法
JP2017202960A Active JP6895362B2 (ja) 2016-05-31 2017-10-19 蛍光画像分析装置および分析方法

Country Status (3)

Country Link
US (3) US10401289B2 (ja)
JP (4) JP6231709B1 (ja)
CN (1) CN108572163B (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761027B2 (en) * 2016-01-19 2020-09-01 Konica Minolta, Inc. Image processing apparatus and computer-readable recording medium storing program
JP6959755B2 (ja) 2017-04-14 2021-11-05 シスメックス株式会社 蛍光画像分析装置、蛍光画像の分析方法及びコンピュータプログラム
JP6948145B2 (ja) * 2017-04-14 2021-10-13 シスメックス株式会社 蛍光画像分析装置、蛍光画像の画像処理方法及びコンピュータプログラム
JP7054619B2 (ja) 2017-11-30 2022-04-14 シスメックス株式会社 画像分析装置および画像分析方法
CN112513707B (zh) * 2018-04-17 2023-05-26 克莫麦特公司 对象的描绘
LU100777B1 (de) * 2018-04-23 2019-10-23 Cytena Gmbh Verfahren zum Untersuchen einer Flüssigkeit, die wenigstens eine Zelle und/oder wenigstens ein Partikel enthält
CN112166314A (zh) * 2018-05-30 2021-01-01 索尼公司 荧光观察设备和荧光观察方法
JP7202904B2 (ja) * 2019-01-24 2023-01-12 リオン株式会社 粒子計数器
JP7348730B2 (ja) * 2019-02-22 2023-09-21 シスメックス株式会社 試料測定装置および試料測定方法
JP7376245B2 (ja) * 2019-03-29 2023-11-08 シスメックス株式会社 蛍光画像分析装置及び蛍光画像分析方法
JP7403965B2 (ja) * 2019-03-29 2023-12-25 シスメックス株式会社 蛍光画像分析装置及び蛍光画像分析方法
CN110132693A (zh) * 2019-05-27 2019-08-16 福州迈新生物技术开发有限公司 一种全自动病理染色系统的染色结果预警方法
FR3106408A1 (fr) 2020-01-17 2021-07-23 Horiba Abx Sas Dispositif électro-optique de mesures en flux
WO2022132667A1 (en) * 2020-12-14 2022-06-23 Life Technologies Corporation Systems and methods for improved imaging and fluorescence in flow cytometry and other applications
JP2023027845A (ja) 2021-08-18 2023-03-03 国立大学法人 東京医科歯科大学 蛍光画像分析方法、蛍光画像分析装置、蛍光画像分析プログラム
CN113539368B (zh) * 2021-08-30 2023-02-03 长春理工大学 荧光图像信号数据存储与颜色分类方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025126A (en) 1991-10-28 2000-02-15 Arch Development Corporation Methods and compositions for the detection of chromosomal aberrations
JP2003520954A (ja) 2000-01-24 2003-07-08 アムニス、コーポレーション 細胞などの小移動物体の撮像・分析パラメータ
JP2008283989A (ja) 1989-12-01 2008-11-27 Regents Of The Univ Of California 染色体−特異的染色の方法および組成物
JP2008292283A (ja) 2007-05-24 2008-12-04 Canon Inc 撮像装置
JP2011523847A (ja) 2008-05-21 2011-08-25 ドクトル ファルク ファルマ ゲーエムベーハー 蠕虫卵、特に鞭虫卵の生物学的活性を測定する方法
US20130171621A1 (en) 2010-01-29 2013-07-04 Advanced Cell Diagnostics Inc. Methods of in situ detection of nucleic acids
JP2014502493A (ja) 2010-12-14 2014-02-03 ナショナル ユニヴァーシティー オブ シンガポール がん治療に対する耐性を検出する方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786165A (en) * 1986-07-10 1988-11-22 Toa Medical Electronics Co., Ltd. Flow cytometry and apparatus therefor
US5726009A (en) * 1989-03-20 1998-03-10 Anticancer, Inc. Native-state method and system for determining viability and proliferative capacity of tissues in vitro
JP3230890B2 (ja) * 1993-04-07 2001-11-19 株式会社日立製作所 電気泳動分離分析装置
US20050070005A1 (en) * 1997-06-16 2005-03-31 Martin Keller High throughput or capillary-based screening for a bioactivity or biomolecule
US6350613B1 (en) * 1998-03-07 2002-02-26 Belton Dickinson & Co. Determination of white blood cell differential and reticulocyte counts
IL142636A0 (en) * 1998-10-30 2002-03-10 Cellomics Inc A system for cell-based screening
US8885913B2 (en) * 1999-01-25 2014-11-11 Amnis Corporation Detection of circulating tumor cells using imaging flow cytometry
US6376843B1 (en) * 1999-06-23 2002-04-23 Evotec Oai Ag Method of characterizing fluorescent molecules or other particles using generating functions
US20060073509A1 (en) 1999-11-18 2006-04-06 Michael Kilpatrick Method for detecting and quantitating multiple subcellular components
CA2447320A1 (en) 2001-05-14 2002-11-21 Cancer Genetics, Inc. Methods of analyzing chromosomal translocations using fluorescence in situ hybridization (fish)
US20030104439A1 (en) 2001-11-30 2003-06-05 Finch Rosalynde J. Methods of identifying cellular target molecules
JP3995081B2 (ja) * 2002-03-27 2007-10-24 富士通株式会社 学習支援方法及び学習支援プログラム
US20130323726A1 (en) * 2004-02-18 2013-12-05 Chromocell Corporation Methods and materials using signaling probes
AU2005289765A1 (en) * 2004-09-22 2006-04-06 Ikonisys, Inc. Method for detecting and quantitating multiple subcellular components
EP1744145B1 (en) 2005-07-12 2015-09-09 Sysmex Corporation Standard material for particle analyzer
WO2007097377A1 (ja) * 2006-02-24 2007-08-30 The Furukawa Electric Co., Ltd. フローサイトメトリーによる生体分子の定量システム、その定量方法、細胞の検出・分取システム、その検出・分取方法、それらに用いる蛍光シリカ粒子、及び複数個の蛍光シリカ粒子を組み合わせたキット
US8691164B2 (en) * 2007-04-20 2014-04-08 Celula, Inc. Cell sorting system and methods
US8482733B2 (en) * 2007-07-24 2013-07-09 Kent State University Measurement of the absorption coefficient of light absorbing liquids and their use for quantitative imaging of surface topography
US8883491B2 (en) * 2008-04-09 2014-11-11 Nexcelom Bioscience Llc Systems and methods for counting cells and biomolecules
DK2291640T3 (en) * 2008-05-20 2019-03-11 Univ Health Network Device and method for fluorescence-based imaging and monitoring
TW200952503A (en) * 2008-06-05 2009-12-16 Delta Electronics Inc Display apparatus, control module and method for the display apparatus
US10722562B2 (en) * 2008-07-23 2020-07-28 Immudex Aps Combinatorial analysis and repair
WO2010108003A2 (en) * 2009-03-18 2010-09-23 The Regents Of The University Of California Device for capturing circulating cells
JP5499732B2 (ja) * 2009-06-23 2014-05-21 ソニー株式会社 生体サンプル像取得装置、生体サンプル像取得方法及び生体サンプル像取得プログラム
US8310531B2 (en) * 2009-08-03 2012-11-13 Genetix Corporation Methods and apparatuses for processing fluorescence images
US10065403B2 (en) * 2009-11-23 2018-09-04 Cyvek, Inc. Microfluidic assay assemblies and methods of manufacture
US8744164B2 (en) * 2010-04-06 2014-06-03 Institute For Systems Biology Automated analysis of images using bright field microscopy
JP5555061B2 (ja) * 2010-06-09 2014-07-23 オリンパス株式会社 観察装置および観察方法
US9946058B2 (en) * 2010-06-11 2018-04-17 Nikon Corporation Microscope apparatus and observation method
KR101853418B1 (ko) * 2010-06-16 2018-05-02 미네르바 바이오테크놀로지 코포레이션 암 세포의 역분화
KR101190722B1 (ko) * 2011-01-21 2012-10-12 아주대학교산학협력단 이광자 형광 프로브를 이용한 미토콘드리아 내 아연 활성의 영상화 방법 및 이의 제조방법
WO2012162754A1 (en) * 2011-06-03 2012-12-06 Mesoblast, Inc Methods of treating or preventing neurological diseases
WO2012168184A2 (en) * 2011-06-06 2012-12-13 Medipan Gmbh Methods and system for the automated determination of immunofluorescent foci using a cell-based immunofluorescence assay using synthetic calibration particles
CN102231016B (zh) * 2011-06-28 2013-03-20 青岛海信电器股份有限公司 一种液晶模组亮度补偿方法、装置和系统
JP2013172706A (ja) * 2012-01-27 2013-09-05 Nagoya City Univ Kif5b遺伝子とret遺伝子との間の転座を検出するfishアッセイ
US9239292B2 (en) * 2012-03-22 2016-01-19 Keysight Technologies, Inc. Method and apparatus for tracking the motion of molecules in a microscope
NZ630091A (en) * 2012-03-30 2016-03-31 Ge Healthcare Bio Sciences Immunofluorescence and fluorescent-based nucleic acid analysis on a single sample
WO2013147114A1 (ja) * 2012-03-30 2013-10-03 公益財団法人神奈川科学技術アカデミー イメージングセルソーター
WO2013187954A1 (en) * 2012-06-12 2013-12-19 The General Hospital Corporation Magnetic labeling of bacteria
US20130337471A1 (en) * 2012-06-14 2013-12-19 Emory University Cell identification with nanoparticles, compositions and methods related thereto
US9663818B2 (en) * 2012-06-15 2017-05-30 The University Of Chicago Oligonucleotide-mediated quantitative multiplexed immunoassays
US9739714B2 (en) * 2012-10-29 2017-08-22 Mbio Diagnostics, Inc. Particle identification system, cartridge and associated methods
CN105101951B (zh) * 2012-10-29 2021-08-03 新加坡科技研究局 一种用于基因-药物治疗的新型试剂
JP5928308B2 (ja) * 2012-11-13 2016-06-01 ソニー株式会社 画像取得装置および画像取得方法
US9042631B2 (en) 2013-01-24 2015-05-26 General Electric Company Method and systems for cell-level fish dot counting
US10106818B2 (en) * 2013-08-16 2018-10-23 The J. David Gladstone Institutes Dual-color HIV reporter system for the detection of latently-infected cells
GB2546833B (en) * 2013-08-28 2018-04-18 Cellular Res Inc Microwell for single cell analysis comprising single cell and single bead oligonucleotide capture labels
JP6292238B2 (ja) * 2013-09-27 2018-03-14 株式会社ニコン 装置、システム、方法、及びプログラム
CN103777016B (zh) * 2013-12-17 2015-09-02 武汉大学 一种通过荧光靶向细胞检测病毒和细菌的方法
CA2944262C (en) * 2014-04-07 2023-08-01 Mesoblast International Sarl Improved stem cell composition
WO2015164481A1 (en) * 2014-04-22 2015-10-29 The General Hospital Corporation System and method for determination of ligand-target binding by multi-photon fluorescence anisotropy microscopy
JP6066110B2 (ja) * 2014-06-11 2017-01-25 横河電機株式会社 細胞吸引支援システム
JP6575533B2 (ja) * 2014-12-12 2019-09-18 コニカミノルタ株式会社 蛍光ナノ粒子用希釈液、これを用いた蛍光免疫染色用キット、蛍光免疫染色用溶液、および蛍光免疫染色法、遺伝子染色法
EP3248018B1 (en) * 2015-01-22 2020-01-08 Becton, Dickinson and Company Devices and systems for molecular barcoding of nucleic acid targets in single cells
CN107430121B (zh) * 2015-03-13 2020-06-23 希森美康株式会社 受试物质的检测方法及在该方法中使用的试剂盒

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283989A (ja) 1989-12-01 2008-11-27 Regents Of The Univ Of California 染色体−特異的染色の方法および組成物
US6025126A (en) 1991-10-28 2000-02-15 Arch Development Corporation Methods and compositions for the detection of chromosomal aberrations
JP2003520954A (ja) 2000-01-24 2003-07-08 アムニス、コーポレーション 細胞などの小移動物体の撮像・分析パラメータ
JP2008292283A (ja) 2007-05-24 2008-12-04 Canon Inc 撮像装置
JP2011523847A (ja) 2008-05-21 2011-08-25 ドクトル ファルク ファルマ ゲーエムベーハー 蠕虫卵、特に鞭虫卵の生物学的活性を測定する方法
US20130171621A1 (en) 2010-01-29 2013-07-04 Advanced Cell Diagnostics Inc. Methods of in situ detection of nucleic acids
JP2014502493A (ja) 2010-12-14 2014-02-03 ナショナル ユニヴァーシティー オブ シンガポール がん治療に対する耐性を検出する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「2.蛍光検出によるin situハイブリダイゼーション(FISH)に関する質問」,日本,2015年10月10日,第9頁-第18頁,https://roche-biochem.jp/pdf/prima/molecular_biology/dig/non-ri/2.pdf,https://web.archive.org/web/20151010100148/https://roche-biochem.jp/pdf/prima/molecular_biology/dig/
長谷川 匡,「分子病理診断の現状 軟部肉腫における分子病理診断の役割」,病理と臨床,2008年,第26巻、第7号,第701頁-第710頁

Also Published As

Publication number Publication date
US20210025826A1 (en) 2021-01-28
JP2022037000A (ja) 2022-03-08
CN108572163B (zh) 2022-06-03
JP6231709B1 (ja) 2017-11-15
CN108572163A (zh) 2018-09-25
US20170343475A1 (en) 2017-11-30
US10401289B2 (en) 2019-09-03
US10852238B2 (en) 2020-12-01
JP2018010017A (ja) 2018-01-18
JP6895362B2 (ja) 2021-06-30
JP2017215311A (ja) 2017-12-07
US11340170B2 (en) 2022-05-24
JP2018010018A (ja) 2018-01-18
US20190339202A1 (en) 2019-11-07
JP7061446B2 (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
JP7232308B2 (ja) 蛍光画像分析装置および蛍光画像分析方法
US11287380B2 (en) Apparatus for detecting abnormal cells using fluorescent image analysis and method for the same
US11085880B2 (en) Fluorescence image analyzing apparatus, method of analyzing fluorescence image, and computer program
US11237107B2 (en) Fluorescence image analyzing apparatus, image processing method of fluorescence image, and computer program
JP6948354B2 (ja) 蛍光画像分析装置及び蛍光画像の分析方法
CN109387492B (zh) 试样分析装置及试样分析方法
EP3252456B1 (en) Fluorescent image analyzer and corresponding analyzing method
EP4137795A1 (en) Fluorescence image analysis method, fluorescence image analyser, fluoresence image analysis program
JP7229312B2 (ja) 蛍光画像の分析方法及び蛍光画像分析装置
US20220207725A1 (en) Fluorescence image display method and fluorescence image analyzer
JP7046500B2 (ja) 画像表示装置、画像表示方法および画像処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230217

R150 Certificate of patent or registration of utility model

Ref document number: 7232308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150