JP7154136B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP7154136B2
JP7154136B2 JP2018566656A JP2018566656A JP7154136B2 JP 7154136 B2 JP7154136 B2 JP 7154136B2 JP 2018566656 A JP2018566656 A JP 2018566656A JP 2018566656 A JP2018566656 A JP 2018566656A JP 7154136 B2 JP7154136 B2 JP 7154136B2
Authority
JP
Japan
Prior art keywords
film
layer
transistor
insulating layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018566656A
Other languages
English (en)
Other versions
JPWO2018146569A1 (ja
Inventor
安孝 中澤
行徳 島
健一 岡崎
純一 肥塚
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JPWO2018146569A1 publication Critical patent/JPWO2018146569A1/ja
Priority to JP2022160298A priority Critical patent/JP2023011576A/ja
Application granted granted Critical
Publication of JP7154136B2 publication Critical patent/JP7154136B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Description

本発明の一態様は、半導体装置とその作製方法に関する。本発明の一態様は、トランジスタとその作製方法に関する。本発明の一態様は、表示装置とその作製方法に関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置、発光装置、照明装置、電気光学装置、半導体回路および電子機器は、半導体装置を有する場合がある。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、照明装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
トランジスタに適用可能な半導体材料として、酸化物半導体が注目されている。例えば、特許文献1では、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合をガリウムよりも大きくすることで、電界効果移動度(単に移動度、またはμFEという場合がある)を高めた半導体装置が開示されている。
半導体層に用いることのできる金属酸化物は、スパッタリング法などを用いて形成できるため、大型の表示装置を構成するトランジスタの半導体層に用いることができる。また、非晶質シリコンを用いたトランジスタの生産設備の一部を改良して利用することが可能であるため、設備投資を抑えられる。また、金属酸化物を用いたトランジスタは、高い電界効果移動度を有するため、駆動回路を一体形成した高機能の表示装置を実現できる。
特開2014-7399号公報
本発明の一態様は、電気特性の良好な半導体装置を提供することを課題の一とする。または、生産性の高い半導体装置の作製方法を提供することを課題の一とする。または、歩留りの高い半導体装置の作製方法を提供することを課題の一とする。または、電気特性の安定した半導体装置を提供することを課題の一とする。または、消費電力の低い半導体装置を提供することを課題の一とする。または、信頼性の高い半導体装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
本発明の一態様は、シリコンと窒素とを含む第1の絶縁層を形成する第1の工程と、第1の絶縁層の表面近傍に、酸素を添加する第2の工程と、第1の絶縁層上に接して、金属酸化物を含む半導体層を形成する第3の工程と、半導体層上に接して、酸素を含む第2の絶縁層を形成する第4の工程と、酸素を含む雰囲気であり、且つ第1の温度でプラズマ処理を行う第5の工程と、酸素を含む雰囲気であり、且つ第2の温度でプラズマ処理を行う第6の工程と、第2の絶縁層上に、シリコンと窒素を含む第3の絶縁層を形成する第7の工程と、を有する半導体装置の作製方法である。また第2の温度は、第1の温度よりも低いことが好ましい。
また上記において、第1の温度は、250℃以上450℃以下の温度であり、第2の温度は、150℃以上300℃以下の温度であることが好ましい。
また、上記において、第5の工程は、第2の絶縁層の形成後に、大気に曝すことなく行うことが好ましい。
また、上記において、第3の工程と第4の工程の間に、酸素を含む雰囲気であり、且つ第3の温度でプラズマ処理を行う第8の工程を有することが好ましい。このとき、第3の温度は、第2の温度よりも高いことが好ましい。
また、上記において、第2の絶縁層の形成は、第1の温度で行うことが好ましい。
また、本発明の他の一態様は、第1の導電層と、第1の絶縁層と、半導体層と、第2の絶縁層と、第3の絶縁層と、を有する半導体装置である。第1の導電層、第1の絶縁層、半導体層、第2の絶縁層、及び第3の絶縁層は、この順で積層される。第1の絶縁層は、シリコンと窒素とを含む。半導体層は、金属酸化物を含む。第2の絶縁層は、酸素を含む。第3の絶縁層は、シリコンと窒素とを含む。第1の絶縁層は、半導体層と接する面を含む第1の領域と、それ以外の第2の領域と、を有し、第1の領域は、第2の領域よりも酸素濃度が高い。
また、上記において、第2の絶縁層は、第3の絶縁層よりも窒素の濃度が低いことが好ましい。
また、上記において、第2の絶縁層は、第3の絶縁層よりも厚さが薄いことが好ましい。
また、上記において、半導体層は、第1の金属酸化物膜と、第2の金属酸化物膜とが積層される構成とすることが好ましい。このとき、第1の金属酸化物膜は、第1の絶縁層の第1の領域と接する部分を有する。また第2の金属酸化物膜は、第2の絶縁層と接する部分を有する。また第1の金属酸化物膜は、第2の金属酸化物膜よりも結晶性が低いことが好ましい。
また、上記において、第2の導電層と、第3の導電層と、を有することが好ましい。このとき、第2の導電層と第3の導電層とは、それぞれ半導体層に接する部分と、第1の絶縁層及び第2の絶縁層の間に位置する部分と、を有することが好ましい。または、第2の導電層と第3の導電層とは、それぞれ第2の絶縁層上に位置する部分と、第2の絶縁層に設けられた開口を介して半導体層と接する部分と、を有することが好ましい。
また、上記において、第2の導電層及び第3の導電層は、それぞれ第1の導電膜、第2の導電膜、及び第3の導電膜を有することが好ましい。このとき、第1の導電膜は、半導体層と接する部分を有する。第2の導電膜は、第3の導電膜上に設けられる。第3の導電膜は、第2の導電膜の上面及び側面を覆って設けられ、且つ、第1の導電膜と接する部分を有する。また、第1の導電膜と第2の導電膜とは、互いに異なる金属元素を含み、第2の導電膜と第3の導電膜とは、互いに異なる金属元素を含むことが好ましい。
また、上記において、第1の導電膜と第3の導電膜は、互いに同じ金属元素を含むことが好ましい。また第2の導電膜は、第1の導電層及び第3の導電層よりも低抵抗な材料を含むことが好ましい。
また、上記において、第1の導電膜と第3の導電膜は、チタンまたはモリブデンを含むことが好ましい。また第2の導電膜は、銅またはアルミニウムを含むことが好ましい。
本発明の一態様によれば、電気特性の良好な半導体装置を提供できる。または、生産性の高い半導体装置の作製方法を提供できる。または、歩留りの高い半導体装置の作製方法を提供できる。または、電気特性の安定した半導体装置を提供できる。または、消費電力の低い半導体装置を提供できる。または、信頼性の高い半導体装置を提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
半導体装置の構成例。 半導体装置の構成例。 半導体装置の構成例。 半導体装置の構成例。 半導体装置の構成例。 半導体装置の構成例。 半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 半導体装置の作製方法を説明する図。 表示装置の構成例。 表示装置の構成例。 表示装置の構成例。 表示装置の構成例。 表示装置の構成例。 表示装置の構成例。 表示装置のブロック図及び回路図。 表示装置のブロック図。 電子機器の構成例。 テレビジョン装置の構成例。 実施例1のTDS分析結果。 実施例1の抵抗測定の結果。 実施例2のトランジスタのId-Vg特性。 実施例2のトランジスタのGBT試験結果。 実施例3のディスプレイモジュールを示すブロック図、および実施例3の画素を示す回路図。 実施例3の画素レイアウトを示す上面図。 実施例3のデータ書込み時間の概算結果。 実施例3のデータ書込み時間の概算結果。 実施例3のディスプレイモジュールを示すブロック図、および実施例3の画素を示す回路図。 実施例3の画素レイアウトを示す上面図。 実施例3のデータ書込み時間の概算結果。 実施例3のデータ書込み時間の概算結果。 実施例3のデータ書込み時間の概算結果。 実施例3のデータ書込み時間の概算結果。 実施例3のデータ書込み時間の概算結果。
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではないことを付記する。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル領域を有しており、チャネル領域を介して、ソース、ドレイン間に電流を流すことができるものである。なお、本明細書等において、チャネル領域とは、電流が主として流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有する素子などが含まれる。
また、本明細書等において、「平行」とは、二つの直線が-10°以上10°以下の角度で配置されている状態をいう。したがって、-5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低いときのドレイン電流を言う場合がある。
トランジスタのオフ電流は、Vgsに依存する場合がある。従って、トランジスタのオフ電流がI以下である、とは、トランジスタのオフ電流がI以下となるVgsの値が存在することを言う場合がある。トランジスタのオフ電流は、所定のVgsにおけるオフ状態、所定の範囲内のVgsにおけるオフ状態、または、十分に低減されたオフ電流が得られるVgsにおけるオフ状態、等におけるオフ電流を指す場合がある。
一例として、しきい値電圧Vthが0.5Vであり、Vgsが0.5Vにおけるドレイン電流が1×10-9Aであり、Vgsが0.1Vにおけるドレイン電流が1×10-13Aであり、Vgsが-0.5Vにおけるドレイン電流が1×10-19Aであり、Vgsが-0.8Vにおけるドレイン電流が1×10-22Aであるようなnチャネル型トランジスタを想定する。当該トランジスタのドレイン電流は、Vgsが-0.5Vにおいて、または、Vgsが-0.5V乃至-0.8Vの範囲において、1×10-19A以下であるから、当該トランジスタのオフ電流は1×10-19A以下である、と言う場合がある。当該トランジスタのドレイン電流が1×10-22A以下となるVgsが存在するため、当該トランジスタのオフ電流は1×10-22A以下である、と言う場合がある。
また、本明細書等では、チャネル幅Wを有するトランジスタのオフ電流を、チャネル幅Wあたりを流れる電流値で表す場合がある。また、所定のチャネル幅(例えば1μm)あたりを流れる電流値で表す場合がある。後者の場合、オフ電流の単位は、電流/長さの次元を持つ単位(例えば、A/μm)で表される場合がある。
トランジスタのオフ電流は、温度に依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、室温、60℃、85℃、95℃、または125℃におけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか一の温度)におけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、室温、60℃、85℃、95℃、125℃、当該トランジスタが含まれる半導体装置の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか一の温度)、におけるトランジスタのオフ電流がI以下となるVgsの値が存在することを指す場合がある。
トランジスタのオフ電流は、ドレインとソースの間の電圧Vdsに依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、Vdsが0.1V、0.8V、1V、1.2V、1.8V、2.5V,3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置等において使用されるVdsにおけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、Vdsが0.1V、0.8V、1V、1.2V、1.8V、2.5V,3V、3.3V、10V、12V、16V、20V、当該トランジスタが含まれる半導体装置の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置等において使用されるVds、におけるトランジスタのオフ電流がI以下となるVgsの値が存在することを指す場合がある。
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電流は、トランジスタがオフ状態にあるときのソースを流れる電流を言う場合もある。
また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。また、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。
また、本明細書等において、トランジスタのしきい値電圧とは、トランジスタにチャネルが形成されたときのゲート電圧(Vg)を指す。具体的には、トランジスタのしきい値電圧とは、ゲート電圧(Vg)を横軸に、ドレイン電流(Id)の平方根を縦軸にプロットした曲線(Vg-√Id特性)において、最大傾きである接線を外挿したときの直線と、ドレイン電流(Id)の平方根が0(Idが0A)との交点におけるゲート電圧(Vg)を指す場合がある。あるいは、トランジスタのしきい値電圧とは、チャネル長をL、チャネル幅をWとし、Id[A]×L[μm]/W[μm]の値が1×10-9[A]となるゲート電圧(Vg)を指す場合がある。
また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が十分に低い場合は、「絶縁体」としての特性を有する場合がある。また、「半導体」と「絶縁体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書等に記載の「半導体」と、「絶縁体」とは、互いに言い換えることが可能な場合がある。
また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が十分に高い場合は、「導電体」としての特性を有する場合がある。また、「半導体」と「導電体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書等に記載の「半導体」と、「導電体」とは、互いに言い換えることが可能な場合がある。
また、本明細書等において、原子数比がIn:Ga:Zn=4:2:3またはその近傍であるとは、In、Ga及びZnの原子数の総和に対するInの比を4としたときに、Gaの比が1以上3以下であり、Znの比が2以上4以下であるとする。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍であるとは、In、Ga及びZnの原子数の総和に対するInの比を5としたときに、Gaの比が0.1より大きく2以下であり、Znの比が5以上7以下であるとする。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍であるとは、In、Ga及びZnの原子数の総和に対するInの比を1としたときに、Gaの比が0.1より大きく2以下であり、Znの比が0.1より大きく2以下であるとする。
本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。また、「OS FET」と記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
また、本明細書等において、CAAC(c-axis aligned crystal)、及びCAC(Cloud-Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
また、本明細書等において、CAC-OSまたはCAC-metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OSまたはCAC-metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OSまたはCAC-metal oxideに付与することができる。CAC-OSまたはCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、本明細書等において、CAC-OSまたはCAC-metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC-OSまたはCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC-OSまたはCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OSまたはCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OSまたはCAC-metal oxideをトランジスタのチャネル領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC-OSまたはCAC-metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
金属酸化物の結晶構造の一例について説明する。なお、以下では、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリング法にて成膜された金属酸化物を一例として説明する。上記ターゲットを用いて、基板温度を100℃以上130℃以下として、スパッタリング法により形成した金属酸化物をsIGZOと呼称し、上記ターゲットを用いて、基板温度を室温(R.T.)として、スパッタリング法により形成した金属酸化物をtIGZOと呼称する。例えば、sIGZOは、nc(nano crystal)及びCAACのいずれか一方または双方の結晶構造を有する。また、tIGZOは、ncの結晶構造を有する。なお、ここでいう室温(R.T.)とは、基板を意図的に加熱しない場合の温度を含む。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa-b面においては配向せずに連結した結晶構造である。
本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
また、本明細書等において、タッチセンサは指やスタイラスなどの被検知体が触れる、押圧する、または近づくことなどを検出する機能を有するものである。またその位置情報を検知する機能を有していてもよい。したがってタッチセンサは入力装置の一態様である。例えばタッチセンサは1以上のセンサ素子を有する構成とすることができる。
また、本明細書等では、タッチセンサを有する基板を、タッチセンサパネル、または単にタッチセンサなどと呼ぶ場合がある。また、本明細書等では、タッチセンサパネルの基板に、例えばFPCもしくはTCPなどのコネクターが取り付けられたもの、または基板にCOG方式等によりICが実装されたものを、タッチセンサパネルモジュール、タッチセンサモジュール、センサモジュール、または単にタッチセンサなどと呼ぶ場合がある。
なお、本明細書等において、表示装置の一態様であるタッチパネルは表示面に画像等を表示(出力)する機能と、表示面に指やスタイラスなどの被検知体が触れる、押圧する、または近づくことなどを検出するタッチセンサとしての機能と、を有する。したがってタッチパネルは入出力装置の一態様である。
タッチパネルは、例えばタッチセンサ付き表示パネル(または表示装置)、タッチセンサ機能つき表示パネル(または表示装置)とも呼ぶことができる。
タッチパネルは、表示パネルとタッチセンサパネルとを有する構成とすることもできる。または、表示パネルの内部または表面にタッチセンサとしての機能を有する構成とすることもできる。
また、本明細書等では、タッチパネルの基板に、例えばFPCもしくはTCPなどのコネクターが取り付けられたもの、または基板にCOG方式等によりICが実装されたものを、タッチパネルモジュール、表示モジュール、または単にタッチパネルなどと呼ぶ場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置と、その作製方法について説明する。ここでは半導体装置の一態様である、トランジスタについて説明する。
本発明の一態様のトランジスタは、ゲート電極として機能する第1の導電層と、ゲート絶縁層として機能する第1の絶縁層と、半導体層と、それぞれソース電極またはドレイン電極として機能する第2の導電層及び第3の導電層と、を有する。
半導体層には、金属酸化物膜を用いることが好ましい。例えば、インジウム、ガリウム、及び亜鉛のうち、いずれか一以上を含む酸化物を用いることが好ましい。
本発明の一態様のトランジスタは、第1の導電層、第1の絶縁層、半導体層、第2の絶縁層、及び第3の絶縁層の積層構造を有することが好ましい。
ゲート絶縁層として機能する第1の絶縁層と、保護層として機能する第3の絶縁層は、シリコン及び窒素を主成分とする絶縁膜を含むことが好ましい。このような絶縁膜は、水、水素、及び酸素などが拡散しにくい特徴を有する。そのため、半導体層を第1の絶縁層と第3の絶縁層で挟み込む構成とすることで、外部から半導体層へ水や水素が拡散することを防ぐ効果と、半導体層から外部へ酸素が拡散(脱離)することを防ぐ効果を奏する。
特に、第1の絶縁層及び第3の絶縁層として、プラズマCVD(Chemical Vapor Deposition)法により成膜された窒化シリコン膜を用いることができる。このような成膜方法により形成された窒化シリコン膜は極めて緻密であり、またピンホールなどの欠陥が形成されにくいため、水、水素及び酸素の拡散を抑制するバリア膜として好適に用いることができる。また、成膜速度を高めることが可能であり、生産性を向上させることができる。
さらに、第1の絶縁層の半導体層と接する面及びその近傍に、酸素を含む領域が形成されていることが好ましい。例えば、第1の絶縁層の半導体層に接する部分に酸素を含ませる(添加する)処理を行うことで、部分的に酸素を多く含む領域を形成することができる。また、このような処理により、当該領域中の水素濃度が低減するといった副次的な効果を奏する場合がある。
ここで、プラズマCVD法等で成膜した窒化シリコン膜は水素を多く含む場合が多く、金属酸化物膜と接して設けると、窒化シリコン膜中の水素が金属酸化物膜に拡散し、金属酸化物膜のキャリア濃度が高くなってしまう場合がある。しかしながら本発明の一態様では、窒化シリコン膜中の水素を含む領域と、金属酸化物膜との間に、水素濃度が低減され、且つ酸素を多く含む領域を挟み込んだ構成とすることができる。したがって、第1の絶縁層にプラズマCVD法で形成した窒化シリコン膜を用いた場合であっても、半導体層への水素の拡散を効果的に抑制することができ、信頼性の高いトランジスタを実現できる。
半導体層の上面に接する第2の絶縁層は、酸素を含むことが好ましい。また、第2の絶縁層は、第3の絶縁層よりも窒素の濃度が低い材料を用いることが好ましい。例えば、シリコンと酸素とを含む絶縁膜、シリコンと酸素と窒素を含む絶縁膜などを用いることが好ましい。または、例えばアルミニウムまたはハフニウムと、酸素と、を含む絶縁膜を用いてもよい。特に、例えば酸化シリコン膜または酸化窒化シリコン膜を用いることがより好ましい。
また、第2の絶縁層を形成した後に、第2の絶縁層に対して、第1の温度で酸素を供給する処理を行うことが好ましい。例えば、酸素を含む雰囲気下でのプラズマ処理(以下、酸素プラズマ処理ともいう)を行うことが好ましい。当該酸素プラズマ処理は、第2の絶縁層の成膜後に、大気に曝すことなく行うことが好ましい。特に、当該酸素プラズマ処理は、第2の絶縁層を構成する絶縁膜の成膜温度と同じ温度で行うことが好ましい。
さらに、第1の温度で酸素プラズマ処理を行った後、第1の温度よりも低い第2の温度で、酸素を含む雰囲気下でのプラズマ処理を行うことが好ましい。
第1の温度での酸素プラズマ処理により、第2の絶縁層を介して半導体層へ酸素を効果的に供給することができる。このとき、比較的高い温度でプラズマ処理を行うため、第2の絶縁層中の一部の酸素が脱離してしまうことがある。そこで、第1の温度よりも低い第2の温度で再度酸素プラズマ処理を行うことで、第2の絶縁層中により多くの酸素を含ませることができる。
なお、酸素プラズマ処理の回数は2回に限られず、3回以上行ってもよい。プラズマ処理の回数が多いほど、酸素を多く含有する第2の絶縁層とすることができる。また、3度以上の酸素プラズマ処理を行う場合には、2回目以降の酸素プラズマ処理の処理温度を、直前の処理温度と同じ温度、またはこれよりも低い温度とすることが好ましい。
さらに、2度の酸素プラズマ処理を行った後に、酸素を透過しにくい第3の絶縁層を形成することで、半導体層及び第2の絶縁層に多くの酸素を閉じ込めることができる。
第3の絶縁層の成膜後に、加熱処理を行うことで、第2の絶縁層中に多く含まれる酸素を半導体層に供給することができる。または、第3の絶縁層を、第2の温度よりも高い温度で成膜することで、第3の絶縁層の成膜中に第2の絶縁層中に多く含まれる酸素を半導体層に供給することができる。また、このとき、第3の絶縁層の成膜工程と、上記加熱処理を兼ねることができるため、工程を簡略化できる。
第1の温度としては、例えば250℃以上450℃以下、好ましくは280℃以上400℃以下、より好ましくは、300℃以上380℃以下、代表的には350℃とすることができる。
第2の温度としては、例えば150℃以上300℃以下、好ましくは170℃以上280℃以下、より好ましくは、190℃以上250℃以下、代表的には220℃とすることができる。
ここで、第1の温度と第2の温度は、それぞれ基板温度、または基板を保持するステージの温度とする。また、当該温度は実測値であってもよいし、設定値であってもよい。なお、当該温度は基板面内において、10%以下の変動(ばらつき)を有していてもよいこととする。
以上の工程により、半導体層中の酸素欠損が低減され、信頼性の高いトランジスタを実現できる。
また、半導体層のバックチャネル側に接する第2の絶縁層に、第3の絶縁層よりも窒素の含有量の少ない酸化物膜を用いる構成とすることができる。そのため、半導体層と接する第2の絶縁層中に、準位を形成しうる窒素酸化物(NO、xは0よりも大きく2以下、好ましくは1以上2以下。代表的にはNOまたはNO)が形成されにくい構成とすることができる。これにより、電気特性及び信頼性に優れたトランジスタを実現できる。
第2の絶縁層は、ソース電極及びドレイン電極として機能する第2の導電層と第3の導電層の上側または下側に配置することができる。
例えば、第2の絶縁層を第2の導電層及び第3の導電層よりも上側に配置した場合、第2の導電層と第3の導電層は、半導体層の上面及び側面に接して設けることができる。このような構成を有するトランジスタとして、ボトムゲート型チャネルエッチ構造のトランジスタがある。
一方、第2の絶縁層を第2の導電層及び第3の導電層よりも下側に配置することで、第2の絶縁層を、ソース電極及びドレイン電極の加工時に半導体層を保護するためのチャネル保護層として用いることができる。このとき、第2の絶縁層は、半導体層の上面及び端部を覆って設けられていてもよいし、半導体層上に位置する島状のパターンに加工されていてもよい。第2の導電層及び第3の導電層は、第2の絶縁層が設けられていない領域において、半導体層と電気的に接続される。
半導体層は、第1の金属酸化物膜と、第2の金属酸化物膜とが積層された構成を有することが好ましい。このとき、第2の絶縁層側に位置する第2の金属酸化物膜に、第1の金属酸化物膜よりも結晶性の高い材料を用いることが好ましい。これにより、ボトムゲート型チャネルエッチ構造のトランジスタとする場合に、ソース電極及びドレイン電極の加工時に半導体層が薄膜化または消失してしまうことを抑制できる。また、第1の導電層側に位置する第1の金属酸化物膜に、第2の金属酸化物膜よりも結晶性の低い材料を用いることで、トランジスタの電界効果移動度を高めることができる。
ところで、大型の画面を備えるテレビジョン装置などの表示装置は、トランジスタを構成する半導体膜として水素化アモルファスシリコン(a-Si:H)が用いられることが多い。水素化アモルファスシリコンを用いたトランジスタは、電気特性の安定化のため、水素を多く含む窒化シリコンから放出される水素により、シリコンの未結合手を終端する処理が行われる。そのため、水素化アモルファスシリコンを用いた表示装置の製造ラインでは、窒化シリコン膜の成膜装置を備える場合が多い。
本発明の一態様の半導体装置は、半導体層を構成する金属酸化物膜を挟む絶縁層として、水素を多く含む窒化シリコン膜を適用しても、金属酸化物膜へ水素が拡散することが抑制されるため、良好な電気特性を得ることができる。そのため、本発明の一態様のトランジスタを用いた表示装置の製造ラインとして、水素化アモルファスシリコンを用いた表示装置の製造ラインの装置の多くを流用することが可能となる。したがって、従来の水素化アモルファスシリコンを用いた製造ラインに対して大きな設備投資を行うことなく、本発明の一態様の金属酸化物膜を用いた表示装置の製造ラインに転換することが可能となる。
以下では、本発明の一態様のより具体的な例について、図面を参照して説明する。以下では、半導体装置の一例として、トランジスタを例に挙げて説明する。
[構成例1]
図1(A)は、トランジスタ100の上面図である。図1(B)は、図1(A)中の切断線X1-X2における断面概略図である。図1(C)は、図1(A)中の切断線Y1-Y2における断面概略図である。なお、図1(A)において、煩雑になることを避けるため、トランジスタ100の一部の構成要素(絶縁層等)を省略して図示している。また、X1-X2の方向をチャネル長方向、Y1-Y2の方向をチャネル幅方向と呼ぶことがある。
トランジスタ100は、基板102上の導電層104と、基板102及び導電層104上に絶縁層106と、絶縁層106上に半導体層108と、半導体層108の上面に接し、半導体層108上で離間する導電層112a及び導電層112bと、を有する。また導電層112a、導電層112b及び半導体層108を覆って絶縁層114、絶縁層116が設けられている。
導電層104の一部は、ゲート電極として機能する。絶縁層106の一部は、ゲート絶縁層として機能する。導電層112aは、ソース電極及びドレイン電極の一方として機能し、導電層112bは、ソース電極及びドレイン電極の他方として機能する。絶縁層114、絶縁層116は、それぞれ保護層として機能する。
なお、トランジスタ100は、いわゆるチャネルエッチ型のトランジスタである。
半導体層108は、金属酸化物を含むことが好ましい。特に、半導体層108は、Inと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)と、Znと、を有すると好ましい。特にMはAl、Ga、Y、またはSnとすることが好ましい。
また、半導体層108は、Inの原子数比がMの原子数比より多い領域を有すると好ましい。一例としては、半導体層108のIn、M、及びZnの原子数の比を、In:M:Zn=4:2:3近傍とすると好ましい。
なお、半導体層108は、上記の組成に限定されない。例えば、半導体層108のIn、M、及びZnの原子数の比を、In:M:Zn=5:1:6近傍としてもよい。ここで近傍とは、Inが5の場合、Mが0.5以上1.5以下であり、且つZnが5以上7以下を含む。
また、半導体層108の組成として、半導体層108のIn、M、及びZnの原子数の比を概略等しくしてもよい。すなわち、In、M、及びZnの原子数の比が、In:M:Zn=1:1:1近傍の材料を含んでいてもよい。
半導体層108が、Inの原子数比がMの原子数比より多い領域を有することで、トランジスタ100の電界効果移動度を高くすることができる。具体的には、トランジスタ100の電界効果移動度が10cm/Vを超える、さらに好ましくはトランジスタ100の電界効果移動度が30cm/Vを超えることが可能となる。
例えば、上記の電界効果移動度が高いトランジスタを画素に配置することで、画素の開口率(画素面積に対する表示に寄与する領域の面積の比)を高めることができる。また、上記の電界効果移動度が高いトランジスタを、ゲート信号を生成するゲートドライバに用いることで、額縁幅の狭い(狭額縁ともいう)表示装置を提供することができる。また、上記の電界効果移動度が高いトランジスタを、表示装置が有するソースドライバ(特に、ソースドライバが有するシフトレジスタの出力端子に接続されるデマルチプレクサ)に用いることで、表示装置に接続される配線数が少ない表示装置を提供することができる。
なお、半導体層108が、Inの原子数比がMの原子数比より多い領域を有していても、半導体層108の結晶性が高い場合、電界効果移動度が低くなる場合がある。
半導体層108の結晶性としては、例えば、X線回折(XRD:X-Ray Diffraction)を用いて分析する、あるいは、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて分析することで解析できる。
絶縁層106及び絶縁層116には、それぞれ水素や酸素などの不純物が拡散しにくい絶縁膜を用いることができる。例えば、窒化絶縁膜などのバリア性の高い絶縁膜を用いることができる。特に、シリコンと窒素を主成分として含む絶縁膜を用いることが好ましい。絶縁層106の領域106a以外の領域、及び絶縁層116は、それぞれ主成分として酸素を含まないことが好ましい。
絶縁層106は、その上面近傍に位置する領域106aを有する。図1(B)、(C)では、領域106aの輪郭を破線で示している。領域106aは、絶縁層106の他の領域よりも酸素濃度の高い領域である。また領域106aは、絶縁層106の他の領域よりも水素濃度の低い領域であることが好ましい。半導体層108は、領域106aと接して設けられている。
領域106aの存在は、例えば、絶縁層106における、半導体層108との界面を含む領域の元素分析を行うことにより確認することができる。このとき、絶縁層106の半導体層108に近い領域に、酸素が多く検出されうる。また、絶縁層106と半導体層108との界面近傍に酸素濃度の高い領域が観測される場合がある。また、絶縁層106の半導体層108に近い領域に、他の部分よりも水素濃度が低い領域が観測されうる。元素分析の手法としては、例えばエネルギー分散型X線分光法(EDX:Energy Dispersive X-ray spectroscopy)や、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)などがある。また、領域106aの存在は、断面における透過型電子顕微鏡(TEM:Transmission Electron Microscopy)像などにおいて、他の部分とはコントラストの違う領域として観察できる場合がある。
絶縁層114には、酸素を含む絶縁膜を用いることができる。絶縁層114は、絶縁層116よりも窒素の濃度が低い材料を用いることが好ましい。例えば、シリコンと酸素とを含む絶縁膜、シリコンと酸素と窒素を含む絶縁膜などを用いることが好ましい。または、例えばアルミニウムまたはハフニウムと、酸素と、を含む絶縁膜を用いてもよい。例えば、絶縁層114としては、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜を用いることができる。特に、酸化シリコン膜または酸化窒化シリコン膜を用いることがより好ましい。
絶縁層114として、酸化シリコン膜、酸化窒化シリコン膜等を用いる場合には、プラズマCVD装置を用いて形成すると好ましい。プラズマCVD装置は、被形成面の段差被覆性が高く、また緻密で欠陥の少ない絶縁膜を成膜できるため好ましい。
また、酸化アルミニウム膜、酸化ハフニウム等を用いる場合、スパッタリング装置を用いて形成すると好ましい。スパッタリング装置を用いて酸化アルミニウム膜を形成する場合、酸素ガスを含む雰囲気で形成することで、半導体層108中に好適に酸素を添加することができる。また、スパッタリング装置を用いて、酸化アルミニウム膜を形成する場合、膜密度を高めることができるため好適である。
また、絶縁層114は、絶縁層116よりも厚さが薄いことが好ましい。絶縁層114を薄く形成することで、後述するプラズマ処理により、絶縁層114を介して半導体層108に酸素を供給しやすくすることができる。また、絶縁層114を薄く形成することで生産性を向上させることができる。一方、絶縁層116は成膜速度を高くできるため、厚さを絶縁層114よりも厚くすることでトランジスタ100の機械的強度を高めることができる。
ここで、導電層112a及び導電層112bは、それぞれ絶縁層106の領域106aに接して設けられている。これにより、導電層112a及び導電層112bに水素を拡散しやすい材料を用いた場合であっても、絶縁層106中に含まれる水素が導電層112a及び導電層112bを介して半導体層108に拡散することを防ぐことができる。
図2には、図1(B)中の破線で囲った領域の拡大図を示している。図2は、半導体層108のチャネル形成領域及びその近傍を拡大した図である。
トランジスタ100は、導電層104、絶縁層106、半導体層108、絶縁層114、及び絶縁層116が順に積層された積層構造を有している。また絶縁層106の半導体層108と接する領域に、酸素を含む領域106aを有する。
ここで、半導体層108に金属酸化物膜を用いる場合、これと接する層に酸化物を用いることで、これらの界面に欠陥準位が形成されることを抑制することができる。図2に示すように、半導体層108が接する絶縁層114は酸化物膜を含む。また半導体層108が接する領域106aは酸素を多く含む領域であるため、酸化物膜に近い組成となっている。したがって、このような積層構造を有することで、トランジスタ100の電気特性を良好なものとすることができる。
さらにトランジスタ100は、領域106a、半導体層108、及び絶縁層114の積層構造を、絶縁層106と絶縁層116とで挟み込む構成を有する。絶縁層106及び絶縁層116は水、水素、及び酸素等が拡散しにくい層であるため、外部から半導体層108へ水や水素が拡散することを防ぎ、且つ、半導体層108から外部へ酸素が拡散(脱離)することを防ぐことができる。その結果、トランジスタ100の電気特性を良好なものとするだけでなく、信頼性を高めることができる。
また、半導体層108は、導電層112a及び導電層112bと接する部分及びその近傍に位置する一対の領域108nが形成されていてもよい。領域108nは、半導体層108の一部であり、チャネル形成領域よりも低抵抗な領域である。また領域108nは、キャリア密度が高い領域、またはn型である領域などと言い換えることができる。また半導体層108において、一対の領域108nに挟まれ、且つ、導電層104と重なる領域が、チャネル形成領域として機能する。
なお、領域108nの形状や範囲は、トランジスタの作製条件によって様々に変化しうるため、図2等に示す例に限られない。例えば、領域108nの形状が導電層112aよりも外側に位置する場合がある。また、領域108nの境界は曖昧である場合が多いため、図2等では破線で示している。
以上が、構成例1についての説明である。
以下では、上記構成例1と一部の構成が異なるトランジスタの構成例について説明する。なお、以下では、上記構成例1と重複する部分は説明を省略する場合がある。また、以下で示す図面において、上記構成例1と同様の機能を有する部分についてはハッチングパターンを同じくし、符号を付さない場合もある。
[構成例2]
図3(A)は、以下で例示するトランジスタ100Aのチャネル長方向の断面図であり、図3(B)は、チャネル幅方向の断面図である。なお、上面図については図1(A)を援用できる。
トランジスタ100Aは、半導体層108が積層構造を有する点、及び、導電層112a及び導電層112bが積層構造を有する点で、構成例1で例示したトランジスタ100と主に相違している。
半導体層108は、上から半導体層108aと半導体層108bとが積層された積層構造を有する。半導体層108bは、絶縁層106の領域106a上に設けられている。また半導体層108aは、半導体層108b上に設けられ、導電層112a及び導電層112bと接する。
半導体層108aと半導体層108bとは、それぞれ金属酸化物膜を含むことが好ましい。また、絶縁層114側に位置する半導体層108aに、半導体層108bよりも結晶性の高い金属酸化物膜を用いることが好ましい。
また半導体層108aと半導体層108bとは、同じ酸化物ターゲットを用い、成膜条件を異ならせることで、大気に触れることなく連続して形成されることが好ましい。
例えば、半導体層108aの成膜時の酸素流量比(成膜ガスの全流量に対する、酸素ガスの流量の割合)を、半導体層108bの成膜時の酸素流量比よりも大きくする。これにより、半導体層108aの成膜時に、半導体層108bに酸素を効果的に供給することができる。また、半導体層108bは半導体層108aよりも結晶性が低く、電気伝導性の高い膜とすることができる。一方、上部に設けられる半導体層108aを半導体層108bよりも結晶性の高い膜とすることで、半導体層108の加工時、導電層112a及び導電層112bの加工時、及び絶縁層114の成膜時等のダメージを抑制することができる。例えば、半導体層108bにCAC-OS膜を用い、半導体層108aにCAAC-OS膜を用いることができる。
より具体的には、半導体層108bの成膜時の酸素流量比を、0%以上50%未満、好ましくは0%以上30%以下、より好ましくは0%以上20%以下、代表的には10%とする。また半導体層108aの成膜時の酸素流量比を、50%以上100%以下、好ましくは60%以上100%以下、より好ましくは80%以上100%以下、さらに好ましくは90%以上100%以下、代表的には100%とする。また、半導体層108aと半導体層108bとで、成膜時の圧力、温度、電力等の条件を異ならせてもよいが、酸素流量比以外の条件を同じとすることで、成膜工程にかかる時間を短縮することができるため好ましい。
半導体層108をこのような積層構造とすることで、電気特性に優れ、且つ信頼性の高いトランジスタを実現できる。
なお、半導体層108aと半導体層108bとは、それぞれ異なる組成の膜であってもよい。このとき、半導体層108a及び半導体層108bの両方に、In-Ga-Zn酸化物を用いた場合、半導体層108bに、半導体層108aよりもInの組成が大きい酸化物ターゲットを用いることが好ましい。
導電層112a及び導電層112bは、それぞれ導電層121と、導電層122と、導電層123が順に積層された積層構造を有する。
導電層121は、半導体層108aの上面及び側面、並びに半導体層108bの側面を覆って設けられている。また、導電層121は絶縁層106の領域106a上に接して設けられている。導電層122は、導電層121上に設けられている。導電層122は、平面視において、導電層121よりも内側に位置する。導電層123は、導電層122上に設けられている。導電層123は、導電層122の上面及び側面を覆って設けられている。また導電層123の一部は、導電層121の上面に接して設けられている。導電層121と導電層123とは、平面視において端部が一致するように加工されている。
このような構成とすることで、導電層122は導電層121と導電層123によって囲まれた構成とすることができる。言い換えると、導電層122の表面が露出しない構成とすることができる。これにより、導電層122には、半導体層108中に拡散しやすい材料を用いることができる。
導電層122には、導電層121及び導電層123よりも低抵抗な材料を用いることが好ましい。また、導電層121及び導電層123には、導電層122よりも半導体層108中に拡散しにくい材料を用いることができる。
導電層122は、少なくとも導電層121及び導電層123と異なる導電性材料を用いることができる。なお、導電層121と導電層123に、それぞれ異なる導電性材料を用いることもできる。特に導電層121と導電層123に同じ導電性材料を用いると、装置を共通化でき、さらにこれらの端部における接触抵抗を低減できるため好ましい。
例えば、導電層121及び導電層123に、チタン膜またはモリブデン膜を用いることが好ましい。また、導電層122には、アルミニウム膜または銅膜を用いることが好ましい。このような構成により、導電層112a及び導電層112bの配線抵抗を低くしつつ、電気特性の良好なトランジスタを実現できる。
以下では、単層構造を有する半導体層108、及び積層構造を有する半導体層108が有する半導体層108a及び半導体層108bについて説明する。
半導体層108、半導体層108a、及び半導体層108bは、それぞれ金属酸化物を含むことが好ましい。特に、インジウム、ガリウム、及び亜鉛のうち、いずれか一以上を含む酸化物を有することが好ましい。または、それぞれ、インジウムと、亜鉛と、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)と、を有することが好ましい。特にMはアルミニウム、ガリウム、イットリウム、またはスズとすることが好ましい。
一例としては、半導体層108、半導体層108a、及び半導体層108bは、In、M、及びZnの原子数の比を、In:M:Zn=4:2:3またはその近傍、あるいはIn:M:Zn=5:1:7またはその近傍とすると好ましい。
例えば、半導体層が2層の積層構造を有する場合、下側に位置する半導体層108bにはCAC-OSを適用する。これにより、トランジスタのオン電流を高めることができる。また上側に位置する半導体層108aにはCAAC-OSを適用する。最も上側に位置する半導体層108aに結晶性の高い膜を適用することでエッチング耐性が向上し、導電層112a及び導電層112bの形成の際に、半導体層108aの一部が消失してしまうことを防止することができる。
また、半導体層を3層の積層構造としてもよい。このとき、最も下側に位置する半導体層は、半導体層108aまたは半導体層108bと同様の構成とすることができる。例えば、最も下側に位置する半導体層に半導体層108aと同様の構成を適用することで、積層構造を有する半導体層108の信頼性を向上させることができる。また、最も下側に位置する半導体層に半導体層108bと同様の構成を適用することで、さらにトランジスタのオン電流を高めることができる。
このように、本発明の一態様では、積層構造を有する半導体層108として、下側に位置する半導体層108bには結晶性の低い金属酸化物を用い、これよりも上部に位置する半導体層108aには結晶性の高い金属酸化物で、半導体層108bの上部を覆う構成とする。半導体層108bが結晶性の低い領域を有することで、キャリア密度が高くなる場合がある。このとき、半導体層108bが主な電流経路となりうる。これにより、オン電流が高く、且つ信頼性が高められたトランジスタを実現できる。
なお、半導体層108が単層構造の場合には、半導体層108bと同様の構成を適用することで、トランジスタのオン電流を高めることができる。また、半導体層108に半導体層108aと同様の構成を適用することで、トランジスタの信頼性を向上させることができる。
以上が構成例2についての説明である。
[変形例1]
図4(A)は、以下で例示するトランジスタ100Bの上面図であり、図4(B)は、トランジスタ100Bのチャネル長方向の断面図であり、図4(C)は、チャネル幅方向の断面図である。
トランジスタ100Bは、導電層120a及び導電層120bを有する点で、上記構成例2で例示したトランジスタ100Aと主に相違している。
導電層120aは、絶縁層116上に設けられ、半導体層108と重なる部分を有する。このとき、導電層104は第1のゲート電極として機能し、導電層120aは第2のゲート電極として機能する。絶縁層106の一部は第1のゲート絶縁層として機能し、絶縁層114及び絶縁層116の一部は、第2のゲート絶縁層として機能する。トランジスタ100Bは、一対のゲート電極を有するトランジスタである。
接続部142aにおいて、導電層120bは、絶縁層116及び絶縁層114に設けられた開口を介して導電層112bの導電層123と電気的に接続されている。
図4(C)に示すように、導電層120aと導電層104とは接続部142bにより電気的に接続される構成とすることが好ましい。接続部142bには、導電層121、導電層122、導電層123が設けられている。接続部142bにおいて、導電層120aは、絶縁層116及び絶縁層114に設けられた開口を介して導電層123と電気的に接続され、導電層121は、絶縁層106に設けられた開口を介して導電層104と電気的に接続されている。
半導体層108は、導電層104と、導電層120aとに挟持される。図4(A)、(C)では、導電層104及び導電層120aは、チャネル長方向の長さ及びチャネル幅方向の長さが、半導体層108のチャネル長方向の長さ及びチャネル幅方向の長さよりもそれぞれ長い例を示している。そのため、半導体層108は絶縁層106並びに絶縁層114及び絶縁層116を間に挟んで、導電層104と導電層120aとに覆われた構成を有する。言い換えると、トランジスタ100Bのチャネル幅方向において、導電層104及び導電層120aは、半導体層108を囲む構成を有する。
このような構成とすることで、半導体層108を、導電層104及び導電層120aの電界によって電気的に囲むことができる。トランジスタ100Bのように、導電層104及び導電層120aの電界によって、チャネル領域が形成される半導体層を電気的に囲むトランジスタのデバイス構造を、Surrounded channel(S-channel)構造と呼ぶことができる。
トランジスタ100Bは、S-channel構造を有するため、導電層104及び導電層120aによってチャネルを誘起させるための電界を効果的に半導体層108に印加することができる。したがって、トランジスタ100Bの駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能なため、トランジスタ100Bを微細化することが可能となる。また、トランジスタ100Bは、導電層104及び導電層120aによって半導体層108が囲まれた構造を有するため、トランジスタ100Bの機械的強度を高めることができる。
また、上記構成とすることにより、半導体層108においてキャリアの流れる領域が、半導体層108の導電層104側と、半導体層108の導電層120a側の両方に形成されることで、広い範囲となるため、トランジスタ100Bはキャリア移動量が増加する。その結果、導電層104と導電層120aのいずれか一方に所定の電位を与えた場合に比べて、トランジスタ100Bのオン電流を大きくできる。
以上が変形例についての説明である。
[構成例3]
以下では、絶縁層114を導電層112a及び導電層112bの加工時に半導体層108を保護するためのチャネル保護層として用いる構成について説明する。
図5(A)は、以下で例示するトランジスタ100Cの上面図であり、図5(B)は、トランジスタ100Cのチャネル長方向の断面図であり、図5(C)は、トランジスタ100Cのチャネル幅方向の断面図である。
トランジスタ100Cは、絶縁層114及び絶縁層116よりも、導電層112a及び導電層112bが上側に位置している点で、構成例1で例示したトランジスタ100と主に相違している。
絶縁層114は、半導体層108の上面及び側面、ならびに絶縁層106を覆って設けられている。また、絶縁層116は、絶縁層114を覆って設けられている。
導電層112aと導電層112bとは、それぞれ絶縁層116上に設けられ、絶縁層116及び絶縁層114に設けられた開口を介して、半導体層108と接する。
このような構成とすることで、導電層112aと導電層112bを加工するためのエッチング工程において、半導体層108が絶縁層114及び絶縁層116に覆われた状態で行われるため、半導体層108がエッチングのダメージを受けにくい構成とすることができる。またこのような構成とすることで、導電層112a及び導電層112bの材料の選択の幅が広がるため好ましい。
なお、ここでは絶縁層114及び絶縁層116が、半導体層108の上面だけでなく側面も覆う構成としたが、これに限られない。例えば、絶縁層114及び絶縁層116が島状に加工され、半導体層108のチャネル形成領域の上に位置する構成としてもよい。
以上が、構成例3についての説明である。
[構成例4]
図6(A)は、以下で例示するトランジスタ100Dのチャネル長方向の断面図であり、図6(B)は、チャネル幅方向の断面図である。
トランジスタ100Dは、半導体層108が積層構造を有する点、導電層120a及び導電層120bを有する点で、上記構成例3で例示したトランジスタ100Cと主に相違している。
半導体層108は、上側から半導体層108aと半導体層108bとが積層された積層構造を有する。また、絶縁層114は、半導体層108aの上面及び側面と、半導体層108bの側面をそれぞれ覆って設けられている。
また、絶縁層116、導電層112a及び導電層112bを覆って、絶縁層118が設けられ、絶縁層118上に導電層120a及び導電層120bが設けられている。絶縁層118は、平坦化膜としての機能を有していることが好ましい。絶縁層118としては、有機樹脂を好適に用いることができる。
接続部142aにおいて、導電層120bは、絶縁層118に設けられた開口を介して導電層112bと電気的に接続されている。
また、導電層120aと導電層104とは、接続部142bを介して電気的に接続されている。接続部142bには、導電層112a等と同一の導電膜を加工することで形成された導電層を有する。当該導電層は、絶縁層116、絶縁層114及び絶縁層106に設けられた開口を介して、導電層104と電気的に接続されている。また、導電層120aと当該導電層とは、絶縁層118に設けられた開口を介して電気的に接続されている。
以上が、構成例4についての説明である。
[半導体装置の構成要素について]
以下では、本実施の形態の半導体装置に含まれる構成要素について、詳細に説明する。
〔基板〕
基板102の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サファイア基板等を、基板102として用いてもよい。また、シリコンや炭化シリコンを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板等を適用することも可能であり、これらの基板上に半導体素子が設けられたものを、基板102として用いてもよい。なお、基板102として、ガラス基板を用いる場合、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)等の大面積基板を用いることで、大型の表示装置を作製することができる。
また、基板102として、可撓性基板を用い、可撓性基板上に直接、トランジスタ100を形成してもよい。または、基板102とトランジスタ100の間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板102より分離し、他の基板に転載するのに用いることができる。その際、トランジスタ100は耐熱性の劣る基板や可撓性の基板にも転載できる。
〔導電層〕
導電層104、導電層112a、導電層112b、導電層120a、導電層120bとしては、クロム、銅、アルミニウム、金、銀、亜鉛、モリブデン、タンタル、チタン、タングステン、マンガン、ニッケル、鉄、コバルトから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いてそれぞれ形成することができる。
また、導電層104、導電層112a、導電層112b、導電層120a、導電層120bには、インジウムと錫とを有する酸化物(In-Sn酸化物)、インジウムとタングステンとを有する酸化物(In-W酸化物)、インジウムとタングステンと亜鉛とを有する酸化物(In-W-Zn酸化物)、インジウムとチタンとを有する酸化物(In-Ti酸化物)、インジウムとチタンと錫とを有する酸化物(In-Ti-Sn酸化物)、インジウムと亜鉛とを有する酸化物(In-Zn酸化物)、インジウムと錫とシリコンとを有する酸化物(In-Sn-Si酸化物)、インジウムとガリウムと亜鉛とを有する酸化物(In-Ga-Zn酸化物)等の酸化物導電体または酸化物半導体を適用することもできる。
ここで、酸化物導電体について説明を行う。本明細書等において、酸化物導電体をOC(Oxide Conductor)と呼称してもよい。酸化物導電体としては、例えば、半導体特性を有する金属酸化物に酸素欠損を形成し、該酸素欠損に水素を添加すると、伝導帯近傍にドナー準位が形成される。この結果、金属酸化物は、導電性が高くなり導電体化する。導電体化された金属酸化物を、酸化物導電体ということができる。一般に、半導体特性を有する金属酸化物は、エネルギーギャップが大きいため、可視光に対して透光性を有する。一方、酸化物導電体は、伝導帯近傍にドナー準位を有する金属酸化物である。したがって、酸化物導電体は、ドナー準位による吸収の影響は小さく、可視光に対して半導体特性を有する金属酸化物と同程度の透光性を有する。
また、導電層104、導電層112a、導電層112bには、Cu-X合金膜(Xは、Mn、Ni、Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu-X合金膜を用いることで、ウエットエッチングプロセスで加工できるため、製造コストを抑制することが可能となる。
また、導電層112a、導電層112bには、上述の金属元素の中でも、特に銅、チタン、タングステン、タンタル、及びモリブデンの中から選ばれるいずれか一つまたは複数を有すると好適である。また、導電層112a、導電層112bとして、銅膜やアルミニウム膜を用いると、導電層112a、112bの抵抗を低くすることができるため好適である。
[絶縁層]
ゲート絶縁層として機能する絶縁層106、及び保護層として機能する絶縁層116としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法、スパッタリング法等により形成された、窒化酸化シリコン膜、窒化シリコン膜、窒化アルミニウム膜、窒化酸化アルミニウム膜等を一種以上含む絶縁層を用いることができる。なお、絶縁層106や絶縁層116を、2層以上の積層構造としてもよい。
半導体層108上に設けられる絶縁層114としては、PECVD法、スパッタリング法、ALD(Atomic Layer Deposition)法などにより形成された、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜および酸化ネオジム膜等を一種以上含む絶縁層を用いることができる。特に、プラズマCVD法により形成された酸化シリコン膜または酸化窒化シリコン膜を用いることが好ましい。なお、絶縁層114を2層以上の積層構造としてもよい。
絶縁層114としては、厚さが5nm以上150nm以下、好ましくは5nm以上50nm以下の絶縁膜を好適に用いることができる。
[半導体層]
半導体層108としては、先に示す材料を用いることができる。
半導体層108がIn-M-Zn酸化物の場合、In-M-Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In>Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が挙げられる。
また、半導体層108が、In-M-Zn酸化物の場合、スパッタリングターゲットとしては、多結晶のIn-M-Zn酸化物を含むターゲットを用いると好ましい。多結晶のIn-M-Zn酸化物を含むターゲットを用いることで、結晶性を有する半導体層108を形成しやすくなる。なお、成膜される半導体層108の原子数比は、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。例えば、半導体層108に用いるスパッタリングターゲットの組成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される半導体層108の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。
また、半導体層108は、エネルギーギャップが2eV以上、好ましくは2.5eV以上である。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
また、半導体層108は、非単結晶構造であると好ましい。非単結晶構造は、例えば、CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC-OSは最も欠陥準位密度が低い。
[トランジスタの作製方法例]
以下では、本発明の一態様のトランジスタの作製方法例について説明する。ここでは、上記構成例2で例示したトランジスタ100Aを例に挙げて説明する。
なお、半導体装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulse Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法や、熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
また、半導体装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
また、半導体装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いて加工することができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra-violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いるど、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
図7~図10に示す各図は、トランジスタ100Aの作製方法を説明する図である、各図において、左側にチャネル長方向の断面を、右側にチャネル幅方向の断面をそれぞれ示している。
〔導電層104の形成〕
基板102上に導電膜を形成し、当該導電膜をリソグラフィ工程及びエッチング工程を行い加工して、ゲート電極として機能する導電層104を形成する(図7(A))。
〔絶縁層106の形成〕
導電層104及び基板102を覆う絶縁層106を形成する。絶縁層106は、例えばPECVD法等を用いて形成することができる。
〔領域106aの形成〕
続いて、絶縁層106に対して酸素130aを添加し、表面近傍に、酸素を含む領域106aを形成する。
絶縁層106に添加する酸素130aとしては、酸素ラジカル、酸素原子、酸素原子イオン、酸素分子イオン等がある。また、添加方法としては、イオンドーピング法、イオン注入法、プラズマ処理法等がある。また、絶縁層106上に酸素の脱離を抑制する膜を形成した後、該膜を介して絶縁層106に酸素130aを添加してもよい。該膜は、酸素130aを添加した後に除去することが好ましい。
上述の酸素の脱離を抑制する膜として、インジウム、亜鉛、ガリウム、錫、アルミニウム、クロム、タンタル、チタン、モリブデン、ニッケル、鉄、コバルト、またはタングステンの1以上を有する導電膜あるいは半導体膜を用いることができる。
また、プラズマ処理で酸素130aの添加を行う場合、マイクロ波で酸素を励起し、高密度な酸素プラズマを発生させることで、絶縁層106への酸素添加量を増加させることができる。また、酸素を含む雰囲気下でプラズマ処理を行うことで、絶縁層106の表面に吸着した水や水素などを除去することができる。これにより、後に形成する半導体層108中、または半導体層108と絶縁層106との界面に存在しうる水や水素を低減できる。
絶縁層106として、窒化シリコンや窒化酸化シリコンなどを用いた場合には、絶縁層106中に水素が含まれる場合がある。このとき、上述のようなプラズマ処理等を行うことで、少なくとも半導体層108と接する領域106aにおける水素濃度を低減することができる。
また、酸素130aの添加の前に、絶縁層106の表面及び膜中から水や水素を脱離させるための加熱処理を行ってもよい。例えば、窒素雰囲気下で300℃以上導電層104の耐熱温度未満、好ましくは300℃以上450℃以下の温度で加熱処理を行う。
〔半導体層108の形成〕
続いて、絶縁層106上に金属酸化物膜128bと、金属酸化物膜128aを積層して形成する(図8(A))。
金属酸化物膜128b及び金属酸化物膜128aは、それぞれ金属酸化物ターゲットを用いたスパッタリング法により形成することが好ましい。
また、金属酸化物膜128b及び金属酸化物膜128aを成膜する際に、酸素ガスの他に、不活性ガス(例えば、ヘリウムガス、アルゴンガス、キセノンガスなど)を混合させてもよい。
酸素流量比を低くし、結晶性が比較的低い金属酸化物膜とすることで、導電性の高い金属酸化物膜を得ることができる。一方、酸素流量比を高くし、結晶性が比較的高い金属酸化物膜とすることで、エッチング耐性が高く、電気的に安定した金属酸化物膜を得ることができる。
より具体的には、金属酸化物膜128bの成膜時の酸素流量比(成膜ガス全体に占める酸素ガスの割合)を、0%以上50%未満、好ましくは0%以上30%以下、より好ましくは0%以上20%以下、代表的には10%とする。また金属酸化物膜128aの成膜時の酸素流量比を、50%以上100%以下、好ましくは60%以上100%以下、より好ましくは80%以上100%以下、さらに好ましくは90%以上100%以下、代表的には100%とする。また、金属酸化物膜128aと金属酸化物膜128bとで、成膜時の圧力、温度、電力等の条件を異ならせてもよいが、酸素流量比以外の条件を同じとすることで、成膜工程にかかる時間を短縮することができるため好ましい。
また、金属酸化物膜128b及び金属酸化物膜128aの成膜条件としては、基板温度を室温以上180℃以下、好ましくは基板温度を室温以上140℃以下とすればよい。金属酸化物膜の成膜時の基板温度を、例えば、室温以上140℃未満とすると、生産性が高くなり好ましい。
なお、金属酸化物膜128aと金属酸化物膜128bとは、それぞれ異なる組成の膜であってもよい。このとき、金属酸化物膜128a及び金属酸化物膜128bの両方に、In-Ga-Zn酸化物を用いた場合、金属酸化物膜128bに、金属酸化物膜128aよりもInの組成が高い酸化物ターゲットを用いることが好ましい。
続いて、金属酸化物膜128a上にレジストマスクを形成し、金属酸化物膜128a及び金属酸化物膜128bをエッチングにより加工した後、レジストマスクを除去することで、半導体層108a及び半導体層108bを形成する(図8(B))。
[導電層112a、導電層112bの形成]
続いて、後に導電層121となる導電膜121aと、後に導電層122となる導電膜122aを積層して形成する。
続いて、導電膜122a上にレジストマスク131を形成する(図8(C))。レジストマスク131は、半導体層108のチャネルが形成されうる領域上で離間するように設ける。
その後、導電膜122aをエッチングにより加工し、導電層122を形成する(図9(A))。このとき、図9(A)に示すように、導電層122の端部がレジストマスク131の端部よりも内側に位置するように加工することが好ましい。
導電膜122aのエッチングには、等方性のエッチング法を用いることが好ましい。好適には、ウェットエッチング法を用いることができる。これにより、導電層122の端部が後退するようにエッチングすることができる。
導電層122の形成後、レジストマスク131を除去する。
続いて、導電層122及び導電膜121aを覆って、導電膜123aを形成する。導電膜123aは、後に導電層123となる導電膜である。
続いて、導電膜123a上に、レジストマスク132を形成する(図9(B))。このとき、レジストマスク132は、レジストマスク131と同じフォトマスクを用いて形成することができる。これにより、フォトマスクを共通化できるため、製造コストを抑えることができる。
続いて、導電膜123aと導電膜121aをエッチングにより加工し、導電層123と導電層121を形成する。このとき、導電層123と導電層121の端部が接し、導電層122が露出しないように加工することが好ましい。
導電膜123aと導電膜121aのエッチングには、異方性のエッチング法を用いることが好ましい。好適には、ドライエッチング法を用いることで、導電層123と導電層121の端部が後退しないように加工することが可能となる。これにより、導電層122を囲むように導電層121と導電層123を形成することができることに加え、トランジスタのチャネル長のばらつきを抑制することができる。
また、導電膜123aと導電膜121aとに同じ導電膜を用いることで、エッチングを容易なものとすることができる。また、導電層121と導電層123の端部に凹凸が形成されにくくなるため好ましい。
その後、レジストマスク132を除去する。以上の工程により、導電層112aと導電層112bを形成することができる(図9(C))。
[絶縁層114の形成]
続いて、導電層112a、導電層112b、及び半導体層108等を覆うように、絶縁層114を形成する(図10(A))。
絶縁層114は、例えば酸素を含む雰囲気下で成膜することが好ましい。特に、酸素を含む雰囲気下でプラズマCVD法により形成することが好ましい。これにより、欠陥の少ない絶縁層114とすることができる。
絶縁層114としては、例えば酸化シリコン膜または酸化窒化シリコン膜などの酸化物膜を、プラズマ化学気相堆積装置(PECVD装置、または単にプラズマCVD装置という)を用いて形成することが好ましい。この場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
また、絶縁層114の形成にはPECVD装置を用い、堆積性気体の流量に対する酸化性気体の流量を20倍より大きく100倍未満、または40倍以上80倍以下とし、処理室内の圧力を100Pa未満、または50Pa以下とすることで、欠陥量の少ない酸化窒化シリコン膜を形成することができる。
また、絶縁層114を、マイクロ波を用いたPECVD法を用いて形成してもよい。マイクロ波とは300MHzから300GHzの周波数域を指す。マイクロ波は、電子温度が低く、電子エネルギーが小さい。また、供給された電力において、電子の加速に用いられる割合が少なく、より多くの分子の解離及び電離に用いられることが可能であり、密度の高いプラズマ(高密度プラズマ)を励起することができる。このため、被成膜面及び堆積物へのプラズマダメージが少なく、欠陥の少ない絶縁層114を形成することができる。
[第1の酸素供給処理]
続いて、絶縁層114に酸素130bを供給する処理(第1の酸素供給処理ともいう)を行う。このとき、酸素供給処理の温度(第1の温度ともいう)としては、例えば250℃以上450℃以下、好ましくは280℃以上400℃以下、より好ましくは、300℃以上380℃以下、代表的には350℃とすることができる。
酸素供給処理としては、酸素を含む雰囲気下におけるプラズマ処理(酸素プラズマ処理ともいう)を用いることが好ましい。酸素がプラズマ化することにより、酸素ラジカル、酸素原子、または酸素イオンを絶縁層114に添加することができる。装置に導入するガスにおける酸素流量比は高いほど好ましく、50%以上100%以下、好ましくは60%以上100%以下、より好ましくは80%以上100%以下、さらに好ましくは100%とする。
酸素プラズマ処理を行う際に処理室内に導入するガスとしては、酸素ガスだけでなく、オゾンガス、一酸化二窒素ガス、二酸化窒素ガス等の酸化性気体を用いることができる。
また、処理装置として、ドライエッチング装置、アッシング装置、PECVD装置などを用いると、他の処理と装置を共有できるため好ましい。特に、PECVD装置を用いると、絶縁層114の成膜装置内で処理を行うことができるため好ましい。
第1の酸素供給処理は、絶縁層114を成膜する装置内で行うことが好ましい。このとき、絶縁層114を成膜後、大気に曝すことなくプラズマ処理を行うことが好ましい。特に、絶縁層114を成膜する成膜室を用いて行うことが好ましい。また、第1の酸素供給処理の温度と絶縁層114の成膜温度を同じものとすることが好ましい。これにより、処理時間を短縮することができる。
なお、酸素供給処理は上記に限られず、絶縁層114に酸素を供給可能な方法を用いることができる。例えばイオン注入法、イオンドーピング法またはプラズマイマージョンイオンインプランテーション法などを用いて酸素を絶縁層114に供給してもよい。または、酸素雰囲気下で加熱処理を行うことにより酸素を絶縁層114に供給してもよい。
[第2の酸素供給処理]
続いて、絶縁層114に酸素130cを供給する第2の酸素供給処理を行う。このとき、酸素供給処理の温度(第2の温度ともいう)としては、上記第1の酸素供給処理における第1の温度よりも低い温度とする。例えば150℃以上300℃以下、好ましくは170℃以上280℃以下、より好ましくは、190℃以上250℃以下、代表的には220℃とすることができる。
第2の酸素供給処理の装置、及び温度以外の条件は、第1の酸素供給処理の記載を援用できる。
なお、第2の酸素供給処理は、絶縁層114を成膜する成膜室とは異なる処理室で行うことが好ましい。成膜等の処理を行う処理室の温度(例えば基板を保持するステージ温度)を変更した場合に、ステージや成膜室自体の温度が安定するまでには長い時間を要する場合がある。そのため、処理温度が異なる場合には、異なる処理室、または異なる処理装置で行うことで、生産性を向上させることができる。
第1の酸素供給処理を行った後に、これよりも低い温度で第2の酸素供給処理を行うことで、絶縁層114を極めて多くの酸素を含む膜とすることができる。これにより、その後の絶縁層116の成膜時、またはそれ以降の熱処理において、絶縁層114から半導体層108に多くの酸素を供給することが可能となる。
なお、ここでは絶縁層114に対して、2回の酸素供給処理を行う例を示したが、酸素供給処理の回数は2回に限られず、3回以上行ってもよい。ただし、3回以上の酸素供給処理を行う場合、生産性が悪くなる場合がある。したがって、本実施の形態で示すように、酸素供給処理の回数としては、2回が好適である。一方で、酸素供給処理の回数が多いほど、酸素を多く含有する絶縁層114とすることができる。また、絶縁層114に対して3度以上の酸素供給処理を行う場合には、2回目以降の酸素供給処理の処理温度を、直前の処理温度と同じ温度、またはこれよりも低い温度とすることが好ましい。
なお、絶縁層114の成膜前に、半導体層108に対して、第1の酸素供給処理と同様の処理を行ってもよい。これにより、半導体層108のチャネル形成領域(すなわち導電層112a及び導電層112bに覆われない領域)に、選択的に酸素を供給することができる。このとき、当該酸素供給処理の温度を、上記第2の酸素供給処理の第2の温度よりも高い温度で行うことが好ましい。特に、絶縁層114の成膜温度や第1の酸素供給処理の第1の温度と同じ温度とすることが好ましい。
例えば、半導体層108への酸素供給処理と、絶縁層114の成膜と、第1の酸素供給処理とを、同じ成膜装置の同じ成膜室内で、大気に曝すことなく一貫して行うことが好ましい。このとき、これらの処理温度も同じ温度とすることが好ましい。例えば、絶縁層114の成膜装置の成膜室内に基板102を導入し、酸素を含む雰囲気下でプラズマ処理を行い、続いて絶縁層114を成膜し、さらに続いて第1の酸素供給処理を行うことができる。
[絶縁層116の形成]
続いて、絶縁層114を覆うように絶縁層116を形成する(図10(B))。絶縁層116は、絶縁層106と同様の方法により形成することができる。
例えば、絶縁層116の成膜温度を、第2の温度と同様の温度とすることができる。または、絶縁層116の成膜温度を、第1の温度と同様の温度とすることができる。成膜温度が低いほど、生産性を向上させることができる。一方、成膜温度が高いほど、膜中の水素などの不純物を低減することができる。
ここで、絶縁層116の成膜後に、第2の酸素供給処理の温度(第2の温度)よりも高い温度で加熱処理を行うことが好ましい。これにより、絶縁層114中に含まれる酸素を半導体層108に供給することができる。またこのとき、絶縁層114は酸素が拡散しにくい絶縁層116に覆われているため、絶縁層116を介して外部に酸素が放出されることなく、多くの酸素を半導体層108に供給することができる。
または、絶縁層116の成膜温度を、第2の酸素供給処理の温度(第2の温度)よりも高い温度とすることで、上記加熱処理を兼ねることができる。
以上の工程により、トランジスタ100Aを作製することができる。
以上がトランジスタの作製方法例についての説明である。
本実施の形態で例示した構成例、作製方法例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、作製方法例、または図面等と適宜組み合わせて実施することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態においては、先の実施の形態で例示したトランジスタを有する表示装置の一例について説明を行う。
[構成例]
図11(A)は、表示装置の一例を示す上面図である。図11(A)に示す表示装置700は、第1の基板701上に設けられた画素部702と、第1の基板701に設けられたソースドライバ回路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706を囲むように配置されるシール材712と、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、第1の基板701と第2の基板705は、シール材712によって封止されている。すなわち、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は、第1の基板701とシール材712と第2の基板705によって封止されている。なお、図11(A)には図示しないが、第1の基板701と第2の基板705の間には表示素子が設けられる。
また、表示装置700は、第1の基板701上のシール材712によって囲まれている領域とは異なる領域に、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706のそれぞれに電気的に接続されるFPC端子部708(FPC:Flexible printed circuit)が設けられる。また、FPC端子部708には、FPC716が接続され、FPC716によって画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708には、信号線710が各々接続されている。FPC716により供給される各種信号等は、信号線710を介して、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708に与えられる。
また、表示装置700にゲートドライバ回路部706を複数設けてもよい。また、表示装置700としては、ソースドライバ回路部704、及びゲートドライバ回路部706を画素部702と同じ第1の基板701に形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ回路部706のみを第1の基板701に形成してもよい、またはソースドライバ回路部704のみを第1の基板701に形成してもよい。この場合、ソースドライバ回路またはゲートドライバ回路等が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を、第1の基板701に形成する構成としてもよい。なお、別途形成した駆動回路基板の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方法、ワイヤボンディング方法などを用いることができる。
また、表示装置700が有する画素部702、ソースドライバ回路部704及びゲートドライバ回路部706は、複数のトランジスタを有しており、本発明の一態様の半導体装置であるトランジスタを適用することができる。
また、表示装置700は、様々な素子を有することができる。該素子の一例としては、例えば、エレクトロルミネッセンス(EL)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子、LEDなど)、発光トランジスタ素子(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク素子、電気泳動素子、エレクトロウェッティング素子、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)ディスプレイ(例えば、グレーティングライトバルブ(GLV)、デジタルマイクロミラーデバイス(DMD)、デジタル・マイクロ・シャッター(DMS)素子、インターフェロメトリック・モジュレーション(IMOD)素子など)、圧電セラミックディスプレイなどが挙げられる。
また、EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface-conduction Electron-emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク素子又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、表示装置700における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配列のように、RGBのうちの2色分で一つの色要素を構成し、色要素によって、異なる2色を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以上追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用することもできる。
また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色発光(W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルタともいう。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領域における白色光を直接表示に利用してもよい。一部に着色層を有さない領域を配置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有する素子から発光させてもよい。自発光素子を用いることで、着色層を用いた場合よりも、さらに消費電力を低減できる場合がある。
また、カラー化方式としては、上述の白色発光からの発光の一部をカラーフィルタを通すことで赤色、緑色、青色に変換する方式(カラーフィルタ方式)の他、赤色、緑色、青色の発光をそれぞれ用いる方式(3色方式)、または青色発光からの発光の一部を赤色や緑色に変換する方式(色変換方式、量子ドット方式)を適用してもよい。
図11(B)に示す表示装置700Aは、大型の画面を有する電子機器に好適に用いることのできる表示装置である。例えばテレビジョン装置、モニタ装置、デジタルサイネージなどに好適に用いることができる。
表示装置700Aは、複数のソースドライバIC721と、一対のゲートドライバ回路722を有する。
複数のソースドライバIC721は、それぞれFPC723に取り付けられている。また、複数のFPC723は、一方の端子が基板701に、他方の端子がプリント基板724にそれぞれ接続されている。FPC723を折り曲げることで、プリント基板724を画素部702の裏側に配置して、電子機器に実装することができる。
一方、ゲートドライバ回路722は、基板701上に形成されている。これにより、狭額縁の電子機器を実現できる。
このような構成とすることで、大型で且つ高解像度な表示装置を実現できる。例えば画面サイズが対角30インチ以上、40インチ以上、50インチ以上、または60インチ以上の表示装置に適用することができる。また、解像度がフルハイビジョン、4K2K、または8K4Kなどといった極めて高解像度の表示装置を実現することができる。
[断面構成例]
以下では、表示素子として液晶素子及びEL素子を用いる構成について、図12乃至図14を用いて説明する。なお、図12及び図13は、図11に示す一点鎖線Q-Rにおける断面図であり、表示素子として液晶素子を用いた構成である。また、図14は、図11に示す一点鎖線Q-Rにおける断面図であり、表示素子としてEL素子を用いた構成である。
まず、図12乃至図14に示す共通部分について最初に説明し、次に異なる部分について以下説明する。
〔表示装置の共通部分に関する説明〕
図12乃至図14に示す表示装置700は、引き回し配線部711と、画素部702と、ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配線部711は、信号線710を有する。また、画素部702は、トランジスタ750及び容量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を有する。
トランジスタ750及びトランジスタ752は、実施の形態1で例示したトランジスタを適用することができる。
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体膜を有する。該トランジスタは、オフ電流を低くすることができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを表示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。
容量素子790は、トランジスタ750が有する第1のゲート電極として機能する導電膜と同一の導電膜を加工する工程を経て形成される下部電極と、トランジスタ750が有する第2のゲート電極として機能する導電膜と同一の導電膜を加工する工程を経て形成される上部電極と、を有する。また、下部電極と上部電極との間には、トランジスタ750が有する第1のゲート絶縁膜として機能する絶縁膜と同一の絶縁膜を形成する工程を経て形成される絶縁膜、及びトランジスタ750上の保護絶縁膜として機能する絶縁膜と同一の絶縁膜を形成する工程を経て形成される絶縁膜が設けられる。すなわち、容量素子790は、一対の電極間に誘電体膜として機能する絶縁膜が挟持された積層型の構造である。
また、図12乃至図14において、トランジスタ750、トランジスタ752、及び容量素子790上に平坦化絶縁膜770が設けられている。
また、図12乃至図14においては、画素部702が有するトランジスタ750と、ソースドライバ回路部704が有するトランジスタ752と、を同じ構造のトランジスタを用いる構成について例示したが、これに限定されない。例えば、画素部702と、ソースドライバ回路部704とは、異なるトランジスタを用いてもよい。具体的には、画素部702にトップゲート型のトランジスタを用い、ソースドライバ回路部704にボトムゲート型のトランジスタを用いる構成、あるいは画素部702にボトムゲート型のトランジスタを用い、ソースドライバ回路部704にトップゲート型のトランジスタを用いる構成などが挙げられる。なお、上記のソースドライバ回路部704を、ゲートドライバ回路部と読み替えてもよい。
また、信号線710は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。信号線710として、例えば、銅元素を含む材料を用いた場合、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となる。
また、FPC端子部708は、接続電極760、異方性導電膜780、及びFPC716を有する。なお、接続電極760は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。また、接続電極760は、FPC716が有する端子と異方性導電膜780を介して、電気的に接続される。
また、第1の基板701及び第2の基板705としては、例えばガラス基板を用いることができる。また、第1の基板701及び第2の基板705として、可撓性を有する基板を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられる。
また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構造体778は柱状のスペーサであり、第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設けられる。なお、構造体778として、球状のスペーサを用いていてもよい。
また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、カラーフィルタとして機能する着色膜736と、遮光膜738及び着色膜736に接する絶縁膜734が設けられる。
〔液晶素子を用いる表示装置の構成例〕
図12に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705側に設けられ、対向電極としての機能を有する。図12に示す表示装置700は、導電膜772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わることによって光の透過、非透過が制御され画像を表示することができる。
また、導電膜772は、トランジスタ750が有するソース電極またはドレイン電極として機能する導電膜と電気的に接続される。導電膜772は、平坦化絶縁膜770上に形成され画素電極、すなわち表示素子の一方の電極として機能する。
導電膜772としては、可視光において透光性のある導電膜、または可視光において反射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、例えば、インジウム、亜鉛、錫の中から選ばれた一種を含む材料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよい。
導電膜772に可視光において反射性のある導電膜を用いる場合、表示装置700は、反射型の液晶表示装置となる。また、導電膜772に可視光において透光性のある導電膜を用いる場合、表示装置700は、透過型の液晶表示装置となる。反射型の液晶表示装置の場合、視認側に偏光板を設ける。一方、透過型の液晶表示装置の場合、液晶素子を挟む一対の偏光板を設ける。
また、導電膜772上の構成を変えることで、液晶素子の駆動方式を変えることができる。この場合の一例を図13に示す。また、図13に示す表示装置700は、液晶素子の駆動方式として横電界方式(例えば、FFSモード)を用いる構成の一例である。図13に示す構成の場合、導電膜772上に絶縁膜773が設けられ、絶縁膜773上に導電膜774が設けられる。この場合、導電膜774は、共通電極(コモン電極ともいう)としての機能を有し、絶縁膜773を介して、導電膜772と導電膜774との間に生じる電界によって、液晶層776の配向状態を制御することができる。
また、図12及び図13において図示しないが、導電膜772または導電膜774のいずれか一方または双方に、液晶層776と接する側に、それぞれ配向膜を設ける構成としてもよい。また、図12及び図13において図示しないが、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などを適宜設けてもよい。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性であるため配向処理が不要である。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。また、ブルー相を示す液晶材料は、視野角依存性が小さい。
また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic)モード、IPS(In-Plane-Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro-cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi-Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASVモードなどを用いることができる。
〔発光素子を用いる表示装置〕
図14に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜772、EL層786、及び導電膜788を有する。図14に示す表示装置700は、画素毎に設けられる発光素子782が有するEL層786が発光することによって、画像を表示することができる。なお、EL層786は、有機化合物、または量子ドットなどの無機化合物を有する。
有機化合物に用いることのできる材料としては、蛍光性材料または燐光性材料などが挙げられる。また、量子ドットに用いることのできる材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料、などが挙げられる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム、セレン、亜鉛、硫黄、リン、インジウム、テルル、鉛、ガリウム、ヒ素、アルミニウム等の元素を有する量子ドット材料を用いてもよい。
図14に示す表示装置700には、平坦化絶縁膜770及び導電膜772上に絶縁膜730が設けられる。絶縁膜730は、導電膜772の一部を覆う。なお、発光素子782はトップエミッション構造である。したがって、導電膜788は透光性を有し、EL層786が発する光を透過する。なお、本実施の形態においては、トップエミッション構造について、例示するが、これに限定されない。例えば、導電膜772側に光を射出するボトムエミッション構造や、導電膜772及び導電膜788の双方に光を射出するデュアルエミッション構造にも適用することができる。
また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重なる位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜738が設けられている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。また、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、図14に示す表示装置700においては、着色膜736を設ける構成について例示したが、これに限定されない。例えば、EL層786を画素毎に島状に形成する、すなわち塗り分けにより形成する場合においては、着色膜736を設けない構成としてもよい。
〔表示装置に入出力装置を設ける構成例〕
また、図12乃至図14に示す表示装置700に入出力装置を設けてもよい。当該入出力装置としては、例えば、タッチパネル等が挙げられる。
図13に示す表示装置700にタッチパネル791を設ける構成を図15に、図14に示す表示装置700にタッチパネル791を設ける構成を図16に、それぞれ示す。
図15は図13に示す表示装置700にタッチパネル791を設ける構成の断面図であり、図16は図14に示す表示装置700にタッチパネル791を設ける構成の断面図である。
まず、図15及び図16に示すタッチパネル791について、以下説明を行う。
図15及び図16に示すタッチパネル791は、基板705と着色膜736との間に設けられる、所謂インセル型のタッチパネルである。タッチパネル791は、着色膜736を形成する前に、基板705側に形成すればよい。
なお、タッチパネル791は、絶縁膜792と、電極793と、電極794と、絶縁膜795と、電極796と、絶縁膜797と、を有する。例えば、指やスタイラスなどの被検知体が近づくことで生じうる、電極793と電極794との間の容量の変化を検知することができる。
また、図15及び図16に示すトランジスタ750の上方においては、電極793と、電極794との交差部を明示している。電極796は、絶縁膜795に設けられた開口部を介して、電極794を挟む2つの電極793と電気的に接続されている。なお、図15及び図16においては、電極796が設けられる領域を画素部702に設ける構成を例示したが、これに限定されず、例えば、ソースドライバ回路部704に形成してもよい。
電極793及び電極794は、遮光膜738と重なる領域に設けられる。また、図15、図16に示すように、電極793は、液晶素子775または発光素子782と重ならないように設けられると好ましい。別言すると、電極793は、発光素子782または液晶素子775と重なる領域に開口部を有する。すなわち、電極793はメッシュ形状を有する。このような構成とすることで、電極793は、発光素子782が射出する光、または液晶素子775を透過する光を遮らない構成とすることができる。したがって、タッチパネル791を配置することによる輝度の低下が極めて少ないため、視認性が高く、且つ消費電力が低減された表示装置を実現できる。なお、電極794も同様の構成とすればよい。
また、電極793及び電極794が発光素子782または液晶素子775と重ならないため、電極793及び電極794には、可視光の透過率が低い金属材料を用いることができる。
そのため、可視光の透過率が高い酸化物材料を用いた電極と比較して、電極793及び電極794の抵抗を低くすることが可能となり、タッチパネルのセンサ感度を向上させることができる。
例えば、電極793、794、796には、導電性のナノワイヤを用いてもよい。当該ナノワイヤは、直径の平均値が1nm以上100nm以下、好ましくは5nm以上50nm以下、より好ましくは5nm以上25nm以下の大きさとすればよい。また、上記ナノワイヤとしては、Agナノワイヤ、Cuナノワイヤ、またはAlナノワイヤ等の金属ナノワイヤ、あるいは、カーボンナノチューブなどを用いればよい。例えば、電極793、794、796のいずれか一つあるいは全部にAgナノワイヤを用いる場合、可視光における光透過率を89%以上、シート抵抗値を40Ω/□以上100Ω/□以下とすることができる。
また、図15及び図16においては、インセル型のタッチパネルの構成について例示したが、これに限定されない。例えば、表示装置700上に形成する、所謂オンセル型のタッチパネルや、表示装置700に貼り合わせて用いる、所謂アウトセル型のタッチパネルとしてもよい。
このように、本発明の一態様の表示装置は、様々な形態のタッチパネルと組み合わせて用いることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
本実施の形態では、本発明の一態様の半導体装置を有する表示装置について、図17を用いて説明を行う。
[表示装置の回路構成]
図17(A)に示す表示装置は、画素を有する領域(以下、画素部502という)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路506という)と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。
駆動回路部504の一部、または全部は、画素部502と同一基板上に形成されていることが望ましい。これにより、部品数や端子数を減らすことができる。駆動回路部504の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回路部504の一部、または全部は、COGやTAB(Tape Automated Bonding)によって、実装することができる。
画素部502は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置された複数の表示素子を駆動するための回路(以下、画素回路501という)を有し、駆動回路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するための回路(以下、ソースドライバ504b)などの駆動回路を有する。
ゲートドライバ504aは、シフトレジスタ等を有する。ゲートドライバ504aは、端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力する。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力され、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲートドライバ504aを複数設け、複数のゲートドライバ504aにより、走査線GL_1乃至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ504aは、別の信号を供給することも可能である。
ソースドライバ504bは、シフトレジスタ等を有する。ソースドライバ504bは、端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元となる信号(画像信号)が入力される。ソースドライバ504bは、画像信号を元に画素回路501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与えられる配線(以下、データ線DL_1乃至DL_Yという)の電位を制御する機能を有する。または、ソースドライバ504bは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも可能である。
ソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを用いてソースドライバ504bを構成してもよい。
複数の画素回路501のそれぞれは、走査信号が与えられる複数の走査線GLの一つを介してパルス信号が入力され、データ信号が与えられる複数のデータ線DLの一つを介してデータ信号が入力される。また、複数の画素回路501のそれぞれは、ゲートドライバ504aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列目の画素回路501は、走査線GL_m(mはX以下の自然数)を介してゲートドライバ504aからパルス信号が入力され、走査線GL_mの電位に応じてデータ線DL_n(nはY以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
図17(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路501の間の配線である走査線GLに接続される。または、保護回路506は、ソースドライバ504bと画素回路501の間の配線であるデータ線DLに接続される。または、保護回路506は、ゲートドライバ504aと端子部507との間の配線に接続することができる。または、保護回路506は、ソースドライバ504bと端子部507との間の配線に接続することができる。なお、端子部507は、外部の回路から表示装置に電源及び制御信号、及び画像信号を入力するための端子が設けられた部分をいう。
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該配線と別の配線とを導通状態にする回路である。
図17(A)に示すように、画素部502と駆動回路部504にそれぞれ保護回路506を設けることにより、ESD(Electro Static Discharge:静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成とすることもできる。
また、図17(A)においては、ゲートドライバ504aとソースドライバ504bによって駆動回路部504を形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実装する構成としてもよい。
ここで、図18に、図17(A)とは異なる構成を示す。図18では、ソース線方向に配列する複数の画素を挟むように、一対のソース線(例えばソース線DLa1とソース線DLb1)が配置されている。また、隣接する2本のゲート線(例えばゲート線GL_1とゲート線GL_2)が電気的に接続されている。
また、ゲート線GL_1に接続される画素は、片方のソース線(ソース線DLa1、ソース線DLa2等)に接続され、ゲート線GL_2に接続される画素は、他方のソース線(ソース線DLb1、ソース線DLb2等)に接続される。
このような構成とすることで、2本のゲート線を同時に選択することができる。これにより、一水平期間の長さを、図17(A)に示す構成と比較して2倍にすることができる。これにより、表示装置の高解像度化、及び大画面化が容易となる。
また、図17(A)に示す複数の画素回路501は、例えば、図17(B)に示す構成とすることができる。
図17(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容量素子560と、を有する。トランジスタ550に先の実施の形態に示すトランジスタを適用することができる。
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の電極の一方に異なる電位を与えてもよい。
例えば、液晶素子570を備える表示装置の駆動方法としては、TNモード、STNモード、VAモード、ASMモード、OCBモード、FLCモード、AFLCモード、MVAモード、PVAモード、IPSモード、FFSモード、又はTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として様々なものを用いることができる。
m行n列目の画素回路501において、トランジスタ550のソース電極またはドレイン電極の一方は、データ線DL_nに電気的に接続され、他方は液晶素子570の一対の電極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、走査線GL_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子560の一対の電極の一方は、電位が供給される配線(以下、電位供給線VL)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続される。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図17(B)の画素回路501を有する表示装置では、例えば、図17(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ550をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ550がオフ状態になることで保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
また、図17(A)に示す複数の画素回路501は、例えば、図17(C)に示す構成とすることができる。
また、図17(C)に示す画素回路501は、トランジスタ552、554と、容量素子562と、発光素子572と、を有する。トランジスタ552及びトランジスタ554のいずれか一方または双方に先の実施の形態に示すトランジスタを適用することができる。
トランジスタ552のソース電極及びドレイン電極の一方はデータ線DL_nに電気的に接続され、ゲート電極は走査線GL_mに電気的に接続される。
トランジスタ552は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子562の一対の電極の一方は、電位供給線VL_aに電気的に接続され、他方は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
容量素子562は、書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ554のソース電極及びドレイン電極の一方は、電位供給線VL_aに電気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
発光素子572のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続される。
発光素子572としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、発光素子572としては、これに限定されず、無機材料からなる無機EL素子を用いてもよい。
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。
図17(C)の画素回路501を有する表示装置では、例えば、図17(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ552がオフ状態になることで保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554のソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
本実施の形態では、本発明の一態様の電子機器について、図面を参照して説明する。
以下で例示する電子機器は、表示部に本発明の一態様の表示装置を備えるものである。したがって、高い解像度が実現された電子機器である。また高い解像度と、大きな画面が両立された電子機器とすることができる。
本発明の一態様の電子機器の表示部には、例えばフルハイビジョン、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。また、表示部の画面サイズとしては、対角20インチ以上、または対角30インチ以上、または対角50インチ以上、対角60インチ以上、または対角70インチ以上とすることもできる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
本発明の一態様の電子機器または照明装置は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図19(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図19(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図19(B)に、ノート型パーソナルコンピュータ7200を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図19(C)、(D)に、デジタルサイネージ(Digital Signage:電子看板)の一例を示す。
図19(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
また、図19(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図19(C)、(D)において、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図19(C)、(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
本実施の形態では、本発明の一態様の表示装置を適用することのできるテレビジョン装置の例について、図面を参照して説明する。
図20(A)に、テレビジョン装置600のブロック図を示す。
なお、本明細書に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。
テレビジョン装置600は、制御部601、記憶部602、通信制御部603、画像処理回路604、デコーダ回路605、映像信号受信部606、タイミングコントローラ607、ソースドライバ608、ゲートドライバ609、表示パネル620等を有する。
上記実施の形態で例示した表示装置は、図20(A)における表示パネル620に適用することができる。これにより、大型且つ高解像度であって、視認性に優れたテレビジョン装置600を実現できる。
制御部601は、例えば中央演算装置(CPU:Central Processing Unit)として機能することができる。例えば制御部601は、システムバス630を介して記憶部602、通信制御部603、画像処理回路604、デコーダ回路605及び映像信号受信部606等のコンポーネントを制御する機能を有する。
制御部601と各コンポーネントとは、システムバス630を介して信号の伝達が行われる。また制御部601は、システムバス630を介して接続された各コンポーネントから入力される信号を処理する機能、各コンポーネントへ出力する信号を生成する機能等を有し、これによりシステムバス630に接続された各コンポーネントを統括的に制御することができる。
記憶部602は、制御部601及び画像処理回路604がアクセス可能なレジスタ、キャッシュメモリ、メインメモリ、二次メモリなどとして機能する。
二次メモリとして用いることのできる記憶装置としては、例えば書き換え可能な不揮発性の記憶素子が適用された記憶装置を用いることができる。例えば、フラッシュメモリ、MRAM(Magnetoresistive Random Access Memory)、PRAM(Phase change RAM)、ReRAM(Resistive RAM)、FeRAM(Ferroelectric RAM)などを用いることができる。
また、レジスタ、キャッシュメモリ、メインメモリなどの一時メモリとして用いることのできる記憶装置としては、DRAM(Dynamic RAM)や、SRAM(Static Random Access Memory)等の揮発性の記憶素子を用いてもよい。
例えば、メインメモリに設けられるRAMとしては、例えばDRAMが用いられ、制御部601の作業空間として仮想的にメモリ空間が割り当てられ利用される。記憶部602に格納されたオペレーティングシステム、アプリケーションプログラム、プログラムモジュール、プログラムデータ等は、実行のためにRAMにロードされる。RAMにロードされたこれらのデータやプログラム、プログラムモジュールは、制御部601に直接アクセスされ、操作される。
一方、ROMには書き換えを必要としないBIOS(Basic Input/Output System)やファームウェア等を格納することができる。ROMとしては、マスクROMや、OTPROM(One Time Programmable Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)等を用いることができる。EPROMとしては、紫外線照射により記憶データの消去を可能とするUV-EPROM(Ultra-Violet Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリなどが挙げられる。
また、記憶部602の他に、取り外し可能な記憶装置を接続可能な構成としてもよい。例えばストレージデバイスとして機能するハードディスクドライブ(Hard Disk Drive:HDD)やソリッドステートドライブ(Solid State Drive:SSD)などの記録メディアドライブ、フラッシュメモリ、ブルーレイディスク、DVDなどの記録媒体と接続する端子を有することが好ましい。これにより、映像を記録することができる。
通信制御部603は、コンピュータネットワークを介して行われる通信を制御する機能を有する。例えば、制御部601からの命令に応じてコンピュータネットワークに接続するための制御信号を制御し、当該信号をコンピュータネットワークに発信する。これによって、World Wide Web(WWW)の基盤であるインターネット、イントラネット、エクストラネット、PAN(Personal Area Network)、LAN(Local Area Network)、CAN(Campus Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、GAN(Global Area Network)等のコンピュータネットワークに接続し、通信を行うことができる。
また、通信制御部603は、Wi-Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等の通信規格を用いてコンピュータネットワークまたは他の電子機器と通信する機能を有していてもよい。
通信制御部603は、無線により通信する機能を有していてもよい。例えばアンテナと高周波回路(RF回路)を設け、RF信号の送受信を行えばよい。高周波回路は、各国法制により定められた周波数帯域の電磁信号と電気信号とを相互に変換し、当該電磁信号を用いて無線で他の通信機器との間で通信を行うための回路である。実用的な周波数帯域として数10kHz~数10GHzが一般に用いられている。アンテナと接続される高周波回路には、複数の周波数帯域に対応した高周波回路部を有し、高周波回路部は、増幅器(アンプ)、ミキサ、フィルタ、DSP、RFトランシーバ等を有する構成とすることができる。
映像信号受信部606は、例えばアンテナ、復調回路、及びA-D変換回路(アナログ-デジタル変換回路)等を有する。復調回路は、アンテナから入力した信号を復調する機能を有する。またA-D変換回路は、復調されたアナログ信号をデジタル信号に変換する機能を有する。映像信号受信部606で処理された信号は、デコーダ回路605に送られる。
デコーダ回路605は、映像信号受信部606から入力されるデジタル信号に含まれる映像データを、送信される放送規格の仕様に従ってデコードし、画像処理回路に送信する信号を生成する機能を有する。例えば8K放送における放送規格としては、H.265 | MPEG-H High Efficiency Video Coding(略称:HEVC)などがある。
映像信号受信部606が有するアンテナにより受信できる放送電波としては、地上波、または衛星から送信される電波などが挙げられる。またアンテナにより受信できる放送電波として、アナログ放送、デジタル放送などがあり、また映像及び音声、または音声のみの放送などがある。例えばUHF帯(約300MHz~3GHz)またはVHF帯(30MHz~300MHz)のうちの特定の周波数帯域で送信される放送電波を受信することができる。また例えば、複数の周波数帯域で受信した複数のデータを用いることで、転送レートを高くすることができ、より多くの情報を得ることができる。これによりフルハイビジョンを超える解像度を有する映像を、表示パネル620に表示させることができる。例えば、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。
また、映像信号受信部606及びデコーダ回路605は、コンピュータネットワークを介したデータ伝送技術により送信された放送のデータを用いて、画像処理回路604に送信する信号を生成する構成としてもよい。このとき、受信する信号がデジタル信号の場合には、映像信号受信部606は復調回路及びA-D変換回路等を有していなくてもよい。
画像処理回路604は、デコーダ回路605から入力される映像信号に基づいて、タイミングコントローラ607に出力する映像信号を生成する機能を有する。
またタイミングコントローラ607は、画像処理回路604が処理を施した映像信号等に含まれる同期信号を基に、ゲートドライバ609及びソースドライバ608に出力する信号(クロック信号、スタートパルス信号などの信号)を生成する機能を有する。また、タイミングコントローラ607は、上記信号に加え、ソースドライバ608に出力するビデオ信号を生成する機能を有する。
表示パネル620は、複数の画素621を有する。各画素621は、ゲートドライバ609及びソースドライバ608から供給される信号により駆動される。ここでは、画素数が7680×4320である、8K4K規格に応じた解像度を有する表示パネルの例を示している。なお、表示パネル620の解像度はこれに限られず、フルハイビジョン(画素数1920×1080)または4K2K(画素数3840×2160)等の規格に応じた解像度であってもよい。
図20(A)に示す制御部601や画像処理回路604としては、例えばプロセッサを有する構成とすることができる。例えば、制御部601は、CPUとして機能するプロセッサを用いることができる。また、画像処理回路604として、例えばDSP(Digital Signal Processor)、GPU(Graphics Processing Unit)等の他のプロセッサを用いることができる。また制御部601や画像処理回路604に、上記プロセッサをFPGA(Field Programmable Gate Array)やFPAA(Field Programmable Analog Array)といったPLD(Programmable Logic Device)によって実現した構成としてもよい。
プロセッサは、種々のプログラムからの命令を解釈し実行することで、各種のデータ処理やプログラム制御を行う。プロセッサにより実行しうるプログラムは、プロセッサが有するメモリ領域に格納されていてもよいし、別途設けられる記憶装置に格納されていてもよい。
また、制御部601、記憶部602、通信制御部603、画像処理回路604、デコーダ回路605、及び映像信号受信部606、及びタイミングコントローラ607のそれぞれが有する機能のうち、2つ以上の機能を1つのICチップに集約させ、システムLSIを構成してもよい。例えば、プロセッサ、デコーダ回路、チューナ回路、A-D変換回路、DRAM、及びSRAM等を有するシステムLSIとしてもよい。
なお、制御部601や、他のコンポーネントが有するIC等に、チャネル形成領域に酸化物半導体を用い、極めて低いオフ電流が実現されたトランジスタを利用することもできる。当該トランジスタは、オフ電流が極めて低いため、当該トランジスタを記憶素子として機能する容量素子に流入した電荷(データ)を保持するためのスイッチとして用いることで、データの保持期間を長期にわたり確保することができる。この特性を制御部601等のレジスタやキャッシュメモリに用いることで、必要なときだけ制御部601を動作させ、他の場合には直前の処理の情報を当該記憶素子に待避させることにより、ノーマリーオフコンピューティングが可能となる。これにより、テレビジョン装置600の低消費電力化を図ることができる。
なお、図20(A)で例示するテレビジョン装置600の構成は一例であり、全ての構成要素を含む必要はない。テレビジョン装置600は、図20(A)に示す構成要素のうち必要な構成要素を有していればよい。また、テレビジョン装置600は、図20(A)に示す構成要素以外の構成要素を有していてもよい。
例えば、テレビジョン装置600は、図20(A)に示す構成のほか、外部インターフェース、音声出力部、タッチパネルユニット、センサユニット、カメラユニットなどを有していてもよい。例えば外部インターフェースとしては、USB(Universal Serial Bus)端子、LAN(Local Area Network)接続用端子、電源受給用端子、音声出力用端子、音声入力用端子、映像出力用端子、映像入力用端子などの外部接続端子、赤外線、可視光、紫外線などを用いた光通信用の送受信機、筐体に設けられた物理ボタンなどがある。また、例えば音声入出力部としては、サウンドコントローラ、マイクロフォン、スピーカなどがある。
以下では、画像処理回路604についてより詳細な説明を行う。
画像処理回路604は、デコーダ回路605から入力される映像信号に基づいて、画像処理を実行する機能を有することが好ましい。
画像処理としては、例えばノイズ除去処理、階調変換処理、色調補正処理、輝度補正処理などが挙げられる。色調補正処理や輝度補正処理としては、例えばガンマ補正などがある。
また、画像処理回路604は、解像度のアップコンバートに伴う画素間補間処理や、フレーム周波数のアップコンバートに伴うフレーム間補間処理などの処理を実行する機能を有していることが好ましい。
例えば、ノイズ除去処理としては、文字などの輪郭の周辺に生じるモスキートノイズ、高速の動画で生じるブロックノイズ、ちらつきを生じるランダムノイズ、解像度のアップコンバートにより生じるドットノイズなどのさまざまなノイズを除去する。
階調変換処理は、画像の階調を表示パネル620の出力特性に対応した階調へ変換する処理である。例えば階調数を大きくする場合、小さい階調数で入力された画像に対して、各画素に対応する階調値を補間して割り当てることで、ヒストグラムを平滑化する処理を行うことができる。また、ダイナミックレンジを広げる、ハイダミックレンジ(HDR)処理も、階調変換処理に含まれる。
また、画素間補間処理は、解像度をアップコンバートした際に、本来存在しないデータを補間する。例えば、目的の画素の周囲の画素を参照し、それらの中間色を表示するようにデータを補間する。
また、色調補正処理は、画像の色調を補正する処理である。また輝度補正処理は、画像の明るさ(輝度コントラスト)を補正する処理である。例えば、テレビジョン装置600が設けられる空間の照明の種類や輝度、または色純度などを検知し、それに応じて表示パネル620に表示する画像の輝度や色調が最適となるように補正する。または、表示する画像と、あらかじめ保存してある画像リスト内の様々な場面の画像と、を照合し、最も近い場面の画像に適した輝度や色調に表示する画像を補正する機能を有していてもよい。
フレーム間補間処理は、表示する映像のフレーム周波数を増大させる場合に、本来存在しないフレーム(補間フレーム)の画像を生成する処理である。例えば、ある2枚の画像の差分から2枚の画像の間に挿入する補間フレームの画像を生成する。または2枚の画像の間に複数枚の補間フレームの画像を生成することもできる。例えばデコーダ回路605から入力される映像信号のフレーム周波数が60Hzであったとき、複数枚の補間フレームを生成することで、タイミングコントローラ607に出力する映像信号のフレーム周波数を、2倍の120Hz、または4倍の240Hz、または8倍の480Hzなどに増大させることができる。
また、画像処理回路604は、ニューラルネットワークを利用して、画像処理を実行する機能を有していることが好ましい。図20(A)では、画像処理回路604がニューラルネットワーク610を有している例を示している。
例えば、ニューラルネットワーク610により、例えば映像に含まれる画像データから特徴抽出を行うことができる。また画像処理回路604は、抽出された特徴に応じて最適な補正方法を選択することや、または補正に用いるパラメータを選択することができる。
または、ニューラルネットワーク610自体に画像処理を行う機能を持たせてもよい。すなわち、画像処理を施す前の画像データをニューラルネットワーク610に入力することで、画像処理が施された画像データを出力させる構成としてもよい。
また、ニューラルネットワーク610に用いる重み係数のデータは、データテーブルとして記憶部602に格納される。当該重み係数を含むデータテーブルは、例えば通信制御部603により、コンピュータネットワークを介して最新のものに更新することができる。または、画像処理回路604が学習機能を有し、重み係数を含むデータテーブルを更新可能な構成としてもよい。
図20(B)に、画像処理回路604が有するニューラルネットワーク610の概略図を示す。
なお、本明細書等においてニューラルネットワークとは、生物の神経回路網を模し、学習によってニューロン同士の結合強度を決定し、問題解決能力を持たせるモデル全般を指す。ニューラルネットワークは入力層、中間層(隠れ層ともいう)、出力層を有する。ニューラルネットワークのうち、2層以上の中間層を有するものをディープニューラルネットワーク(DNN)と呼称し、ディープニューラルネットワークによる学習を「ディープラーニング」と呼称する。
また、本明細書等において、ニューラルネットワークについて述べる際に、既にある情報からニューロンとニューロンの結合強度(重み係数とも言う)を決定することを「学習」と呼ぶ場合がある。また、本明細書等において、学習によって得られた結合強度を用いてニューラルネットワークを構成し、そこから新たな結論を導くことを「推論」と呼ぶ場合がある。
ニューラルネットワーク610は、入力層611、1つ以上の中間層612、及び出力層613を有する。入力層611には入力データが入力される。出力層613からは出力データが出力される。
入力層611、中間層612、及び出力層613には、それぞれニューロン615を有する。ここでニューロン615は、積和演算を実現しうる回路素子(積和演算素子)を指す。図20(B)では、2つの層が有する2つのニューロン615間におけるデータの入出力方向を矢印で示している。
それぞれの層における演算処理は、前層が有するニューロン615の出力と重み係数との積和演算により実行される。例えば、入力層611の第i番目のニューロンの出力をxとし、出力xと次の中間層612の第jニューロンとの結合強度(重み係数)をwjiとすると、当該中間層の第jニューロンの出力はy=f(Σwji・x)である。なお、i、jは1以上の整数とする。ここで、f(x)は活性化関数でシグモイド関数、閾値関数などを用いることができる。以下同様に、各層のニューロン615の出力は、前段層のニューロン615の出力と重み係数の積和演算結果に活性化関数を演算した値となる。また、層と層との結合は、全てのニューロン同士が結合する全結合としてもよいし、一部のニューロン同士が結合する部分結合としてもよい。
図20(B)では、3つの中間層612を有する例を示している。なお、中間層612の数はこれに限られず、1つ以上の中間層を有していればよい。また、1つの中間層612が有するニューロンの数も、仕様に応じて適宜変更すればよい。例えば1つの中間層612が有するニューロン615の数は、入力層611または出力層613が有するニューロン615の数よりも多くてもよいし、少なくてもよい。
ニューロン615同士の結合強度の指標となる重み係数は、学習によって決定される。学習は、テレビジョン装置600が有するプロセッサにより実行してもよいが、専用サーバーやクラウドなどの演算処理能力の優れた計算機で実行することが好ましい。学習により決定された重み係数は、テーブルとして上記記憶部602に格納され、画像処理回路604により読み出されることにより使用される。また、当該テーブルは、必要に応じてコンピュータネットワークを介して更新することができる。
以上がニューラルネットワークについての説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
本実施例では、金属酸化物膜と酸化物絶縁膜の積層構造に対して、異なる条件でプラズマ処理を行い、酸化物絶縁膜からの酸素の放出量と、金属酸化物膜の抵抗を評価した。
[試料の作製]
はじめに、本実施例で作製した試料について説明する。本実施例では、プラズマ処理の条件が異なる2種類の試料(試料A1と試料A2)を作製した。
まず、ガラス基板上に、金属酸化物膜として、酸素を含む雰囲気下で2層のIGZO膜を成膜した。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いたスパッタリング法により、基板温度130℃、圧力0.6Pa、電源電力2.5kWの条件で行った。また、ここでは、酸素流量比を10%とした条件で厚さ約10nmのIGZO膜を成膜した後、酸素流量比を100%とした条件で厚さ約25nmのIGZO膜を成膜した。
続いて、窒素ガス雰囲気下、350℃で1時間の加熱処理を行った後、窒素ガスと酸素ガスの混合ガス雰囲気下で、350℃で1時間の加熱処理を行った。
続いて、酸化物絶縁膜として、厚さ約50nmの酸化窒化シリコン膜を、プラズマCVD法により成膜した。酸化窒化シリコン膜の成膜時の基板温度は、350℃とした。
続いて、酸素ガスを含む雰囲気でプラズマ処理(酸素プラズマ処理ともいう)を行った。試料A1に行うプラズマ処理の条件は、温度350℃、圧力40Pa、電源電力3000W、酸素流量比100%、処理時間600秒とした。試料A2に行うプラズマ処理の条件は、温度220℃、圧力40Pa、電源電力3000W、酸素流量比100%、処理時間600秒とした。試料A1は、酸化窒化シリコン膜の成膜後、真空中で連続してプラズマ処理を行った。
[分析]
続いて、作製した各試料に対してTDS(昇温脱離ガス分光法)分析を行った。図21に、各試料における酸素放出量を示す。
酸素プラズマ処理の温度が350℃である試料A1に比べて、当該温度が220℃である試料A2では、酸化窒化シリコン膜からの酸素放出量が多く確認され、酸化窒化シリコン膜に供給される酸素の量が多いことがわかった。酸素プラズマ処理の温度が低いと、酸素プラズマ処理中に酸化窒化シリコン膜から酸素が放出されにくく、酸化窒化シリコン膜に酸素(過剰酸素)がとどまりやすいと考えられる。
また、作製した各試料における、金属酸化物膜の抵抗を測定した。測定に用いた試料は、基板を1cm角に切出した後、角部に位置する絶縁膜を除去して金属酸化物膜を露出させ、そこにチタン膜を成膜して電極としたものを用いた。図22に各試料における金属酸化物膜の抵抗を示す。図22では、比較試料として、酸素プラズマ処理を行っていない試料における金属酸化物膜の抵抗を示す。
酸素プラズマ処理の温度が350℃である試料A1では、金属酸化物膜が高抵抗化(i型化)されていた。一方、酸素プラズマ処理の温度が220℃である試料A2では、酸化窒化シリコン膜中の酸素は増えているにもかかわらず、試料A1に比べて、金属酸化物膜は高抵抗化されていなかった。これにより、試料A2に比べて、試料A1では、酸素プラズマ処理によって金属酸化物膜に供給される酸素の量が多いことがわかった。
本実施例の結果から、酸化物絶縁膜に酸素を供給するためには、酸素プラズマ処理の温度は、350℃よりも220℃が好適であるとわかった。また、金属酸化物膜に酸素を供給するためには、酸素プラズマ処理の温度は、220℃よりも350℃が好適であるとわかった。したがって、2種類の温度条件のプラズマ処理を併用することで、酸化物絶縁膜と金属酸化物膜の双方に酸素を供給できることが示唆された。
本実施例では、本発明の一態様のトランジスタを作製し、当該トランジスタの電気特性を評価した。
[試料の作製]
作製した試料について説明する。まず、ガラス基板上に厚さ約100nmのタングステン膜をスパッタリング法により成膜し、これを加工してゲート電極を得た。続いて、ゲート絶縁層として厚さ約400nmの窒化シリコン膜をプラズマCVD法により形成した。ゲート絶縁層の成膜時の基板温度は、350℃とした。ゲート絶縁層の成膜後、真空中で連続して、酸素ガスを含む雰囲気でプラズマ処理を行った。プラズマ処理の条件は、温度350℃、圧力40Pa、電源電力3000W、酸素流量比100%、処理時間300秒とした。続いて、350℃、5分の条件で加熱処理を行った。
続いて、ゲート絶縁層上に、酸素を含む雰囲気下で2層の金属酸化物膜を成膜し、当該積層された金属酸化物膜を加工して半導体層を得た。金属酸化物膜の成膜は、In-Ga-Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いたスパッタリング法により、基板温度130℃、圧力0.6Pa、電源電力2.5kWの条件で行った。また、ここでは、酸素流量比を10%とした条件で厚さ約10nmの金属酸化物膜を成膜した後、酸素流量比を100%とした条件で厚さ約25nmの金属酸化物膜を成膜した。
続いて、窒素雰囲気下、350℃で1時間の加熱処理を行った後、窒素と酸素との混合ガス雰囲気下で、350℃で1時間の加熱処理を行った。
続いて、タングステン膜とアルミニウム膜とチタン膜を順にスパッタリング法により成膜し、これを加工してソース電極及びドレイン電極を得た。ここでは、厚さ約50nmのタングステン膜と、厚さ約400nmのアルミニウム膜と、厚さ約100nmのチタン膜を順に形成した。
続いて、露出した半導体層の表面(バックチャネル側)を、リン酸を用いて洗浄した。
続いて、酸素ガスを含む雰囲気でプラズマ処理を行った。プラズマ処理の条件は、温度350℃、圧力40Pa、電源電力3000W、酸素流量比100%、処理時間300秒とした。
続いて、ゲート絶縁層、半導体層、ソース電極、及びドレイン電極上に、第1の保護絶縁層として厚さ約50nmの酸化窒化シリコン膜をプラズマCVD法により形成した。第1の保護絶縁層の成膜時の基板温度は、350℃とした。続いて、酸素ガスを含む雰囲気でプラズマ処理を2回行った。1回目のプラズマ処理は、酸化窒化シリコン膜の成膜後、真空中で連続して行い、その条件は、温度350℃、圧力40Pa、電源電力3000W、酸素流量比100%、処理時間600秒とした。2回目のプラズマ処理の条件は、温度220℃、圧力40Pa、電源電力3000W、酸素流量比100%、処理時間600秒とした。続いて、第1の保護絶縁層上に、第2の保護絶縁層として厚さ約100nmの窒化シリコン膜をプラズマCVD法により形成した。第2の保護絶縁層の成膜時の基板温度は、350℃とした。
その後、第2の保護絶縁層上に、厚さ約1.5μmのアクリル樹脂膜を成膜し、これを加工して平坦化膜を得た。アクリル樹脂膜は、アクリル系の感光性樹脂を用い、窒素雰囲気下、250℃で1時間の焼成を行うことにより形成した。続いて、平坦化膜上に、厚さ約100nmの酸化物導電膜を成膜し、これを加工して導電層を得た。酸化物導電膜は、シリコンを含むインジウムスズ酸化物ターゲットを用いたスパッタリング法により形成した。そして、窒素雰囲気下、250℃で1時間の加熱処理を行った。
[トランジスタの電気特性]
次に、上記作製した試料について、トランジスタのId-Vg特性を測定した。なお、トランジスタのId-Vg特性の測定条件としては、ゲート電圧(Vg)を、-15Vから+20Vまで0.25Vのステップで印加した。また、ソース電圧(Vs)を0Vとし、ドレイン電圧(Vd)を、0.1V及び20Vとした。また、測定数は、各試料それぞれ10とした。
図23(A)、(B)に、各試料におけるトランジスタの電気特性を示す。図23(A)は、チャネル長Lが3μm、チャネル幅Wが50μmであるトランジスタの結果を示しており、図23(B)は、チャネル長Lが6μm、チャネル幅Wが50μmであるトランジスタの結果を示している。
図23(A)、(B)に示すように、いずれの条件も良好な電気特性を示すことが確認された。
また、上記作製条件と同様の条件で作製した異なる試料について、ゲートバイアスストレス試験(GBT試験)を行った。ここでは、GBT試験として、トランジスタが形成されている基板を60℃に保持し、トランジスタのソースとドレインに0V、ゲートには30Vまたは-30Vの電圧を印加し、この状態を一時間保持した。ここで、試験環境を暗状態とし、ゲートに正の電圧を印加する試験をプラスGBTまたはPBTS、負の電圧を印加する試験をマイナスGBTまたはNBTSと表記する。また、試料に光を照射した状態におけるプラスGBTをPBITS、マイナスGBTをNBITSと表記する。光の照射は、約10000lxの白色LED光を用いた。
図24には、チャネル長が3μm、チャネル幅が50μmであるトランジスタについてのGBT試験結果を示している。縦軸にしきい値電圧(Vth)の変動量を示している。本実施例の試料では、いずれの試験においても、トランジスタのしきい値電圧の変動が極めて小さいことが確認できた。
本実施例の結果から、350℃の酸素プラズマ処理により、金属酸化物膜に酸素を供給し、かつ、220℃の酸素プラズマ処理により、酸化物絶縁膜に酸素を供給することで、電気特性が良好なトランジスタを作製することができた。このように、2種類の温度条件のプラズマ処理を併用することで、電気特性が良好なトランジスタを作製することができた。
本実施例では、対角65インチの画素領域(Pixel Area)を有する8K4K液晶ディスプレイモジュールのデータ書き込み時間に関し、概算を行った結果について説明する。
なお、8K4Kディスプレイの解像度は水平解像度が7680、垂直解像度が4320と、極めて高解像度である。また、8K4Kディスプレイに関する国際規格として、ITU-R BT.2020がある。この規格において、駆動方法はプログレッシブ方式であり、フレーム周波数は最大120Hzとされている。
本実施例では、ゲート線1本ずつに選択信号を供給し、列方向の画素が1つずつ選択される構成に加えて、2本のゲート線に同時に選択信号を供給し、列方向に隣接する2つの画素が同時に選択される構成を検討した。同時に選択される2つの画素は、それぞれ異なるソース線と接続される。すなわち列ごとに2本のソース線が配列される。本実施例では、これらの構成における画素レイアウトを用いて、データ書き込み時間の概算を行った。
また、本実施例では、トランジスタの半導体層に、アモルファスシリコンを用いる場合と、金属酸化物を用いる場合について検討した。
アモルファスシリコンを半導体層に用いる場合については、微結晶シリコンを用いて作製したトランジスタの実測値から、設計パラメータである電界効果移動度を変化させた疑似パラメータを用いて、データ書き込み時間を見積もった。
金属酸化物を用いた半導体層については、以下の2種類の構成を検討した。金属酸化物としては、In-Ga-Zn酸化物を用いた。1種類目は、In、Ga、およびZnの原子数比がIn:Ga:Zn=1:1:1である金属酸化物を単層で半導体層に用いる場合である。2種類目は、In、Ga、およびZnの原子数比がIn:Ga:Zn=4:2:3である金属酸化物の積層構造を半導体層に用いる場合である。具体的には、第1の金属酸化物層に、CAC-OS(Cloud-Aligned Composite oxide semiconductor)膜を用い、第2の金属酸化物層に、CAAC-OS(c-axis-aligned crystalline oxide semiconductor)膜を用いる場合を想定した。
本実施例で用いた各層のパラメータを表1に示す。これらは金属酸化物を半導体層に用いたトランジスタを想定したパラメータであるが、本実施例では、アモルファスシリコンを半導体層に用いる場合にも同様のパラメータを用いた。
Figure 0007154136000001
<画素が1つずつ選択される場合>
図25(A)は、本実施例で用いたディスプレイモジュールの構成を示すブロック図である。当該構成では、ゲート線1本ずつに選択信号が供給され、画素が1つずつ選択される。ゲートドライバおよびソースドライバは共に外付けである。ゲート線には、2つのゲートドライバIC(Gate Driver IC(External))から同じ信号が供給される。ソース線には、1つのソースドライバIC(Source Driver IC(External))から信号が供給される。画素領域は分割されていない。画素領域のサイズは対角65インチであり、有効画素数は7680×RGB(H)×4320(V)である。
図25(B)に、画素PIX(i,j)の回路図を示す。画素PIX(i,j)は、トランジスタM1、容量素子C1、および液晶素子LCを有する。トランジスタM1のゲートは、ゲート線GDL(i)と接続されている。トランジスタM1のソースおよびドレインのうち一方は、ソース線SDL(j)と接続され、他方は、容量素子C1の一方の電極、および液晶素子LCの一方の電極と接続されている。容量素子C1の他方の電極は、配線CSCOMと接続されている。液晶素子LCの他方の電極は、配線TCOMと接続されている。
図26(A)、(B)に、画素が1つずつ選択される場合のディスプレイモジュールの画素レイアウトを示す。図26(A)は、ゲート線GDL(i)から画素電極(Pixel electrode)までの積層構造を、画素電極側から見た上面図である。図26(B)は、図26(A)から画素電極を除いた上面図である。
画素サイズは62.5μm×187.5μmである。トランジスタM1は、ボトムゲートトップコンタクト構造のチャネルエッチ型のトランジスタである。トランジスタM1のチャネル長Lは4μm、チャネル幅Wは8μm、ソースまたはドレインとゲートとが重なる領域(以下、オーバーラップ領域Lov)は2μmである。ゲート線GDL(i)の幅は10μm、配線CSCOMの幅は3.5μmである。ソース線SDL(j)の幅は、10μmであるが、他の配線(ゲート線GDL(i)や配線CSCOM)とのクロス部では、4μmである。開口率は、45.6%である。
まず、図27を用いて、金属酸化物を半導体層に用いる場合のデータ書き込み時間の概算について説明する。
図26(A)の画素レイアウトから寄生抵抗と寄生容量を抽出し、トランジスタの電界効果移動度のパラメータのみを変化させることで、画素のゲート線の充電時間とソース線および画素の充電時間を概算した。本実施例において、データ書き込み時間とは、ゲート線の充電時間、並びに、ソース線および画素の充電時間の合計に相当する。また、本実施例において、ゲート線の充電時間は、ゲート線の電位が入力電圧の最大値の75%に達するまでの時間であり、ソース線および画素の充電時間は、ソース線の電位が入力電圧の最大値の99%に達するまでの時間である。
また、ここでは、In、Ga、およびZnの原子数比がIn:Ga:Zn=4:2:3である金属酸化物の積層構造を半導体層に用いた場合の電界効果移動度を1として規格化した値(規格化移動度)を用いた。トランジスタのサイズは変えていない。画素領域全体の負荷については以下の通りである。ゲート線の寄生抵抗Rglは3.60kΩ、ゲート線の寄生容量Cglは255pF、ソース線の寄生抵抗Rslは5.80kΩ、ソース線の寄生容量Cslは147pF、画素の寄生容量Cpixは216.6fFである。なお、本実施例において、画素の寄生容量Cpixは、容量素子の保持容量、液晶素子の容量、およびノードAの寄生容量を含む。なお、本実施例において、ノードAとは、各画素における、トランジスタのソースまたはドレイン、容量素子の一方の電極、および液晶素子の一方の電極が接続されるノードである。
図27において、規格化移動度が1の結果は、In、Ga、およびZnの原子数比がIn:Ga:Zn=4:2:3である金属酸化物の積層構造を半導体層に用いた場合に相当する(図27では「CAC\CAAC」と記す)。このとき、データ書き込み時間は3.55μsであり、60Hz駆動時の1水平期間3.85μsよりも短く、60Hz駆動で動作可能であることが見積もられた。また、当該データ書き込み時間は、120Hz駆動時の1水平期間1.93μsより長く、120Hz駆動での動作が難しいことが見積もられた。
図27において、規格化移動度が0.5の結果は、In、Ga、およびZnの原子数比がIn:Ga:Zn=1:1:1である金属酸化物を単層で半導体層に用いた場合に相当する(図27では「IGZO(111)」と記す)。このとき、データ書き込み時間は4.17μsであり、60Hz駆動時の1水平期間3.85μsよりも長く、120Hz駆動だけでなく60Hz駆動での動作も難しいことが見積もられた。
次に、図28を用いて、アモルファスシリコンを半導体層に用いる場合のデータ書き込み時間の概算について説明する。
図26(A)の画素レイアウトから寄生抵抗と寄生容量を抽出し、微結晶シリコンを用いて作製したトランジスタの実測値から、設計パラメータである電界効果移動度を変化させることで、画素のゲート線の充電時間とソース線および画素の充電時間を概算した。トランジスタのサイズおよび保持容量の大きさは変えていない。実際にアモルファスシリコンを半導体層に用いる場合には、より大きなトランジスタサイズおよび保持容量が必要となるため、データ書き込み時間は本実施例の結果よりも長くする必要がある。画素領域全体の負荷については以下の通りである。ゲート線の寄生抵抗Rglは3.60kΩ、ゲート線の寄生容量Cglは255pF、ソース線の寄生抵抗Rslは5.80kΩ、ソース線の寄生容量Cslは147pF、画素の寄生容量Cpixは216.6fFである。
図28において、電界効果移動度が0.6、0.7、0.8[cm/Vs]の結果は、アモルファスシリコンを半導体層に用いた場合に相当する。このとき、データ書き込み時間はそれぞれ、19.66μs、16.19μs、13.81μsであり、120Hz駆動時の1水平期間1.93μsおよび60Hz駆動時の1水平期間3.85μsより長く、120Hz駆動だけでなく、60Hz駆動での動作も難しいことが見積もられた。
<画素が2つ同時に選択される場合>
図29(A)は、本実施例で用いたディスプレイモジュールの構成を示すブロック図である。当該構成では、2本のゲート線に同時に選択信号が供給され、列方向に隣接する画素が2つ同時に選択される。ゲートドライバおよびソースドライバはともに外付けである。ゲート線には、2つのゲートドライバICから同じ信号が供給される。ゲート線GDL(i)は、ゲート線GDL(i)およびゲート線GDL(i+1)と電気的に接続されており、i行目と(i+1)行目の2行の画素は同時に駆動する。ソース線には、1つのソースドライバICから信号が供給される。画素領域は分割されていない。画素領域のサイズは対角65インチであり、有効画素数は7680×RGB(H)×4320(V)である。
図29(B)に、画素PIX(i,j)および画素PIX(i+1,j)の回路図を示す。
まず、画素PIX(i,j)の構成について説明する。画素PIX(i,j)は、トランジスタM1、容量素子C1、および液晶素子LCを有する。トランジスタM1のゲートは、ゲート線GDL(i)と接続されている。トランジスタM1のソースおよびドレインのうち一方は、ソース線SDL(j)と接続され、他方は、容量素子C1の一方の電極、および液晶素子LCの一方の電極と接続されている。容量素子C1の他方の電極は、配線CSCOMと接続されている。液晶素子LCの他方の電極は、配線TCOMと接続されている。
次に、画素PIX(i+1,j)の構成について説明する。画素PIX(i+1,j)は、トランジスタM2、容量素子C2、および液晶素子LCを有する。トランジスタM2のゲートは、ゲート線GDL(i+1)と接続されている。トランジスタM2のソースおよびドレインのうち一方は、ソース線SDL(j)と接続され、他方は、容量素子C2の一方の電極、および液晶素子LCの一方の電極と接続されている。容量素子C2の他方の電極は、配線CSCOMと接続されている。液晶素子LCの他方の電極は、配線TCOMと接続されている。
図30(A)、(B)に、画素が2つ同時に選択される場合のディスプレイモジュールの画素レイアウトを示す。図30(A)は、ゲート線GDL(i)から画素電極までの積層構造を、画素電極側から見た上面図である。図30(B)は、図30(A)から画素電極を除いた上面図である。
画素サイズは62.5μm×187.5μmである。トランジスタM1は、ボトムゲートトップコンタクト構造のチャネルエッチ型のトランジスタである。トランジスタM1のチャネル長Lは4μm、チャネル幅Wは8μm、オーバーラップ領域Lovは2μmである。ゲート線GDL(i)の幅は10μm、配線CSCOMの幅は3.5μmである。ソース線SDL(j)およびソース線SDL(j)の幅は、どちらも10μmであるが、ゲート線とのクロス部では、どちらも4μmである。開口率は、37.3%である。
まず、図31を用いて、金属酸化物を半導体層に用いる場合のデータ書き込み時間の概算について説明する。
図30(A)の画素レイアウトから寄生抵抗と寄生容量を抽出し、トランジスタの電界効果移動度のパラメータのみを変化させることで、画素のゲート線の充電時間とソース線および画素の充電時間を概算した。ここでは、In、Ga、およびZnの原子数比がIn:Ga:Zn=4:2:3である金属酸化物の積層構造を半導体層に用いた場合の電界効果移動度を1として規格化した値(規格化移動度)を用いた。トランジスタのサイズは変えていない。画素領域全体の負荷については以下の通りである。ゲート線の寄生抵抗Rglは3.60kΩ、ゲート線の寄生容量Cglは364pF、ソース線の寄生抵抗Rslは4.83kΩ、ソース線の寄生容量Cslは182pF、画素の寄生容量Cpixは191fFである。
図31において、規格化移動度が1の結果は、In、Ga、およびZnの原子数比がIn:Ga:Zn=4:2:3である金属酸化物の積層構造を半導体層に用いた場合に相当する(図31では「CAC\CAAC」と記す)。このとき、データ書き込み時間は3.49μsであり、120Hz駆動時の1水平期間3.83μsよりも短く、120Hz駆動で動作可能であることが見積もられた。
図31において、規格化移動度が0.5の結果は、In、Ga、およびZnの原子数比がIn:Ga:Zn=1:1:1である金属酸化物を単層で半導体層に用いた場合に相当する(図31では「IGZO(111)」と記す)。このとき、データ書き込み時間は4.02μsであり、60Hz駆動時の1水平期間7.66μsよりも短く、60Hz駆動で動作可能であることが見積もられた。また、当該データ書き込み時間は、120Hz駆動時の1水平期間3.83μsより長く、120Hz駆動での動作が難しいことが見積もられた。
図31では、2本のゲート線に同じ選択信号が供給されるため、1水平期間の長さを、図27に比べて2倍にすることができる。そのため、電界効果移動度の低いトランジスタを用いて、高解像度の表示装置を動作させることが容易となる。
図27および図31の結果から、CAC\CAACを半導体層に用いる場合、画素1つずつに書き込みを行う構成では難しかった120Hz駆動での動作が、2つの画素に同時に書き込む構成にすることで実現できると示された。
また、図27および図31の結果から、IGZO(111)を半導体層に用いる場合、画素1つずつに書き込みを行う構成では難しかった60Hz駆動での動作が、2つの画素に同時に書き込む構成にすることで実現できると示された。
次に、図32を用いて、アモルファスシリコンを半導体層に用いる場合のデータ書き込み時間の概算について説明する。
図30(A)の画素レイアウトから寄生抵抗と寄生容量を抽出し、微結晶シリコンを用いて作製したトランジスタの実測値から、設計パラメータである電界効果移動度を変化させることで、画素のゲート線の充電時間とソース線および画素の充電時間を概算した。トランジスタのサイズおよび保持容量の大きさは変えていない。画素領域全体の負荷については以下の通りである。ゲート線の寄生抵抗Rglは3.60kΩ、ゲート線の寄生容量Cglは364pF、ソース線の寄生抵抗Rslは4.83kΩ、ソース線の寄生容量Cslは182pF、画素の寄生容量Cpixは191fFである。
図32において、電界効果移動度が0.6、0.7、0.8[cm/Vs]の結果は、アモルファスシリコンを半導体層に用いた場合に相当する。このとき、データ書き込み時間はそれぞれ、17.98μs、14.89μs、12.78μsであり、120Hz駆動時の1水平期間3.83μsおよび60Hz駆動時の1水平期間7.66μsより長く、120Hz駆動だけでなく、60Hz駆動での動作も難しいことが見積もられた。
図32の結果から、アモルファスシリコンを半導体層に用いる場合は、金属酸化物を半導体層に用いる場合(図31の結果参照)とは異なり、2つの画素に同時に書き込む構成にしても、60Hz駆動での動作が難しいことが見積もられた。
以上の概算結果を表2にまとめて示す。表2では、動作可能である条件を丸印、動作が難しい条件をバツ印で示す。また、絶縁層の膜厚をより厚くすると動作可能となる条件を三角印で示す。
Figure 0007154136000002
また、画素領域のサイズ(画面サイズ)を変えた場合の、データ書き込み時間に関し、概算を行った。上記の概算で用いた画素レイアウトをベースに、画素領域のサイズに比例して寄生抵抗と寄生容量が変化すると仮定して概算を行った。
画素が1つずつ選択される場合のデータ書き込み時間の概算について、図33に示す。画素が2つ同時に選択される場合のデータ書き込み時間の概算について、図34に示す。
また、画素領域のサイズとフレーム周波数の関係について、図35に示す。
図35は、画素が2つ同時に選択される場合の画素領域のサイズとフレーム周波数の関係を示す図である。
CAC\CAACでは、60Hzで100inchまで、120Hzで65inchまで動作する可能性がある。IGZO(111)では、60Hzで90inchまで、120hzで60inchまで動作する可能性がある。a-Si:Hでは、30Hzで40inchから60inchまで動作する可能性がある。
また、表3に示す構成のディスプレイモジュールのデータ書き込み時間に関し、概算を行った結果について説明する。具体的には、半導体層にCAC\CAACを用い、対角55インチの画素領域を有する8K4K液晶ディスプレイモジュールについて検討した。ソースドライバは外付けで、ゲートドライバは内蔵である。図29(A)に示す画素領域と同様に、2本のゲート線に同時に選択信号が供給され、列方向に隣接する画素が2つ同時に選択される構成を検討した。
Figure 0007154136000003
概算の結果、ゲート立下り時間が1.77μs、ソース線および画素の充電時間(ソース線の電位が入力電圧の最大値の95%に達するまでの時間)が1.82μsであった。合計時間は、3.59μsであり、120Hz駆動時の1水平期間3.83μsよりも短く、120Hz駆動で動作可能であることが見積もられた。
以上のように、CAC\CAACをトランジスタの半導体層に用いた、対角55インチの画素領域を有する8K4K液晶ディスプレイモジュールは、ゲートドライバを内蔵した構成であっても、120Hz駆動での動作が、2つの画素に同時に書き込む構成にすることで実現できると示された。
100 トランジスタ
100A トランジスタ
100B トランジスタ
100C トランジスタ
100D トランジスタ
102 基板
104 導電層
106 絶縁層
106a 領域
108 半導体層
108a 半導体層
108b 半導体層
108n 領域
112a 導電層
112b 導電層
114 絶縁層
116 絶縁層
118 絶縁層
120a 導電層
120b 導電層
121 導電層
121a 導電膜
122 導電層
122a 導電膜
123 導電層
123a 導電膜
128a 金属酸化物膜
128b 金属酸化物膜
130a 酸素
130b 酸素
130c 酸素
131 レジストマスク
132 レジストマスク
142a 接続部
142b 接続部
501 画素回路
502 画素部
504 駆動回路部
504a ゲートドライバ
504b ソースドライバ
506 保護回路
507 端子部
550 トランジスタ
552 トランジスタ
554 トランジスタ
560 容量素子
562 容量素子
570 液晶素子
572 発光素子
600 テレビジョン装置
601 制御部
602 記憶部
603 通信制御部
604 画像処理回路
605 デコーダ回路
606 映像信号受信部
607 タイミングコントローラ
608 ソースドライバ
609 ゲートドライバ
610 ニューラルネットワーク
611 入力層
612 中間層
613 出力層
615 ニューロン
620 表示パネル
621 画素
630 システムバス
700 表示装置
700A 表示装置
701 基板
702 画素部
704 ソースドライバ回路部
705 基板
706 ゲートドライバ回路部
708 FPC端子部
710 信号線
711 配線部
712 シール材
716 FPC
721 ソースドライバIC
722 ゲートドライバ回路
723 FPC
724 プリント基板
730 絶縁膜
732 封止膜
734 絶縁膜
736 着色膜
738 遮光膜
750 トランジスタ
752 トランジスタ
760 接続電極
770 平坦化絶縁膜
772 導電膜
773 絶縁膜
774 導電膜
775 液晶素子
776 液晶層
778 構造体
780 異方性導電膜
782 発光素子
786 EL層
788 導電膜
790 容量素子
791 タッチパネル
792 絶縁膜
793 電極
794 電極
795 絶縁膜
796 電極
797 絶縁膜
7000 表示部
7100 テレビジョン装置
7101 筐体
7103 スタンド
7111 リモコン操作機
7200 ノート型パーソナルコンピュータ
7211 筐体
7212 キーボード
7213 ポインティングデバイス
7214 外部接続ポート
7300 デジタルサイネージ
7301 筐体
7303 スピーカ
7311 情報端末機
7400 デジタルサイネージ
7401 柱
7411 情報端末機

Claims (5)

  1. シリコンと窒素とを含む第1の絶縁層を形成する第1の工程と、
    前記第1の絶縁層の表面近傍に、酸素を添加する第2の工程と、
    前記第1の絶縁層上に接して、金属酸化物を含む半導体層を形成する第3の工程と、
    前記半導体層上に接して、酸素を含む第2の絶縁層を形成する第4の工程と、
    酸素を含む雰囲気であり、且つ第1の温度でプラズマ処理を行う第5の工程と、
    酸素を含む雰囲気であり、且つ第2の温度でプラズマ処理を行う第6の工程と、
    前記第2の絶縁層上に、シリコンと窒素を含む第3の絶縁層を形成する第7の工程と、を有し、
    前記第2の温度は、前記第1の温度よりも低い、半導体装置の作製方法。
  2. 請求項1において、
    前記第1の温度は、250℃以上450℃以下の温度であり、
    前記第2の温度は、150℃以上300℃以下の温度である、半導体装置の作製方法。
  3. 請求項1または請求項2において、
    前記第5の工程は、前記第2の絶縁層の形成後に、大気に曝すことなく行う、半導体装置の作製方法。
  4. 請求項1または請求項2において、
    前記第3の工程と前記第4の工程の間に、
    酸素を含む雰囲気であり、且つ第3の温度でプラズマ処理を行う第8の工程を有し、
    前記第3の温度は、前記第2の温度よりも高い、半導体装置の作製方法。
  5. 請求項1または請求項2において、
    前記第2の絶縁層の形成は、前記第1の温度で行う、半導体装置の作製方法。
JP2018566656A 2017-02-07 2018-01-26 半導体装置の作製方法 Active JP7154136B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022160298A JP2023011576A (ja) 2017-02-07 2022-10-04 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017020695 2017-02-07
JP2017020695 2017-02-07
PCT/IB2018/050471 WO2018146569A1 (ja) 2017-02-07 2018-01-26 半導体装置、及び半導体装置の作製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022160298A Division JP2023011576A (ja) 2017-02-07 2022-10-04 半導体装置

Publications (2)

Publication Number Publication Date
JPWO2018146569A1 JPWO2018146569A1 (ja) 2019-12-12
JP7154136B2 true JP7154136B2 (ja) 2022-10-17

Family

ID=63108029

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018566656A Active JP7154136B2 (ja) 2017-02-07 2018-01-26 半導体装置の作製方法
JP2022160298A Pending JP2023011576A (ja) 2017-02-07 2022-10-04 半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022160298A Pending JP2023011576A (ja) 2017-02-07 2022-10-04 半導体装置

Country Status (4)

Country Link
US (2) US10957801B2 (ja)
JP (2) JP7154136B2 (ja)
CN (1) CN110226219B (ja)
WO (1) WO2018146569A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376695B (zh) * 2018-02-05 2021-01-08 惠科股份有限公司 一种显示面板和显示装置
JP7263013B2 (ja) * 2019-01-10 2023-04-24 株式会社ジャパンディスプレイ 配線構造体、半導体装置、及び表示装置
US11696448B2 (en) * 2020-06-18 2023-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method of forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187506A (ja) 2010-03-04 2011-09-22 Sony Corp 薄膜トランジスタおよびその製造方法、並びに表示装置
JP2013140949A (ja) 2011-11-25 2013-07-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013175713A (ja) 2012-01-25 2013-09-05 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2013179290A (ja) 2012-02-09 2013-09-09 Semiconductor Energy Lab Co Ltd 半導体装置、半導体装置を有する表示装置、半導体装置を有する電子機器及び半導体装置の作製方法
JP2016063225A (ja) 2014-09-12 2016-04-25 株式会社半導体エネルギー研究所 半導体装置の作製方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939434B2 (en) * 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7087954B2 (en) * 2001-08-30 2006-08-08 Micron Technology, Inc. In service programmable logic arrays with low tunnel barrier interpoly insulators
US8258511B2 (en) * 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
JP2010109030A (ja) * 2008-10-29 2010-05-13 Seiko Epson Corp 半導体装置の製造方法、半導体装置、および電気光学装置
WO2010071034A1 (en) * 2008-12-19 2010-06-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
TWI556323B (zh) * 2009-03-13 2016-11-01 半導體能源研究所股份有限公司 半導體裝置及該半導體裝置的製造方法
CN102317996B (zh) * 2009-05-02 2014-05-07 株式会社半导体能源研究所 电子书
EP2256795B1 (en) * 2009-05-29 2014-11-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for oxide semiconductor device
KR101476817B1 (ko) * 2009-07-03 2014-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터를 갖는 표시 장치 및 그 제작 방법
SG177332A1 (en) * 2009-07-10 2012-02-28 Semiconductor Energy Lab Method for manufacturing semiconductor device
KR101825345B1 (ko) 2009-11-28 2018-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 적층 산화물 재료, 반도체 장치 및 반도체 장치의 제작 방법
WO2011132625A1 (en) * 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR101689378B1 (ko) * 2010-04-23 2016-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR101976212B1 (ko) * 2011-10-24 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US8951899B2 (en) * 2011-11-25 2015-02-10 Semiconductor Energy Laboratory Method for manufacturing semiconductor device
JP6080563B2 (ja) * 2012-01-23 2017-02-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2013201428A (ja) * 2012-02-23 2013-10-03 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
CN107403840B (zh) * 2012-05-10 2021-05-11 株式会社半导体能源研究所 半导体装置
WO2013180040A1 (en) 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI614813B (zh) * 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 半導體裝置的製造方法
US9564535B2 (en) 2014-02-28 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
TWI672804B (zh) * 2014-05-23 2019-09-21 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
JP2016127155A (ja) * 2014-12-29 2016-07-11 株式会社半導体エネルギー研究所 半導体装置および半導体装置の製造方法
CN112436021A (zh) * 2015-02-04 2021-03-02 株式会社半导体能源研究所 半导体装置的制造方法
JP6736321B2 (ja) * 2015-03-27 2020-08-05 株式会社半導体エネルギー研究所 半導体装置の製造方法
US20170162715A1 (en) * 2015-12-07 2017-06-08 Japan Display Inc. Thin film transistor and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187506A (ja) 2010-03-04 2011-09-22 Sony Corp 薄膜トランジスタおよびその製造方法、並びに表示装置
JP2013140949A (ja) 2011-11-25 2013-07-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013175713A (ja) 2012-01-25 2013-09-05 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2013179290A (ja) 2012-02-09 2013-09-09 Semiconductor Energy Lab Co Ltd 半導体装置、半導体装置を有する表示装置、半導体装置を有する電子機器及び半導体装置の作製方法
JP2016063225A (ja) 2014-09-12 2016-04-25 株式会社半導体エネルギー研究所 半導体装置の作製方法

Also Published As

Publication number Publication date
US20210202745A1 (en) 2021-07-01
CN110226219B (zh) 2023-12-08
JP2023011576A (ja) 2023-01-24
US10957801B2 (en) 2021-03-23
CN110226219A (zh) 2019-09-10
WO2018146569A1 (ja) 2018-08-16
US20190393354A1 (en) 2019-12-26
US20220406944A1 (en) 2022-12-22
US11462645B2 (en) 2022-10-04
JPWO2018146569A1 (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
US20210343869A1 (en) Semiconductor device, display device, and method for manufacturing semiconductor device
JP7113602B2 (ja) 表示装置及び電子機器
JP2022126666A (ja) 表示装置
JP2023011576A (ja) 半導体装置
JP2022164678A (ja) 半導体装置
WO2019043510A1 (ja) 半導体装置、及び表示装置
KR102639848B1 (ko) 반도체 장치 및 반도체 장치의 제작 방법
JP2023016820A (ja) 半導体装置
JP2018190753A (ja) 半導体装置、および表示装置
JP6925819B2 (ja) 半導体装置の作製方法
US11961918B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2018148051A (ja) 成膜装置、成膜方法、及び半導体装置の作製方法
JP2019125789A (ja) 半導体装置
JP2019054028A (ja) 半導体装置、及び表示装置
JP2018163949A (ja) 半導体装置、及び半導体装置の作製方法
JP2019028169A (ja) 表示パネル、表示装置
TWI831743B (zh) 半導體裝置、顯示裝置以及半導體裝置的製造方法
JP2019071400A (ja) 半導体装置、表示装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221004

R150 Certificate of patent or registration of utility model

Ref document number: 7154136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150