JP7219582B2 - 超音波流量計、流量計測方法、および流量演算装置 - Google Patents

超音波流量計、流量計測方法、および流量演算装置 Download PDF

Info

Publication number
JP7219582B2
JP7219582B2 JP2018195654A JP2018195654A JP7219582B2 JP 7219582 B2 JP7219582 B2 JP 7219582B2 JP 2018195654 A JP2018195654 A JP 2018195654A JP 2018195654 A JP2018195654 A JP 2018195654A JP 7219582 B2 JP7219582 B2 JP 7219582B2
Authority
JP
Japan
Prior art keywords
wave
zero
voltage
polarity
peak voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018195654A
Other languages
English (en)
Other versions
JP2020063973A (ja
Inventor
宏 佐々木
太輔 小原
園 夏
太一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2018195654A priority Critical patent/JP7219582B2/ja
Publication of JP2020063973A publication Critical patent/JP2020063973A/ja
Application granted granted Critical
Publication of JP7219582B2 publication Critical patent/JP7219582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波流量計において、トランスデューサからの検出信号を示す検出電圧が閾値電圧と最初に交差したトリガー点以降のゼロクロス点を検出し、これらゼロクロス点の時刻から求めた超音波信号の伝搬時間差に基づいて、流量を計測する流量計測技術に関する。
一般に、超音波流量計では、流体の流れを横切るように2つのトランスデューサを対向配置し、順逆方向のそれぞれで超音波信号を送受信して、トランスデューサ間における超音波伝搬時間を検出し、順逆方向における超音波伝搬時間の伝搬時間差に基づいて流体の流量を計算している。
超音波伝搬時間を検出するための一方法として、受信した超音波信号を示す検出信号の検出電圧(AC電圧)がゼロ電圧(0V)と交差するゼロクロス時刻に基づいて超音波伝搬時間を検出する、いわゆるゼロクロス法が用いられている。
このゼロクロス法では、検出電圧のうち同一時間位置にある目標ゼロクロス点を検出するため、検出電圧が予め設定した閾値電圧と交差した(超えたまたは達した)トリガー点を基準として、トリガー点以降に検出されたゼロクロス点を目標ゼロクロス点として特定している。
しかし、流体の温度や流量、流体組成、さらにはノイズ成分の重畳や超音波素子の経年劣化などの要因で、検出信号の信号強度および各波の正負のピーク電圧の相互関係は変化するため、適切な閾値電圧を設定することは難しいという問題があった。
従来、このような検出電圧の強度変化に対応する技術として、検出電圧に含まれる各波のピーク電圧を検出した検出結果に基づいて閾値電圧を設定する技術が提案されている(例えば、特許文献1-2など参照)。
特許第3766728号公報 特許第5884014号公報
超音波流量計において、実際に受信した超音波信号の受信波は、流体や素子の器差などの影響により信号強度に偏りが生じる。したがって、各超音波流量計で実際に受信した受信波は、閾値電圧の特定に用いた典型的なモデル波形とは完全に一致せず、機器間に個体差が存在し、受信波に含まれる各波の正負のピーク電圧にもばらつきが含まれる。このため、閾値電圧を設定する際、受信波のどの波をトリガー点として閾値電圧で検出するのか、すなわち目標波をどの波に設定するかが重要となる。
しかしながら、前述した従来技術では、受信波のどの波を目標波とするかについては、閾値電圧を特定する前に予め固定しておく方式である。このため、各波の正負のピーク電圧の実際の値とばらつきに応じて最適な目標波を選択すること、さらには選択した目標波に応じた閾値電圧を設定することはできないという問題点があった。したがって、流量計測時に目標波すなわち目標ゼロクロス点を正確に検出することができず、結果として流量計測精度が低下する要因となる。
本発明はこのような課題を解決するためのものであり、実際に受信した超音波信号の検出電圧から、最適な目標波および閾値電圧を特定できる流量計測技術を提供することを目的としている。
このような目的を達成するために、本発明にかかる超音波流量計は、一対のトランスデューサ間で計測対象となる流体を介して超音波信号を両方向で送受信し、これら超音波信号の伝搬時間差に基づいて、前記流体の流量を計測する超音波流量計であって、前記超音波信号の受信波を示す検出電圧が、予め設定されている閾値電圧と最初に交差したトリガー点以降に、前記検出電圧がゼロクロスするゼロクロス点のゼロクロス時刻を検出するゼロクロス検出部と、前記受信波から得られた前記ゼロクロス時刻を基準として前記伝搬時間差を求め、得られた伝搬時間差に基づいて前記流体の流量を計測する流量計算部と、前記受信波を示す検出電圧から正負極性の各波Wのピーク電圧を検出し、正負いずれか一方の極性の波を示す第1の極性波ごとに、正負いずれか他方の極性の波を示す第2の極性波のうち前記第1の極性波と隣接する隣接波との間で、それぞれのピーク電圧の絶対値の差を示す隣接差分ピーク電圧を計算し、前記第1の極性波のうち前記隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択し、前記目標波のピーク電圧を前記閾値電圧として設定する閾値電圧設定部とを備えている。
また、本発明にかかる上記超音波流量計の一構成例は、前記閾値電圧設定部が、前記目標波を選択する際、前記第1の極性波ごとに、前記第2の極性波のうち前記第1の極性波の前に隣接する前隣接波との間で、それぞれのピーク電圧の絶対値の差を示す前隣接差分ピーク電圧を計算するとともに、前記第1の極性波の後に隣接する後隣接波との間で、それぞれのピーク電圧の絶対値の差を示す後隣接差分ピーク電圧を計算し、これら前隣接差分ピーク電圧と後隣接差分ピーク電圧との代表値からなる隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択するようにしたものである。
また、本発明にかかる上記超音波流量計の一構成例は、前記閾値電圧設定部が、前記代表値として、前記前隣接差分ピーク電圧と前記後隣接差分ピーク電圧との最小値を計算するようにしたものである。
また、本発明にかかる上記超音波流量計の一構成例は、前記閾値電圧設定部が、前記目標波のピーク電圧を中心として前記隣接差分ピーク電圧に応じて設定される幅を上下に持つ閾値電圧調整範囲を設定し、前記ゼロクロス検出部で検出される前記ゼロクロス点が前記目標波に対応する目標ゼロクロス点に相当する度合に基づいて、前記閾値電圧を前記閾値電圧調整範囲内で調整するようにしたものである。
また、本発明にかかる流量計測方法は、一対のトランスデューサ間で計測対象となる流体を介して超音波信号を両方向で送受信し、これら超音波信号の伝搬時間差に基づいて、前記流体の流量を計測する超音波流量計で用いられる流量計測方法であって、ゼロクロス検出部が、前記超音波信号の受信波を示す検出電圧が、予め設定されている閾値電圧と最初に交差したトリガー点以降に、前記検出電圧がゼロクロスするゼロクロス点のゼロクロス時刻を検出するゼロクロス検出ステップと、流量計算部が、前記受信波から得られた前記ゼロクロス時刻を基準として前記伝搬時間差を求め、得られた伝搬時間差に基づいて前記流体の流量を計測する流量計算ステップと、閾値電圧設定部が、前記受信波を示す検出電圧から正負極性の各波Wのピーク電圧を検出し、正負いずれか一方の極性の波を示す第1の極性波ごとに、正負いずれか他方の極性の波を示す第2の極性波のうち前記第1の極性波と隣接する隣接波との間で、それぞれのピーク電圧の絶対値の差を示す隣接差分ピーク電圧を計算し、前記第1の極性波のうち前記隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択し、前記目標波のピーク電圧を前記閾値電圧として設定する閾値電圧設定ステップとを備えている。
また、本発明にかかる流量演算装置は、超音波流量計で用いられて、一対のトランスデューサ間で計測対象となる流体を介して超音波信号を両方向で送受信し、これら超音波信号の伝搬時間差に基づいて、前記流体の流量を計測する流量演算装置であって、前記超音波信号の受信波を示す検出電圧が、予め設定されている閾値電圧と最初に交差したトリガー点以降に、前記検出電圧がゼロクロスするゼロクロス点のゼロクロス時刻を検出するゼロクロス検出部と、前記受信波から得られた前記ゼロクロス時刻を基準として前記伝搬時間差を求め、得られた伝搬時間差に基づいて前記流体の流量を計測する流量計算部と、前記受信波を示す検出電圧から正負極性の各波Wのピーク電圧を検出し、正負いずれか一方の極性の波を示す第1の極性波ごとに、正負いずれか他方の極性の波を示す第2の極性波のうち前記第1の極性波と隣接する隣接波との間で、それぞれのピーク電圧の絶対値の差を示す隣接差分ピーク電圧を計算し、前記第1の極性波のうち前記隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択し、前記目標波のピーク電圧を前記閾値電圧として設定する閾値電圧設定部とを備えている。
本発明によれば、受信波に含まれる各波のうち隣接差分ピーク電圧が最大のものが目標波として選択されることになる。したがって、目標波として、隣接波とのピーク電圧の差が最も大きい波が選択されることになり、結果として、目標波と隣接波とのクリアランスが、他の波と比較して最も大きくなる。また、隣接する正負の極性波のピーク電圧を比較することにより、正負いずれか片側のみのピーク電圧を比較する場合に比べ、同じ受信時間内により多くのピーク電圧の差分を評価できるため、ノイズなどにより検出電圧にばらつきがある場合も、波形形状に応じて、ピーク電圧の差が大きい波を精度よく選択することができる。このため、検出電圧の変動に対して目標波を最も安定して検出することが可能となる。
超音波流量計の構成を示すブロック図である。 検出電圧とゼロクロス点との関係を示す信号波形図である。 第1の実施の形態にかかる閾値電圧設定処理を示すフローチャートである。 第1の実施の形態にかかる閾値電圧設定処理を示す信号波形図である。 第2の実施の形態にかかる閾値電圧設定処理を示すフローチャートである。 第2の実施の形態にかかる閾値電圧設定処理を示す信号波形図である。 閾値電圧調整処理を示すフローチャートである。 先頭ゼロクロス判定動作を示す説明図である。 閾値電圧と調整範囲との関係を示す信号波形図である。
次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
まず、図1を参照して、本実施の形態にかかる超音波流量計1について説明する。図1は、超音波流量計の構成を示すブロック図である。
この超音波流量計1は、一対のトランスデューサ間で計測対象となる流体を介して超音波信号を順逆両方向で送受信する計測工程をX(Xは2以上の整数)回実施し、これら計測工程ごと得られた両方向における超音波信号の伝搬時間差に基づいて、流体の流量を計測する流量計である。
図1に示すように、超音波流量計1は、計測対象となる流体が流れる円筒形状の測定管Pと、測定管Pの外周面のうち流体が流れる方向に対して上流側と下流側にそれぞれ取り付けられた一対のトランスデューサTD1,TD2と、これらTD1,TD2で検出された検出信号を信号処理して流量を計算出力する流量演算装置10とから構成されている。
TD1(TD2)は、配線WLを介して接続された流量演算装置10からの送信指示信号に応じて、測定管P内に向けて超音波信号U1を送信する。TD2(TD1)は、測定管P内を流れる流体を通過した、TD1(TD2)からの超音波信号U1(U2)を受信し、その受信結果を示す検出信号を、配線WLを介して流量演算装置10へ出力する。
この際、U1,U2の伝搬時間t1,t2は、流体の流れから受ける影響が異なるため、流体の流量Qに応じた分だけt1,t2の差、すなわち伝搬時間差Δtが生じる。超音波流量計は、このΔtに基づいて流量Qを導出するようにしたものである。なお、本実施の形態にかかる流量演算装置10で用いる、ΔtからQを求める演算手法については、一般的な超音波流量計で用いられている公知の計算式を用いればよく、ここでの詳細な説明は省略する。
[発明の原理]
次に、図2を参照して、本発明の原理について説明する。図2は、検出電圧とゼロクロス点との関係を示す信号波形図である。
トランスデューサTD1,TD2から流量演算装置10へ入力される検出信号を示す検出電圧Vinは、図2に示すように、振幅が時間軸に沿って増減する複数の正弦波様信号からなる。
流量演算装置10は、前述したゼロクロス法と同様に、Vinがゼロ電圧Vz(0V)と交差する複数のゼロクロス点のうちから目標ゼロクロス点Ztを検出して、その目標ゼロクロス点Ztの時刻をVinと対応する超音波信号U1,U2の受信時刻として特定し、得られた受信時刻によりU1,U2の伝搬時間t1,t2さらには伝搬時間差Δtを計算して、流量Qを導出する。
複数のゼロクロス点のうちから目標ゼロクロス点Ztを特定する際、流量演算装置10は、Vinが予め設定した閾値電圧Vsを超えたトリガー点を検出することにより、Vinに含まれる複数の正側(負側)波のうち、先頭からM(Mは2以上の整数)個目の波を目標波Wtとして特定し、この目標波Wtのトリガー点以降に検出されたH(Hは3以上の整数)個のゼロクロス点のうち先頭からN(Nは1~Hの整数)個目を目標ゼロクロス点Ztとして特定している。
各計測工程において、多くの場合、正しいタイミングすなわち目標波Wtでトリガー点が検出されるものの、Vinに対するノイズ成分の重畳などによるVinの振幅変化が発生した場合、トリガー点が1超音周期分だけ前後にずれて検出される場合がある。
図2では、M=3,H=5,N=3の場合が例として示されており、Vinの先頭から3(M=3)波目すなわち波W3以降の5(H=5)のゼロクロス点Z3~Z7のうち、先頭から3(N=3)個目のゼロクロス点Z5を目標ゼロクロス点Ztとして特定する例が示されている。
この場合、VinとVsを比較して波W3を検出するためには、1つ前の波W2の振幅がVsを超えず、W3で初めてVsを超えるよう、Vsの電圧値が経験的に設定されている。このため、図2に示すように、VinがVin#1である場合、W3のVin#1が時刻Ts1にVsを超えているため、トリガー点が目標波Wtで正しく検出される。これにより、Ts1にゼロクロス点の検出が開始され、結果としてTs1から3つ目に検出されたゼロクロス点Z5が目標ゼロクロス点Ztとして検出される。
一方、ノイズ成分の重畳などの影響でVinの振幅が増大し、図2に示すように、VinがVin#2のように変化した場合、W3の手前のW2のVin#2が時刻Ts2にVsを超えてしまうことになり、トリガー点が目標波Wtより1超音周期分だけ早めに検出されることになる。この場合には、Ts1より手前のTs2にゼロクロス点の検出が開始され、結果としてTs2から3つ目に検出されたゼロクロス点Z3が目標ゼロクロス点Ztとして検出されることになる。
また、各ゼロクロス点のゼロクロス時刻を計測工程iに対応する時刻配列D#iに格納した場合、Vin#1のケースでは、Vsを超えた時刻Ts1以降に検出されたゼロクロス点Z3,Z4,Z5,Z6,Z7に対応するゼロクロス時刻T3,T4,T5,T6,T7が、時刻配列D#1に対して格納されることになる。一方、Vin#2のケースでは、Vsを超えた時刻Ts2以降に検出されたゼロクロス点Z1,Z2,Z3,Z4,Z5に対応するゼロクロス時刻T1,T2,T3,T4,T5が、時刻配列D#2に対して格納されることになる。
超音波信号U1,U2の受信時刻は、これら時刻配列D#iに格納されたゼロクロス時刻Tを統計処理することにより特定される。このため、トリガー点が目標波Wtで正しく検出することが望ましい。なお、実際には、目標波Wtのピーク電圧を閾値電圧Vsとして、目標波Wtと次の波でそれぞれ50%の確率、両者で100%の確率でトリガー点を検出することにより、伝搬時間t1,t2さらには伝搬時間差Δtの検出精度を高めている。
ここで、図2に示したようなトリガー点のずれは、検出電圧Vinの変動により、設定した閾値電圧Vsが目標波Wtではなく、前後に隣接する隣接波Wnを誤検出してしまうのが原因であると考えられる。
この際、WtとWnとのピーク電圧の差、すなわち隣接差分ピーク電圧が小さいと、Vinの変動によりWtを誤検出する可能性が高く、WtとWnとの隣接差分ピーク電圧が大きいと、Vinが変動してもWtを誤検出する可能性は低くなる。
本発明は、このような、隣接波Wnとの隣接差分ピーク電圧と目標波Wtの誤検出の可能性との関係に着目し、超音波信号U1,U2の受信波を示す検出電圧Vinに基づいて、各波のピーク電圧から隣接差分ピーク電圧を求め、各波のうち、隣接差分ピーク電圧が最も大きい波を目標波Wtとして特定し、目標波Wtのピーク電圧を閾値電圧Vsとして特定するようにしたものである。
[流量演算装置]
次に、図1を参照して、本実施の形態にかかる流量演算装置10の構成について説明する。
図1に示すように、流量演算装置10は、主な機能部として、入出力I/F部11、記憶部12、計測制御部13、ゼロクロス検出部14、流量計算部15、流量出力部16、および閾値電圧設定部17を備えており、これら機能部は、内部バスBを介してデータやり取り可能に接続されている。これら機能部のうち、計測制御部13、ゼロクロス検出部14、流量計算部15、流量出力部16、および閾値電圧設定部17は、CPUとプログラムが協働することにより実現される。
入出力I/F部11は、配線WLを介してトランスデューサTD1,TD2と接続されて、TD1,TD2との間で計測に用いる各種信号をやり取りする機能を有している。
記憶部12は、半導体メモリやハードディスクなどの記憶装置からなり、流量演算装置10での流量計測動作に用いる各種処理データやプログラムを記憶する機能を有している。
計測制御部13は、予め設定されている周期的な計測タイミングの到来、あるいはオペレータや上位装置(図示せず)からの任意のタイミングにおける指示に応じて、入出力I/F部11からTD1,TD2に対して送信指示信号を出力することにより、TD1,TD2間で計測対象となる流体を介して超音波信号U1,U2を両方向で交互に送受信する計測工程を、繰り返し実施する機能を有している。計測工程は、流量計測時だけでなく、流量計測時に先立つ閾値設定時にも1または複数回実施される。
ゼロクロス検出部14は、計測工程ごとに、超音波信号U1(U2)を受信したTD2(TD1)から出力される検出電圧Vinと予め設定した閾値電圧Vsとを比較する機能と、VinがVsと最初に交差した(超えたまたは達した)トリガー点以降において、Vinがゼロ電圧Vz(0V)とゼロクロスするゼロクロス点を検出し、これらゼロクロス点のゼロクロス時刻を検出電圧Vinと対応する時刻配列Dに順次格納し、記憶部12に保存する機能とを有している。
流量計算部15は、流量計測時にゼロクロス検出部14で得られた時刻配列Dから予め設定されている目標ゼロクロス点に関する目標ゼロクロス時刻をそれぞれ抽出する機能と、これら目標ゼロクロス時刻を基準として求めたU1,U2に関する伝搬時間t1,t2さらには伝搬時間差Δtに基づいて、流体の流量Qを計算し、記憶部12に保存する機能とを有している。
流量出力部16は、通信ネットワークNWを介して上位装置(図示せず)と接続し、定期的あるいは上位装置からの出力指示に応じて、記憶部12から流量Qを取得して上位装置へ出力する機能とを有している。
閾値電圧設定部17は、流量計測時に先立つ閾値設定時に送受信した超音波信号の受信波から、正負各波W(k)(iは1~Kの整数)のピーク電圧Vp(k)を検出電圧Vinから検出する機能と、正負いずれか一方の極性の波を示す第1の極性波W(i)(i=1,3,…,K-1)ごとに、正負いずれか他方の極性の波を示す第2の極性波W(j)(j=2,4,…,K)のうち第1の極性波W(i)に隣接する隣接波Wn(i)との間で、ピーク電圧Vp(i)の絶対値の差を示す隣接差分ピーク電圧ΔVn(i)を計算する機能と、第1の極性波W(i)のうち隣接差分ピーク電圧ΔVn(i)が最大となる第1の極性波W(i)を、トリガー点を検出するための目標波W(t)として選択し、目標波W(t)のピーク電圧Vp(t)を閾値電圧Vsとして設定する機能とを有している。
本実施の形態では、図2に示したように、受信波を示す検出電圧Vinに、複数個の波Wが正負極性で交互に含まれており、閾値設定時には、先頭からK個目までの波W(k)のうちの正極性波W(i)から目標波W(t)を選択する場合を例として説明する。なお、正極性波W(i)の場合と同様にして負極性波W(j)から目標波W(t)を選択することも可能である。
また、本実施の形態では、正極性波W(i)に隣接する隣接波Wn(i)として、W(i)の前に隣接する前隣接波Wa(i)=W(i-1)と、W(i)の後に隣接する後隣接波Wb(i)=W(i+1)とを用いる場合を例として説明する。この場合、Vp(i)とVp(i-1)との絶対値の差を示す前隣接差分ピーク電圧ΔVa(i)と、Vp(i)とVp(i+1)との絶対値の差を示す後隣接差分ピーク電圧ΔVb(i)とを計算し、これらΔVa(i)とΔVb(i)の代表値、ここでは最小値を、隣接差分ピーク電圧ΔVn(i)として計算する。
なお、隣接波Wn(i)として、Wa(i)またはWb(i)のいずれか一方を用いてもよく、この場合、隣接差分ピーク電圧ΔVn(i)として、ΔVa(i)またはΔVb(i)のいずれか一方を用いればよい。
また、ΔVa(i)とΔVb(i)の代表値は、最小値に限定されるものではなく、平均値、中央値、最大値など、ΔVa(i)とΔVb(i)の一般的な統計値を用いてもよい。
[第1の実施の形態の動作]
次に、図3および図4に基づいて、本実施の形態にかかる超音波流量計1の動作について説明する。図3は、第1の実施の形態にかかる閾値電圧設定処理を示すフローチャートである。図4は、第1の実施の形態にかかる閾値電圧設定処理を示す信号波形図である。
流量演算装置10のゼロクロス検出部14および閾値電圧設定部17は、流量計測に先立つ閾値設定の際に、図3の閾値電圧設定処理を実行する。以下では、図4に示すように、先頭からK=8個目までの波W(k)(k=1,2,…,K)のうちの正極性波W(i)(i=1,3,5,7)から目標波W(t)を選択する場合を例として説明する。なお、図4では、理解を容易とするため、負極性波W(j)(j=2,4,6,8)の波形は絶対値で示してある。
図3に示すように、まず、ゼロクロス検出部14は、トランスデューサTD1(TD2)から出力されて、入出力I/F部11でA/D変換された検出信号の検出電圧Vinに対して、例えばゼロから徐々に閾値電圧Vsを上昇または低下させて、それぞれゼロクロス時刻を検出し(ステップS100)、ゼロクロス時刻がシフトした際のVsをピーク電圧Vpとして検出する(ステップS101)。
これにより、Vinに含まれる各波W(i)のVp(i)が検出される。なお、Vp(i)の検出手法については、Vsとゼロクロス時刻のシフトを用いた手法に限定されるものではなく、例えばVinがVsと交差する時刻の変化に基づいてVp(i)を検出する手法など、他の手法を用いてもよい。
次に、閾値電圧設定部17は、正極性波W(i)(i=1,3,…,K-1)ごとに、W(i)と隣接する隣接波Wn(i)との間のピーク電圧差である隣接差分ピーク電圧ΔVn(i)を計算する(ステップS102)。
この際、正極性波W(i)に隣接する隣接波Wn(i)として、W(i)の前に隣接する前隣接波Wa(i)=W(i-1)と、W(i)の後に隣接する後隣接波Wb(i)=W(i+1)とを用いる場合、閾値電圧設定部17は、Vp(i)とVp(i-1)との絶対値の差を示す前隣接差分ピーク電圧ΔVa(i)と、Vp(i)とVp(i+1)との絶対値の差を示す後隣接差分ピーク電圧ΔVb(i)とを計算し、これらΔVa(i)とΔVb(i)の代表値、ここでは最小値を、隣接差分ピーク電圧ΔVn(i)として計算する。
この後、閾値電圧設定部17は、正極性波W(i)のうち隣接差分ピーク電圧ΔVn(i)が最大となるW(i)を、トリガー点を検出するための目標波W(t)として選択し(ステップS103)、目標波W(t)のピーク電圧Vp(t)を閾値電圧Vsとして設定し(ステップS104)、一連の閾値電圧設定処理を終了する。
したがって、図4の例ではK=8であるから、正極性波W(i)(i=1,3,5,7)ごとに、ΔVa(i)=|Vp(i)|-|Vp(i-1)|と、ΔVb(i)=|Vp(i+1)|-|Vp(i)|とが計算され、これらの最小値がΔVn(i)=Min(ΔVa(i),ΔVb(i))として計算される。なお、Vp(0)はゼロとする。また、Min(x,y)はx,yの最小値を選択する関数を示す。
これにより、W(i)ごとにΔVn(i)が求められ、図4の例では、ΔVn(i)が最大となるW(3)がW(t)として選択され、Vp(3)がVsとして設定される。
[第1の実施の形態の効果]
このように、本実施の形態は、閾値電圧設定部17が、受信波を示す検出電圧Vinから正負極性の各波W(k)(k=1,2,…,K)のピーク電圧Vp(k)を検出し、正負いずれか一方の極性の波を示す第1の極性波W(i)(i=1,3,…,K-1)ごとに、正負いずれか他方の極性の波を示す第2の極性波W(j)(j=2,4,…,K)のうち第1の極性波W(i)と隣接する隣接波Wn(i)との間で、それぞれのピーク電圧Vp(i)の絶対値の差を示す隣接差分ピーク電圧ΔVn(i)を計算し、第1の極性波W(i)のうち隣接差分ピーク電圧ΔVn(i)が最大となる第1の極性波を、トリガー点を検出するための目標波W(t)として選択し、目標波W(t)のピーク電圧Vp(t)を閾値電圧Vsとして設定するようにしたものである。
これにより、W(i)のうちΔVn(i)が最大のものが目標波W(t)として選択されることになる。したがって、W(t)として、隣接波Wn(t)とのピーク電圧の差が、他のW(i)と比較して最も大きいW(i)が選択されることになり、結果として、目標波W(t)と隣接波Wn(t)とのクリアランスが、他のW(i)と比較して最も大きくなる。このため、Vinの変動に対してW(t)を最も安定して検出することができる。また、隣接する正負の極性波のピーク電圧を比較することにより、正負いずれか片側のピーク電圧を比較する場合に比べ、同じ受信時間内により多くのピーク電圧の差分を評価できるため、ノイズなどにより、検出されるピーク電圧にランダムなばらつきがある場合でも、ばらつきの影響を抑えて目標波W(t)を選択することが容易になる。
また、隣接差分ピーク電圧ΔVn(i)を計算する対象として、隣接波Wn(i)として第1の極性波W(i)と逆極性の第2の極性波W(j)を用いるようにしたので、正負極性で同じ電圧幅の閾値電圧Vsを用いて、正極性波W(i)と負極性波W(j)との両方でW(t)を検出する方式の超音波流量計でも、本実施の形態に基づき目標波W(t)を選択することにより、目標波W(t)と隣接波Wn(t)とのクリアランスが、他のW(i)と比較して最も大きくなる。このため、正負極性の波のピーク電圧のいずれか一方に偏りがある場合でも、正負両方の極性のW(t)を最も安定して検出することができる。
また、W(t)のピーク電圧Vp(t)を閾値電圧Vsとして設定するようにしたので、W(t)およびW(t+2)でそれぞれ50%の確率、両者で100%の確率でトリガー点を検出することができ、結果として、伝搬時間t1,t2さらには伝搬時間差Δtの検出精度を高めることが可能となる。
また、本実施の形態において、閾値電圧設定部17が、目標波W(t)を選択する際、第1の極性波W(i)ごとに、第2の極性波W(j)のうちW(i)の前に隣接する前隣接波Wa(i)との間で前隣接差分ピーク電圧ΔVa(i)を計算するとともに、W(i)の後に隣接する後隣接波Wb(i)との間で後隣接差分ピーク電圧ΔVb(i)を計算し、これらΔVa(i)とΔVb(i)との代表値からなる隣接差分ピーク電圧ΔVn(i)が最大となるW(i)を、トリガー点を検出するための目標波W(t)として選択するようにしてもよい。
これにより、W(t)のWa(i)またはWb(i)のいずれか一方との隣接差分ピーク電圧ΔVn(i)を用いる場合と比較して、極めて正確に目標波W(t)を選択することができる。
また、本実施の形態において、閾値電圧設定部17が、代表値として、前隣接差分ピーク電圧ΔVa(i)と後隣接差分ピーク電圧ΔVb(i)との最小値を計算するようにしてもよい。
これにより、代表値として、平均値、中央値、最大値など、ΔVa(i)とΔVb(i)の一般的な統計値を用いる場合と比較して、極めて正確に目標波W(t)を選択することができる。
[第2の実施の形態]
次に、本発明の第2の実施の形態にかかる超音波流量計1について説明する。
第1の実施の形態では、目標波W(t)を選択した後、W(t)のピーク電圧Vp(w)を閾値電圧Vsとして設定する場合を例として説明した。本実施の形態では、W(t)を選択した後、Vp(w)とΔVn(w)とに基づいて閾値電圧調整範囲Vajを設定し、Vaj内でVsを調整する場合について説明する。
すなわち、本実施の形態において、閾値電圧設定部17は、目標波W(t)のピーク電圧Vp(t)を中心として隣接差分ピーク電圧ΔVn(t)に応じて設定される幅を上下に持つ閾値電圧調整範囲Vajを設定する機能と、ゼロクロス検出部14で検出されるゼロクロス点Zが目標波W(t)に対応する目標ゼロクロス点Ztに相当する度合に基づいて、閾値電圧Vsを閾値電圧調整範囲Vaj内で調整する機能とを有している。
なお、本実施の形態にかかるその他の構成については、第1の実施の形態と同様であり、ここでの詳細な説明は省略する。
[第2の実施の形態の動作]
次に、図5および図6に基づいて、本実施の形態にかかる超音波流量計1の動作について説明する。図5は、第2の実施の形態にかかる閾値電圧設定処理を示すフローチャートである。図6は、第2の実施の形態にかかる閾値電圧設定処理を示す信号波形図である。
流量演算装置10のゼロクロス検出部14および閾値電圧設定部17は、流量計測に先立つ閾値設定の際に、図5の閾値電圧設定処理を実行する。以下では、図6に示すように、先頭からK=8個目までの波W(k)(k=1,2,…,K)のうちの正極性波W(i)(i=1,3,5,7)から目標波W(t)を選択する場合を例として説明する。なお、図6では、理解を容易とするため、負極性波W(j)(j=2,4,6,8)の波形は絶対値で示してある。
図5に示すように、まず、ゼロクロス検出部14は、トランスデューサTD1(TD2)から出力されて、入出力I/F部11でA/D変換された検出信号の検出電圧Vinに対して、例えばゼロから徐々に閾値電圧Vsを上昇または低下させて、それぞれゼロクロス時刻を検出し(ステップS200)、ゼロクロス時刻がシフトした際のVsをピーク電圧Vpとして検出する(ステップS201)。
これにより、Vinに含まれる各波W(i)のVp(i)が検出される。なお、Vp(i)の検出手法については、Vsとゼロクロス時刻のシフトを用いた手法に限定されるものではなく、例えばVinがVsと交差する時刻の変化に基づいてVp(i)を検出する手法など、他の手法を用いてもよい。
次に、閾値電圧設定部17は、正極性波W(i)(i=1,3,…,K-1)ごとに、W(i)と隣接する隣接波Wn(i)との間のピーク電圧差である隣接差分ピーク電圧ΔVn(i)を計算する(ステップS202)。
この際、正極性波W(i)に隣接する隣接波Wn(i)として、W(i)の前に隣接する前隣接波Wa(i)=W(i-1)と、W(i)の後に隣接する後隣接波Wb(i)=W(i+1)とを用いる場合、閾値電圧設定部17は、Vp(i)とVp(i-1)との絶対値の差を示す前隣接差分ピーク電圧ΔVa(i)と、Vp(i)とVp(i+1)との絶対値の差を示す後隣接差分ピーク電圧ΔVb(i)とを計算し、これらΔVa(i)とΔVb(i)の代表値、ここでは最小値を、隣接差分ピーク電圧ΔVn(i)として計算する。
続いて、閾値電圧設定部17は、正極性波W(i)のうち隣接差分ピーク電圧ΔVn(i)が最大となるW(i)を、トリガー点を検出するための目標波W(t)として選択し(ステップS203)、目標波W(t)のピーク電圧Vp(t)を中心として、隣接差分ピーク電圧ΔVn(t)に所定の比率Ratio_Vptを乗じた幅を上下に持つ閾値電圧調整範囲Vaj=Vp(t)±(Ratio_Vpt)*ΔVn(t)を設定し(ステップS204)、一連の閾値電圧設定処理を終了する。この際、Vajは、目標波W(t)のピーク電圧Vp(t)に対する比率として設定してもよい。これにより目標波のピーク電圧変化に応じて適切な閾値電圧に調整することができる。あるいは、ピーク電圧Vp(i)の最大値、すなわち受信波の最大振幅、に対する比率として設定してもよい。
したがって、図6の例ではK=8であるから、正極性波W(i)(i=1,3,5,7)ごとに、ΔVa(i)=|Vp(i)|-|Vp(i-1)|と、ΔVb(i)=|Vp(i+1)|-|Vp(i)|とが計算され、これらの最小値がΔVn(i)=Min(ΔVa(i),ΔVb(i))として計算される。なお、Vp(0)はゼロとする。また、Min(x,y)はx,yの最小値を選択する関数を示す。
これにより、W(i)ごとにΔVn(i)が求められ、図6の例では、ΔVn(i)が最大となるW(3)がW(t)として選択され、Vp(3)がVsとして設定される。
なお、閾値電圧調整範囲Vajについては、Vaj=Vp(t)±ΔVn(t)のほか、受信波のランダムな強度変動幅をVnoiseとしたときに、Vaj=Vp(t)±Min(ΔVa(i)-Vnoise,ΔVb(i))としてもよい。これにより、受信波のランダムな強度変動幅を加味したVajを設定することができる。
[閾値電圧調整動作]
次に、図7を参照して、閾値電圧調整範囲Vajを用いた閾値電圧調整動作について説明する。図7は、閾値電圧調整処理を示すフローチャートである。
流量演算装置10のゼロクロス検出部14および閾値電圧設定部17は、閾値電圧調整範囲Vajを設定した後、図7の閾値電圧調整処理を実行する。なお、閾値電圧調整処理の実行開始にあたり、閾値電圧Vsには、例えば閾値電圧調整範囲Vajの中央値、上限値、下限値などVaj内の任意の値が、初期値として予め設定されているものとする。
まず、ゼロクロス検出部14は、トランスデューサTD1(TD2)から出力されて、入出力I/F部11でA/D変換された検出信号の検出電圧Vin#i(i=1~Nの整数)ごとに、Vin#iと閾値電圧Vsとを比較し、Vin#iがVsと交差したトリガー点を検出する(ステップS210)。
続いて、ゼロクロス検出部14は、検出したトリガー点以降にVin#iがゼロ電圧とゼロクロスするセロクロス点をNz個検出し(ステップS211)、これらゼロクロス点のゼロクロス時刻をVin#iと対応する時刻配列D#iに順次格納する(ステップS212)。
このようにして、N個のVin#iに関するD#iがそれぞれ得られた後、閾値電圧設定部17は、これらD#iに格納されている各ゼロクロス点のゼロクロス時刻に基づいて、先頭の先頭ゼロクロス点が、予め設定されている判定ゼロクロス点、すなわち目標ゼロクロス点ZT以前に位置するすべてのゼロクロス点のいずれかに相当するD#iの割合である度合Rを計算する(ステップS213)。
次に、閾値電圧設定部17は、Rが予め設定されている閾値Rthより大きいかどうか確認し(ステップS214)、RがRthより大きい場合(ステップS214:YES)、Vsを予め設定されている調整幅αだけ高い電圧に調整する(ステップS215)。
一方、RがRth以下の場合(ステップS214:NO)、閾値電圧設定部17は、RがRthより小さいかどうか確認し(ステップS216)、RがRthより小さい場合(ステップS216:YES)、Vsを予め設定されている調整幅αだけ低い電圧に調整する(ステップS217)。なお、RがRth以上であり、RとRthが等しい場合(ステップS216:NO)、Vsの調整は行わない。
この後、閾値電圧設定部17は、Vsが予め設定されている調整範囲Vajの範囲外かどうか確認し(ステップS218)、VsがVajの範囲外である場合(ステップS218:YES)、Vsを予め設定されている初期値に初期化し(ステップS219)、一連の閾値電圧調整処理を終了する。また、VsがVajの範囲内である場合(ステップS218:NO)、Vsを初期化することなく、一連の閾値電圧調整処理を終了する。
なお、閾値電圧調整処理において、ノイズにより受信波強度がばらついている場合、粗い調整幅αで仮の閾値電圧Vs’を探索し、得られたVs’を使って繰り返し計算した度合Rに基づいて、目標波のピーク電圧と閾値電圧Vsとの関係を特定し、Vsを設定してもよい。
[先頭ゼロクロス判定動作]
次に、図8を参照して、閾値電圧設定部17による先頭ゼロクロス判定動作について説明する。図8は、先頭ゼロクロス判定動作を示す説明図である。
閾値電圧設定部17は、図7のステップS213において、度合Rを計算する際、時刻配列D#iごとに、それぞれのD#iの先頭に格納されている先頭ゼロクロス時刻と対応する先頭ゼロクロス点が、目標ゼロクロス点または先行ゼロクロス点のいずれに相当するのか判定するため、先頭ゼロクロス判定動作を行う。
前述したように、Vin#iの強度変化に応じて、Vin#iがVsを超えるトリガー点の時間位置がばらつく。この際、Vin#iの信号強度に対してVsがある程度適切な電圧を示す場合、D#iの先頭に格納される先頭ゼロクロス時刻は、目標ゼロクロス時刻をピークとする、釣鐘状の分布を示すことになる。
本実施の形態は、このような先頭ゼロクロス時刻の分布特性に着目し、J(Jは2以上の整数)個の時刻区間Sj(jは1~Jの整数)を、D#iの先頭ゼロクロス時刻が並ぶ時間軸上に配置して、これらSjごとに先頭ゼロクロス時刻の検出頻度njを計数し、njの最大値nmaxが得られた時刻区間Smaxを目標ゼロクロス点と対応する目標時刻区間として特定する。Sjの時間長は、例えば超音波周期や超音波半周期に相当する時間長を用いればよい。一般的には、ゼロクロス時刻のばらつきは、超音波周期よりも小さいため、隣接するゼロクロス点の時刻と十分区別できる。なお、Sjの時間位置については、先頭ゼロクロス時刻の分布に合わせシフトさせればよい。
これにより、時刻区間Smax以前に位置する時刻区間S1~S(max-1)が、目標ゼロクロス点より先行する先行ゼロクロス区間Skであることになる。したがって、先行ゼロクロス区間Skのn1~n(max-1)の和をnjの総和すなわちNで除算すれば、度合Rが求められることになる。
図8の例では、S1,S2,S3,S4,S5からなる5つの時刻区間(j=5)を設けて、先頭ゼロクロス時刻の検出頻度n1,n2,n3,n4,n5を計数した例が示されている。ここでは、32個のVin#i(N=32)に関する先頭ゼロクロス時刻に関する、S1,S2,S3,S4,S5の検出頻度がそれぞれ0回,8回,21回,3回,0回となっている。
これら時刻区間Sjのうち検出頻度n3が最大の値を示しており、図2で示した目標ゼロクロス点の設定例によれば、S3が先頭の目標ゼロクロス点Z3と対応するSmaxとなる(max=3)。このため、先頭の目標ゼロクロス点Z3以前に位置するゼロクロス点Z1,Z2が先行ゼロクロス点であることから、S1+S2(=8)が先行ゼロクロス点の検出頻度となり、これを検出総数N(=32)で除算することにより、R=0.25(=25%)が得られる。
[閾値電圧初期化動作]
次に、図9を参照して、閾値電圧設定部17による閾値電圧の初期化動作について説明する。図9は、閾値電圧と調整範囲との関係を示す信号波形図である。
閾値電圧設定部17は、図7のステップS219において、閾値電圧Vsを初期化する際、検出電圧Vin#iの最大ピーク電圧Vmaxに基づき新たな調整範囲Vajを特定し、調整範囲Vaj内の任意の値をVsの新たな初期値として設定する。
図9に示すように、調整範囲Vajは、調整下限電圧VajLおよび調整上限電圧VajHからなり、計測開始時のVs、すなわちVsの初期値は、VajLとVajHの間の任意の値に設定されるものとする。
Vsを繰り返し調整する場合、検出電圧Vin#iの強度変化が継続すると、VajLを下回ったり、VajHを上回ったりすることになり、Vsが適切でない電圧値へ移行してしまう可能性がある。
このため、図7のステップS219において、VsがVajLを下回ったり、VajHを上回ったりして、調整範囲Vaj外となった時点で、Vsを初期化している。
この際、例えば一連の計測工程で入力されたN個の検出電圧Vin#iから最大ピーク電圧Vmaxを検出しておき、予め設定されている下限係数k1および上限係数k2に基づいて新たなVajL(=k1×Vmax),VajH(=k2×Vmax)を計算し、VajLおよびVajHの間の任意の値を新たなVsとして設定する。
[第2の実施の形態の効果]
このように、本実施の形態は、閾値電圧設定部17が、目標波W(t)のピーク電圧Vp(t)を中心として隣接差分ピーク電圧ΔVn(t)に応じて設定される幅を上下に持つ閾値電圧調整範囲Vajを設定し、ゼロクロス検出部14で検出されるゼロクロス点Zが目標波W(t)に対応する目標ゼロクロス点Ztに相当する度合に基づいて、閾値電圧Vsを閾値電圧調整範囲Vaj内で調整するようにしたものである。
これにより、閾値電圧Vsの閾値電圧調整範囲Vajが、目標波W(t)の隣接波Wn(t)のピーク電圧Vp(t)を考慮して設定されることになる。このため、W(t)に最も適切な必要最低限の範囲でVsを調整することができる。
また、Vsを調整する指標となる度合Rが、計測工程により繰り返し検出したN個のVin#iに基づいて計算されるため、Vin#iの強度変化による度合Rへの影響が平均化され、安定した閾値電圧調整を実現することができる。したがって、閾値電圧調整中においてVin#iの強度変化がないことを前提とする必要はなくなり、実際の流量計測動作中であっても閾値電圧調整を正確に行うことが可能となる。
このため、結果として、精度の高い流量計測を実現することが可能となる。さらには、Vin#iのSN比が小さくても正しい伝搬時間差が得られるため、Vin#iに対する増幅ゲインの低減や計測回数の削減を行うことができ、流量計測に要する消費電力を低減することが可能となる。
[実施の形態の拡張]
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
1…超音波流量計、10…流量演算装置、11…入出力I/F部、12…記憶部、13…計測制御部、14…ゼロクロス検出部、15…流量計算部、16…流量出力部、17…閾値電圧設定部、B…内部バス、C…測定管、TD1,TD2…トランスデューサ、WL…配線、NW…通信ネットワーク。

Claims (6)

  1. 一対のトランスデューサ間で計測対象となる流体を介して超音波信号を両方向で送受信し、これら超音波信号の伝搬時間差に基づいて、前記流体の流量を計測する超音波流量計であって、
    前記超音波信号の受信波を示す検出電圧が、予め設定されている閾値電圧と最初に交差したトリガー点以降に、前記検出電圧がゼロクロスするゼロクロス点のゼロクロス時刻を検出するゼロクロス検出部と、
    前記受信波から得られた前記ゼロクロス時刻を基準として前記伝搬時間差を求め、得られた伝搬時間差に基づいて前記流体の流量を計測する流量計算部と、
    前記受信波を示す検出電圧から正負極性の各波Wのピーク電圧を検出し、正負いずれか一方の極性の波を示す第1の極性波ごとに、正負いずれか他方の極性の波を示す第2の極性波のうち前記第1の極性波と隣接する隣接波との間で、それぞれのピーク電圧の絶対値の差を示す隣接差分ピーク電圧を計算し、前記第1の極性波のうち前記隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択し、前記目標波のピーク電圧を前記閾値電圧として設定する閾値電圧設定部と
    を備えることを特徴とする超音波流量計。
  2. 一対のトランスデューサ間で計測対象となる流体を介して超音波信号を両方向で送受信し、これら超音波信号の伝搬時間差に基づいて、前記流体の流量を計測する超音波流量計であって、
    前記超音波信号の受信波を示す検出電圧が、予め設定されている閾値電圧と最初に交差したトリガー点以降に、前記検出電圧がゼロクロスするゼロクロス点のゼロクロス時刻を検出するゼロクロス検出部と、
    前記受信波から得られた前記ゼロクロス時刻を基準として前記伝搬時間差を求め、得られた伝搬時間差に基づいて前記流体の流量を計測する流量計算部と、
    受信波を示す検出電圧から正負極性の各波Wのピーク電圧を検出し、正負いずれか一方の極性の波を示す第1の極性波ごとに、正負いずれか他方の極性の波を示す第2の極性波のうち前記第1の極性波の前に隣接する前隣接波との間で、それぞれのピーク電圧の絶対値の差を示す前隣接差分ピーク電圧を計算するとともに、前記第1の極性波の後に隣接する後隣接波との間で、それぞれのピーク電圧の絶対値の差を示す後隣接差分ピーク電圧を計算し、これら前隣接差分ピーク電圧と後隣接差分ピーク電圧との代表値からなる隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択し、前記目標波のピーク電圧を前記閾値電圧として設定する閾値電圧設定部と
    を備えることを特徴とする超音波流量計。
  3. 請求項2に記載の超音波流量計において、
    前記閾値電圧設定部は、前記代表値として、前記前隣接差分ピーク電圧と前記後隣接差分ピーク電圧のいずれか小さい値を選択することを特徴とする超音波流量計。
  4. 請求項1~3のいずれかに記載の超音波流量計において、
    前記閾値電圧設定部は、前記目標波のピーク電圧を中心として前記隣接差分ピーク電圧に応じて設定される幅を上下に持つ閾値電圧調整範囲を設定し、前記ゼロクロス検出部で検出される所定の期間における前記ゼロクロス点のうち先頭の先頭ゼロクロス点前記目標波に対応する目標ゼロクロス点に先行する先行ゼロクロス点として検出される前記所定の期間における検出頻度に基づいて、前記閾値電圧を前記閾値電圧調整範囲内で調整することを特徴とする超音波流量計。
  5. 一対のトランスデューサ間で計測対象となる流体を介して超音波信号を両方向で送受信し、これら超音波信号の伝搬時間差に基づいて、前記流体の流量を計測する超音波流量計で用いられる流量計測方法であって、
    ゼロクロス検出部が、前記超音波信号の受信波を示す検出電圧が、予め設定されている閾値電圧と最初に交差したトリガー点以降に、前記検出電圧がゼロクロスするゼロクロス点のゼロクロス時刻を検出するゼロクロス検出ステップと、
    流量計算部が、前記受信波から得られた前記ゼロクロス時刻を基準として前記伝搬時間差を求め、得られた伝搬時間差に基づいて前記流体の流量を計測する流量計算ステップと、
    閾値電圧設定部が、前記受信波を示す検出電圧から正負極性の各波Wのピーク電圧を検出し、正負いずれか一方の極性の波を示す第1の極性波ごとに、正負いずれか他方の極性の波を示す第2の極性波のうち前記第1の極性波と隣接する隣接波との間で、それぞれのピーク電圧の絶対値の差を示す隣接差分ピーク電圧を計算し、前記第1の極性波のうち前記隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択し、前記目標波のピーク電圧を前記閾値電圧として設定する閾値電圧設定ステップと
    を備えることを特徴とする流量計測方法。
  6. 超音波流量計で用いられて、一対のトランスデューサ間で計測対象となる流体を介して超音波信号を両方向で送受信し、これら超音波信号の伝搬時間差に基づいて、前記流体の流量を計測する流量演算装置であって、
    前記超音波信号の受信波を示す検出電圧が、予め設定されている閾値電圧と最初に交差したトリガー点以降に、前記検出電圧がゼロクロスするゼロクロス点のゼロクロス時刻を検出するゼロクロス検出部と、
    前記受信波から得られた前記ゼロクロス時刻を基準として前記伝搬時間差を求め、得られた伝搬時間差に基づいて前記流体の流量を計測する流量計算部と、
    前記受信波を示す検出電圧から正負極性の各波Wのピーク電圧を検出し、正負いずれか一方の極性の波を示す第1の極性波ごとに、正負いずれか他方の極性の波を示す第2の極性波のうち前記第1の極性波と隣接する隣接波との間で、それぞれのピーク電圧の絶対値の差を示す隣接差分ピーク電圧を計算し、前記第1の極性波のうち前記隣接差分ピーク電圧が最大となる第1の極性波を、前記トリガー点を検出するための目標波として選択し、前記目標波のピーク電圧を前記閾値電圧として設定する閾値電圧設定部と
    を備えることを特徴とする流量演算装置。
JP2018195654A 2018-10-17 2018-10-17 超音波流量計、流量計測方法、および流量演算装置 Active JP7219582B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195654A JP7219582B2 (ja) 2018-10-17 2018-10-17 超音波流量計、流量計測方法、および流量演算装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195654A JP7219582B2 (ja) 2018-10-17 2018-10-17 超音波流量計、流量計測方法、および流量演算装置

Publications (2)

Publication Number Publication Date
JP2020063973A JP2020063973A (ja) 2020-04-23
JP7219582B2 true JP7219582B2 (ja) 2023-02-08

Family

ID=70387325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195654A Active JP7219582B2 (ja) 2018-10-17 2018-10-17 超音波流量計、流量計測方法、および流量演算装置

Country Status (1)

Country Link
JP (1) JP7219582B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636945A1 (de) 1996-09-11 1998-03-12 Siemens Ag Verfahren und Einrichtung zur Messung der Laufzeitdifferenz eines elektrischen, elektromagnetischen oder akustischen Signals
JP2002162269A (ja) 2000-11-27 2002-06-07 Tokyo Keiso Co Ltd 伝播時間差方式による超音波流量計
JP2004125769A (ja) 2002-02-07 2004-04-22 Matsushita Electric Ind Co Ltd 流量計測装置
US20040107774A1 (en) 2001-03-02 2004-06-10 Volker Arndt Device for evaluating signals
JP2008014771A (ja) 2006-07-05 2008-01-24 Jfe Advantech Co Ltd パルス状信号の伝搬時間測定装置及び超音波式流量測定装置
JP2012506999A (ja) 2008-10-28 2012-03-22 アクセンサー エービー 周期的に振動する信号応答の開始の瞬間を決定する方法
JP2016099116A (ja) 2014-11-18 2016-05-30 愛知時計電機株式会社 超音波流量計
WO2017134828A1 (ja) 2016-02-05 2017-08-10 富士電機株式会社 測定装置、測定方法、及び測定プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3123895B2 (ja) * 1995-03-15 2001-01-15 三洋電機株式会社 超音波センサ及びこれを用いた分注装置
DE19522697A1 (de) * 1995-06-22 1997-01-09 Sick Optik Elektronik Erwin Verfahren und Schaltungsanordnung zur Messung der Strömungsgeschwindigkeit mittels akustischer Laufzeitdifferenzen
JP4020455B2 (ja) * 1997-05-28 2007-12-12 愛知時計電機株式会社 超音波流量計

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636945A1 (de) 1996-09-11 1998-03-12 Siemens Ag Verfahren und Einrichtung zur Messung der Laufzeitdifferenz eines elektrischen, elektromagnetischen oder akustischen Signals
JP2002162269A (ja) 2000-11-27 2002-06-07 Tokyo Keiso Co Ltd 伝播時間差方式による超音波流量計
US20040107774A1 (en) 2001-03-02 2004-06-10 Volker Arndt Device for evaluating signals
JP2004125769A (ja) 2002-02-07 2004-04-22 Matsushita Electric Ind Co Ltd 流量計測装置
JP2008014771A (ja) 2006-07-05 2008-01-24 Jfe Advantech Co Ltd パルス状信号の伝搬時間測定装置及び超音波式流量測定装置
JP2012506999A (ja) 2008-10-28 2012-03-22 アクセンサー エービー 周期的に振動する信号応答の開始の瞬間を決定する方法
JP2016099116A (ja) 2014-11-18 2016-05-30 愛知時計電機株式会社 超音波流量計
WO2017134828A1 (ja) 2016-02-05 2017-08-10 富士電機株式会社 測定装置、測定方法、及び測定プログラム

Also Published As

Publication number Publication date
JP2020063973A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2014205884A1 (zh) 一种基于零点分析的时差式超声波流量计测量方法
JP7134830B2 (ja) 超音波流量計、流量計測方法、および流量演算装置
JP7248407B2 (ja) 超音波流量計、流量計測方法、および流量演算装置
JP2011145289A (ja) 流量計測装置
JP7219582B2 (ja) 超音波流量計、流量計測方法、および流量演算装置
CN112304376B (zh) 基于数据融合的超声波流量计流量测量方法
JP7343350B2 (ja) 超音波流量計および流量計測方法
JP7098482B2 (ja) ゼロクロス検出回路、超音波流量計、およびゼロクロス検出方法
JP4572546B2 (ja) 流体の流れ計測装置
CN113959509A (zh) 一种超声波水表时间测量误差的降低方法及其系统
Ma et al. Signal processing method based on connection fitting of echo peak point with a large slope for ultrasonic gas flow meter
JP7343356B2 (ja) 超音波流量計および流量計測方法
JP2001317975A (ja) 超音波流速測定方法および同装置
EP2245432A2 (en) Method and system of determining a pattern of arrival time cycle skip in an acoustic flow meter
JP4013697B2 (ja) 流量計測装置
JP7184596B2 (ja) 超音波流量計および超音波流量計におけるピーク高さ情報取得方法
JP4689278B2 (ja) 流速または流量計測装置
JP4821240B2 (ja) 流体の流れ計測装置
CN111337092B (zh) 选取参考信号的方法、计算方法及相位差式超声波流量计
JP4059733B2 (ja) 超音波式メータ装置
JP7174574B2 (ja) 超音波流量計および超音波流量計におけるゼロクロス時刻の確定方法
JP2023010247A (ja) 超音波流量計及び流量演算方法
JP2004125769A (ja) 流量計測装置
JP6447826B2 (ja) 流量計測装置
JPS6217677A (ja) 超音波測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230127

R150 Certificate of patent or registration of utility model

Ref document number: 7219582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150