JP7150345B2 - 電動弁 - Google Patents

電動弁 Download PDF

Info

Publication number
JP7150345B2
JP7150345B2 JP2020003105A JP2020003105A JP7150345B2 JP 7150345 B2 JP7150345 B2 JP 7150345B2 JP 2020003105 A JP2020003105 A JP 2020003105A JP 2020003105 A JP2020003105 A JP 2020003105A JP 7150345 B2 JP7150345 B2 JP 7150345B2
Authority
JP
Japan
Prior art keywords
valve
motor
shaft
seat
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020003105A
Other languages
English (en)
Other versions
JP2021110401A (ja
Inventor
将志 矢沢
真一郎 大鹿
泰利 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2020003105A priority Critical patent/JP7150345B2/ja
Priority to CN202110006820.1A priority patent/CN113108071A/zh
Publication of JP2021110401A publication Critical patent/JP2021110401A/ja
Application granted granted Critical
Publication of JP7150345B2 publication Critical patent/JP7150345B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • F16K1/443Details of seats or valve members of double-seat valves the seats being in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0254Construction of housing; Use of materials therefor of lift valves with conical shaped valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/08Guiding yokes for spindles; Means for closing housings; Dust caps, e.g. for tyre valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Valve Housings (AREA)
  • Lift Valve (AREA)

Description

本発明は、電動弁に関する。
従来から、例えば流体の配管系統の途中に介在させて、流体の流路の開閉や流量制御を行う機器として電動弁が使用されている。このような電動弁においては、流量制御を正確に行わせるために、弁本体に装着されたステッピングモータなどの駆動源により弁体を駆動させている。
特許文献1には、正方向においては小流量の流体を流し、また逆方向においては大流量の流体を流すことが可能な電動弁において、可動弁座体をフロート型の逆止弁体としても機能させる技術が開示されている。
特開2013-241958号公報
ここで、特許文献1の電動弁ではその構成上、同じ方向に流れる流体について、小流量の流体制御と大流量の流体制御を行うことができないという問題がある。
また、特に小流量の流体制御を高精度に行うには、弁軸の位置決めが重要となるが、特許文献1の電動弁では、部品の製造誤差と組み付け誤差の影響が大きく、位置決め調整に手間がかかるという問題もある。また、液体とガスが混合した冷媒の流体制御を行う電動弁において、異音を抑制したいという要請もある。
本発明は、同じ方向に流れる流体について、小流量の流体制御と大流量の流体制御を行うことが可能であり、弁軸の位置決め調整が容易な電動弁を提供することを目的とする。
本発明にかかる電動弁は、
第1弁室及び大径弁口を備えた弁本体と、
前記第1弁室に挿通され、流路調整部と係合部と段差部とが設けられた弁軸と、
前記弁軸を前記大径弁口に接離する方向に変位させることによって、リフト量を変化させることが可能な弁軸駆動部と、
前記第1弁室内で前記弁軸の変位方向に移動可能に配置され、第2弁室および前記第2弁室につながる小径弁口を備えた移動弁座体と、を有し、
前記弁軸の前記リフト量の変化する範囲に、前記移動弁座体が前記大径弁口に着座した状態で前記流路調整部と前記小径弁口との間の流路断面積を変化させる第1の範囲と、前記移動弁座体が前記係合部に係止された状態で前記移動弁座体と前記大径弁口との間の流路断面積を変化させる第2の範囲と、を有するように構成され、
前記第1の範囲内において前記流路調整部が最も前記小径弁口側に移動した下端位置のとき、前記流路調整部と前記小径弁口との間に所定の隙間を有し、
前記第1弁室には流体供給用の配管が接続されており、
前記第1弁室と前記第2弁室とを連通する連通孔が、前記配管の内周上端よりも上方に設けられていることを特徴とする。
本発明の電動弁によれば、同じ方向に流れる流体について、小流量の流体制御と大流量の流体制御を行うことが可能であり、弁軸の位置決め調整が容易な電動弁を提供することができる。
図1は、参考例1の電動弁を示す縦断面図である。 図2は、参考例1の電動弁の流量測定を示す図であり、横軸に、ロータ30を回転させるために印加される制御パルス数をとり、縦軸に供給側円管T1から排出側円管T2へと流れる冷媒の量をとって示している。 図3は、図1に示す電動弁の弁室の周辺を示す拡大断面図であり、図2の点Aに対応する位置に弁軸が位置する状態を示している。 図4は、弁部の周辺を拡大して示す図であり、図2の点Aに対応する位置に弁軸が位置する状態を示している。 図5は、図1に示す電動弁の弁室の周辺を示す拡大断面図であり、図2の点Bに対応する位置に弁軸が位置する状態を示している。 図6は、弁部の周辺を拡大して示す図であり、図2の点Bに対応する位置に弁軸が位置する状態を示している。 図7は、図1に示す電動弁の弁室の周辺を示す拡大断面図であり、図2の点Cに対応する位置に弁軸が位置する状態を示している。 図8は、弁部の周辺を拡大して示す図であり、図2の点Cに対応する位置に弁軸が位置する状態を示している。 図9は、図1に示す電動弁の弁室の周辺を示す拡大断面図であり、図2の点Dに対応する位置に弁軸が位置する状態を示している。 図10は、参考例2の電動弁における弁室の周辺を示す拡大断面図であり、図2の点A’に対応する位置に弁軸が位置する状態を示している。 図11は、第1実施形態の電動弁を示す縦断面図である。 図12は、図11に示す電動弁の弁室の周辺を示す拡大断面図である。 図13は、第2実施形態の電動弁を示す縦断面図である。 図14は、図13に示す電動弁の弁室の周辺を示す拡大断面図である。 図15は、第3実施形態の電動弁を示す縦断面図である。 図16は、図15に示す電動弁の弁室の周辺を示す拡大断面図である。 図17は、第4実施形態の電動弁の弁室の周辺を示す拡大断面図である。
以下、本発明に係る電動弁の参考例及び実施形態を、図面を参照しながら説明する。なお、本明細書では、ロータから弁座に向かう方向を下方とし、その逆方向を上方とする。電動弁は、下方を重力方向として使用されることが望ましい。
参考例1
図1は、参考例1の電動弁10を示す縦断面図である。自動車等の冷凍サイクル等における冷媒(流体)の流量制御を行う電動弁10は、弁座部材60と、弁座部材60を取り付けた弁本体20と、弁本体20に取り付けられて弁軸24を駆動させるロータ30を内蔵するキャン40と、キャン40に外嵌されロータ30を回転駆動するステータ50とを備えている。電動弁10の軸線をLとする。
キャン40の円筒状部分の外周には、それぞれ一対のボビン52とステータコイル53およびこれらを囲うヨーク51が配置され、その外周を樹脂モールドカバー56によって覆うことによりステータ50が形成されている。参考例1では、樹脂モールドカバー56は、キャン40の上部を含めて覆っているが、ヨーク51の周囲のみを覆うようにしてもよい。ロータ30とステータ50とによりステッピングモータを構成している。
ステータコイル53は、基板CB及びコネクタCNを介して、外部の電源回路(不図示)に接続されている。
キャン40はステンレスなどの非磁性の金属から形成され、有底円筒状をしている。キャン40の開放した下端は、後述するように弁本体20の上端に溶接されて固着されている。
略円筒状の弁軸24は、ステンレス又は真鍮などから形成され、上端側の第1軸部24aと、第1軸部24aより大径の第2軸部24bと、第2軸部24bより小径の第3軸部24cと、第3軸部24cより小径の第4軸部24dと、下端側の弁部24eとを同軸に連設してなる。流路調整部としての弁部24eは、先端側に向かうにつれて小径となるテーパ形状を有している。第2軸部24bと第3軸部24cとの間に、上方段部(段差部)24fが形成され、第3軸部24cと第4軸部24dとの間に、下方段部24gが形成されている。
略円筒状の弁軸ホルダ32は、キャン40内において、弁軸24の上端側を収容するように配置されている。弁軸ホルダ32の上端は、弁軸24の第1軸部24aの上端が圧入固定されたプッシュナット33により接合されている。
プッシュナット33の外周に沿って、圧縮コイルばねで構成される復帰ばね35を取付けている。復帰ばね35は、詳細を後述するガイドブッシュ26の固定ねじ部25と弁軸ホルダ32の移動ねじ部31との螺合が外れたときに、キャン40の頂部内面に当接して固定ねじ部25と移動ねじ部31との螺合を復帰させるように付勢する機能を有する。
キャン40に対して隙間を開けて配置されたロータ30と、弁軸ホルダ32とは、支持リング36を介して結合されている。より具体的に支持リング36は、ロータ30の成形時にインサートされた黄銅製の金属リングで構成されており、支持リング36の内周孔部に弁軸ホルダ32の上部突部が嵌合し、上部突部の外周をかしめ固定してロータ30、支持リング36及び弁軸ホルダ32を結合している。
弁軸ホルダ32の外周には、ストッパ機構の一方を構成する上ストッパ体37が固着されている。上ストッパ体37はリング状の樹脂より構成され、下方に向けて板状の上ストッパ片37aが突設されている。
円筒状のガイドブッシュ26が、弁軸ホルダ32と弁軸24との間に配置されている。ガイドブッシュ26の下端は、後述するホルダ220の内周に圧入により嵌合している。ガイドブッシュ26の外周には、ストッパ機構の他方を構成する下ストッパ体27が固着されている。下ストッパ体27はリング状の樹脂より構成され、上方に板状の下ストッパ片27aが突設されており、上記した上ストッパ片37aと係合可能となっている。
下ストッパ体27はガイドブッシュ26の外周に形成された螺旋溝部分26aに射出成形により固着され、上ストッパ体37は弁軸ホルダ32の外周に形成された螺旋溝部分32bに射出成形により固着されている。
弁軸ホルダ32の内面に移動ねじ部31が形成されており、ガイドブッシュ26の外周に形成された固定ねじ部25と螺合している。移動ねじ部31と固定ねじ部25により構成されるねじ送り機構と、ロータ30とにより、弁軸24を軸線L方向に進退動させる弁軸駆動部を構成する。
弁軸24は、弁軸ホルダ32の軸線Lに沿って上下動可能に嵌挿されており、弁軸ホルダ32内に縮装された圧縮コイルばね34によって下方に付勢されている。ガイドブッシュ26の側面には、弁室21とキャン40内の圧力均衡を図る均圧孔32aが形成されている。
弁本体20は、肉厚や外径が均一な金属製の直線パイプから形成される筒状本体210と、筒状本体210の上端側内周に圧入されるホルダ220と、弁座部材60とを有する。ガイド部であるホルダ220は、中空円筒部221と、中空円筒部221の内周中間に形成された仕切り壁222とを有する。中空円筒部221は、上端近傍に拡径した拡径部223を有する。拡径部223が、筒状本体210の上端に形成された薄肉部212に嵌合することで、筒状本体210とホルダ220との軸線L方向の位置決めが行われる。また、拡径部223は筒状本体210に嵌合した状態で、その上端が突出しており、後述するキャン40との接合の際に接合ガイドとして機能する。
中空円筒部221の内周に、仕切り壁222に下端を突き当てるようにして、ガイドブッシュ26が圧入されている。仕切り壁222の中央には、円形穴225が形成されている。
筒状本体210の下端には、弁座部材60がロウ付けにより固着されている。弁座部材60の下端には、筒状本体210の内径より大きい外径を有する鍔部64が形成されており、鍔部64を筒状本体210の下端に突き当てることで、筒状本体210に対して軸線L方向における弁座部材60の位置決めを行える。
中空円筒形状を有する弁座部材60は、その上端に縮径した薄肉円筒部61を有し、また薄肉円筒部61の上端内周側に、上方に向かうにつれて拡径したテーパ状の弁座(大径弁口)62を有している。弁座部材60の内周中間には環状に突出した突出部63を形成している。突出部63の下面に上端を突き当てるようにして、排出側円管T2が弁座部材60の内周に嵌合しロウ付けにより固着されている。薄肉円筒部61の内径を、排出側円管T2の内径より大きくすることで、通過する冷媒の最大量を増大させることができる。
筒状本体210の外周には円孔211が形成され、また円孔211に供給側円管T1が挿通されている。中心線Oを持つ供給側円管T1の先端が、弁座部材60の薄肉円筒部61の外周に当接するようにして位置決めされ、かかる状態で供給側円管T1が筒状本体210にロウ付けされている。弁室21に連通する供給側円管T1内が第1流路を構成し、弁室21に連通する排出側円管T2内が第2流路を構成する。なお、供給側円管T1の中心線Oは軸線Lに直交している。
筒状本体210内において、ホルダ220と弁座部材60との間の空間を弁室21とする。弁室21には、移動弁座体70が軸線L方向に沿って変位可能に配置されている。移動弁座体70は、有頂円筒状のスリーブ71と、スリーブ71の下端に接合された円盤状のシート72とを有する。
スリーブ71は、供給側円管T1に対向する高さ位置に、4つの横穴(連通孔ともいう)71aを周方向に等間隔に備え、また頂壁(隔壁ともいう)71bの中央に円形開口71cを形成している。
後述する図3を参照して、シート72は、円盤部72aと、それより小径の短円筒部72bとを連設しており、円盤部72aの上面に突き当てるようにして、短円筒部72bの外周にスリーブ71の下端が圧入により挿入されている。
シート72の円盤部72aの下面外周には、下方に向うにつれて縮径するテーパ状のシート面72cが形成されており、弁座部材60の弁座62に着座可能となっている。シート72の中央には、後述する図4を参照して、上端側の円筒孔(小径弁口)72dと下端側のテーパ孔72eとを連設してなる連通穴72fが形成されている。円筒孔72dに続いて漸次拡径するテーパ孔72eを設けることで、ここを通過する冷媒の通過音を減少させ、電動弁10の静穏化を図れる。ここでは、円筒孔72dが弁口を構成する。
スリーブ71の外径は、シート面72cの最小内径より小さいと好ましく、それにより弁室21の容積を大きく確保できる。また、比較的小径の円筒孔72dを採用することで、スリーブ71の内径を小さく抑えることができ、スリーブ71の容積や開口断面積の低減を図り、また部品の軽量化を図ることができる。
後述する図3を参照して、弁室21内に挿通された弁軸24は、第2軸部24bがホルダ220の円形穴225に挿通され、第3軸部24cがスリーブ71の円形開口71cに挿通される。スリーブ71内において、第3軸部24cと第4軸部24dとの間の下方段部24gに突き当てるようにして、係合部である環状部材73が圧入により取り付けられている。なお、第4軸部24dの上端部分(下方段部24g側の部分)は、それ以外の第4軸部24dより直径が大きく形成され、環状部材73が圧入できるようになっている。
図1において、弁本体20の筒状本体210の外周に、ステンレス板(SUS板)をプレスにより成形して円筒状に形成した筒部240の端部を溶接またはロウ付けにより固着している。筒部240をステータ50側から延在させた板ばね241に係合させることで、ステータ50に対して弁本体20の回り止めを行っている。
(弁本体の組付)
まず、弁座部材60を、筒状本体210の下端に鍔部64が突き当たるまで挿入し、排出側円管T2を弁座部材60の下端側開口に挿入する。一方、供給側円管T1を筒状本体210の円孔211に、その先端が弁座部材60に突き当たるまで挿通する。その後、ロウ付けにより、弁座部材60、供給側円管T1及び排出側円管T2が筒状本体210と一体になるように固着する。
その後、弁軸24にスリーブ71を接近させ、弁軸24が円形開口71cを貫通するようにして、スリーブ71をホルダ220内に挿入する。
次いで、第4軸部24dに環状部材73を圧入して、下方段部24gに突き当てる。かかる状態で、スリーブ71の下端にシート72の短円筒部72bを圧入する。こうして組み立てた、スリーブ71、弁軸24、環状部材73および短円筒部72bからなるスリーブ組立体を、パイプ製の筒状本体210に挿入する。ホルダ220に対してスリーブ71は摺動可能となっている。その後、スリーブ組立体の弁軸24を、筒状本体210の円形穴225に挿入した状態で、筒状本体210内にホルダ220を圧入する。このとき、ホルダ220の外径を一部縮径することで、圧入する際に印加する荷重を減少させることができる。さらにガイドブッシュ26をホルダ220内に圧入し、下ストッパ体27aを取り付ける。また、ガイドブッシュ26から突出した弁軸24に圧縮コイルばね34、弁軸ホルダ32、下ストッパ体27、ロータ30およびプッシュナット33等を組み付ける。
更に、キャン40の下端を、筒状本体210の上端から突き出したホルダ220の拡径部223に嵌合させた状態で、突き合わせたキャン40の下端と筒状本体210の上端とに対し、全周にわたってレーザ溶接を行って溶接部Wを形成する。これにより、キャン40と筒状本体220との同軸性を確保しつつ、キャン40とホルダ220と筒状本体210とが1か所で接合される。ホルダ220は外部に対して露出しないため、経年劣化などに対して有利である。また、別工程で予め組み立てておいたステータ50をキャン40の外周に装着する。以上で、電動弁10の組み付けが完了する。
参考例1によれば、スリーブ71が、ホルダ220の中空円筒部221の内周でガイドされる構造であるため、筒状本体210の内周をガイドとして用いる必要がなくなり、筒状本体210を安価なパイプ等を用いて形成することができる。また、スリーブ71の外径を中空円筒部221の内径に合わせて比較的小径とすることができるため、スリーブ71と筒状本体210との間に、比較的大きな弁室21を形成でき、それにより電動弁10としての性能を向上させることができる。
(電動弁の動作)
図2は、参考例1の電動弁10の流量測定を示す図であり、横軸に、ロータ30を回転させるために印加される制御パルス数をとり、縦軸に供給側円管T1から排出側円管T2へと流れる冷媒の量をとって示している。制御パルス数は、弁軸24の相対変位量(リフト量)に相当する。図2において、点Aから点Cまでの制御パルス数の範囲を、小流量の制御範囲(移動弁座体70のシート面72cが弁座62に着座した状態で第4軸部24dと円筒孔72dの間の流路断面積を変化させる第1の範囲)とし、点Cから点Dを、大流量の制御範囲(移動弁座体70が環状部材73に係止された状態で移動弁座体70のシート面72cと弁座62との間の流路断面積を変化させる第2の範囲)とする。
参考例1にかかる電動弁10の動作について説明する。以下、弁軸24と円筒孔72dとの間の隙間(第1の隙間)により形成される流路断面積をS1とし、シート面72cと弁座62との間の隙間(第2の隙間)により形成される流路断面積をS2とする。
図1において、外部からコネクタCNおよび基板CBを介して給電することにより、ステータ50のステータコイル53に通電を行って励磁すると、発生した磁力によりロータ30に回転力が生じるため、弁本体20に固着されたガイドブッシュ26に対しロータ30及び弁軸ホルダ32が回転駆動される。
これにより、ガイドブッシュ26の固定ねじ部25と、弁軸ホルダ32の移動ねじ部31とのねじ送り機構により、弁軸ホルダ32がその軸線L方向に変位する。ステータコイル53への通電により、弁軸ホルダ32が下方に変位すると、重力に従い環状部材73に係止された状態の移動弁座体70は弁軸ホルダ32とともに下方に変位する。さらに弁軸ホルダ32を下方に変位させると、移動弁座体70のシート面72cが、弁座部材60の弁座62に着座する。この状態からさらに弁軸ホルダ32を下方に変位させると環状部材73と頂壁71bが離れ、その後、弁軸24の上方段部24fがスリーブ71の頂壁71bの上面に突き当たり、シート面72cをコイルばね34の弾性力により弁座62に押し当て、シート面72cと弁座62との間の冷媒の流れを遮断する。
一方、図3,4に示すように、弁軸24の上方段部24fがスリーブ71の頂壁71bの上面に突き当たった状態で、第4軸部24dの下端(弁部24eの上端)が移動弁座体70の円筒孔72dの範囲内に位置する。ここでは、第4軸部24dと円筒孔72dとの軸線L方向の重なり量をδとする。なお、δ=0mmである場合も含む。このように、第1の範囲内において第4軸部24dが最も円筒孔72d側に移動した下端位置のとき、第4軸部24dと円筒孔72dとの間に所定の隙間S3(0mmを除く)が形成される。
このとき、第4軸部24dと円筒孔72dとの隙間S3により形成される流路断面積S1が最小となるので、その流路断面積S1に応じた流量で冷媒が通過する。換言すれば、第4軸部24dと円筒孔72dとの隙間は完全に閉じることがなく、その間を最小流量の冷媒が流れることとなる。より具体的には、供給側円管T1から弁室21に供給された冷媒は、スリーブ71の横穴71aを介してスリーブ71内部へと進入し、さらに第4軸部24dと円筒孔72dとの間を介して弁座部材60の内部へと流れ、排出側円管T2を介して排出される。
参考例1によれば、弁軸24の上方段部24fをスリーブ71の頂壁71bの上面に突き当てることで、円筒孔72dに対する弁部24eの軸線L方向の位置を定めることができ、これにより流量制御を精度よく行える。すなわち、弁部24eの設計位置に対する実際の位置のばらつきは、各部品の製造誤差と組み付け誤差に応じて増大するため、例えばストッパなどを用いて弁部24eの位置決めを行う構成では関連する部品が多くなり、実際の位置が大きくばらつくおそれがある。これに対し参考例1では、円筒孔72dを形成したシート72と上方段部24fとの間にはスリーブ71しか介在しないので、ばらつきの要因を極力排除して、円筒孔72dに対する弁部24eの位置決めを精度よく行うことができる。
なお、弁軸24の上方段部24fがスリーブ71の頂壁71bの上面に突き当たった状態では、上ストッパ体37は未だ下ストッパ体27に当接しておらず、弁軸24とスリーブ71と共に、ロータ30及び弁軸ホルダ32はさらに回転下降する。このときは弁軸24に対する弁軸ホルダ32の相対的な下降変位は、圧縮コイルばね34が圧縮されることにより吸収される。
その後、ロータ30が更に回転して弁軸ホルダ32が下降して、上ストッパ体37の上ストッパ片37aが下ストッパ体27の下ストッパ片27aに当接する。これらのストッパ片27a、37a同士の当接によって、ステータ50への通電が継続されても、弁軸ホルダ32の下降は強制的に停止される。
上ストッパ体37と下ストッパ体27とから構成されるストッパ機構は、ロータ30の軸方向の全長内に配置されているため、ストッパ機構が機能しているときでもロータ30や弁軸ホルダ32が大きく傾いたりすることが少なく作動が安定し、次にロータ30を逆転するときでも円滑に行うことができる。
次に、ステータ50に逆方向の通電を行うと、ガイドブッシュ26に対しロータ30及び弁軸ホルダ32が上記と逆方向に回転され、上記のねじ送り機構により、弁軸ホルダ32が上方に変位する。このとき、弁室21内の冷媒圧が、排出側円管T2内の冷媒圧より高いため、その差圧により移動弁座体70が下方に付勢され、シート72のシート面72cが、弁座部材60の弁座62に着座したままとなる。
したがって、シート面72cと弁座62との間に隙間は生じず、冷媒は専ら第4軸部24dと円筒孔72dとの間を通過することとなる。このため図5,6に示すように、弁軸24の第4軸部24dの下端が円筒孔72dの上端に到達するまでは、流路断面積S1は最小のままであるため流量は変化しない。このとき、制御パルス数と流量との関係は、図2の点Aから点Bまでの実線により表される。
図5,6に示す位置よりさらに、弁軸24の弁部24eが円筒孔72dの上端から上方へと変位すると、テーパ状である弁部24eと円筒孔72dとの間の隙間が変化し、流路断面積S1(図8参照)が増大する。すなわち、流路断面積S1を通過する冷媒の流量は、移動弁座体70と弁軸24の相対変位量に応じて変化するため、小流量の流体制御を行うことができる。このとき、制御パルス数と流量との関係は、図2の点Bから点Cまでの実線により表される。
更に続けてステータ50に逆方向の通電を行うと、図7,8に示すように、環状部材73がスリーブ71の頂壁71bの下面に当接し、それ以降、移動弁座体70は弁軸24に引き上げられる形で、上方に共に変位する。このため、図9に示すように、移動弁座体70のシート面72cが弁座部材60の弁座62から離間して、シート面72cと弁座62との間の隙間により比較的大きな流路断面積S2が形成される。
さらに、逆方向への通電を続行すると、弁軸24の変位量に応じてシート面72cと弁座62との間の流路断面積S2が拡大するので、その流路断面積S2に応じた大流量の冷媒が流れることとなる。
かかる状態で、流路断面積S1と流路断面積S2を合計した流路を介して供給側円管T1から排出側円管T2へと冷媒が流れることとなるが、弁部24eと円筒孔72dとの間で相対変位は生じないため、流路断面積S1(図8)は一定であるのに対し、流路断面積S2は、弁軸24の変位量に応じて変化する。このため、大流量の流体制御を精度よく行うことができる。弁軸24が最大位置まで変位すると、それ以上、流路断面積S2は拡大しないため、流路断面積S1と流路断面積S2の双方が一定となり、供給側円管T1から排出側円管T2へと流れる冷媒の量は一定となる。このとき、制御パルス数と流量との関係は、図2の点Cから点Dまでの実線により表される。
このようにロータ30の回転量によって弁軸24を軸線方向に変位させることで、同じ方向に流れる冷媒の通過量を調整できる。ロータ30の回転量は、パルスモータへの入力パルス数にて規制されるため、小流量及び大流量のいずれであっても、冷媒通過量の正確な調整が可能である。
参考例2
図10は、参考例2の電動弁における弁室の周辺を示す拡大断面図である。参考例2においては、参考例1に対して弁軸の弁部及び弁口の形状が異なる。また、弁軸24Aには上方段部24fに相当する構成が形成されていない。それ以外の参考例1と同様な構成は、同じ符号を付して重複説明を省略する。
弁軸24Aの弁部24Aeは、図10に示すように2段テーパ形状となっており、より具体的には、弁部24Aeは、第4軸部24Adに隣接する第1弁部24Ae1と、第1弁部24Ae1に隣接する第2弁部24Ae2とを有する。ここで、軸線Lを通る平面で弁軸24Aを切断した断面において、軸線Lを中心に対向する第1弁部24Ae1の両側の外形直線により挟む角をテーパ角θ1とし、軸線Lを中心に対向する第2弁部24Ae2の両側の外形直線により挟む角をテーパ角θ2とする。参考例2では、テーパ角θ1はテーパ角θ2よりも大きくなっている。
また、弁口となるシート72Aの連通穴72Afは、小テーパ部72Agと、小テーパ部72Agに隣接する円筒孔72Adと、円筒孔72Adに隣接するテーパ孔72Aeとを有する。
参考例2によれば、ステータコイル53(図1参照)への通電により、弁軸24Aが下方に変位すると、図10に示すように、第1弁部24Ae1が小テーパ部72Agに着座するため、弁部24Aeと連通穴72Afとの間に隙間がなくなり、その間を冷媒が通過しなくなる。また、図3を参照して、シート72Aのシート面72cが弁座部材60の
弁座62に着座している限り、両者間を冷媒が通過しないので、供給側円管T1から排出側円管T2への冷媒の流れは遮断される。
これに対し、逆方向への通電により、弁軸24Aが上方に変位すると、その変位量に応じて弁部24Aeと連通穴72Afとの間に隙間が生じるため、その流路断面積に応じた小流量の冷媒が流れることとなる。このとき、制御パルス数と流量との関係は、図2の点A’から点Bまで点線、及び点Bから点Cまでの実線により表される。
さらに、逆方向への通電を続行すると、図9を参照して、環状部材73がスリーブ71の頂壁71bの下面に当接して移動弁座体70が弁軸24Aに引き上げられるため、移動弁座体70のシート面72cと弁座部材60の弁座62との間に隙間が生じる。それ以降、弁軸24Aの変位量に応じて、シート面72cと弁座62との間の隙間が変化するので、その流路断面積に応じた大流量の冷媒が流れることとなる。このとき、制御パルス数と流量との関係は、参考例1と同様に、図2の点Cから点Dまでの実線により表される。
なお、図10に図示していないが、電動弁の小テーパ部72Agに流れ方向に沿った方向の溝(ノッチ)を形成することもできる。それにより、第1弁部24Ae1を小テーパ部72Agに着座させた状態で、所定の微小流量流を確保することができる。なお、溝(ノッチ)は複数形成すると好ましい。
第1実施形態]
図11は、第1実施形態の電動弁10Bを示す縦断面図である。図12は、図11の電動弁10Bにおける弁室の周辺を示す拡大断面図である。本実施形態においては、参考例1に対して、移動弁座体70Bのスリーブ71Bの形状が異なるが、シート72は参考例1と同様である。参考例1と同様な構成は、それぞれ同じ符号を付して重複説明を省略する。
より具体的には、スリーブ71Bの横穴(連通孔)71Baは、参考例1のものよりも上方にシフトして、ホルダ220の下端近傍に配置されている。本実施形態では、横穴71Baの内周下端は、供給側円管(流体供給用の配管)T1の内周上端より上方に位置すると好ましいが、横穴71Baの内周上端が供給側円管T1の内周上端より若干下方に位置していてもよい。
なお、具体的には、本実施形態の横穴71Baの内周下端71B1は、図12に示すように、供給側円管T1の内周上端から軸線Lに直交且つ中心線Oに平行な延長線Aよりも上方(図12では反重力方向)に位置している。
また、筒状本体210とスリーブ71Bとの間の空間を第1弁室VS1とし、スリーブ71B内の隔壁71bより下方の空間を第2弁室VS2とする。横穴71Baは、第1弁室VS1と第2弁室VS2とを連通している。
本実施形態によれば、ステータコイル53への通電により、弁軸ホルダ32が下方に変位すると、重力に従い環状部材73に係止された状態の移動弁座体70は弁軸ホルダ32とともに下方に変位する。さらに弁軸ホルダ32を下方に変位させると、移動弁座体70のシート面72cが、弁座部材60の弁座62に着座する。この状態からさらに弁軸ホルダ32を下方に変位させると環状部材73と頂壁71Bbが離れ、その後、弁軸24の上方段部24fがスリーブ71の頂壁71Bbの上面に突き当たり、シート面72cをコイルばね34の弾性力により弁座62に押し当て、シート面72cと弁座62との間の冷媒の流れを遮断する。
一方、弁軸24の上方段部24fがスリーブ71Bの頂壁71Bbの上面に突き当たった状態で、第4軸部24dと円筒孔72dとの間に隙間が生じるため、その隙間に応じた流量で冷媒が通過する。
これに対し、逆方向への通電により、弁軸24が上方に変位すると、その変位量に応じて第4軸部24dと円筒孔72dとの間に隙間が生じるため、その流路断面積に応じた小流量の冷媒が流れることとなる。
ところで、供給側円管T1から、液体とガスが混合された冷媒(混合冷媒)が第1弁室VS1に供給されたとき、かかる混合冷媒が、流路断面積が最も小さい小径弁口を通過する際に、液体とガスとが交互に通過することにより異音を発生させる場合がある。
本実施形態によれば、供給側円管T1から混合冷媒が第1弁室VS1に供給されたとき、比較的比重が重い液体はシート72側に留まるが、比較的比重が軽いガス(気体)はスリーブ71Bの上部側へと移動し、横穴71Baを介して第2弁室VS2へと移動し、第2弁室VS2の上部に貯留される。このため、第2弁室VS2から小径弁口を通過する冷媒は気体のみとなり、冷媒通過時の異音の発生を抑制することができる。
第2実施形態]
図13は、第2実施形態の電動弁10Cを示す縦断面図である。図14は、図13の電動弁10Cにおける弁室の周辺を示す拡大断面図である。本実施形態においては、参考例1に対して、弁本体20C、弁軸24C、移動弁座体70Cの構成が異なる。また、シート72は参考例1と同様な構成を有するが、供給側配管T1との相対位置関係が異なる。参考例1と同様な構成は、それぞれ同じ符号を付して重複説明を省略する。
図13,14に示すように、ホルダ220Cには、中空円筒部221Cの下部外周に縮径部226が形成されている。縮径部226の上端は、仕切り壁222Cの下面位置とほぼ同じ高さである。筒状本体210Cの円孔211に挿通された供給側円管(流体供給用の配管)T1は、その先端が縮径部226の下端に当接することにより、筒状本体210Cに対して位置決めされている。かかる状態で、供給側円管T1は筒状本体210Cにロウ付けされる。
筒状本体210C内で軸線L方向に変位可能な移動弁座体70Cは、図14において、中空円筒部221Cの下端内周に摺動可能に嵌合する円筒状のスリーブ71Cと、スリーブ71Cの下端に接合された円盤状のシート72とを有する。スリーブ71Cは、円筒周壁71Caと、円筒周壁71Caの軸線方向中間に形成された隔壁71Cbとを有する。隔壁71Cbの中央に、円形開口71Ccが形成されている。円形開口71Ccの周囲には、溝(ノッチ)76が形成されている。弁軸24Cの段部24Cfが隔壁71Cbに当接した状態でも、溝(ノッチ)76を介して冷媒の移動が可能である。
図13に示すように、弁軸24Cは、第1軸部24Caと、第2軸部24Cbと、第3軸部24Ccと、第4軸部24Cdと、弁部24Ceとを同軸に連設してなるが、参考例1に対し、第2軸部24Cbの長さが長くなっている。
筒状本体210Cとスリーブ71Cとの間の空間を第1弁室VS1とし、スリーブ71C内の隔壁71Cbより下方の空間を第2弁室VS2とする。
さらに本実施形態では、ホルダ220Cと、ホルダ220Cに嵌合するスリーブ71C(隔壁71Cbの上方)との間に第3弁室VS3を形成している。第1弁室VS1と第3弁室VS3とは、供給側円管T1から上方に離間して縮径部226に設けた貫通開口(貫通穴)227を介して連通しており、第3弁室VS3と第2弁室VS2とは、弁軸24Cと円形穴225Cとの隙間(溝76を含む)を介して連通している。
シート72が着座する弁座部材60Cは、参考例1に対して上端側の薄肉円筒部61Cを上方に延長した点のみが異なる。本実施形態においては、供給側円管T1は薄肉円筒部61Cに接しておらず、それから上方に離間している。第1弁室VS1の一部であって、弁座部材60Cと、供給側円管T1の内周最下端との間(シート72および薄肉円筒部61Cの周囲)、すなわち弁本体20Bの底部に液だまり空間LSを形成している。薄肉円筒部61Cを上方に延長することにより、液だまり空間LSの容積を増大させることができる。
本実施形態においても、供給側円管T1から混合冷媒が第1弁室VS1に供給されたとき、比較的比重が重い液体はシート72側へと移動して液だまり空間LS内に滞留する。一方、比較的比重が軽いガスはスリーブ71Cの上部側へと移動して、筒状本体部210Cと縮径部226との間を通り、貫通開口227を介して第3弁室VS3へと移動し、第3弁室VS3に貯留される。このため、第2弁室VS2から小径弁口を通過する冷媒は気体のみとなり、冷媒通過時の異音の発生を抑制することができる。
第3実施形態]
図15は、第3実施形態の電動弁10Dを示す縦断面図である。図16は、図15の電動弁10Dにおける弁室の周辺を示す拡大断面図である。本実施形態においては、第2実施形態に対して、移動弁座体70Dのスリーブ71Dの形状が異なるが、シート72は第2実施形態と同様である。第2実施形態と同様な構成は、同じ符号を付して重複説明を省略する。
本実施形態において、スリーブ71Dは、隔壁71Dbに溝(ノッチ)を設ける代わりに、段部24Cfの径方向外側に、1つ又は複数の鉛直孔77を有している。
本実施形態においても、供給側円管T1から混合冷媒が第1弁室VS1に供給されたとき、比較的比重が重い液体はシート72側へと移動して液だまり空間LS内に滞留する。一方、比較的比重が軽いガスはスリーブ71Dの上部側へと移動して、貫通開口227を介して第3弁室VS3へと移動し、第3弁室VS3に貯留される。また、第3弁室VS3に液体が進入した場合、かかる液体は鉛直孔77を介して第2弁室VS2へと移動する。このため、第2弁室VS2から小径弁口を通過する冷媒は気体のみとなり、冷媒通過時の異音の発生を抑制することができる。
第4実施形態]
図17は、第4実施形態の電動弁における弁室の周辺を示す拡大断面図である。本実施形態においては、第3実施形態に対して弁軸24Eと,移動弁座体70Eのシート72Eの形状が異なる。ただし、スリーブ71は第1実施形態と同様である。また、弁軸24Eには上方段部24fに相当する構成が形成されていない。第1実施形態と同様な構成は、同じ符号を付して重複説明を省略する。
弁軸24Eの弁部24Eeは、図17に示すように2段テーパ形状となっており、より具体的には、弁部24Eeは、第4軸部24Edに隣接する第1弁部24Ee1と、第1弁部24Ee1に隣接する第2弁部24Ee2とを有する。第1実施形態と同様に、第1弁部24Ee1のテーパ角は、第2弁部24Ee2のテーパ角よりも大きくなっている。
また、弁口となるシート72Eの連通穴72Efは、小テーパ部72Egと、小テーパ部72Egに隣接する円筒孔72Edと、円筒孔72Edに隣接するテーパ孔72Eeとを有する。
本実施形態によれば、ステータコイル53(図1参照)への通電により、弁軸24Eが下方に変位すると、第1弁部24Ee1が小テーパ部72Egに着座するため、弁部24Eeと連通穴72Efとの間に隙間がなくなり、その間を冷媒が通過しなくなる。また、シート72Eのシート面72cが弁座部材60の弁座62に着座している限り、両者間を冷媒が通過しないので、供給側円管T1から排出側円管T2への冷媒の流れは遮断される。
これに対し、逆方向への通電により、弁軸24Eが上方に変位すると、その変位量に応じて弁部24Eeと連通穴72Efとの間に隙間が生じるため、その流路断面積に応じた小流量の冷媒が流れることとなる。
さらに、逆方向への通電を続行すると、図11を参照して、環状部材73がスリーブ71の頂壁71bの下面に当接して移動弁座体70Eが弁軸24Eに引き上げられるため、移動弁座体70Eのシート面72cと弁座部材60の弁座62との間に隙間が生じる。それ以降、弁軸24Eの変位量に応じて、シート面72cと弁座62との間の隙間が変化するので、その流路断面積に応じた大流量の冷媒が流れることとなる。
また、電動弁の小テーパ部72Egに流れ方向に沿った方向の溝(ノッチ)不図示を形成すれば、第1弁部24Ee1を小テーパ部72Egに着座させた状態(図2の制御パルス数0から点A’までの範囲)で、所定の微小流量流(図2の点Aと同等の流量)にすることができる。なお、かかる溝(ノッチ)は複数形成すると好ましい。
なお、本発明は、上述の実施形態に限定されない。本発明の範囲内において、上述の実施形態の任意の構成要素の変形が可能である。また、上述の実施形態において任意の構成要素の追加または省略が可能である。
10,10B,10C,10D 電動弁
20,20B,20C 弁本体
21 弁室
24,24A,24C,24E 弁軸
25 固定ねじ部(雄ねじ部)
26 ガイドブッシュ
27 下ストッパ体
30 ロータ
31 移動ねじ部(雌ねじ部)
32 弁軸ホルダ
33 プッシュナット
34 圧縮コイルばね
35 復帰ばね
36 支持リング
37 上ストッパ体
40 キャン
41 環状板
50 ステータ
60,60C 弁座部材
70,70B,70C,70D,70E 移動弁座体
VS1 第1弁室
VS2 第2弁室
VS3 第3弁室

Claims (11)

  1. 第1弁室及び大径弁口を備えた弁本体と、
    前記第1弁室に挿通され、流路調整部と係合部と段差部とが設けられた弁軸と、
    前記弁軸を前記大径弁口に接離する方向に変位させることによって、リフト量を変化させることが可能な弁軸駆動部と、
    前記第1弁室内で前記弁軸の変位方向に移動可能に配置され、第2弁室および前記第2弁室につながる小径弁口を備えた移動弁座体と、を有し、
    前記弁軸の前記リフト量の変化する範囲に、前記移動弁座体が前記大径弁口に着座した状態で前記流路調整部と前記小径弁口との間の流路断面積を変化させる第1の範囲と、前記移動弁座体が前記係合部に係止された状態で前記移動弁座体と前記大径弁口との間の流路断面積を変化させる第2の範囲と、を有するように構成され、
    前記第1の範囲内において前記流路調整部が最も前記小径弁口側に移動した下端位置のとき、前記流路調整部と前記小径弁口との間に所定の隙間を有し、
    前記第1弁室には流体供給用の配管が接続されており、
    前記第1弁室と前記第2弁室とを連通する連通孔が、前記配管の内周上端よりも上方に設けられている、
    ことを特徴とする電動弁。
  2. 前記弁軸の前記段差部が前記移動弁座体に当接したときに、前記流路調整部が前記下端位置になる、
    ことを特徴とする請求項1に記載の電動弁。
  3. 前記流路調整部は、テーパ部である、
    ことを特徴とする請求項1又は2に記載の電動弁。
  4. 前記移動弁座体は、前記小径弁口を備え前記大径弁口に当接するシートと、前記シートに連結され隔壁を備えたスリーブとを有し、前記スリーブの隔壁に形成された開口を介して、前記弁軸が前記第2弁室に挿通されている、
    ことを特徴とする請求項1~3のいずれか一項に記載の電動弁。
  5. 前記スリーブの周壁に、前記連通孔を有する、
    ことを特徴とする請求項4に記載の電動弁。
  6. 前記隔壁を挟んで前記弁軸の一方の側に前記段差部が配設され、前記弁軸の他方の側に前記係合部が配設されている、
    ことを特徴とする請求項4又は5に記載の電動弁。
  7. 前記流体供給用の配管は、前記シートに対して上方に離間している、
    ことを特徴とする請求項4~6のいずれか一項に記載の電動弁。
  8. 前記弁本体は、パイプ材から形成された本体と、前記本体の内側に配設され前記移動弁座体を案内するガイド部とを有し、前記ガイド部に前記連通孔を有する、
    ことを特徴とする請求項1~7のいずれか一項に記載の電動弁。
  9. 前記ガイド部と前記移動弁座体との間に第3弁室が形成され、前記連通孔を介して、前記第1弁室と前記第3弁室とが連通する、
    ことを特徴とする請求項8に記載の電動弁。
  10. 前記弁本体内において前記流体供給用の配管の下方に液だまり空間を有する、
    ことを特徴とする請求項8又は9に記載の電動弁。
  11. 前記流体供給用の配管は、前記ガイド部に当接することにより位置決めされる、
    ことを特徴とする請求項8~10のいずれか一項に記載の電動弁。
JP2020003105A 2020-01-10 2020-01-10 電動弁 Active JP7150345B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020003105A JP7150345B2 (ja) 2020-01-10 2020-01-10 電動弁
CN202110006820.1A CN113108071A (zh) 2020-01-10 2021-01-05 电动阀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003105A JP7150345B2 (ja) 2020-01-10 2020-01-10 電動弁

Publications (2)

Publication Number Publication Date
JP2021110401A JP2021110401A (ja) 2021-08-02
JP7150345B2 true JP7150345B2 (ja) 2022-10-11

Family

ID=76709270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003105A Active JP7150345B2 (ja) 2020-01-10 2020-01-10 電動弁

Country Status (2)

Country Link
JP (1) JP7150345B2 (ja)
CN (1) CN113108071A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117584A (ja) 2010-11-30 2012-06-21 Saginomiya Seisakusho Inc 電動流量制御弁
JP2019132347A (ja) 2018-01-31 2019-08-08 株式会社鷺宮製作所 電動弁及び冷凍サイクルシステム
WO2020012827A1 (ja) 2018-07-12 2020-01-16 株式会社不二工機 電動弁
JP2020180699A (ja) 2019-04-23 2020-11-05 株式会社鷺宮製作所 弁装置および冷凍サイクルシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145507A (ja) * 1994-11-24 1996-06-07 Sanyo Electric Co Ltd 冷媒流量制御弁及び冷媒流量制御弁を用いた冷凍装置
JP2898906B2 (ja) * 1995-06-29 1999-06-02 株式会社不二工機 電動流量制御弁
JP2001153236A (ja) * 1999-11-26 2001-06-08 Saginomiya Seisakusho Inc 二段式電動膨張弁
WO2005073604A1 (ja) * 2004-01-30 2005-08-11 Kabushiki Kaisha Saginomiya Seisakusho 複座弁
JP5657424B2 (ja) * 2011-02-24 2015-01-21 株式会社不二工機 電動弁
JP6194157B2 (ja) * 2012-05-18 2017-09-06 株式会社不二工機 電動弁
JP6692215B2 (ja) * 2016-05-26 2020-05-13 株式会社不二工機 流量調整弁
JP6461872B2 (ja) * 2016-08-30 2019-01-30 株式会社不二工機 電動弁
JP6505151B2 (ja) * 2017-03-23 2019-04-24 株式会社不二工機 流量調整弁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117584A (ja) 2010-11-30 2012-06-21 Saginomiya Seisakusho Inc 電動流量制御弁
JP2019132347A (ja) 2018-01-31 2019-08-08 株式会社鷺宮製作所 電動弁及び冷凍サイクルシステム
WO2020012827A1 (ja) 2018-07-12 2020-01-16 株式会社不二工機 電動弁
JP2020180699A (ja) 2019-04-23 2020-11-05 株式会社鷺宮製作所 弁装置および冷凍サイクルシステム

Also Published As

Publication number Publication date
JP2021110401A (ja) 2021-08-02
CN113108071A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN111396618B (zh) 电动阀
JP6476158B2 (ja) 電動弁の組立方法
JP6214487B2 (ja) 電動弁
KR102005126B1 (ko) 완충기
JP4612377B2 (ja) 電動弁
JP2012172839A (ja) 電動弁
CN113623415A (zh) 电动阀
CN107061762B (zh) 一种导阀和主阀体连接结构及方法
US8376080B2 (en) Pump apparatus, power steering apparatus and assembly method of housing
JP7150345B2 (ja) 電動弁
CN111173981A (zh) 流量控制阀
JP7150344B2 (ja) 電動弁
JP4784483B2 (ja) 流体制御弁
JP6976602B2 (ja) 電気的駆動弁
JP2021156393A (ja) パイロット式電磁弁
JP7133880B2 (ja) 電動弁
JP4464259B2 (ja) 減圧弁
WO2022176710A1 (ja) ソレノイドバルブ
JP7387512B2 (ja) パイロット式電磁弁
CN113446414A (zh) 流路切换阀
JP2007056910A (ja) ソレノイド駆動装置及びリニアソレノイドバルブ
CN111379864B (zh) 一种流量控制阀
JP2017201200A (ja) 流量調整バルブ
JP7097093B2 (ja) 電動弁
JP2018200113A (ja) 電動弁

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7150345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150