JP7176206B2 - 炭化珪素半導体装置および炭化珪素半導体回路装置 - Google Patents

炭化珪素半導体装置および炭化珪素半導体回路装置 Download PDF

Info

Publication number
JP7176206B2
JP7176206B2 JP2018047322A JP2018047322A JP7176206B2 JP 7176206 B2 JP7176206 B2 JP 7176206B2 JP 2018047322 A JP2018047322 A JP 2018047322A JP 2018047322 A JP2018047322 A JP 2018047322A JP 7176206 B2 JP7176206 B2 JP 7176206B2
Authority
JP
Japan
Prior art keywords
gate
semiconductor region
conductivity type
insulating film
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047322A
Other languages
English (en)
Other versions
JP2019161079A (ja
Inventor
啓樹 奥村
明将 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018047322A priority Critical patent/JP7176206B2/ja
Priority to US16/254,834 priority patent/US10840340B2/en
Publication of JP2019161079A publication Critical patent/JP2019161079A/ja
Priority to US17/060,852 priority patent/US11695045B2/en
Application granted granted Critical
Publication of JP7176206B2 publication Critical patent/JP7176206B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Description

この発明は、炭化珪素半導体装置および炭化珪素半導体回路装置に関する。
炭化珪素(SiC)は、珪素(Si)よりも絶縁破壊電界強度が高く、低損失パワーデバイスに最適な半導体材料として近年注目されている。また、炭化珪素は、珪素と同様に、半導体基板上に酸化膜(SiO2膜)を形成することができるため、酸化膜をゲート絶縁膜として用いたパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属-酸化膜-半導体の3層構造からなる絶縁ゲートを備えたMOS型電界効果トランジスタ)の開発が進められている。
従来のMOSFETとして、端部を有する直線部を複数平行に並べてなるストライプ状のレイアウトに配置されたトレンチゲート構造と、トレンチゲート構造内のゲート電極に電気的に接続されたゲートパッド、ゲートフィンガーおよびゲートランナーのうちの少なくとも1つを有するゲートコネクタ構造と、ゲート電極を半導体本体から分離する、熱成長または蒸着された半導体酸化物であるゲート誘電体と、を備えた装置が提案されている(例えば、下記特許文献1(第0028~0030段落、第1A,1B,2,5A図)参照。)。
下記特許文献1では、ゲートコネクタ構造の垂直突起の外側のゲート誘電体の第1の部分を、ゲートコネクタ構造の垂直突起内のゲート誘電体の第2の部分よりも薄くすることで、装置全体の信頼性を向上させている。また、下記特許文献1には、半導体基板の主面に平行に直線状に延びるトレンチゲート構造の中央付近にコンタクトホールが設けられ、当該コンタクトホールを介してゲート電極とゲートフィンガーとが接続された構造が開示されている。
特開2016-129226号公報
しかしながら、MOSゲートを有するMOS型半導体装置では、炭化珪素を半導体材料として用いた場合、実使用時においてゲート電極にソース電極の電位に対して正電圧と負電圧を交互に印加しつづけることでゲート閾値電圧が変動することが知られている。具体的には、ゲート電極にソース電極の電位に対して正電圧が印加された場合、ゲート絶縁膜に電子が注入されることでゲート閾値電圧が変動する。ゲート電極にソース電極の電位に対して負電圧が印加された場合、ゲート絶縁膜に正孔(ホール)が注入されることでゲート閾値電圧が変動する。ゲート閾値電圧の変動とは、設計条件に基づいて決定された製品出荷時のゲート閾値電圧(基準値)からの変動である。これによって、ゲート電極への印加電圧の上限が、ゲート閾値電圧変動のない電圧範囲の上限に制限されてしまうという問題がある。
この発明は、上述した従来技術による問題点を解消するため、ゲート閾値電圧の変動を抑制することができる炭化珪素半導体装置および炭化珪素半導体回路装置を提供することを目的とする。
上述した課題を解決し、目的を達成するため、本発明者らは、鋭意研究を重ねた結果、ソース・ゲート間電圧やリーク電流とゲート閾値電圧変動とが相関関係にあることを見出した。本発明は、このような知見に基づいてなされたものである。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1主面と第2主面を有する第1導電型半導体層の第1主面の表面層に、第2導電型の第1半導体領域が選択的に設けられている。第1導電型の第2半導体領域は、前記第1導電型半導体層の、前記第1半導体領域を除く部分である。前記第1半導体領域の内部に、第1導電型の第3半導体領域が選択的に設けられている。ゲート絶縁膜は、前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられている。ゲート電極は、前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられている。第1電極は、前記第1半導体領域および前記第3半導体領域に電気的に接続されている。第2電極は、前記第2半導体領域に電気的に接続されている。前記ゲート絶縁膜は、堆積膜または当該堆積膜を1層とする積層膜である。前記ゲート電極は、前記第1導電型半導体層の第1主面に平行な第1方向に延在するストライプ状のレイアウトに配置されている。前記ゲート電極は、一方の端部がゲート電位に固定され、他方の端部がフローティング電位である。前記ゲート電極に前記第1電極の電位に対して負電圧を印加したときに流れるゲートリーク電流が2×10-11A未満に制限されている。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1主面と第2主面を有する第1導電型半導体層の第1主面の表面層に、第2導電型の第1半導体領域が選択的に設けられている。第1導電型の第2半導体領域は、前記第1導電型半導体層の、前記第1半導体領域を除く部分である。前記第1半導体領域の内部に、第1導電型の第3半導体領域が選択的に設けられている。ゲート絶縁膜は、前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられている。ゲート電極は、前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられている。第1電極は、前記第1半導体領域および前記第3半導体領域に電気的に接続されている。第2電極は、前記第2半導体領域に電気的に接続されている。前記ゲート絶縁膜は、酸化シリコン膜のみの単層膜である。前記ゲート電極は、ポリシリコンからなる。前記ゲート絶縁膜の総面積が3.86mm 2 未満である。前記第1電極に印加される正電圧を前記ゲート電極の電位に対して3V以下の高さに制限されている。前記ゲート絶縁膜の厚さが72nmよりも厚い。前記ゲート電極に前記第1電極の電位に対して負電圧を印加したときに流れるゲートリーク電流が2×10 -11 A未満に制限されている。また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ゲートリーク電流を3.7×10-6A/m2未満に制限したことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ゲート絶縁膜の総面積が3.86mm2未満であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1電極に印加される正電圧を前記ゲート電極の電位に対して3V以下の高さに制限したことを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1主面と第2主面を有する第1導電型半導体層の第1主面の表面層に、第2導電型の第1半導体領域が選択的に設けられている。第1導電型の第2半導体領域は、前記第1導電型半導体層の、前記第1半導体領域を除く部分である。前記第1半導体領域の内部に、第1導電型の第3半導体領域が選択的に設けられている。ゲート絶縁膜は、前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられている。ゲート電極は、前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられている。第1電極は、前記第1半導体領域および前記第3半導体領域に電気的に接続されている。第2電極は、前記第2半導体領域に電気的に接続されている。前記ゲート絶縁膜は、堆積膜または当該堆積膜を1層とする積層膜である。前記ゲート電極は、前記第1導電型半導体層の第1主面に平行な第1方向に延在するストライプ状のレイアウトに配置されている。前記ゲート電極は、一方の端部がゲート電位に固定され、他方の端部がフローティング電位である。前記ゲート電極に印加される負電圧が前記第1電極の電位に対して-3V以上に制限されている。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1主面と第2主面を有する第1導電型半導体層の第1主面の表面層に、第2導電型の第1半導体領域が選択的に設けられている。第1導電型の第2半導体領域は、前記第1導電型半導体層の、前記第1半導体領域を除く部分である。前記第1半導体領域の内部に、第1導電型の第3半導体領域が選択的に設けられている。ゲート絶縁膜は、前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられている。ゲート電極は、前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられている。第1電極は、前記第1半導体領域および前記第3半導体領域に電気的に接続されている。第2電極は、前記第2半導体領域に電気的に接続されている。前記ゲート絶縁膜は、酸化シリコン膜のみの単層膜である。前記ゲート電極は、ポリシリコンからなる。前記ゲート絶縁膜の厚さが72nmよりも厚い。前記ゲート電極に印加される負電圧が前記第1電極の電位に対して-3V以上に制限されている。また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ゲート絶縁膜にかかる電界を0.42MV/cm以下に制限したことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ゲート絶縁膜の厚さが72nmよりも厚いことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ゲート電極は、前記第1導電型半導体層の第1主面に平行な第1方向に延在するストライプ状のレイアウトに配置されている。前記ゲート電極は、一方の端部がゲート電位に固定され、他方の端部がフローティング電位であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ゲート電極は、前記第1方向と直交する第2方向に隣り合う一方の端部同士を連結し、かつ前記第2方向に隣り合う他方の端部同士を離して位置させたレイアウトに配置されていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記堆積膜は、高温酸化(HTO)膜であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ゲート電極は、ポリシリコンからなることを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体回路装置は、上述した炭化珪素半導体装置を搭載し、前記ゲート電極に接続された負荷により前記ゲートリーク電流が制限されていることを特徴とする。
また、この発明にかかる炭化珪素半導体回路装置は、上述した発明において、前記負荷は、抵抗体、キャパシタまたはインダクタであることを特徴とする。
本発明にかかる炭化珪素半導体装置および炭化珪素半導体回路装置によれば、FN電流が流れる前にゲート駆動させることができるため、ゲート閾値電圧の変動を抑制することができるという効果を奏する。
実施の形態1にかかる炭化珪素半導体装置の構造の一例を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の構造の別の一例を示す断面図である。 実施の形態1にかかる炭化珪素半導体回路装置の回路構成の一例を示す回路図である。 実施の形態1にかかる炭化珪素半導体回路装置の回路構成の一例を示す回路図である。 実施の形態1にかかる炭化珪素半導体回路装置の回路構成の一例を示す回路図である。 実施の形態1にかかる炭化珪素半導体装置のソース・ゲート間電圧Vsgとゲートリーク電流Isgとの関係を示す特性図である。 実施の形態1にかかる炭化珪素半導体装置のゲート・ソース間電圧Vgsとゲート閾値電圧の変動量ΔVthとの関係を示す特性図である。 実施の形態2にかかる炭化珪素半導体装置のゲート電極を半導体基板のおもて面側から見たレイアウトを示す平面図である。 図8のゲート電極の一方の端部の構造を示す斜視図である。 図8のゲート電極の他方の端部の構造を示す斜視図である。 従来の炭化珪素半導体装置のゲート電極を半導体基板のおもて面側から見たレイアウトを示す平面図である。 図11のゲート電極の端部の構造を示す斜視図である。 図11のゲート電極の断線箇所の一例を示す平面図である。 図11のゲート電極の断線箇所の一例を示す平面図である。 図13の切断線A-A’における断面構造を示す断面図である。 図13の切断線B-B’における断面構造を示す断面図である。 図14の切断線C-C’における断面構造を示す断面図である。 実施の形態3にかかる炭化珪素半導体装置のMOSゲートを半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。 実施の形態3にかかる炭化珪素半導体装置のMOSゲートを半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。 実施の形態3にかかる炭化珪素半導体装置のMOSゲートを半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。
以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置および炭化珪素半導体回路装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、ゲート電極にソースの電位に対して電圧を印加させるときには、正電圧であっても負電圧であってもVgsの表記であるが、以下のVgsとVsgの表記はどの電位に対しているかを表しており、Vsgは、ソース電極にゲートの電位に対して電圧を印加している場合を示している。
(実施の形態1)
実施の形態1にかかる炭化珪素(SiC)半導体装置の構造について、MOSFETを例に説明する。図1は、実施の形態1にかかる炭化珪素半導体装置の構造の一例を示す断面図である。図1に示す実施の形態1にかかる炭化珪素半導体装置は、炭化珪素からなる半導体基板(半導体チップ)10のおもて面側にトレンチゲート構造のMOSゲートを有する縦型MOSFETである。MOSゲートは、トレンチ6、ゲート絶縁膜7およびゲート電極8を有する。
半導体基板10は、n+型ドレイン領域1である炭化珪素からなるn+型出発基板のおもて面上にn-型ドリフト領域2およびp型ベース領域3となる各炭化珪素層を順にエピタキシャル成長させたエピタキシャル基板である。半導体基板10は、p型ベース領域3側の表面をおもて面とし、n+型ドレイン領域1側の表面(すなわちn+型出発基板の裏面)を裏面とする。p型ベース領域3の内部には、n+型ソース領域4およびp+型コンタクト領域5がそれぞれ選択的に設けられている。
半導体基板10のおもて面側において当該半導体基板10を構成するp型炭化珪素層の、n+型ソース領域4およびp+型コンタクト領域5以外の部分がp型ベース領域3である。トレンチ6は、半導体基板10のおもて面からn+型ソース領域4およびp型ベース領域3を貫通してn-型ドリフト領域2に達する。トレンチ6は、半導体基板10のおもて面に平行な方向(以下、第1方向とする:図1の奥行き方向)Xに延在するストライプ状のレイアウトに配置されている。
トレンチ6は、半導体基板10のおもて面に平行な方向で、かつ第1方向Xと直交する方向(以下、第2方向とする)Yに所定の間隔で活性領域に複数配置される。活性領域は、オン状態のときに電流が流れる領域である。1つのトレンチ6の内部に設けられた1つのMOSゲートで1つのMOSFETセル(単位セル:素子の構成単位)が構成される。トレンチ6の配置間隔は、MOSFETセルのセルピッチP1である。図1には、活性領域に配置された複数のMOSFETセルのうちの2つのMOSFETセルを示す。
ゲート絶縁膜7は、n+型ソース領域4とn+型ドレイン領域1との間の半導体領域の表面に沿って設けられ、ゲート電極8と半導体領域とを電気的に絶縁する。具体的には、ゲート絶縁膜7は、トレンチ6の内壁(側壁および底面)に沿って設けられ、p型ベース領域3の、n-型ドリフト領域2とn+型ソース領域4との間の領域に接する。ゲート絶縁膜7は、トレンチ6の内壁にのみ設けられている。すなわち、ゲート絶縁膜7のソース電極11側の端部は、トレンチ6の側壁上で終端しており、トレンチ6の側壁から半導体基板10のおもて面へ延在していない。
ゲート電極8は、n+型ソース領域4とn+型ドレイン領域1との間のキャリアの流れ(電流)を制御する制御電極である。ゲート電極8は、トレンチ6の内部においてゲート絶縁膜7上に設けられている。ゲート電極8は、トレンチ6の側壁において、ゲート絶縁膜7を挟んで、p型ベース領域3の、n-型ドリフト領域2とn+型ソース領域4との間の領域に対向する。ゲート電極8のソース電極11側の端部は、トレンチ6の内部で終端している。
層間絶縁膜9は、半導体基板10のおもて面上に設けられ、ゲート電極8を覆う。ソース電極11は、層間絶縁膜9のコンタクトホールを介してn+型ソース領域4およびp+型コンタクト領域5に接し、これらn+型ソース領域4およびp+型コンタクト領域5に電気的に接続されている。ソース電極11は、層間絶縁膜9によってゲート電極8と電気的に絶縁されている。ドレイン電極12は、半導体基板10の裏面全面に設けられ、n+型ドレイン領域1に電気的に接続されている。
この図1に示す実施の形態1にかかる炭化珪素半導体装置は、ゲート電極8にソース電極11の電位に対して負電圧Vgsを印加したときに流れるゲートリーク電流Isgが2×10-11A未満に制限されている。ゲートリーク電流Isgとは、ゲート絶縁膜7に高電界がかかったときに、電子がゲート電極8からゲート絶縁膜7を通り抜けてn-型ドリフト領域2へトンネルすることで、正孔がn-型ドリフト領域2からゲート絶縁膜7へ注入されゲート電極8へ向かって移動することで流れるFN(Fowler-Nordheim)電流である。また、ゲートリーク電流Isgとは、ゲート絶縁膜7の絶縁性が失われた箇所を通ってn-型ドリフト領域2からゲート電極8へ向かって流れる電流である。
ゲート電極8にソース電極11の電位に対して負電圧Vgsを印加したときに流れるゲートリーク電流Isgを上記条件で制限するには、例えば、活性領域におけるゲート絶縁膜7の総面積を3.86mm2未満に設定すればよい。活性領域におけるゲート絶縁膜7の総面積とは、ゲート絶縁膜7の、トレンチ6の両側壁に沿った略矩形状の部分の面積と、トレンチ6の底面に沿った略矩形状の部分の面積と、の総和である。このため、活性領域におけるゲート絶縁膜7の総面積は、トレンチ6の底面の第1,2方向X,Yの幅と、トレンチ6の深さd1と、に基づいて算出される。
例えば、略矩形状の平面形状の活性領域の表面積がA2mm2(≒Amm×Amm)であり、半導体基板10のおもて面側から見てストライプ状のレイアウトに所定のセルピッチP1でMOSFETセル(すなわちトレンチ6)が配置されるとする。この場合、トレンチ6の深さd1をBμmとし、トレンチ6の底面の第2方向Yの幅w1をCμmとし、ゲート絶縁膜7の厚さt1を72nmとしたMOSFETセルを、セルピッチP1をDμmとして最大(A/D)個配置することができる。例えば、活性領域の表面積は半導体本体の9mm2の60%~70%程度であり、d1は1μm~2μm程度であり、w1は0.5μm~1μm程度であり、P1は4μm~6μm程度である。
すなわち、活性領域の表面積と、活性領域におけるゲート絶縁膜7の総面積の条件と、1つのMOSFETセルにおけるゲート絶縁膜7の総面積と、から活性領域に配置可能なMOSFETセルの個数(すなわちトレンチ6のストライプの本数)を算出することができる。具体的には、1つのMOSFETセルにおいて、トレンチ6の両側壁におけるゲート絶縁膜7の長さ(=d1×2)と、トレンチ6の底面における第2方向Yのゲート絶縁膜7の長さ(=w1)と、の総長さ(=2Bμm+Cμm=Eμm)を算出する。
トレンチ6の両側壁におけるゲート絶縁膜7の長さは、それぞれトレンチ6の深さd1である。トレンチ6の底面におけるゲート絶縁膜7の幅は、トレンチ6の底面の幅w1と略同じである。ゲート絶縁膜7の底面の第1方向Xの幅は活性領域の1辺の幅と同じであることから、活性領域におけるゲート絶縁膜7の総面積の条件と、活性領域の第1方向Xの長さと、から活性領域におけるゲート絶縁膜7の第2方向Yの総長さの上限値(=3.86mm2/Amm=Fmm)を算出する。
この活性領域におけるゲート絶縁膜7の第2方向Yの総長さの上限値(=Fmm)を、1つのMOSFETセルにおけるゲート絶縁膜7の第2方向Yの総長さ(=Eμm)で除算することで、活性領域に配置可能なMOSFETセルの最大個数(=Fμm/Eμm≒G個)が算出される。かつ、活性領域の第2方向Yの長さを、活性領域に配置可能なMOSFETセルの最大個数で除算することで、MOSFETセルのセルピッチP1の最大値(=Aμm/G個=Dμm)が算出される。
なお、活性領域の表面積、活性領域におけるゲート絶縁膜7の総面積の条件、MOSFETセルのセルピッチP1、および、活性領域に配置するMOSFETセルの個数、からトレンチ6の深さd1およびトレンチ6の底面の幅w1を算出してもよい。また、ゲート電極8にソース電極11の電位に対して負電圧Vgsを印加したときに流れるゲートリーク電流Isgは、活性領域の単位面積あたりに換算すると、MOSFETセルの1単位セルまたは当該MOSFETセルを搭載した電子回路において3.7×10-6A/m2(=2×10-11A/5.42×10-62)未満に制限されればよい。
図2は、実施の形態1にかかる炭化珪素半導体装置の構造の別の一例を示す断面図である。図2に示す実施の形態1にかかる炭化珪素半導体装置が図1に示す実施の形態1にかかる炭化珪素半導体装置と異なる点は、ゲート電極8’がトレンチ6の内部から半導体基板10のおもて面よりも外側へ突出し、ゲート電極8’のソース電極11側の端部が半導体基板10のおもて面上にまで延在している点である。この場合、ゲート絶縁膜7’は、半導体基板10のおもて面とゲート電極8’との間にも配置される。すなわち、ゲート絶縁膜7’は、トレンチ6の側壁から半導体基板10のおもて面上にまで延在する。
このようにゲート絶縁膜7’が半導体基板10のおもて面上にまで延在している場合、活性領域におけるゲート絶縁膜7’の総面積は、ゲート絶縁膜7’の、トレンチ6の両側壁に沿った略矩形状の部分の面積と、トレンチ6の底面に沿った略矩形状の部分の面積と、半導体基板10のおもて面上の部分と、の総和である。このため、活性領域におけるゲート絶縁膜7’の総面積は、トレンチ6の底面の第1,2方向X,Yの幅と、トレンチ6の深さd1と、ゲート絶縁膜7’の半導体基板10のおもて面上の部分の第2方向Yの幅w2と、に基づいて算出される。
活性領域におけるゲート絶縁膜の総表面積以外の条件は設計条件に合わせて種々変更可能である。また、図示省略するが、トレンチゲート構造に代えて、半導体基板上に平板状にMOSゲートを設けたプレーナゲート構造としてもよい。プレーナゲート構造とした場合、ゲート絶縁膜は、半導体基板のおもて面上にのみ、半導体基板のおもて面に沿って設けられる。ゲート絶縁膜は、半導体基板のおもて面側から見て略矩形状の平面形状を有する。このため、活性領域におけるゲート絶縁膜の総表面積は、すべてのMOSFETセルの各ゲート絶縁膜の略矩形状の平面形状の表面積の総和となる。
また、ゲート電極8に印加される負電圧Vgsをソース電極11の電位に対して-3V以上に制限することで、ゲート電極8にソース電極11の電位に対して負電圧Vgsを印加したときに流れるゲートリーク電流Igsを上記条件で制限してもよい。この場合、活性領域の単位面積あたりに換算すると、MOSFETセルの1単位セルまたは当該MOSFETセルを搭載した電子回路において3V以下に制限されていればよい。
ゲート絶縁膜7の厚さt1が72nmであるときに、ゲート電極8にソース電極11の電位に対して3Vの負電圧Vgsが印加されたとすると、ゲート絶縁膜7にかかる電界は0.42MV/cm(=3V/72nm)である(活性領域の単位面積あたりも同様)。このため、ゲート電極8に印加される負電圧Vgsを上記条件に制限することに代えて、ゲート絶縁膜7にかかる電界が0.42MV/cm以下に制限されてもよい。ゲート絶縁膜7にかかる電界(MV/cm)、電流(A)または電流密度(A/cm2)を上記条件以下に制限する場合、ゲート絶縁膜7の厚さt1を72nmよりも厚く設定すればよい。
図3~5は、実施の形態1にかかる炭化珪素半導体回路装置の回路構成の一例を示す回路図である。MOSFET20のゲートに抵抗として機能する抵抗体、キャパシタまたはインダクタ等の負荷R1~R3(いわゆるゲート負荷)を接続することによっても、MOSFET20のゲートにソースの電位に対して負電圧Vgsを印加したときに流れるゲートリーク電流Isgや、MOSFET20のゲートにソースの電位に対して印加される負電圧Vgsを、上記条件に制限可能である。図3~5に示す構成は、MOSFET20を搭載した電子回路に有用である。MOSFET20は一般的な構成であってもよい。
具体的には、実施の形態1にかかる炭化珪素半導体回路装置は、MOSFET20のゲートに負荷R1を直列に接続した構成としてもよいし(図3)、MOSFET20のゲート・ソース間に負荷R2を直列に接続した構成としてもよいし(図4)、MOSFET20のゲート・ドレイン間に負荷R3を直列に接続した構成としてもよい(図5)。MOSFET20のゲートに負荷R1~R3を接続し、MOSFET20のスイッチング速度を低下させることで、スイッチング過渡時期におけるゲートリーク電流Isgの制御および電圧出力のリンギングを軽減させることができる。
(実施例)
次に、上述した実施の形態1にかかる炭化珪素半導体装置において、ソース電極11にゲート電極8の電位に対して印加される正電圧(図6には「ソース・ゲート間電圧」と図示する)Vsgと、その時流れるゲートリーク電流Isgと、の関係について検証した。図6は、実施の形態1にかかる炭化珪素半導体装置のソース・ゲート間電圧Vsgとゲートリーク電流Isgとの関係を示す特性図である。
炭化珪素からなる一般的な構成のトレンチゲート型MOSFET(以下、検証例とする)について、ソース電極にゲート電極の電位に対して印加される正電圧Vsgを種々変更してゲートリーク電流Isgを測定した結果を図6に示す。図6には、検証例の複数の試料の測定結果を示す。これら検証例の複数の試料は、耐圧(耐電圧)を1200Vクラスとし、アバランシェ耐量を1500V~1600Vの範囲内に設定した。
また、検証例の複数の試料は、ドレイン・ソース間電圧Vdsを1200Vとし、ゲート電極を0Vとしたときのドレイン・ソース間リーク電流Idssを0.01μA~1mAの範囲内に設定した。また、検証例の複数の試料は、ドレイン電極にソース電極の電位に対して印加される正電圧(ドレイン・ソース間電圧)Vdsを20Vとし、かつドレイン電流Idsを25mAとしたときのゲート閾値電圧(基準値)Vthを4.5V~5.5Vの範囲内に設定した。
耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。アバランシェ耐量とは、定格ドレイン電流以下で、かつ定格チャネル温度以下であれば、MOSFETの起動時や遮断時等にMOSFETに一時的に定格電圧を超える電圧がかかったとしても破壊に至らない許容エネルギー量である。
図6に示す結果から、検証例のいずれの試料においても、ソース電極にゲート電極の電位に対して印加される正電圧Vsgが3Vを超えると、n-型ドリフト領域からゲート絶縁膜への正孔注入が開始され、当該正電圧Vsgの増加にともなってゲートリーク電流Isgが増加することが確認された。すなわち、閾値変動に影響する電圧が3Vであり、その時のゲートリーク電流Isgの立ち上がりの電流値は2×10-11Aであることが確認された。
すなわち、ソース電極にゲート電極の電位に対して印加される正電圧Vsgが3V以下であれば、ゲートリーク電流Isgが流れないことが確認された。図6に示す結果において、ソース電極にゲート電極の電位に対して印加される正電圧Vsgが3V未満の電流波形は、測定装置の検出限界により発生する波形であり、ゲートリーク電流Isgが0Aであることに相当する。
次に、上述した実施の形態1にかかる炭化珪素半導体装置において、ゲート電極8にソース電極11の電位に対して印加される負電圧(図7には「ゲート・ソース間電圧」と図示)Vgsと、ゲート閾値電圧Vthの変動量ΔVthと、の関係について検証した。図7は、実施の形態1にかかる炭化珪素半導体装置のゲート・ソース間電圧Vgsとゲート閾値電圧の変動量ΔVthとの関係を示す特性図である。ゲート閾値電圧の変動とは、設計条件に基づいて決定された製品出荷時のゲート閾値電圧(基準値)からの変動である。
上述した検証例の複数の試料について、ゲート電極にソース電極の電位に対して印加される負電圧Vgsを種々変更してゲート閾値電圧Vthを測定し、ゲート閾値電圧Vthの変動量ΔVthを算出した結果を図7に示す。図7において、横軸は信頼性試験において上述した検証例に印加した試験電圧であり、縦軸は検証例のゲート閾値電圧Vthの変動量ΔVthである。また、図7には、検証例の複数の試料におけるゲート閾値電圧Vthの変動量ΔVthの平均値の近似直線を細かい破線で示す。
図7に示す結果から、ゲート電極に印加される負電圧Vgsがソース電極の電位に対して-3V未満であるときに、ゲート閾値電圧Vthが変動することが確認された。また、ゲート電極にソース電極の電位に対して印加される負電圧Vgsの減少にともなって、ゲート閾値電圧Vthの変動量ΔVthが増加することが確認された。一方、ゲート電極に印加される負電圧Vgsがソース電極の電位に対して-3V以上であれば、ゲート閾値電圧Vthが変動しないことが確認された。
図7に示す結果においてゲート電極に印加される負電圧Vgsがソース電極の電位に対して-3V以上であるとは、ゲート電極に印加される正電圧Vsgがソース電極の電位に対して3V以下(粗い縦破線よりも右側の部分:ゲート絶縁膜7にかかる電界に換算すると0.42MV/cm以下)であることと一致する。すなわち、図7に示す結果から、ゲート電極に印加される正電圧Vsgがソース電極の電位に対して3V以下に制限することで、ゲート閾値電圧Vthの変動しないMOSFETを提供可能であることがわかる。
また、図7において符号22を付した円で囲む、ゲート電極に印加される負電圧Vgsがソース電極の電位に対して-3Vであり、かつゲート閾値電圧Vthの変動量ΔVthがゼロである点は、図6において符号21を付した円で囲む、ゲート電極に印加される正電圧Vsgがソース電極の電位に対して3Vであり、かつゲートリーク電流Isgが2×10-11Aである点と一致する。したがって、図6,7に示す結果から、ゲートリーク電流Isgを2×10-11A未満に制限することで、ゲート閾値電圧Vthの変動しないMOSFETを提供可能であることがわかる。
以上、説明したように、実施の形態1によれば、ゲート電極にソース電極の電位に対して負電圧Vgsを印加したときに流れるゲートリーク電流Isgを上記条件に設定する、または、ゲート電極にソース電極の電位に対して印加される正電圧を上記条件に制限する。これにより、FN電流が流れる前にMOSFETをゲート駆動させることができるため、ゲート閾値電圧の変動を抑制することができる。
(実施の形態2)
次に、実施の形態2にかかる炭化珪素半導体装置として、実施の形態1にかかる炭化珪素半導体装置のゲート電極の端部構造の一例について説明する。図8は、実施の形態2にかかる炭化珪素半導体装置のゲート電極を半導体基板のおもて面側から見たレイアウトを示す平面図である。図8では、トレンチ6を太線で示し、トレンチ6の内部のゲート絶縁膜7およびゲート電極8を図示省略する。図9は、図8のゲート電極の一方の端部の構造を示す斜視図である。図10は、図8のゲート電極の他方の端部の構造を示す斜視図である。図9には、ゲート電極8の、連結された端部31付近の構造を示す。図10には、ゲート電極8の、連結されていない端部32付近の構造を示す。
図8に示す実施の形態2にかかる炭化珪素半導体装置は、第1方向Xに平行に延在する隣り合うゲート電極8を、第2方向Yに対向する一方の端部31同士を連結し、かつ第2方向Yに対向する他方の端部32同士を離して位置させたU字の平面形状とした構造を有する。具体的には、トレンチ6は、実施の形態1に記載したように第1方向Xに延在するストライプ状のレイアウトに配置されている。トレンチ6の端部は、例えばエッジ終端領域にまで延在している。第1方向Xに延在する直線状の隣り合う2つのトレンチ6は、第2方向Yに対向する一方の端部同士を連結し、かつ第2方向Yに対向する他方の端部同士を離して位置させたU字の平面形状をなす。
トレンチ6の内部には、ゲート絶縁膜7を介して例えばポリシリコン(poly-Si)からなるゲート電極8が設けられている。トレンチ6の内部のゲート電極8同士は、自身が埋め込まれた当該2つのトレンチ6と同様に、第2方向Yに対向する一方の端部31同士を連結し、かつ第2方向Yに対向する他方の端部32同士を離して位置させたU字の平面形状をなす。ゲート電極8の、連結された端部31は、ゲートランナー41に接続されている。このため、ゲート電極8の、連結された端部31からゲート電極8に外部からゲート電位が引き込まれる(図9)。ゲート電極8の、連結されていない端部32は、ゲートランナー41に接続されていない。ゲート電極8の、連結されていない端部32からはゲート電位が引き込まれない(図10)。
エッジ終端領域は、活性領域の周囲を囲む。すなわち、エッジ終端領域は、活性領域と半導体基板10の側面との間の領域である。エッジ終端領域は、n-型ドリフト領域2の、半導体基板10のおもて面側の電界を緩和して耐圧を保持する機能を有する。具体的には、エッジ終端領域には、フィールドリミッティングリング(FLR:Field Limiting Ring)、メサ構造、接合終端拡張(JTE:Junction Termination Extension)構造、フィールドプレートなどの耐圧構造が配置される。また、エッジ終端領域には、ゲートパッドやゲートランナー41が配置される。
ゲートランナー41は、エッジ終端領域において半導体基板10のおもて面上に層間絶縁膜9を介して設けられ、かつ図示省略するゲートパッドに電気的に接続されている。ゲートランナー41は、ゲート電極8の、連結された端部31と層間絶縁膜9を挟んで深さ方向Zに対向する。ゲートランナー41は、層間絶縁膜9の図示省略するコンタクトホールを介して、ゲート電極8の、連結された端部31と接続されている。ゲートランナー41と、ゲート電極8の、連結されていない端部32と、が電気的に絶縁されていればよく、ゲートランナー41のレイアウトは種々変更可能である。ゲートランナー41に代えて、後述するゲートフィンガーを配置してもよい。
例えば、ゲートランナー41は、活性領域の周囲を囲む略矩形状のレイアウトに配置されてもよい。この場合、ゲートランナー41と、ゲート電極8の、連結されていない端部32と、の間にコンタクトホールを形成しないことで、ゲートランナー41と、ゲート電極8の、連結されていない端部32と、が層間絶縁膜9によって電気的に絶縁される。また、ゲートランナー41は、ゲート電極8の、連結されていない端部32と深さ方向Zに対向しない略U字状に活性領域の周囲を囲むレイアウトに配置されてもよいし、ゲート電極8の、連結された端部31のみに深さ方向Zに対向する略直線状のレイアウトに配置されてもよい。
ゲート絶縁膜7は、例えば高温酸化(HTO:High Temperature Oxide)膜等の堆積膜である。ゲート絶縁膜7は、堆積膜のみの単層膜であってもよいし、堆積膜を1層として含む積層膜であってもよい。n+型ソース領域4は、トレンチ6の両側壁に接して設けられ、トレンチ6の両側壁に沿って第1方向Xに延在している。n+型ソース領域4の端部は、例えば活性領域で終端しており、トレンチ6の両端部31,32には設けられていない。一方の端部を連結した2つのトレンチ6にそれぞれ接するn+型ソース領域4同士は、第2方向Yに対向する一方の端部同士を連結し、かつ第2方向Yに対向する他方の端部同士を連結した略矩形状の平面形状をなしてもよい。
+型コンタクト領域5は、隣り合うトレンチ6の間(メサ領域)に、第1方向Xに所定の間隔で複数設けられている。メサ領域のn+型ソース領域4およびp+型コンタクト領域5以外の部分は、p型ベース領域3である。すなわち、同一のメサ領域において隣り合うn+型ソース領域4の間には、p型ベース領域3とp+型コンタクト領域5とが第1方向Xに交互に繰り返し配置されている。異なるメサ領域に配置されたp+型コンタクト領域5同士は、トレンチ6を挟んで第2方向Yに対向する。また、p+型コンタクト領域5は、同一のメサ領域に配置されたn+型ソース領域4に接し、当該n+型ソース領域4よりもトレンチ6から離して配置されている。
上述したように、ゲート電極8の、連結された端部31のみがゲートランナー41に接続され、このゲート電極8の、連結された端部31からのみゲート電極8にゲート電位が引き込まれる。このため、トレンチ6の形成不良等(図16,17参照)によりゲート電極8の1箇所が断線33していた場合、ゲート電極8の、断線33の箇所から連結されていない端部32までの部分であって、当該断線33によりゲートランナー41に接続されていない状態となった部分34がフローティング(浮遊)電位となる。これにより、ドレイン・ソース間に電圧が印加されたときに、ゲート電極8の、断線33によりフローティング電位となった部分34でリーク不良が生じるため、ゲート電極8の断線33を検出可能である。
例えば、従来構造では、ゲート電極が一部で断線していた場合、次の問題が生じる。図11は、従来の炭化珪素半導体装置のゲート電極を半導体基板のおもて面側から見たレイアウトを示す平面図である。図11では、トレンチ106を太線で示し、トレンチ106の内部のゲート絶縁膜107およびゲート電極108を図示省略する。図12は、図11のゲート電極の端部の構造を示す斜視図である。図13,14は、図11のゲート電極の断線箇所の一例を示す平面図である。図15は、図13の切断線A-A’における断面構造を示す断面図である。図16は、図13の切断線B-B’における断面構造を示す断面図である。図17は、図14の切断線C-C’における断面構造を示す断面図である。
図11,12に示す従来の炭化珪素半導体装置は、実施の形態1にかかる炭化珪素半導体装置と同様に、第1方向Xに延在するストライプ状のレイアウトに配置されたトレンチ106の内部にゲート絶縁膜107を介してゲート電極108を設けたトレンチゲート構造のMOSゲートを有する縦型MOSFETである。図11,12において、符号102~105は、それぞれ、n-型ドリフト領域、p型ベース領域、n+型ソース領域およびp+型コンタクト領域である。第1方向Xに延在する直線状の隣り合う2つのトレンチ106は、第2方向Yに対向する一方の端部同士を連結し、かつ第2方向Yに対向する他方の端部同士を連結した閉じた環状の平面形状をなす。
両端部を連結した2つのトレンチ106の内部にそれぞれゲート絶縁膜107を介して埋め込まれたゲート電極108同士は、自身が埋め込まれた当該2つのトレンチ106と同様に、第2方向Yに対向する一方の端部121同士を連結し、かつ第2方向Yに対向する他方の端部122同士を連結させた閉じた環状の平面形状をなす。ゲート電極108の、連結された両端部121,122ともに、層間絶縁膜109の図示省略するコンタクトホールを介してゲートランナー131に接続されている。すなわち、ゲート電極108の、連結された両端部121,122からそれぞれゲート電極108に外部からゲート電位が引き込まれる。
この図11,12に示す従来の炭化珪素半導体装置では、1本の環状の平面形状のゲート電極108の2箇所が断線123していた場合には、ゲート電極108の、断線123の箇所間の部分であって、当該断線123によりゲートランナー131に接続されていない状態となった部分124がフローティング電位となるため、ゲート電極108の断線123を検出可能である。一方、ゲート電極108の断線123’が1箇所のみである場合、ゲート電極108は一部が開いた環状の平面形状をなして連続しており、ゲート電極108全体がゲート電位となるため、ゲート電極108が断線123’していない場合と同様にデバイスが動作してしまう。
このように、従来の炭化珪素半導体装置では、ゲート電極108の断線123’が1箇所のみである場合、デバイス動作してしまうため、信頼性試験等によりゲート電極108の断線123’を検出することができない。このため、不良要因を有する信頼性に劣る状態で市場に流出してしまう。ゲート電極108の断線123,123’の要因として、トレンチ106の形成不良が挙げられる。トレンチ106の形成不良は、例えば、第1方向Xに直線状に延びるトレンチ106が一部形成されないことや(図13,16の符号123a)、第1方向Xに直線状に延びるトレンチ106が一部106’で浅くなっている(図14,17の符号123b)こと等により生じるトレンチ106の形状異常である。
上述したトレンチ106の形状異常のうち、トレンチ106が一部106’で浅くなっている場合では、ゲート絶縁膜107を熱酸化で形成する場合には、トレンチ106に形状異常があれば、ゲート絶縁膜107も形状異常となる。このため、ゲート絶縁膜107のスクリーニング試験により、ゲート電極108の断線123bを検出可能である。一方、ゲート絶縁膜107をHTO膜等の堆積膜とした場合、トレンチ106に形状異常があったとしても、トレンチ106の内壁に沿って均一な厚さでゲート絶縁膜107が形成されるため、ゲート絶縁膜107のスクリーニング試験では、ゲート電極108の断線123bを検出することができない。
それに対して、本発明においては、ゲート絶縁膜7をHTO膜等の堆積膜とした場合においても、上述したようにトレンチ6の形成不良等によりゲート電極8の1箇所が断線33していた場合には、ゲート電極8の一部分34がフローティング電位となる。このため、ドレイン・ソース間に最大定格電圧を印加することで、ゲート電極8の、フローティング電位となった部分34でパンチスルーが起きる。このとき、ドレイン・ソース間リーク電流Idssが規定値を超えた場合をリーク不良とし、当該MOSFETを不良品と判定することができる。このようにしてゲート電極8の断線33を検出可能であり、不良要因を有する信頼性に劣る状態で市場に流出することを防止することができる。
以上、説明したように、実施の形態2を実施の形態1に適用可能である。
(実施の形態3)
次に、実施の形態3にかかる炭化珪素半導体装置として、実施の形態2にかかる炭化珪素半導体装置のゲート電極8のレイアウトの一例について説明する。図18,19は、実施の形態3にかかる炭化珪素半導体装置のMOSゲートを半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。図18,19では、トレンチ6の内部のゲート絶縁膜7およびゲート電極8を図示省略する。図20は、従来の炭化珪素半導体装置のMOSゲートを半導体基板のおもて面側から見たレイアウトの一例を示す平面図である。図20では、トレンチ106の内部のゲート絶縁膜およびゲート電極を図示省略する。図20は、上記特許文献1の図2である。
図18に示す実施の形態3にかかる炭化珪素半導体装置は、半導体基板10のおもて面上に層間絶縁膜を介して設けられたゲートパッド40およびゲートフィンガー42を備える。ゲートパッド40は、例えば略矩形状の平面形状を有する。ゲートフィンガー42は、例えば半導体基板10の略中央部に設けられ、第2方向Yに延在する直線状の平面形状を有する。ゲートフィンガー42は、ゲートパッド40に連結され、ゲート電位となっている。複数のトレンチ6は、第1方向Xに延在するストライプ状をなし、連結された端部をゲートパッド40またはゲートフィンガー42と深さ方向Zに対向させ、かつ連結されていない端部を半導体基板10の側面側に位置させたレイアウトに配置されている。
トレンチ6の、ゲートパッド40またはゲートフィンガー42に深さ方向Zに対向する、連結された端部は、ゲート電極8(図9参照)とゲートパッド40またはゲートフィンガー42とのコンタクトをとるためのみの部分である。すなわち、トレンチ6の内部のゲート電極8の、連結された端部31は、図示省略する層間絶縁膜のコンタクトホールを介してゲートパッド40またはゲートフィンガー42に接続されている。トレンチ6の、連結された端部にはn+型ソース領域4は配置されていない。このため、トレンチ6の、ゲートパッド40またはゲートフィンガー42に深さ方向Zに対向する、連結された端部付近はMOSFETとして動作しない。ゲート電極8の、連結されていない端部32は、ゲートパッド40またはゲートフィンガー42に接続されていない。
トレンチ6の配置は種々変更可能である。例えば、図18に示すように、トレンチ6の、連結された端部同士を互いに離して、かつトレンチ6の、連結された端部同士がゲートパッド40またはゲートフィンガー42に深さ方向Zに対向する部分で第1方向Xに対向するように、第1方向Xに延在するトレンチ6が配置されてもよい。また、ゲート電極8の一方の端部31’のみが図示省略する層間絶縁膜のコンタクトホールを介してゲートパッド40またはゲートフィンガー42に接続されていればよい。このため、図19に示すように、トレンチ6は、第2方向Yに対向する一方の端部(ゲート電極8の一方の端部31’)同士および第2方向Yに対向する他方の端部(ゲート電極8の他方の端部32)同士ともに連結されていなくてもよい。この場合、活性領域の周囲を囲むようにゲートランナー41が配置されていてもよい。
ゲートランナー41が配置されている場合、トレンチ6は、一方の端部のみがゲートパッド40、ゲートランナー41またはゲートフィンガー42に深さ方向Zに対向するように配置される。例えば、図19に示すように、トレンチ6の一方の端部(ゲート電極8の一方の端部31’)同士を互いに離して、かつトレンチ6の、当該一方端部同士がゲートフィンガー42に深さ方向Zに対向する部分で第1方向Xに対向するように、第1方向Xに延在するトレンチ6が配置されてもよい。かつ、当該トレンチ6の他方の端部(ゲート電極8の他方の端部32)と他のトレンチ6の他方の端部(ゲート電極8の他方の端部32)とが第1方向Xに対向し、他のトレンチ6の一方の端部(ゲート電極8の一方の端部31’)がゲートランナー41に深さ方向Zに対向するように、第1方向Xに延在する当該他のトレンチ6が配置されてもよい。
一方、図20に示す従来の炭化珪素半導体装置では、トレンチ106の、連結された両端部(ゲート電極108(図12参照)の、連結された両端部121,122)が半導体基板110の対辺となる両側面付近に位置するように、第1方向Xに延在するトレンチ106が配置されている。ゲートパッド130またはゲートフィンガー132の配置は、図18に示す実施の形態3にかかる炭化珪素半導体装置と同様である。すなわち、ゲートパッド130は、例えば略矩形状の平面形状を有する。ゲートフィンガー132は、例えば半導体基板110の略中央部に設けられ、第2方向Yに延在する直線状の平面形状を有する。ゲートフィンガー132は、ゲートパッド130に連結され、ゲート電位となっている。このため、トレンチ106は、両端部間の真ん中となる中央部でゲートパッド130またはゲートフィンガー132に深さ方向Zに対向する。
すなわち、従来構造では、トレンチ106の内部のゲート電極108は、トレンチ106の中央部で、図示省略する層間絶縁膜のコンタクトホールを介してゲートパッド130またはゲートフィンガー132に接続されている。トレンチ106の、連結された両端部以外の部分において、トレンチ106の側壁に沿ってn+型ソース領域104(図12参照)が設けられている。このため、トレンチ106の中央部には、トレンチ106の側壁に沿ってn+型ソース領域104が配置されており、トレンチ106の、ゲートパッド130またはゲートフィンガー132に深さ方向Zに対向する中央部もMOSFETとして動作する。したがって、従来構造では、ゲート電極108が1箇所で断線123’(図11参照)していたとしても、ゲート電極108の一部をフローティング電位にすることができない。
以上、説明したように、実施の形態3を実施の形態1,2に適用可能である。
以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態では、トレンチゲート構造の縦型MOSFETを例に説明しているが、トレンチゲート構造に代えてプレーナゲート構造とした場合や、MOSFETに代えてIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)等のMOS型半導体装置とした場合、縦型半導体装置に代えて横型半導体装置とした場合、においても本発明を適用可能である。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる炭化珪素半導体装置および炭化珪素半導体回路装置は、MOSゲートを有する半導体装置に有用である。
1 n+型ドレイン領域
2 n-型ドリフト領域
3 p型ベース領域
4 n+型ソース領域
5 p+型コンタクト領域
6 トレンチ
7, 7' ゲート絶縁膜
8,8' ゲート電極
9 層間絶縁膜
10 半導体基板
11 ソース電極
12 ドレイン電極
20 MOSFET
31 ゲート電極の、連結された端部
31' ゲート電極の端部
32 ゲート電極の、連結されていない端部
33 ゲート電極の断線
34 ゲート電極の、断線によりフローティング電位となった部分
40 ゲートパッド
41 ゲートランナー
42 ゲートフィンガー
P1 MOSFETセルのセルピッチ
R1~R3 負荷
d1 トレンチの深さ
t1 ゲート絶縁膜の厚さ
X 半導体基板のおもて面に平行な方向(第1方向)
Y 半導体基板のおもて面に平行で、かつ第1方向と直交する方向(第2方向)
Z 深さ方向
w1 トレンチの底面の第2方向の幅
w2 ゲート絶縁膜の半導体基板のおもて面上の部分の第2方向の幅

Claims (15)

  1. 第1主面と第2主面を有する第1導電型半導体層と、
    前記第1導電型半導体層の第1主面の表面層に選択的に設けられた第2導電型の第1半導体領域と、
    前記第1導電型半導体層の、前記第1半導体領域を除く部分である第1導電型の第2半導体領域と、
    前記第1半導体領域の内部に選択的に設けられた第1導電型の第3半導体領域と、
    前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられたゲート絶縁膜と、
    前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられたゲート電極と、
    前記第1半導体領域および前記第3半導体領域に電気的に接続された第1電極と、
    前記第2半導体領域に電気的に接続された第2電極と、
    を備え、
    前記ゲート絶縁膜は、堆積膜または当該堆積膜を1層とする積層膜であり、
    前記ゲート電極は、前記第1導電型半導体層の第1主面に平行な第1方向に延在するストライプ状のレイアウトに配置され、
    前記ゲート電極は、一方の端部がゲート電位に固定され、他方の端部がフローティング電位であり、
    前記ゲート電極に前記第1電極の電位に対して負電圧を印加したときに流れるゲートリーク電流を2×10-11A未満に制限したことを特徴とする炭化珪素半導体装置。
  2. 第1主面と第2主面を有する第1導電型半導体層と、
    前記第1導電型半導体層の第1主面の表面層に選択的に設けられた第2導電型の第1半導体領域と、
    前記第1導電型半導体層の、前記第1半導体領域を除く部分である第1導電型の第2半導体領域と、
    前記第1半導体領域の内部に選択的に設けられた第1導電型の第3半導体領域と、
    前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられたゲート絶縁膜と、
    前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられたゲート電極と、
    前記第1半導体領域および前記第3半導体領域に電気的に接続された第1電極と、
    前記第2半導体領域に電気的に接続された第2電極と、
    を備え、
    前記ゲート絶縁膜は、酸化シリコン膜のみの単層膜であり、
    前記ゲート電極は、ポリシリコンからなり、
    前記ゲート絶縁膜の総面積が3.86mm2未満であり、
    前記第1電極に印加される正電圧を前記ゲート電極の電位に対して3V以下の高さに制限し、
    前記ゲート絶縁膜の厚さが72nmよりも厚く、
    前記ゲート電極に前記第1電極の電位に対して負電圧を印加したときに流れるゲートリーク電流を2×10-11A未満に制限したことを特徴とする炭化珪素半導体装置。
  3. 前記ゲートリーク電流を3.7×10-6A/m2未満に制限したことを特徴とする請求項1または2に記載の炭化珪素半導体装置。
  4. 前記ゲート絶縁膜の総面積が3.86mm2未満であることを特徴とする請求項1に記載の炭化珪素半導体装置。
  5. 前記第1電極に印加される正電圧を前記ゲート電極の電位に対して3V以下の高さに制限したことを特徴とする請求項1または4に記載の炭化珪素半導体装置。
  6. 第1主面と第2主面を有する第1導電型半導体層と、
    前記第1導電型半導体層の第1主面の表面層に選択的に設けられた第2導電型の第1半導体領域と、
    前記第1導電型半導体層の、前記第1半導体領域を除く部分である第1導電型の第2半導体領域と、
    前記第1半導体領域の内部に選択的に設けられた第1導電型の第3半導体領域と、
    前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられたゲート絶縁膜と、
    前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられたゲート電極と、
    前記第1半導体領域および前記第3半導体領域に電気的に接続された第1電極と、
    前記第2半導体領域に電気的に接続された第2電極と、
    を備え、
    前記ゲート絶縁膜は、堆積膜または当該堆積膜を1層とする積層膜であり、
    前記ゲート電極は、前記第1導電型半導体層の第1主面に平行な第1方向に延在するストライプ状のレイアウトに配置され、
    前記ゲート電極は、一方の端部がゲート電位に固定され、他方の端部がフローティング電位であり、
    前記ゲート電極に印加される負電圧を前記第1電極の電位に対して-3V以上に制限したことを特徴とする炭化珪素半導体装置。
  7. 第1主面と第2主面を有する第1導電型半導体層と、
    前記第1導電型半導体層の第1主面の表面層に選択的に設けられた第2導電型の第1半導体領域と、
    前記第1導電型半導体層の、前記第1半導体領域を除く部分である第1導電型の第2半導体領域と、
    前記第1半導体領域の内部に選択的に設けられた第1導電型の第3半導体領域と、
    前記第1半導体領域の、前記第2半導体領域と前記第3半導体領域との間の領域に接して設けられたゲート絶縁膜と、
    前記ゲート絶縁膜を挟んで前記第1半導体領域の反対側に設けられたゲート電極と、
    前記第1半導体領域および前記第3半導体領域に電気的に接続された第1電極と、
    前記第2半導体領域に電気的に接続された第2電極と、
    を備え、
    前記ゲート絶縁膜は、酸化シリコン膜のみの単層膜であり、
    前記ゲート電極は、ポリシリコンからなり、
    前記ゲート絶縁膜の厚さが72nmよりも厚く、
    前記ゲート電極に印加される負電圧を前記第1電極の電位に対して-3V以上に制限したことを特徴とする炭化珪素半導体装置。
  8. 前記ゲート絶縁膜にかかる電界を0.42MV/cm以下に制限したことを特徴とする請求項2、5、6、7のいずれか一つに記載の炭化珪素半導体装置。
  9. 前記ゲート絶縁膜の厚さが72nmよりも厚いことを特徴とする請求項5または6に記載の炭化珪素半導体装置。
  10. 前記ゲート電極は、前記第1導電型半導体層の第1主面に平行な第1方向に延在するストライプ状のレイアウトに配置され、
    前記ゲート電極は、一方の端部がゲート電位に固定され、他方の端部がフローティング電位であることを特徴とする請求項2または7に記載の炭化珪素半導体装置。
  11. 前記ゲート電極は、前記第1方向と直交する第2方向に隣り合う一方の端部同士を連結し、かつ前記第2方向に隣り合う他方の端部同士を離して位置させたレイアウトに配置されていることを特徴とする請求項1、4、5、6、9、10のいずれか一つに記載の炭化珪素半導体装置。
  12. 前記堆積膜は、高温酸化(HTO)膜であることを特徴とする請求項1、4、5、6、9のいずれか一つに記載の炭化珪素半導体装置。
  13. 前記ゲート電極は、ポリシリコンからなることを特徴とする請求項1、4、5、6、9、10、11のいずれか一つに記載の炭化珪素半導体装置。
  14. 請求項1~5のいずれか一つに記載の炭化珪素半導体装置を搭載し、
    前記ゲート電極に接続された負荷により前記ゲートリーク電流が制限されていることを特徴とする炭化珪素半導体回路装置。
  15. 前記負荷は、抵抗体、キャパシタまたはインダクタであることを特徴とする請求項14に記載の炭化珪素半導体回路装置。
JP2018047322A 2018-03-14 2018-03-14 炭化珪素半導体装置および炭化珪素半導体回路装置 Active JP7176206B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018047322A JP7176206B2 (ja) 2018-03-14 2018-03-14 炭化珪素半導体装置および炭化珪素半導体回路装置
US16/254,834 US10840340B2 (en) 2018-03-14 2019-01-23 Silicon carbide semiconductor device and silicon carbide semiconductor circuit device
US17/060,852 US11695045B2 (en) 2018-03-14 2020-10-01 Silicon carbide semiconductor device and silicon carbide semiconductor circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047322A JP7176206B2 (ja) 2018-03-14 2018-03-14 炭化珪素半導体装置および炭化珪素半導体回路装置

Publications (2)

Publication Number Publication Date
JP2019161079A JP2019161079A (ja) 2019-09-19
JP7176206B2 true JP7176206B2 (ja) 2022-11-22

Family

ID=67906086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047322A Active JP7176206B2 (ja) 2018-03-14 2018-03-14 炭化珪素半導体装置および炭化珪素半導体回路装置

Country Status (2)

Country Link
US (2) US10840340B2 (ja)
JP (1) JP7176206B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7279394B2 (ja) * 2019-02-15 2023-05-23 富士電機株式会社 半導体装置および半導体装置の製造方法
EP3971987A1 (en) * 2020-09-21 2022-03-23 Infineon Technologies AG Silicon carbide device with stripe-shaped gate electrode and source metallization
CN115332340A (zh) * 2022-08-08 2022-11-11 上海功成半导体科技有限公司 一种调节动态特性的超结vdmos器件及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085686A (ja) 1999-09-13 2001-03-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2003197910A (ja) 2001-12-26 2003-07-11 Toshiba Corp 半導体装置
JP2008041948A (ja) 2006-08-07 2008-02-21 Toyota Motor Corp 半導体装置
JP2009088186A (ja) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd トレンチゲート型トランジスタ及びその製造方法
JP2011082454A (ja) 2009-10-09 2011-04-21 Panasonic Corp 絶縁膜構造体及びこれを用いた半導体装置
JP2017162909A (ja) 2016-03-08 2017-09-14 株式会社東芝 半導体装置
WO2018012598A1 (ja) 2016-07-15 2018-01-18 ローム株式会社 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937722A (en) * 1988-08-23 1990-06-26 North American Philips Corporation High efficiency direct coupled switched mode power supply
JP5884357B2 (ja) * 2011-09-22 2016-03-15 株式会社デンソー 炭化珪素半導体装置
JP6287469B2 (ja) * 2014-03-28 2018-03-07 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
DE102014119466A1 (de) 2014-12-22 2016-06-23 Infineon Technologies Ag Halbleitervorrichtung mit streifenförmigen trenchgatestrukturen und gateverbinderstruktur
US9952336B2 (en) * 2016-04-15 2018-04-24 Saint-Gobain Ceramics & Plastics, Inc. Photosensors arranged on a surface of a scintillator
DE102016116019B4 (de) * 2016-08-29 2023-11-23 Infineon Technologies Ag Verfahren zum Bilden eines Halbleiterbauelements
JP7106881B2 (ja) * 2018-02-09 2022-07-27 株式会社デンソー 炭化珪素基板および炭化珪素半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085686A (ja) 1999-09-13 2001-03-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2003197910A (ja) 2001-12-26 2003-07-11 Toshiba Corp 半導体装置
JP2008041948A (ja) 2006-08-07 2008-02-21 Toyota Motor Corp 半導体装置
JP2009088186A (ja) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd トレンチゲート型トランジスタ及びその製造方法
JP2011082454A (ja) 2009-10-09 2011-04-21 Panasonic Corp 絶縁膜構造体及びこれを用いた半導体装置
JP2017162909A (ja) 2016-03-08 2017-09-14 株式会社東芝 半導体装置
WO2018012598A1 (ja) 2016-07-15 2018-01-18 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
US20190288073A1 (en) 2019-09-19
US11695045B2 (en) 2023-07-04
US10840340B2 (en) 2020-11-17
US20210020751A1 (en) 2021-01-21
JP2019161079A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
US11094808B2 (en) Semiconductor device
US8643086B2 (en) Semiconductor component with high breakthrough tension and low forward resistance
JP5087272B2 (ja) 半導体装置
US8786015B2 (en) Super-junction semiconductor device
US11114558B2 (en) Shielded gate trench MOSFET integrated with super barrier rectifier
JP3966151B2 (ja) 半導体素子
US8963242B2 (en) Power semiconductor device
US9825158B2 (en) Insulated gate bipolar transistor
JP3703816B2 (ja) 半導体装置
US9293548B2 (en) Semiconductor device
US8912632B2 (en) Semiconductor device
US11695045B2 (en) Silicon carbide semiconductor device and silicon carbide semiconductor circuit device
JP6907233B2 (ja) パワー半導体デバイス
KR20020079919A (ko) 향상된 성능을 갖는 dmos 트랜지스터 구조
US11527615B2 (en) Semiconductor device
US20090179273A1 (en) Semiconductor device
KR20160029630A (ko) 반도체 장치
US10748988B2 (en) Semiconductor device
JP2023530711A (ja) ハイブリッド・ゲート構造を有するパワー・デバイス
US6683348B1 (en) Insulated gate bipolar semiconductor device transistor with a ladder shaped emitter
US8530930B2 (en) Semiconductor device having plural insulated gate switching cells and method for designing the same
KR101602411B1 (ko) 게이트 패드 영역에 액티브셀 배치 구조를 가지는 전력 반도체 장치
US9318589B2 (en) Insulated gate bipolar transistor
KR101701240B1 (ko) 반도체 장치
JP2009277956A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7176206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150