JP7204576B2 - センサ - Google Patents

センサ Download PDF

Info

Publication number
JP7204576B2
JP7204576B2 JP2019092045A JP2019092045A JP7204576B2 JP 7204576 B2 JP7204576 B2 JP 7204576B2 JP 2019092045 A JP2019092045 A JP 2019092045A JP 2019092045 A JP2019092045 A JP 2019092045A JP 7204576 B2 JP7204576 B2 JP 7204576B2
Authority
JP
Japan
Prior art keywords
conductive portion
voltage
movable member
electrode
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019092045A
Other languages
English (en)
Other versions
JP2020187018A (ja
Inventor
竜之介 丸藤
民雄 池橋
泰 冨澤
志織 加治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2019092045A priority Critical patent/JP7204576B2/ja
Priority to CN202010160623.0A priority patent/CN111947637A/zh
Priority to US16/815,189 priority patent/US11193769B2/en
Publication of JP2020187018A publication Critical patent/JP2020187018A/ja
Application granted granted Critical
Publication of JP7204576B2 publication Critical patent/JP7204576B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Description

本発明の実施形態は、センサに関する。
ジャイロセンサなどのセンサがある。センサにおいて、検出精度の向上が望まれる。
特開2016-200512号公報
本発明の実施形態は、精度を向上できるセンサを提供する。
本発明の実施形態によれば、センサは、可動部材、第1対向電極、第2対向電極、第1抵抗、第2抵抗及び制御装置を含む。前記可動部材は、第1電極及び第2電極を含み振動可能である。前記可動部材の前記振動は、第1方向に沿う第1成分と、前記第1方向と交差する第2方向に沿う第2成分と、を含む。前記第1対向電極は、前記第1電極と対向する。前記第2対向電極は、前記第2電極と対向する。前記第1抵抗は、第1端部及び第1他端部を含む。前記第2抵抗は、第2端部及び第2他端部を含む。前記第1他端部は、前記第1対向電極と電気的に接続される。前記第2他端部は、前記第2対向電極と電気的に接続される。前記制御装置は、第1動作を実施することが可能な制御部を含む。前記第1動作は、前記第1成分及び前記第2成分を取得する第1取得動作を含む。前記第1動作は、前記取得した前記第1成分の第1時定数と、前記取得した前記第2成分の第2時定数と、の差の絶対値が小さくなるように、前記第1抵抗の抵抗値、前記第2抵抗の抵抗値、前記第1端部の第1電圧、及び、前記第2端部の第2電圧の少なくともいずれかを変更する第1変更動作を含む。
図1は、第1実施形態に係るセンサを例示する模式図である。 図2は、第1実施形態に係るセンサの動作を例示するフローチャート図である。 図3(a)及び図3(b)は、第1実施形態に係るセンサの動作を例示する模式図である。 図4(a)及び図4(b)は、第1実施形態に係るセンサの動作を例示する模式図である。 図5は、第1実施形態に係るセンサの動作を例示するフローチャート図である。 図6は、第1実施形態に係るセンサの動作を例示するフローチャート図である。 図7は、第1実施形態に係るセンサを例示する模式図である。 図8は、第1実施形態に係るセンサを例示する模式図である。 図9は、第1実施形態に係るセンサを例示する模式図である。 図10は、第1実施形態に係るセンサの動作を例示する模式図である。 図11は、第1実施形態に係るセンサの動作を例示するフローチャート図である。 図12は、第1実施形態に係るセンサの動作を例示するフローチャート図である。 図13は、第1実施形態に係るセンサの動作を例示するフローチャート図である。 図14は、第1実施形態に係るセンサの動作を例示するフローチャート図である。 図15は、第2実施形態に係るセンサを例示する模式図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
図面は模式的または概念的なものであり、各部分の厚さと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
図1は、第1実施形態に係るセンサを例示する模式図である。
図1に示すように、実施形態に係るセンサ110は、可動部材10、第1対向電極21E、第2対向電極22E、第1抵抗R1、第2抵抗R2及び制御装置70を含む。
可動部材10、第1対向電極21E及び第2対向電極22Eは、センサ素子10Uに含まれる。センサ素子10Uは、例えば「ジャイロ素子」である。
可動部材10は、第1電極11E及び第2電極12Eを含む。可動部材10は、振動可能である。可動部材10の振動は、第1方向D1に沿う第1成分と、第2方向D2に沿う第2成分と、を含む。第2方向D2は、第1方向D1と交差する。
第1方向D1をX軸方向とする。X軸方向に対して垂直な1つの方向をY軸方向とする。X軸方向及びY軸方向に対して垂直な方向をZ軸方向とする。第2方向D2は、例えば、Y軸方向である。
図1に示すように、可動部材10は、複数の電極10Eを含む。複数の電極10Eの1つが、第1電極11Eに対応する。複数の電極10Eの別の1つが、第2電極12Eに対応する。
センサ素子10Uは、複数の対向電極20Eを含む。複数の対向電極20Eの1つが、第1対向電極21Eに対応する。複数の対向電極20Eの別の1つが、第2対向電極22Eに対応する。
図1に示すように、センサ素子10Uは、支持部材10Sをさらに含む。支持部材10Sは、可動部材10を支持する。支持部材10Sは、変形可能である。支持部材10Sは、例えば、ばね機構である。
この例では、固定部材10Fが設けられている。固定部材10Fは、図示しない基板などに固定される。支持部材10Sの一端は、固定部材10Fに接続される。支持部材10Sの他端は、可動部材10に接続される。例えば、複数の支持部材10Sが設けられ、複数の支持部材10Sにより、可動部材10が支持されても良い。
支持部材10Sが変形可能であるため、可動部材10の位置は、変化可能である。可動部材10の位置の変化は、例えば、X-Y平面内での位置の変化を含む。位置の変化が、可動部材10の振動に対応する。振動は、X-Y平面内での位置の変化を含む。
センサ素子10Uは、例えば、MEMS(micro electro mechanical systems)素子である。
この例では、可動部材10は、環状である。固定部材10Fは、環状の可動部材10の孔の中にある。固定部材10Fは、可動部材10のX-Y平面における中心部に設けられる。第1電極11Eから固定部材10Fへの方向は、第2電極12Eから固定部材10Fへの方向と交差する。第1電極11Eから、可動部材10のX-Y平面における中心部への方向は、第2電極12Eから、可動部材10のX-Y平面における中心部への方向と交差する。
第1対向電極21Eは、第1電極11Eと対向する。第2対向電極22Eは、第2電極12Eと対向する。複数の対向電極20Eの1つは、複数の電極10Eの1つと対向する。対向の方向は、X-Y平面に沿う成分を含む。
この例では、複数の対向電極20Eの1つ、及び、複数の電極10Eの1つを含むグループは、櫛歯電極状である。
第1抵抗R1は、第1端部ep1及び第1他端部cp1を含む。第1他端部cp1は、第1対向電極21Eと電気的に接続される。例えば、第1端部ep1は、制御装置70と電気的に接続される。この例では、配線Lr1により、第1他端部cp1は、第1対向電極21Eと電気的に接続される。
この例では、第1加算器SU1が設けられている。第1加算器SU1の複数の入力の1つに、配線Lc1の一端が接続される。配線Lc1の他端は、制御装置70に接続される。第1加算器SU1の複数の入力の別の1つに、後述する第1交流電圧Vac1(交流信号)が供給される。第1加算器SU1及び配線Lc1を介して、第1端部ep1は、制御装置70と電気的に接続される。
第2抵抗R2は、第2端部ep2及び第2他端部cp2を含む。第2他端部cp2は、第2対向電極22Eと電気的に接続される。例えば、第2端部ep2は、制御装置70と電気的に接続される。この例では、配線Lr2により、第2他端部cp2は、第2対向電極22Eと電気的に接続される。
この例では、第2加算器SU2が設けられている。第2加算器SU2の複数の入力の1つに、配線Lc2の一端が接続される。配線Lc2の他端は、制御装置70に接続される。第2加算器SU2の複数の入力の別の1つに、後述する第2交流電圧Vac2(交流信号)が供給される。第2加算器SU2及び配線Lc2を介して、第2端部ep2は、制御装置70と電気的に接続される。
第1抵抗R1及び第2抵抗R2の少なくとも1つは、可変抵抗である。この例では、第1抵抗R1及び第2抵抗R2の両方が可変抵抗である。第1抵抗R1に供給される制御信号SR1に応じて、第1抵抗R1の抵抗は、変化する。第2抵抗R2に供給される制御信号SR2に応じて、第2抵抗R2の抵抗は、変化する。
第1抵抗R1及び第2抵抗R2として、例えば、集積回路が用いられても良い。第1抵抗R1及び第2抵抗R2は、例えば、固定部材10Fが固定される基板に形成されても良い。
制御装置70は、制御部74を含む。制御部74は、例えば、演算部75及びドライバ部76を含む。例えば、演算部75における演算結果がドライバ部76に供給される。ドライバ部76は、演算結果に基づいて、各種の電圧などを出力する。各種の電圧は、電気信号を含む。
この例では、ドライバ部76は、制御信号出力部DR1、制御信号出力部DR2、電圧出力部Ddc1及び、電圧出力部Ddc2を含む。制御部74(例えば、制御信号出力部DR1)は、第1抵抗R1に制御信号SR1を供給する。制御部74(例えば、制御信号出力部DR2)は、第2抵抗R2に制御信号SR2を供給する。制御部74(例えば、電圧出力部Ddc1)は、第1抵抗R1の第1端部ep1の第1電圧Vdc1を制御する。制御部74(例えば、電圧出力部Ddc2)は、第2抵抗R2の第2端部ep2の第2電圧Vdc2を制御する。第1電圧Vdc1及び第2電圧Vdc2は、直流成分を含む。
例えば、第1電極11E及び第1対向電極21Eにより、容量素子が形成される。容量素子に第1抵抗R1が直列に接続される。第1電極11E、第1対向電極21E及び第1抵抗R1により、例えば、第1可変電気ダンパが形成される。例えば、第1電圧Vdc1により、第1電極11E及び第1対向電極21Eによる容量素子のキャパシタンスが変化しても良い。第1電極11E、第1対向電極21E、第1抵抗R1及び第1電圧Vdc1により、例えば、第1可変電気ダンパが形成される。
例えば、第2電極12E及び第2対向電極22Eにより、容量素子が形成される。容量素子に第2抵抗R2が直列に接続される。第2電極12E、第2対向電極22E及び第2抵抗R2により、例えば、第2可変電気ダンパが形成される。例えば、第2電圧Vdc2により、第2電極12E及び第2対向電極22Eによる容量素子のキャパシタンスが変化しても良い。第2電極12E、第2対向電極22E、第2抵抗R2及び第2電圧Vdc2により、例えば、第2可変電気ダンパが形成される。
これらの可変電気ダンパにより、可動部材10の振動特性を変化させることができる。
既に説明したように、第1電極11Eから、可動部材10のX-Y平面における中心部への方向は、第2電極12Eから、可動部材10のX-Y平面における中心部への方向と交差する。例えば、第1電圧Vdc1が変化したときの可動部材10の変位の方向は、第2電圧Vdc2が変化したときの可動部材10の変位の方向と交差する。例えば、第1電圧Vdc1が変化したときに、可動部材10の位置は、X軸方向及びY軸方向の一方に沿って変化する。例えば、第2電圧Vdc2が変化したときに、可動部材10の位置は、X軸方向及びY軸方向の他方に沿って変化する。
上記のような第1可変電気ダンパ及び第2可変電気ダンパにより、振動のX軸方向の成分の時定数、及び、振動のY軸方向の成分の時定数を制御できる。時定数を制御することで、精度を向上できるセンサを提供できる。時定数の制御の例については、後述する。
既に説明したように、この例では、第1加算器SU1に第1交流電圧Vac1が入力され、第2加算器SU2に第2交流電圧Vac2が入力される。例えば制御部74のドライバ部76に、交流電圧出力部Dac1及び交流電圧出力部Dac2が設けられる。
交流電圧出力部Dac1から第1交流電圧Vac1が出力される。第1交流電圧Vac1は、第1加算器SU1を介して、第1抵抗R1の第1端部ep1に印加される。第1交流電圧Vac1は、第1抵抗R1を介して、第1対向電極21Eに印加される。第1対向電極21Eと第1電極11Eとの間に、第1交流電圧Vac1の交流成分が印加される。これにより、可動部材10は、第1交流電圧Vac1に応じて、例えば、1つの方向に沿って振動する。この振動の方向は、例えば、第1方向D1の成分を含む。
交流電圧出力部Dac2から第2交流電圧Vac2が出力される。第2交流電圧Vac2は、第2加算器SU2を介して、第2抵抗R2の第2端部ep2に印加される。第2交流電圧Vac2は、第2抵抗R2を介して、第2対向電極22Eに印加される。第2対向電極22Eと第2電極12Eとの間に、第2交流電圧Vac2の交流成分が印加される。これにより、可動部材10は、第2交流電圧Vac2に応じて、例えば、別の1つの方向に沿って振動する。この振動の方向は、例えば、第2方向D2の成分を含む。
このように、制御部74は、第1電極11Eと第1対向電極21Eとの間に第1交流電圧Vac1を印加し、第2電極12Eと第2対向電極22Eとの間に第2交流電圧Vac2を印加して、可動部材10を振動させる。可動部材10の振動の方向は、第1方向D1の成分、及び、第2方向D2の成分を含む。
振動している可動部材10が外力などにより回転すると、振動状態が変化する。振動状態の変化を検出することで、回転角度θを検出することができる。例えば、制御部74は、可動部材10を軸方向に沿って振動させることが可能である。例えば、制御部74は、その軸方向を回転させることが可能である。
図1に示すように、この例では、可動部材10は、第1検出用電極11sE及び第2検出用電極12sEを含む。例えば、第1電極11Eから第1検出用電極11sEへの方向(この例では、X軸方向)は、第2電極12Eから第2検出用電極12sEへの方向(この例では、Y軸方向)と交差する。
一方、センサ素子10Uは、第1検出用対向電極21sE及び第2検出用対向電極22sEを含む。第1検出用対向電極21sEは、第1検出用電極11sEと対向する。第2検出用対向電極22sEは、第2検出用電極12sEと対向する。第1検出用対向電極21sE及び第1検出用電極11sEは、例えば、櫛歯電極状である。第2検出用対向電極22sE及び第2検出用電極12sEは、例えば、櫛歯電極状である。
制御装置70は、第1検出部71及び第2検出部72を含む。第1検出部71は、第1検出用対向電極21sEと電気的に接続される。第2検出部72は、第2検出用対向電極22sEと電気的に接続される。第1検出部71及び第2検出部72は、検出部70sに含まれる。例えば、差動回路などを用いることで、1つの検出部により、第1検出部71及び第2検出部72における動作が行われても良い。以下では、説明を簡単にするために、2つの検出部が設けられる例について説明する。
第1検出部71は、例えば、第1検出用対向電極21sEに第1検出電圧Vs1を印加する。第1検出用対向電極21sEと第1検出用電極11sEとの間の容量結合により、第1方向D1に沿う振動の振幅に応じた信号が検出される。第2検出部72は、例えば、第2検出用対向電極22sEに第2検出電圧Vs2を印加する。第2検出用対向電極22sEと第2検出用電極12sEとの間の容量結合により、第2方向D2に沿う振動の振幅に応じた信号が検出される。
このように、第1検出部71は、可動部材10の振動の、第1方向D1に沿う第1成分の第1振幅を検出する。第2検出部72は、可動部材10の振動の、第2方向D2に沿う第2成分の第2振幅を検出する。
第1検出部71及び第2検出部72で検出された振幅が、制御部74の演算部75に供給される。演算部75は、例えば、回転角度θを導出する部分(例えば、回転角度導出部75c)を含む。回転角度導出部75cにより導出された回転角度θに関するデータが、制御装置70(例えば、制御部74)から、信号Sig0として出力される。
このように、制御部74は、振動の第1方向D1に沿う第1成分、及び、振動の第2方向D2に沿う第2成分に基づいて、可動部材10の回転角度θに対応する信号Sig0を出力可能である。
既に説明したように、振動している可動部材10が外力などにより回転すると、振動状態が変化する。振動状態の変化は、例えば、コリオリ力の作用によると考えられる。例えば、可動部材10は、バネ機構(例えば支持部材10S)により振動する。第1方向D1に振動している可動部材10に、回転の角速度Ωによるコリオリ力が作用する。これにより、可動部材10に第2方向D2に沿う振動の成分が生じる。第2検出部72は、第2方向D2に沿う振動の振幅を検出する。一方、第2方向D2に振動している可動部材10に、回転の角速度Ωによるコリオリ力が作用する。これにより、可動部材10に第1方向D1に沿う振動の成分が生じる。第1検出部7は、第1方向D1に沿う振動の振幅を検出する。例えば、第1方向D1の第1成分の振幅を「Ax」とし、第2方向D2の第2成分の振幅を「Ay」としたとき、回転角度θは、例えば、tan-1(-Ay/Ax)に対応する。
制御部74は、第1検出部71から第1成分を取得し、第2検出部72から第2成分を取得する。制御部74における演算により、回転角度θに対応する信号Sig0が制御部74から出力される。
ここで、例えば、可動部材10が回転しないときにおいて、第1方向D1の第1成分と、第2方向D2の第2成分と、が実質的に同じ場合に、算出される回転角度θにおいて、高い精度が得られると考えられる。しかしながら、例えば、製造工程におけるばらつきなどに起因して、2つの方向に沿う振動の振幅は必ずしも均一ではない場合がある。さらに、温度変化などに伴って、振動の振幅が不均一になる場合が生じる。このよう場合に、検出精度が低くなる場合があると考えられる。
実施形態においては、例えば、制御装置70の制御部74は、以下に説明する第1動作を実施する。第1動作は、例えば、補正動作である。第1動作により、例えば、可動部材10の振動が、X-Y平面内で均一になり易くなる。精度を向上できるセンサを提供できる。第1動作の少なくとも一部は、例えば、制御部74の演算部75の1つの部分(時定数調整部75a、図1参照)などで実施される。以下、第1動作の例について説明する。
図2は、第1実施形態に係るセンサの動作を例示するフローチャート図である。
図2に例示される動作は、例えば、制御装置70の制御部74で実施される。
図2に示すように、制御部74は、第1動作(ステップS110)を実施することが可能である。第1動作は、第1取得動作(ステップS111)、及び、第1変更動作(ステップS112)を含む。
第1取得動作において、制御部74は、可動部材10の振動の第1方向D1に沿う第1成分、及び、可動部材10の振動の第2方向D2に沿う第2成分を取得する。例えば、既に説明したように、制御部74は、第1検出部71から第1成分を取得し、第2検出部72から第2成分を取得する。第1成分は、第1方向D1に沿う振幅に対応する。第2成分は、第2方向D2に沿う振幅に対応する。
第1変更動作において、制御部74は、取得した第1成分の第1時定数と、取得した第2成分の第2時定数と、の差ΔTの絶対値が小さくなるように、第1抵抗R1の抵抗値、第2抵抗R2の抵抗値、第1端部ep1の第1電圧Vdc1、及び、第2端部ep2の第2電圧Vdc2の少なくともいずれかを変更する。
第1変更動作により、第1時定数と第2時定数との差ΔTの絶対値が小さくなる。これにより、可動部材10の振動のX-Y面内の不均一性が抑制される。これにより、精度を向上できるセンサが提供できる。
図2に示すように、第1変更動作の後に、例えば、差ΔTが、定められたしきい値と比較される(ステップS113)。差ΔTが、しきい値未満のときは、終了する。差ΔTが、しきい値以上のときは、ステップS111に戻る。このように、制御部74は、第1動作を繰り返して実施しても良い。例えば、第1動作は、クローズドループによる常時自動的な動作である。
図3(a)及び図3(b)は、第1実施形態に係るセンサの動作を例示する模式図である。
図3(a)は、振動の振幅の第1方向D1に沿う第1成分に対応する。図3(b)は、振動の振幅の第2方向D2に沿う第2成分に対応する。これらの図の横軸は、時間tmに対応する。図3(a)の縦軸は、第1成分の強度Ap1に対応する。図3(b)の縦軸は、第2成分の強度Ap2に対応する。
図3(a)に示すように、第1方向D1の第1成分は、第1共振周波数fr1と、第1時定数T1(第1減衰時定数)と、を有する。第1時定数T1は、強度Ap1が、減衰前の状態における強度Ap1の1/eになるまでの時間である。「e」は、自然対数の底である。
図3(b)に示すように、第2方向D2の第2成分は、第2共振周波数fr2と、第2時定数T2(第2減衰時定数)と、を有する。第2時定数T2は、強度Ap2が、減衰前の状態における強度Ap2の1/eになるまでの時間である。
差ΔTは、第1時定数T1と第2時定数T2との差に対応する。図3(a)及び図3(b)に示すように、第1時定数T1は、第2時定数T2と必ずしも同じではない。差ΔTは、必ずしも0ではない。例えば、これらの時定数は、センサ素子10Uの製造ばらつきなどの影響を受ける。さらに、これらの時定数は、温度によっても変化する。
第1時定数T1は、例えば、第1抵抗R1の値、または、第1電圧Vdc1により、変更できる。第2時定数T2は、例えば、第2抵抗R2の値、または、第2電圧Vdc2により、変更できる。
実施形態においては、第1抵抗R1の抵抗値、第2抵抗R2の抵抗値、第1端部ep1の第1電圧Vdc1、及び、第2端部ep2の第2電圧Vdc2の少なくともいずれかを変更する。これにより、差ΔTを小さくする。これにより、第1方向D1及び第2方向D2における振動の不均一性が抑制できる。実施形態によれば、検出の精度を向上できる。
例えば、図1に例示した時定数調整部75aに、第1検出部71により検出された第1成分と、第2検出部72により検出された第2成分と、が供給される。時定数調整部75aにおいて、第1抵抗R1、第2抵抗R2、第1電圧Vdc1、及び、第2電圧Vdc2の少なくともいずれかに関して、差ΔTが小さくなるような値が算出される。算出結果が、ドライバ部76に供給される。算出された値に基づいて、ドライバ部76から、第1抵抗R1の制御信号SR1、第2抵抗R2の制御信号SR2、第1電圧Vdc1、及び、第2電圧Vdc2が出力される。制御信号SR1、制御信号SR2、第1電圧Vdc1、及び、第2電圧Vdc2の少なくともいずれかは、差ΔTが小さくなるように算出された値に基づいて、変更されている。
以下、差ΔTが小さくなるように第1抵抗R1を変更する場合の例について説明する。 図4(a)及び図4(b)は、第1実施形態に係るセンサの動作を例示する模式図である。
これらの図の横軸は、時間tmである。図4(a)の縦軸は、差ΔTである。図4(b)の縦軸は、第1抵抗R1の抵抗値P(R1)である。
図4(a)に示すように、差ΔTは、時刻t1~時刻t2までの期間、実質的に0である。図4(b)に示すように、この期間における抵抗値P(R1)は、値R01である。
図4(a)に示すように、時刻t2を過ぎると、差ΔTが増大する。差ΔTの増大は、例えば、温度の変化などによる。
図4(b)に示すように、時刻t3において、上記の第1動作を実施する。例えば、抵抗値P(R1)は、値R01から値R02に向けて変化される。これに伴い、図4(a)に示すように差ΔTは、小さくなる。
図4(b)に示すように、時刻t4以降において、抵抗値P(R1)は、値R02となる。図4(a)に示すように、差ΔTは、実質的に0となる。時刻t5においても差ΔTは0を維持する。
実施形態において、時刻t3から時刻t4までの期間において、第1動作が繰り返して実施されても良い。1回の第1動作の実施により、差ΔTが実質的に0になっても良い。このような第1動作により、第1方向D1及び第2方向D2における振動の不均一性が抑制できる。検出の精度を向上できる。
一方、第1成分は、第1共振周波数fr1を有し、第2成分は、第2共振周波数fr2を有する。第1共振周波数fr1と第2共振周波数fr2とは、必ずしも同じではない場合がある。第1共振周波数fr1と第2共振周波数fr2との差ΔFは、必ずしも0ではない。これらの共振周波数は、センサ素子10Uの製造ばらつきなどの影響を受ける。さらに、これらの共振周波数は、温度によっても変化する。
実施形態において、第1共振周波数fr1と第2共振周波数fr2との差ΔFが小さくなるような動作(例えば第2動作)が実施されても良い。第2動作の少なくとも一部は、例えば、制御部74の演算部75の1つの部分(共振周波数調整部75b、図1参照)などで実施される。以下、第2動作の例について説明する。
例えば、図1に示すように、センサ110は、第1対向導電部21C及び第2対向導電部22Cをさらに含んでも良い。第1対向導電部21C及び第2対向導電部22Cは、例えば、センサ素子10Uに含まれる。可動部材10は、第1導電部11C及び第2導電部12Cをさらに含んでも良い。第1対向導電部21Cは、第1導電部11Cと対向する。第2対向導電部22Cは、第2導電部12Cと対向する。この例では、第1対向導電部21C及び第1導電部11Cのグループ、及び、第2対向導電部22C及び第2導電部12Cのグループのそれぞれは、平行平板電極ペアに対応する。
例えば、ドライバ部76は、電圧出力部Dp1及び電圧出力部Dp2を含む。電圧出力部Dp1は、例えば、配線Lp1により、第1対向導電部21Cと接続される。電圧出力部Dp2は、例えば、配線Lp2により、第2対向導電部22Cと接続される。電圧出力部Dp1により、第1対向導電部21Cに第1対向導電部電圧Vp1が印加される。電圧出力部Dp2により、第2対向導電部22Cに第2対向導電部電圧Vp2が印加される。
第1対向導電部電圧Vp1及び第2対向導電部電圧Vp2により、可動部材10の振動の共振周波数を制御できる。第1導電部11C、第1対向導電部21C及び第1対向導電部電圧Vp1により、例えば、第1可変電気ばねが形成される。第2導電部12C、第2対向導電部22C及び第2対向導電部電圧Vp2により、例えば、第2可変電気ばねが形成される。これらの可変電気ばねの方向は互いに交差している。
例えば、第1対向導電部電圧Vp1が変化したときの可動部材10の変位の方向は、第2対向導電部電圧Vp2が変化したときの可動部材10の変位の方向と交差する。複数の方向の変位に対応する複数の可変電気ばねにより、任意の方向における共振周波数を制御できる。以下、第2動作のいくつかの例について説明する。
既に説明したように、取得した第1成分は、第1共振周波数fr1を有し、取得した第2成分は、第2共振周波数fr2を有する。
図5は、第1実施形態に係るセンサの動作を例示するフローチャート図である。
図5に例示される動作は、例えば、制御装置70の制御部74で実施される。
図5に示すように、制御部74は、第2動作(ステップS120)を実施することが可能である。第2動作は、第2取得動作(ステップS121)、及び、第2変更動作(ステップS122)を含む。
第2取得動作において、制御部74は、振動の振幅の第1方向D1に沿う第1成分、及び、振動の振幅の第2方向D2に沿う第2成分を取得する。
第2変更動作において、取得した第1成分の第1共振周波数fr1と、取得した第2成分の第2共振周波数fr2と、の差ΔFの絶対値が小さくなるように、第1対向導電部21Cの第1対向導電部電圧Vp1、及び、第2対向導電部22Cの第2対向導電部電圧Vp2の少なくともいずれかを変更する。
これにより、共振周波数の面内方向の差(差ΔF)を小さくできる。精度をさらに向上できる。
図5に示すように、例えば、差ΔFが、定められたしきい値と比較される(ステップS123)。差ΔFが、しきい値未満のときは、終了する。差ΔFが、しきい値以上のときは、ステップS121に戻る。このように、制御部74は、第2動作を繰り返して実施しても良い。例えば、第2動作は、クローズドループによる常時自動的な動作である。
図5の例では、第1動作及び第2動作が並行して実施される。第1動作の少なくとも一部と、第2動作の少なくとも一部と、が同時に実施されても良い。第1動作が終了した後に、第2動作が実施されても良い。第1動作及び第2動作の順番は、入れ替えられても良い。
上記の第2変更動作が第1動作に含まれても良い。
図6は、第1実施形態に係るセンサの動作を例示するフローチャート図である。
図6に例示される動作は、例えば、制御装置70の制御部74で実施される。
図6に示すように、第1動作(ステップS110)は、第1取得動作(ステップS111)、第1変更動作(ステップS112)及びステップS113に加えて、第2変更動作(ステップS122)をさらに含んでも良い。この場合、第2取得動作が省略される。この例では、第1動作は、ステップS123をさらに含んでも良い。この例では、制御部74は、時定数に関する差ΔTを小さくした後に、共振周波数に関する差ΔFを小さくする。このような第1動作が繰り返して実施されても良い。実施形態において、第1変更動作及び第2変更動作の順番は、入れ替えられても良い。
図7は、第1実施形態に係るセンサを例示する模式図である。
図7に示すように、可動部材10は、第3電極13E及び第4電極14Eをさらに含んでも良い。センサ素子10Uは、第3対向電極23E及び第4対向電極24Eをさらに含んでも良い。第3対向電極23Eは、第3電極13Eと対向する。第4対向電極24Eは、第4電極14Eと対向する。センサ110は、第3抵抗R3及び第4抵抗R4を含む。第3抵抗R3及び第4抵抗R4は、可変抵抗である。第3抵抗R3の1つの端は、第3対向電極23Eと接続される。第3抵抗R3の「別の端」は、制御部74と電気的に接続される。第4抵抗R4の1つの端は、第4対向電極24Eと接続される。第4抵抗R4の「別の端」は、制御部74と電気的に接続される。第3電極13E及び第3対向電極23Eを含むグループは、櫛歯電極状である。第4電極14E及び第4対向電極24Eを含むグループは、櫛歯電極状である。
制御部74は、第3抵抗R3に制御信号SR3を供給する。制御信号SR3に応じて、第3抵抗R3の抵抗は、変化する。制御部74は、第4抵抗R4に制御信号SR4を供給する。制御信号SR4に応じて、第4抵抗R4の抵抗は、変化する。
制御部74は、第3抵抗R3の上記の「別の端」に、第3電圧Vdc3を印加する。制御部74は、第4抵抗R4の上記の「別の端」に、第4電圧Vdc4を印加する。制御部74は、差ΔTが小さくなるように、第3抵抗R3の抵抗値、第4抵抗R4の抵抗値、第3電圧Vdc3及び第4電圧Vdc4の少なくともいずれかを変更しても良い。
図7に示すように、センサ110は、第3対向導電部23C及び第4対向導電部24Cをさらに含んでも良い。第3対向導電部23C及び第4対向導電部24Cは、例えば、センサ素子10Uに含まれる。可動部材10は、第3導電部13C及び第4導電部14Cをさらに含んでも良い。第3対向導電部23Cは、第3導電部13Cと対向する。第4対向導電部24Cは、第4導電部14Cと対向する。この例では、第3対向導電部23C及び第3導電部13Cのグループ、及び、第4対向導電部24C及び第4導電部14Cのグループのそれぞれは、平行平板電極ペアに対応する。
例えば、制御部74は、第3対向導電部23Cに第3対向導電部電圧Vp3を印加する。制御部74は、第4対向導電部24Cに第4対向導電部電圧Vp4を印加する。制御部74は、第3対向導電部電圧Vp3及び第4対向導電部電圧Vp4により、可動部材10の振動の共振周波数をさらに制御しても良い。
上記の第1~第4電圧Vdc1~Vdc4は、例えば、時定数制御用の電圧であり、直流成分を含む。上記の第1~第4対向導電部電圧Vp1~Vp4は、例えば、共振周波数制御用の電圧であり、直流成分を含む。第1交流電圧Vac1及び第2交流電圧Vac2は、駆動用の電圧であり、交流成分を含む。第1~第4抵抗R1~R4は、例えば、時定数制御用の可変抵抗である。第1検出電圧Vs1及び第2検出電圧Vs2は検出電圧である。例えば、第1検出部71及び第2検出部72として、1つの差動回路が用いられても良い。
図7に示すように、センサ110において、別の電極18Eが設けられても良い。制御装置70により、別の電極18Eに電圧Vh1などが印加されても良い。別の電極18Eにより、上記の動作と異なる動作が実施されても良い。
図8は、第1実施形態に係るセンサを例示する模式図である。
図8に示すように、実施形態に係るセンサ111においては、制御部74のドライバ部76に含まれる電圧出力部Ddc1及び電圧出力部Ddc2は、例えば、加算器の機能を含む。電圧出力部Ddc1において、例えば、第1電圧Vdc1と第1交流電圧Vac1との和の信号が得られる。この信号が、第1抵抗R1の第1端部ep1に供給される。電圧出力部Ddc2において、例えば、第2電圧Vdc2と第2交流電圧Vac2との和の信号が得られる。この信号が、第2抵抗R2の第2端部ep2に供給される。センサ111におけるこれ以外の構成は、センサ110における構成と同様である。
センサ111においても、制御部74は、上記の第1動作を実施する。制御部74は、上記の第2動作をさらに実施しても良い。センサ111においても、精度を向上できるセンサを提供できる。
上記のセンサ110及び111においては、時定数の調整に用いられる第1対向電極21E及び第2対向電極22Eに、駆動用の交流電圧が印加される。実施形態において、駆動用の交流電圧が印加される電極は、時定数の調整に用いられる電極とは別に設けられても良い。以下、この例について説明する。
図9は、第1実施形態に係るセンサを例示する模式図である。
図9に示すように、実施形態に係るセンサ120は、第1対向電極21E及び第2対向電極22Eに加えて、第1駆動用対向電極21DEを含む。可動部材10は、第1電極11E及び第2電極12Eに加えて、第1駆動用電極11DEを含む。第1駆動用対向電極21DEは、第1駆動用電極11DEと対向する。制御部74は、第1駆動用電極11DEと第1駆動用対向電極21DEとの間に第1交流電圧Vac1を印加して、可動部材10を振動させる。この場合、制御部74は、第1抵抗R1の第1端部ep1に、第1電圧Vdc1を印加する。
センサ120は、第2駆動用対向電極22DEをさらに含んでも良い。可動部材10は、第2駆動用電極12DEを含む。第2駆動用対向電極22DEは、第2駆動用電極12DEと対向する。制御部74は、第2駆動用電極12DEと第2駆動用対向電極22DEとの間に第2交流電圧Vac2を印加して、可動部材10を振動させる。制御部74は、第2抵抗R2の第2端部ep2に、第2電圧Vdc2を印加する。
第1交流電圧Vac1による可動部材10の振動の方向は、第2交流電圧Vac2による可動部材10の振動の方向と交差する。制御部74は、可動部材10を軸方向に沿って振動させることが可能である。制御部74は、その軸方向を回転させることが可能である。
このように、駆動用の交流電圧が印加される電極が、時定数の調整に用いられる電極とは別に設けられても良い。センサ120においても、制御部74は、上記の第1動作を実施する。制御部74は、上記の第2動作をさらに実施しても良い。センサ120においても、精度を向上できるセンサを提供できる。
以下、第1動作及び第2動作の例について説明する。
図10は、第1実施形態に係るセンサの動作を例示する模式図である。
図10は、センサ素子10Uに含まれる可動部材10の振動を模式的に例示している。 図10に示すように、支持部材10Sに支持された可動部材10は、実質的に楕円軌道10oに沿って振動する。すなわち、楕円振動が生じる。可動部材10に、角速度Ωが加わる。回転角度θは、角速度Ωの時間に関する積分値に対応する。
楕円軌道10oは、楕円軌道10oの長軸方向の第1長さx1と、楕円軌道10oの短軸方向の第2長さx2と、を含む。ここで、第1値Eを、(x1)+(x2)とする。第2値Qを、x1とx2との積(すなわち、x1×x2)とする。第1値Eは、楕円振動の全体エネルギーに対応する。第2値Qは、楕円振動の短軸エネルギーに対応する。このような第1値E及び第2値Qを用いて、以下の制御が行われる。
図11は、第1実施形態に係るセンサの動作を例示するフローチャート図である。
図11に示すように、可動部材10に第1駆動力Feを印加して、第1値Eを一定に保つ閉ループの第1制御動作を行う(ステップS105)。第1制御動作は、検出部70s(第1検出部71及び第2検出部72)により検出された、可動部材10の第1方向D1に沿う振幅と、第2方向D2に沿う振動と、に基づいて行われる。
図11に示すように、可動部材10に第2駆動力Fqを印加して、第2値Qを一定に保つ閉ループの第2制御動作を行う(ステップS106)。
このように、制御部74は、第1制御動作及び第2制御動作を実施しても良い。第1制御動作において、制御部74は、第1値Eを取得し、可動部材10に第1駆動力Feを供給して第1値Eを一定に保つ。第2制御動作において、制御部74は、第2値Qを取得し、可動部材10に第2駆動力Fqを供給して第2値Qを一定に保つ。
この後、制御部74は、例えば、第1共振周波数fr1と第2共振周波数fr2との差ΔFを推定する(ステップS125)。差ΔFの推定の例については、後述する。
差ΔFが、定められたしきい値と比較される(ステップS123)。差ΔFが、しきい値未満のときは、ステップS110に移行する。差ΔFが、しきい値以上のときは、第2変更動作(ステップS122)を実施する。この後、ステップS125に戻る。
ステップS110においては、制御部74は、例えば、第1時定数T1と第2時定数T2との差ΔTを推定する(ステップS115)。差ΔTの推定の例については、後述する。
差ΔTが、定められたしきい値と比較される(ステップS113)。差ΔFが、しきい値未満のときは、終了する。差ΔTが、しきい値以上のときは、第1変更動作(ステップS112)を実施する。この後、ステップS115に戻る。
以下、差ΔFの推定(ステップS125)のいくつかの例について説明する。
図12は、第1実施形態に係るセンサの動作を例示するフローチャート図である。
図12は、差ΔFの推定(ステップS125)に関する1つの例を示している。例えば、第1方向D1の振幅、及び、第2方向D2の振幅を検出する(ステップS125a)。第1共振周波数fr1において、第1方向D1の出力、及び、第2方向D2の出力を同期検波する(ステップS125b)。共振周波数(第1共振周波数fr1及び第2共振周波数fr2)は、例えば、センサ素子10に固有の特性であり、実施形態においては、これらの共振周波数を電圧により調整できる。
図12に示すように、FFT(Fast Fourier Transform)解析を行う(ステップS125c)。FFT解析は、常時(連続的または繰り返し)行われる。FFT解析の結果から、差ΔFが推定できる(ステップS125d)。
図13は、第1実施形態に係るセンサの動作を例示するフローチャート図である。
図13は、差ΔFの推定(ステップS125)に関する別の例を示している。例えば、第1方向D1の振幅、及び、第2方向D2の振幅を検出する(ステップS125a)。第1共振周波数fr1において、第1方向D1の出力、及び、第2方向D2の出力を同期検波する(ステップS125b)。
図13に示すように、2軸間の位相差を検出する(ステップS125e)。2軸は、例えば、楕円軌道10oの長軸及び短軸に対応する。2軸間の位相差は、例えば、第1方向D1と第2方向D2との間における位相差に対応する。2軸間の位相差に基づいて、差ΔFが推定できる(ステップS125d)。第2方向D2が第1方向D1に対して垂直である場合、ΔFが0のときに、2軸間の位相差が0になる。この特性を利用して、差ΔFが推定できる。
以下、差ΔTの推定の例について説明する。
図14は、第1実施形態に係るセンサの動作を例示するフローチャート図である。
図14は、差ΔTの推定(ステップS115)に関する例を示している。例えば、ステップS105により、第1駆動力Feにおける第1値Eが得られる。例えば、ステップS106により、第2駆動力Fqにおける第2値Qが得られる。一方、第2動作(ステップS120、図11参照)により、差ΔFは、実質的に0となる。
パラメータAtが算出される(ステップS115a)。パラメータAtは、(Fe/E-Fq/Q)である。パラメータAtは、差ΔTの逆数(1/ΔT)に比例する。パラメータAtの算出結果から、差ΔTが推定できる(ステップS115d)。
例えば、第1駆動力Fe及び第2駆動力Fqを変えて上記の動作を行うことで、差ΔTを小さくできる。
上記の第1実施形態において、例えば、第1時定数T1と第2時定数T2との差ΔTの絶対値は、温度変化により変化する場合がある。この場合、制御部74は、温度変化による差ΔTの絶対値の変化に基づいて、第1抵抗R1の抵抗値、第2抵抗R2の抵抗値、第1電圧Vdc1、及び、第2電圧Vdc2の少なくともいずれかを変更しても良い。例えば、温度を検出する温度センサが設けられ、温度センサから出力される検出信号に基づいて、制御部74は、第1抵抗R1の抵抗値、第2抵抗R2の抵抗値、第1端部ep1の第1電圧Vdc1、及び、第2端部ep2の第2電圧Vdc2の少なくともいずれかを変更しても良い。
(第2実施形態)
第2実施形態においては、温度の検出結果に基づいて、補正動作が実施される。
図15は、第2実施形態に係るセンサを例示する模式図である。
図15に示すように、実施形態に係るセンサ130は、可動部材10、第1対向電極21E、第2対向電極22E、第1抵抗R1、第2抵抗R2、温度センサ60及び制御装置70を含む。
可動部材10は、第1電極11E及び第2電極12Eを含む可動部材10は、振動可能である。可動部材10の振動は、第1方向D1に沿う第1成分と、第1方向D1と交差する第2方向D2に沿う第2成分と、を含む。第1対向電極21Eは、第1電極11Eと対向する。第2対向電極22Eは、第2電極12Eと対向する。第1抵抗R1は、第1端部ep1及び第1他端部cp1を含む。第2抵抗R2は、第2端部ep2及び第2他端部cp2を含む。第1他端部cp1は、第1対向電極21Eと電気的に接続される。第2他端部cp2は、第2対向電極22Eと電気的に接続される。この例では、第1加算器SU1及び第2加算器SU2が設けられている。第1端部ep1は、第1加算器SU1を介して、制御装置70と接続される。第2端部ep2は、第2加算器SU2を介して、制御装置70と接続される。
制御装置70は、制御部74を含む。制御部74は、第1動作(温度に基づく制御動作)を実施することが可能である。第1動作は、温度センサ60により検出された検出値に基づいて、第1抵抗R1の抵抗値、第2抵抗R2の抵抗値、第1端部ep1の第1電圧Vdc1、及び、第2端部ep2の第2電圧Vdc2の少なくともいずれを変更することを含む。
例えば、センサ130において、温度の変化による振動の特性の変化に関する情報(例えばデータ)が取得できる。この情報は、予め取得されても良い。この情報は、例えば、制御装置70などに設けられる記憶部78(図15参照)などに記憶されても良い。記憶部78に記憶された情報が、制御部74の時定数調整部75aに供給される。
一方、図15に示すように、温度センサ60から得られる信号が、温度を検出する第3検出部73に供給される。第3検出部73から、温度センサ60により検出された検出値(温度に関するデータ)が、時定数調整部75aに供給される。時定数調整部75aは、温度センサ60により検出された検出値と、温度の変化による振動の特性の変化に関する情報と、に基づいて、第1抵抗R1の抵抗値、第2抵抗R2の抵抗値、第1端部ep1の第1電圧Vdc1、及び、第2端部ep2の第2電圧Vdc2の少なくともいずれを変更するための信号を生成する。この信号が、ドライバ部76に供給される。ドライバ部76は、時定数調整部75aから供給された信号に基づいて、第1抵抗R1の制御信号SR2、第2抵抗R2の制御信号SR1、第1電圧Vdc1、及び、第2電圧Vdc2の少なくともいずれの変更された値、出力する。センサ130によれば、精度を向上できるセンサを提供できる。
センサ130において、例えば、第1抵抗R1の抵抗値、第2抵抗R2の抵抗値、第1端部ep1の第1電圧Vdc1、及び、第2端部ep2の第2電圧Vdc2の少なくともいずれかの変更により、第1方向D1に沿う第1成分の第1時定数T1と、第2方向D2に沿う第2成分の第2時定数T2と、の差ΔTの絶対値が小さくなる。例えば、変更後の差ΔTは、変更前のΔTよりも小さい。
実施形態は、以下の構成(例えば、技術案)を含んでも良い。
(構成1)
第1電極及び第2電極を含み振動可能な可動部材であって、前記可動部材の前記振動は、第1方向に沿う第1成分と、前記第1方向と交差する第2方向に沿う第2成分と、を含む、前記可動部材と、
前記第1電極と対向する第1対向電極と、
前記第2電極と対向する第2対向電極と、
第1端部及び第1他端部を含む第1抵抗と、
第2端部及び第2他端部を含む第2抵抗と、
制御装置と、
を備え、
前記第1他端部は、前記第1対向電極と電気的に接続され、
前記第2他端部は、前記第2対向電極と電気的に接続され、
前記制御装置は、第1動作を実施することが可能な制御部を含み、
前記第1動作は、
前記第1成分及び前記第2成分を取得する第1取得動作と、
前記取得した前記第1成分の第1時定数と、前記取得した前記第2成分の第2時定数と、の差の絶対値が小さくなるように、前記第1抵抗の抵抗値、前記第2抵抗の抵抗値、前記第1端部の第1電圧、及び、前記第2端部の第2電圧の少なくともいずれかを変更する第1変更動作と、
を含む、センサ。
(構成2)
前記制御部は、前記第1動作を繰り返して実施することが可能である、構成1記載のセンサ。
(構成3)
前記第1電圧が変化したときの前記可動部材の変位の方向は、前記第2電圧が変化したときの前記可動部材の変位の方向と交差する、構成1または2に記載のセンサ。
(構成4)
第1対向導電部と、
第2対向導電部と、
をさらに備え、
前記可動部材は、第1導電部及び第2導電部をさらに含み、
前記第1対向導電部は、前記第1導電部と対向し、
前記第2対向導電部は、前記第2導電部と対向し、
前記取得した前記第1成分は、第1共振周波数を有し、
前記取得した前記第2成分は、第2共振周波数を有し、
前記第1動作は、第2変更動作をさらに含み、
前記第2変更動作において、前記制御部は、前記第1共振周波数と前記第2共振周波数と、の差の絶対値が小さくなるように、前記第1対向導電部の第1対向導電部電圧、及び、前記第2対向導電部の第2対向導電部電圧の少なくともいずれかを変更する、構成1~3のいずれか1つに記載のセンサ。
(構成5)
第1対向導電部と、
第2対向導電部と、
をさらに備え、
前記可動部材は、第1導電部及び第2導電部をさらに含み、
前記第1対向導電部は、前記第1導電部と対向し、
前記第2対向導電部は、前記第2導電部と対向し、
前記制御部は第2動作をさらに実施することが可能であり、
前記第2動作は、
前記第1成分及び前記第2成分を取得する第2取得動作と、
前記取得した前記第1成分の第1共振周波数と、前記取得した前記第2成分の第2共振周波数と、の差の絶対値が小さくなるように、前記第1対向導電部の第1対向導電部電圧、及び、前記第2対向導電部の第対向導電部電圧の少なくともいずれかを変更する第2変更動作と、
を含む、構成1~3のいずれか1つに記載のセンサ。
(構成6)
前記制御部は、前記第2動作を繰り返して実施することが可能である、構成5記載のセンサ。
(構成7)
前記第1対向導電部電圧が変化したときの前記可動部材の変位の方向は、前記第2対向導電部電圧が変化したときの前記可動部材の変位の方向と交差する、構成4~6のいずれか1つに記載のセンサ。
(構成8)
前記可動部材は、楕円軌道で振動し、
前記楕円軌道は、前記楕円軌道の長軸方向の第1長さx1と、前記楕円軌道の短軸方向の第2長さx2と、を含み、
第1値Eは、(x1)+(x2)であり、
第2値Qは、x1とx2との積であり、
前記制御部は、第1制御動作及び第2制御動作を実施し、
前記第1制御動作において、前記制御部は、前記第1値Eを取得し前記可動部材に第1駆動力を供給して前記第1値Eを一定に保ち、
前記第2制御動作において、前記制御部は、前記第2値Qを取得し前記可動部材に第2駆動力を供給して前記第2値Qを一定に保つ、構成4~7のいずれか1つに記載のセンサ。
(構成9)
前記制御装置は、
前記第1成分の第1振幅を検出する第1検出部と、
前記第2成分の第2振幅を検出する第2検出部と、
を含み、
前記制御部は、前記第1検出部から前記第1成分を取得し、前記第2検出部から前記第2成分を取得する、構成1~8のいずれか1つに記載のセンサ。
(構成10)
前記制御部は、前記第1電極と第1対向電極との間に第1交流電圧を印加し、前記第2電極と第2対向電極との間に第2交流電圧を印加して、前記可動部材を振動させる、構成1~9のいずれか1つに記載のセンサ。
(構成11)
第1駆動用対向電極を含み、
前記可動部材は、第1駆動用電極を含み、
前記第1駆動用対向電極は、前記第1駆動用電極と対向し、
前記制御部は、前記第1駆動用電極と前記第1駆動用対向電極との間に第1交流電圧を印加して、前記可動部材を振動させる、構成1~9のいずれか1つに記載のセンサ。
(構成12)
第2駆動用対向電極を含み、
前記可動部材は、第2駆動用電極を含み、
前記第2駆動用対向電極は、前記第2駆動用電極と対向し、
前記制御部は、前記第2駆動用電極と前記第2駆動用対向電極との間に第2交流電圧を印加して、前記可動部材を振動させ、
前記第1交流電圧による前記可動部材の前記振動の方向は、前記第2交流電圧による前記可動部材の前記振動の方向と交差する、構成11記載のセンサ。
(構成13)
前記制御部は、前記可動部材を軸方向に沿って振動させ、
前記制御部は、前記軸方向を回転させることが可能である、構成10~12のいずれか1つに記載のセンサ。
(構成14)
第1加算器をさらに備え、
前記第1端部は、前記第1加算器を介して、前記制御装置と電気的に接続された、構成1~10のいずれか1つに記載のセンサ。
(構成15)
第2加算器をさらに備え、
前記第2端部は、前記第2加算器を介して、前記制御装置と電気的に接続された、構成14記載のセンサ。
(構成16)
前記第1成分は、前記可動部材に働く回転角速度に基づくコリオリ力の成分を含み、
前記第2成分は、前記コリオリ力の成分を含む、構成1~15のいずれか1つに記載のセンサ。
(構成17)
前記制御部は、前記第1成分及び前記第2成分に基づいて、前記可動部材の回転角度に対応する信号を出力可能である、構成1~16のいずれか1つに記載のセンサ。
(構成18)
前記可動部材を支持し変形可能な支持部材をさらに備えた構成1~17のいずれか1つに記載のセンサ。
(構成19)
前記第1時定数と前記第2時定数との差の前記絶対値は、温度変化により変化し、
前記制御部は、前記温度変化による前記絶対値の変化を補正する、構成1~18のいずれか1つに記載のセンサ。
(構成20)
第1電極及び第2電極を含み振動可能な可動部材であって、前記可動部材の前記振動は、第1方向に沿う第1成分と、前記第1方向と交差する第2方向に沿う第2成分と、を含む、前記可動部材と、
前記第1電極と対向する第1対向電極と、
前記第2電極と対向する第2対向電極と、
第1端部及び第1他端部を含む第1抵抗と、
第2端部及び第2他端部を含む第2抵抗と、
温度センサと、
制御装置と、
を備え、
前記第1他端部は、前記第1対向電極と電気的に接続され、前記第1端部は、前記制御装置と電気的に接続され、
前記第2他端部は、前記第2対向電極と電気的に接続され、前記第2端部は、前記制御装置と電気的に接続され、
前記制御装置は、第1動作を実施することが可能な制御部を含み、
前記第1動作は、前記温度センサにより検出された検出値に基づいて、前記第1抵抗の抵抗値、前記第2抵抗の抵抗値、前記第1端部の第1電圧、及び、前記第2端部の第2電圧の少なくともいずれかを変更することを含む、センサ。
(構成21)
前記変更により、前記第1成分の第1時定数と、前記第2成分の第2時定数と、の差の絶対値が小さくなる、構成20記載のセンサ。
実施形態によれば、精度を向上できるセンサが提供できる。
本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、センサに含まれる可動部材、電極、導電部及び制御部などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述したセンサを基にして、当業者が適宜設計変更して実施し得る全てのセンサも、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…可動部材、 10E…電極、 10F…固定部材、 10S…支持部材、 10U…センサ素子、 10o…楕円軌道、 11C~14C…第1~第4導電部、 11DE、12DE…第1、第2駆動用電極、 11E~14E…第1~第4電極、 11sE、12sE…第1、第2検出用電極、 18E…電極、 20E…対向電極、 21C~24C…第1~第4対向導電部、 21DE、22DE…第1、第2駆動用対向電極、 21E~24E…第1~第4対向電極、 21sE、22sE…第1、第2検出用対向電極、 60…温度センサ、 70…制御装置、 70s…検出部、 71~73…第1~第3検出部、 74…制御部、 75…演算部、 75a…時定数調整部、 75b…共振周波数調整部、 75c…回転角度導出部、 76…ドライバ部、 78…記憶部、 ΔF…差、 ΔT…差、 Ω…角速度、 θ…回転角度、 110、111、120、130…センサ、 Ap1、Ap2…強度、 At…パラメータ、 D1、D2…第1、第2方向、 DR1、DR2…制御信号出力部、 Dac1、Dac2…交流電圧出力部、 Ddc1、Ddc2…電圧出力部、 Dp1、Dp2…電圧出力部、 Lc1、Lc2、Lp1、Lp2、Lr1、Lr2…配線、 P(R1)抵抗値、 R01、R02…値、 R1~R4…第1~第4抵抗、 SR1~SR4…制御信号、 SU1、SU2…第1、第2加算器、 Sig0…信号、 T1、T2…第1、第2時定数、 Vac1、Vac2…第1、第2交流電圧、 Vdc1~Vdc4…第1~第4電圧、 Vh1…電圧、 Vp1~Vp4…第1~第4対向導電部電圧、 Vs1、Vs2…第1、第2検出電圧、 cp1、cp2…第1、第2他端部、 ep1、ep2…第1、第2端部、 fr1、fr2…第1、第2共振周波数、 t1~t5…時刻、 tm…時間、 x1、x2…長さ

Claims (8)

  1. 第1電極及び第2電極を含み振動可能な可動部材であって、前記可動部材の前記振動は、第1方向に沿う第1成分と、前記第1方向と交差する第2方向に沿う第2成分と、を含む、前記可動部材と、
    前記第1電極と対向する第1対向電極と、
    前記第2電極と対向する第2対向電極と、
    第1端部及び第1他端部を含む第1抵抗と、
    第2端部及び第2他端部を含む第2抵抗と、
    制御装置と、
    を備え、
    前記第1他端部は、前記第1対向電極と電気的に接続され、
    前記第2他端部は、前記第2対向電極と電気的に接続され、
    前記制御装置は、第1動作を実施することが可能な制御部を含み、
    前記第1動作は、
    前記第1成分及び前記第2成分を取得する第1取得動作と、
    前記取得した前記第1成分の第1時定数と、前記取得した前記第2成分の第2時定数と、の差の絶対値が小さくなるように、前記第1抵抗の抵抗値、前記第2抵抗の抵抗値、前記第1端部の第1電圧、及び、前記第2端部の第2電圧の少なくともいずれかを変更する第1変更動作と、
    を含
    前記第1時定数と前記第2時定数との差の前記絶対値は、温度変化により変化し、
    前記制御部は、前記温度変化による前記絶対値の変化を補正する、センサ。
  2. 前記制御部は、前記第1動作を繰り返して実施することが可能である、請求項1記載のセンサ。
  3. 前記第1電圧が変化したときの前記可動部材の変位の方向は、前記第2電圧が変化したときの前記可動部材の変位の方向と交差する、請求項1または2に記載のセンサ。
  4. 第1対向導電部と、
    第2対向導電部と、
    をさらに備え、
    前記可動部材は、第1導電部及び第2導電部をさらに含み、
    前記第1対向導電部は、前記第1導電部と対向し、
    前記第2対向導電部は、前記第2導電部と対向し、
    前記制御部は第2動作をさらに実施することが可能であり、
    前記第2動作は、
    前記第1成分及び前記第2成分を取得する第2取得動作と、
    前記取得した前記第1成分の第1共振周波数と、前記取得した前記第2成分の第2共振周波数と、の差の絶対値が小さくなるように、前記第1対向導電部の第1対向導電部電圧、及び、前記第2対向導電部の第対向導電部電圧の少なくともいずれかを変更する第2変更動作と、
    を含む、請求項1~3のいずれか1つに記載のセンサ。
  5. 前記制御部は、前記第2動作を繰り返して実施することが可能である、請求項4記載のセンサ。
  6. 前記制御部は、前記第1電極と前記第1対向電極との間に第1交流電圧を印加し、前記第2電極と前記第2対向電極との間に第2交流電圧を印加して、前記可動部材を振動させる、請求項1~5のいずれか1つに記載のセンサ。
  7. 前記制御部は、前記可動部材を軸方向に沿って振動させ、
    前記制御部は、前記軸方向を回転させることが可能である、請求項6記載のセンサ。
  8. 前記制御部は、前記第1成分及び前記第2成分に基づいて、前記可動部材の回転角度に対応する信号を出力可能である、請求項1~のいずれか1つに記載のセンサ。
JP2019092045A 2019-05-15 2019-05-15 センサ Active JP7204576B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019092045A JP7204576B2 (ja) 2019-05-15 2019-05-15 センサ
CN202010160623.0A CN111947637A (zh) 2019-05-15 2020-03-10 传感器
US16/815,189 US11193769B2 (en) 2019-05-15 2020-03-11 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019092045A JP7204576B2 (ja) 2019-05-15 2019-05-15 センサ

Publications (2)

Publication Number Publication Date
JP2020187018A JP2020187018A (ja) 2020-11-19
JP7204576B2 true JP7204576B2 (ja) 2023-01-16

Family

ID=73222784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019092045A Active JP7204576B2 (ja) 2019-05-15 2019-05-15 センサ

Country Status (3)

Country Link
US (1) US11193769B2 (ja)
JP (1) JP7204576B2 (ja)
CN (1) CN111947637A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362684B2 (ja) * 2021-02-25 2023-10-17 株式会社東芝 センサ及び電子装置
JP7389767B2 (ja) * 2021-02-26 2023-11-30 株式会社東芝 センサ及び電子装置
JP7441195B2 (ja) * 2021-04-13 2024-02-29 株式会社東芝 センサ及び電子装置
JP2023074208A (ja) * 2021-11-17 2023-05-29 株式会社東芝 センサ及び電子装置
JP2023074207A (ja) * 2021-11-17 2023-05-29 株式会社東芝 センサ及び電子装置
JP2023128270A (ja) * 2022-03-03 2023-09-14 株式会社東芝 センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050813A1 (ja) 2007-10-18 2009-04-23 Pioneer Corporation 静電容量検出装置
JP2015222905A (ja) 2014-05-23 2015-12-10 横河電機株式会社 電流電圧変換回路及び自励発振回路
JP2016206126A (ja) 2015-04-28 2016-12-08 セイコーエプソン株式会社 回路装置、電子機器及び移動体
JP2018163141A (ja) 2017-03-24 2018-10-18 株式会社東芝 ジャイロセンサシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1250458A (en) * 1983-10-31 1989-02-28 Edward J. Loper, Jr. Hemispherical resonator gyro
DE19844686A1 (de) * 1998-09-29 2000-04-06 Fraunhofer Ges Forschung Mikromechanischer Drehratensensor und Verfahren zur Herstellung
WO2000068640A2 (en) 1999-04-21 2000-11-16 The Regents Of The University Of California Micro-machined angle-measuring gyroscope
US6675630B2 (en) 2001-08-17 2004-01-13 The Boeing Company Microgyroscope with electronic alignment and tuning
US7401515B2 (en) * 2006-03-28 2008-07-22 Honeywell International Inc. Adaptive circuits and methods for reducing vibration or shock induced errors in inertial sensors
KR101709367B1 (ko) * 2009-06-26 2017-02-22 로무 가부시키가이샤 각속도 센서와, 그것에 이용되는 동기 검파 회로
DE102010006584B4 (de) * 2010-02-02 2012-09-27 Northrop Grumman Litef Gmbh Corioliskreisel mit Korrektureinheiten und Verfahren zur Reduktion des Quadraturbias
JP5362096B2 (ja) * 2010-02-17 2013-12-11 株式会社村田製作所 振動型慣性力センサ
DE102011005744A1 (de) * 2010-03-17 2011-09-22 Continental Teves Ag & Co. Ohg Verfahren zur entkoppelten Regelung der Quadratur und der Resonanzfrequenz eines mikromechanischen Gyroskops
JP5552976B2 (ja) * 2010-09-07 2014-07-16 セイコーエプソン株式会社 角速度検出装置及び電子機器
US9525925B2 (en) * 2011-02-25 2016-12-20 Infineon Technologies Ag Sensor with movable part and biasing
KR101298286B1 (ko) * 2011-11-30 2013-08-20 삼성전기주식회사 자이로센서 오프셋 자동 보정회로, 자이로센서 시스템 및 자이로센서 오프셋 자동 보정방법
US9869552B2 (en) * 2015-03-20 2018-01-16 Analog Devices, Inc. Gyroscope that compensates for fluctuations in sensitivity
JP6448448B2 (ja) 2015-04-10 2019-01-09 株式会社東芝 ジャイロセンサの角速度の取得方法及び取得装置
US10393769B2 (en) * 2016-06-10 2019-08-27 Nxp Usa, Inc. Microelectromechanical device and a method of damping a mass thereof
JP6903610B2 (ja) 2018-08-27 2021-07-14 株式会社東芝 共振器およびそれを含む装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050813A1 (ja) 2007-10-18 2009-04-23 Pioneer Corporation 静電容量検出装置
JP2015222905A (ja) 2014-05-23 2015-12-10 横河電機株式会社 電流電圧変換回路及び自励発振回路
JP2016206126A (ja) 2015-04-28 2016-12-08 セイコーエプソン株式会社 回路装置、電子機器及び移動体
JP2018163141A (ja) 2017-03-24 2018-10-18 株式会社東芝 ジャイロセンサシステム

Also Published As

Publication number Publication date
US11193769B2 (en) 2021-12-07
US20200363205A1 (en) 2020-11-19
CN111947637A (zh) 2020-11-17
JP2020187018A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
JP7204576B2 (ja) センサ
JP6143430B2 (ja) バイアス補正機能を備えた振動型ジャイロ
JP2012233887A (ja) 温度で変化するバイアスを低減するためのmems姿勢制御装置の調整
JP2007304099A (ja) 慣性センサのリフト効果を打ち消すための電極の使用
JP2016095313A (ja) 直角位相低減バネを有するmemsジャイロ
KR20150087136A (ko) 비선형 운동 저감 구성
TWI512268B (zh) 陀螺儀以及將時域音叉陀螺儀用於慣性感測的方法
JP2010505102A (ja) 振動センサを用いてヨーレートを測定するための装置
CN102460070B (zh) 用于微机械旋转速率传感器的精确测量操作的方法
EP4075096B1 (en) Sensor and electronic device
CN105515547A (zh) 谐振器纳米梁平行板静电控制装置及其控制方法
JP2001264072A (ja) 角速度センサ
JP6670143B2 (ja) 揺動体装置の制御装置
JP2014182138A (ja) 直角位相エラーおよび面外感知モードを検出するための電極構成を備えているxy−軸ジャイロスコープ
JP6571064B2 (ja) 検出装置およびセンサ装置
JP6632726B2 (ja) マイクロメカニカルヨーレートセンサ及びその製造方法
JP2017044686A5 (ja)
JP6571065B2 (ja) 振動装置
EP4425098A1 (en) Sensor
Mohammadi et al. A novel method for finding the best excitation frequency of MEMS vibratory gyroscope
JP5415415B2 (ja) マイクロマシニング型の構成エレメントおよびマイクロマシニング型の構成エレメントを作動させるための方法
US20230251107A1 (en) Method for calibrating a vibrating inertial sensor
WO2015146165A1 (ja) 角速度センサ、その駆動回路及びその駆動方法並びに角速度検出センサ装置
JP6213133B2 (ja) Mems構造体、角速度センサ及びバネ定数調整方法
JP2017187445A (ja) 角速度センサおよびその感度調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R151 Written notification of patent or utility model registration

Ref document number: 7204576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151