JP7140124B2 - 光学フィルム及びその製造方法 - Google Patents

光学フィルム及びその製造方法 Download PDF

Info

Publication number
JP7140124B2
JP7140124B2 JP2019534499A JP2019534499A JP7140124B2 JP 7140124 B2 JP7140124 B2 JP 7140124B2 JP 2019534499 A JP2019534499 A JP 2019534499A JP 2019534499 A JP2019534499 A JP 2019534499A JP 7140124 B2 JP7140124 B2 JP 7140124B2
Authority
JP
Japan
Prior art keywords
film
polymer
alicyclic structure
optical film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019534499A
Other languages
English (en)
Other versions
JPWO2019026842A1 (ja
Inventor
祐二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2019026842A1 publication Critical patent/JPWO2019026842A1/ja
Application granted granted Critical
Publication of JP7140124B2 publication Critical patent/JP7140124B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は光学フィルム及びその製造方法に関する。
液晶表示装置などの表示装置には、偏光板、位相差板等の様々な光学素子が設けられる。このような光学素子の中にはフィルムにより構成されているものがある。例えば、偏光板は、ポリビニルアルコール等の材料で形成されたフィルム状の偏光子と、かかる偏光子を保護する保護フィルムとを含むことが一般的である。かかる保護フィルムの例としては、脂環式構造含有重合体を含む樹脂のフィルムが知られている(特許文献1~2参照)。脂環式構造含有重合体を含む樹脂のフィルムは、機械的強度及び光学的特性の観点から、偏光板における保護フィルムとして有用に用いうる。
特開2007-245551号公報 特開2011-013378号公報
偏光板は、表示装置の製造時及び使用時の環境において耐久性を発現することが求められる。例えば、表示装置の製造時におけるリワークの際、及び表示装置の使用時において偏光子が収縮した際等において、偏光板における保護フィルムの剥離強度が高いことが求められる場合がある。
しかしながら、従来の、脂環式構造含有重合体を含む樹脂のフィルムを、保護フィルムとして用いた場合、剥離強度が不十分である場合がある。特に、保護フィルムが、延伸の工程を経て製造された延伸フィルムである場合、当該重合体分子が配向して分子間の絡み合いが低下することにより生じる表層付近での凝集破壊が原因となり、剥離強度の不足が起こりうる。
従って、本発明の目的は、剥離強度が高く、保護フィルムとして有用に用いることができる光学フィルム及びその製造方法を提供することにある。
上述した課題を解決し目的を達成するため検討した結果、本発明者は、脂環式構造含有重合体を含むフィルムの少なくとも一方の面を粗化してなる光学フィルムの、少なくとも一方の面において、最大高さRz及び算術平均粗さRaを所定の範囲とすることにより、前記課題を解決しうることを見出し、本発明を完成させた。
すなわち、本発明によれば、以下の〔1〕~〔7〕が提供される。
〔1〕 脂環式構造含有重合体を含むフィルムの、少なくとも一方の面を粗化してなる光学フィルムであって、
少なくとも一方の面において、最大高さRzが150nm以上3000nm以下であり、かつ、算術平均粗さRaが30nm以上1000nm以下である、光学フィルム。
〔2〕 内部ヘイズが5%以下である、〔1〕に記載の光学フィルム。
〔3〕 前記脂環式構造含有重合体は、ブロック共重合体水素化物[E]であり、
前記ブロック共重合体水素化物[E]は、ブロック共重合体[D]の水素化物であり、
前記ブロック共重合体[D]は、重合体ブロック[A]と重合体ブロック[B]とからなるか、又は前記重合体ブロック[A]と重合体ブロック[C]とからなり、
前記重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位[I]を主成分とする重合体ブロックであり、
前記重合体ブロック[B]は、芳香族ビニル化合物由来の繰り返し単位[I]及び鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックであり、
前記重合体ブロック[C]は、鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである、〔1〕または〔2〕に記載の光学フィルム。
〔4〕 面内方向の位相差Reが3nm以下、厚み方向の位相差Rthの絶対値が3nm以下である、〔3〕に記載の光学フィルム。
〔5〕 前記脂環式構造含有重合体が結晶性であり、結晶化度が1%以上である、〔1〕または〔2〕に記載の光学フィルム。
〔6〕 偏光子保護フィルムである、〔1〕~〔5〕のいずれか1項に記載の光学フィルム。
〔7〕 〔1〕~〔6〕のいずれか1項に記載の光学フィルムの製造方法であって、
脂環式構造含有重合体を含むフィルムを延伸する工程、及び前記フィルムを熱硬化する工程のうちの少なくとも一方を含む処理工程と、
前記処理工程を経た後のフィルムの、少なくとも一方の面を粗化する工程と、を有する、光学フィルムの製造方法。
本発明の光学フィルムによれば、剥離強度が高く、偏光板における保護フィルムとして有用に用いることができるフィルムを提供することができる。また、本発明の光学フィルムの製造方法によれば、そのような本発明の光学フィルムを容易に製造することができる。
以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
本願において、「長尺状」のフィルムとは、フィルムの幅に対して、5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。
以下の説明において、フィルムの面内方向の位相差Reは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの厚み方向の位相差Rthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルムの前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは、フィルムの厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、550nmである。
〔1.光学フィルム〕
本発明の光学フィルムは、脂環式構造含有重合体を含むフィルムの少なくとも一方の面を粗化処理してなる。
〔1.1.光学フィルムの材料〕
脂環式構造含有重合体を含むフィルムは通常、脂環式構造含有重合体を含有する樹脂からなるものとしうる。脂環式構造含有重合体の例としては、結晶性の脂環式構造含有重合体、非結晶性の脂環式構造含有重合体及び特定のブロック共重合体水素化物である脂環式構造含有重合体が挙げられる。
〔1.1.1.結晶性の脂環式構造含有重合体〕
結晶性の重合体(結晶性を有する重合体)とは、融点を有する〔すなわち、示差走査熱量計(DSC)で融点を観測することができる〕重合体をいう。
脂環式構造含有重合体とは、分子内に脂環式構造を有する重合体であって、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素添加物をいう。また、脂環式構造含有重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
脂環式構造含有重合体が有する脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる光学フィルムが得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。
脂環式構造含有重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造含有重合体における脂環式構造を有する構造単位の割合を前記のように多くすることにより、高い可撓性等の本発明の効果をより高めることができる。
また、脂環式構造含有重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
脂環式構造含有重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する脂環式構造含有重合体は、成形加工性と可撓性とのバランスに優れる。
脂環式構造含有重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する脂環式構造含有重合体は、成形加工性に優れる。
脂環式構造含有重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。
脂環式構造含有重合体のガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。
前記の脂環式構造含有重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、可撓性に優れる光学フィルムが得られ易いことから、結晶性を有する脂環式構造含有重合体としては、重合体(β)が好ましい。
重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
重合体(β):重合体(α)の水素添加物であって、結晶性を有するもの。
重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
重合体(δ):重合体(γ)の水素添加物等であって、結晶性を有するもの。
具体的には、脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、特に好ましくは100重量%の重合体をいう。
重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体は、炭素原子で形成された環構造を有し、該環中に炭素-炭素二重結合を有する化合物である。環状オレフィン単量体の例としては、ノルボルネン系単量体等が挙げられる。また、重合体(α)が共重合体である場合には、環状オレフィン単量体として、単環の環状オレフィンを用いてもよい。
ノルボルネン系単量体は、ノルボルネン環を含む単量体である。ノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノルボルネン)及びその誘導体(例えば、環に置換基を有するもの)等の、2環式単量体;トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の、3環式単量体;7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン:1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)及びその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン及びその誘導体等の、4環式単量体;などが挙げられる。
前記の単量体において置換基としては、例えば、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;プロパン-2-イリデン等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;などが挙げられる。また、前記の置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。
単環の環状オレフィンとしては、例えば、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエン、フェニルシクロオクタジエン等の環状ジオレフィン;等が挙げられる。
環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。環状オレフィン単量体を2種以上用いる場合、重合体(α)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
環状オレフィン単量体には、エンド体及びエキソ体の立体異性体が存在するものがありうる。環状オレフィン単量体としては、エンド体及びエキソ体のいずれを用いてもよい。また、エンド体及びエキソ体のうち一方の異性体のみを単独で用いてもよく、エンド体及びエキソ体を任意の割合で含む異性体混合物を用いてもよい。中でも、脂環式構造含有重合体の結晶性が高まり、耐熱性により優れるフィルムが得られ易くなることから、一方の立体異性体の割合を高くすることが好ましい。例えば、エンド体又はエキソ体の割合が、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。また、合成が容易であることから、エンド体の割合が高いことが好ましい。
重合体(α)及び重合体(β)は、通常、そのシンジオタクチック立体規則性の度合い(ラセモ・ダイアッドの割合)を高めることで、結晶性を高くすることができる。重合体(α)及び重合体(β)の立体規則性の程度を高くする観点から、重合体(α)及び重合体(β)の構造単位についてのラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは60%以上、特に好ましくは70%以上である。
ラセモ・ダイアッドの割合は、13C-NMRスペクトル分析により、測定しうる。具体的には、下記の方法により測定しうる。
オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体試料の13C-NMR測定を行う。この13C-NMR測定の結果から、オルトジクロロベンゼン-d4の127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比に基づいて、重合体試料のラセモ・ダイアッドの割合を求めうる。
重合体(γ)及び(δ)の製造に用いる環状オレフィン単量体としては、重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体として示した範囲から選択されるものを任意に用いうる。また、環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
重合体(γ)の製造においては、単量体として、環状オレフィン単量体に組み合わせて、環状オレフィン単量体と共重合可能な任意の単量体を用いうる。任意の単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素原子数2~20のα-オレフィン;スチレン、α-メチルスチレン等の芳香環ビニル化合物;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;等が挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
環状オレフィン単量体と任意の単量体との量の割合は、重量比(環状オレフィン単量体:任意の単量体)で、好ましくは30:70~99:1、より好ましくは50:50~97:3、特に好ましくは70:30~95:5である。
環状オレフィン単量体を2種以上用いる場合、及び、環状オレフィン単量体と任意の単量体を組み合わせて用いる場合は、重合体(γ)は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
上記のような結晶性を有する脂環式構造含有重合体は、例えば、国際公開第2016/067893号に記載の方法により、製造しうる。
結晶性を有する樹脂中の、結晶性を有する脂環式構造含有重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性を有する脂環式構造含有重合体の割合を前記範囲の下限値以上にすることにより、光学フィルムの可撓性を高めることができる。
本発明の光学フィルムが、脂環式構造含有重合体として結晶性の重合体を含む場合、その結晶化度は、好ましくは1%以上、より好ましくは2%以上、さらにより好ましくは3%以上である。このように高い結晶化度を有することにより、光学フィルムに高い耐熱性及び耐薬品性を付与することができる。結晶性を有する重合体の結晶化度の上限に制限は無いが、通常は90%以下である。結晶化度が前記の上限値以下であることにより、光学フィルムの透明性を良好にし易い。重合体の結晶化度は、X線回折法によって測定しうる。
結晶性を有する重合体の融点は、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点を有する重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた光学フィルムを得ることができる。
〔1.1.2.非結晶性の脂環式構造含有重合体〕
非結晶性の脂環式構造含有重合体とは、上に述べた脂環式構造含有重合体のうち、結晶性を有しないものである。非結晶性の脂環式構造含有重合体を構成する単量体の例としては、上に述べた、結晶性の脂環式構造含有重合体を構成する単量体の例と同様のものが挙げられる。非結晶性の脂環式構造含有重合体は、上に述べた単量体を、既知の重合法により重合し、シンジオタクチック立体規則性の度合いが低い重合体、通常のアタクチックな重合体又はアイソタクチックな重合体とすることにより製造しうる。重合の態様は、開環重合及び付加重合のいずれであってもよい。
〔1.1.3.非結晶性のノルボルネン系重合体〕
非結晶性の脂環式構造含有重合体が、後述のブロック共重合体水素化物以外のもの、具体的には、ノルボルネン系重合体の場合は、例えば、上記ノルボルネン系単量体の開環重合体、ノルボルネン系単量体と開環共重合可能なその他の単量体との開環共重合体、及びそれらの水素化物;ノルボルネン系単量体の付加重合体、ノルボルネン系単量体と共重合可能なその他の単量体との付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネン系単量体の開環重合体水素化物が特に好ましい。
上記のノルボルネン系重合体は、例えば特開2002-321302号公報に開示されている重合体から選択され得る。
非結晶性の脂環式構造含有重合体が、ノルボルネン系重合体である場合の重量平均分子量(Mw)は、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。
前記ノルボルネン系重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、溶媒としてシクロヘキサンを用いた、ゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレン又はポリスチレン換算の重量平均分子量として測定できる。試料がシクロヘキサンに溶解しない場合には、溶媒としてシクロヘキサンに代えてトルエンを用いうる。
〔1.1.4.ブロック共重合体水素化物〕
本発明における脂環式構造含有重合体の一例であるブロック共重合体水素化物は、結晶性のものであっても非結晶性のものであってもよいが、通常は非結晶性である。
ブロック共重合体水素化物としては、特定のブロック共重合体水素化物[E]が挙げられる。ブロック共重合体水素化物[E]は、特定のブロック共重合体[D]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合を、水素化して得られる構造を有する化合物である。ブロック共重合体[D]は、特定の重合体ブロック[A]と特定の重合体ブロック[B]とからなるか、又は特定の重合体ブロック[A]と特定の重合体ブロック[C]とからなる。重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位[I]を主成分とする重合体ブロックである。重合体ブロック[B]は、芳香族ビニル化合物由来の繰り返し単位[I]及び鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである。重合体ブロック[C]は、鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである。本願において、「主成分」とは、その含有量が全体の50重量%以上のものをいう。
ある化合物由来の繰り返し単位とは、当該化合物の重合により得られる構造を有する繰り返し単位をいう。ある重合体の水素化物とは、当該重合体の水素化により得られる構造を有する物質をいう。ただし、当該繰り返し単位及び水素化物は、その製造方法によっては限定されない。
ブロック共重合体[D]は、好ましくは、1分子当たり2つ以上の重合体ブロック[A]と、1分子当たり1つ以上の、重合体ブロック[B]又は重合体ブロック[C]と、からなるものが好ましい。ブロック共重合体[D]が2つ以上の重合体ブロック[A]を有する場合、これらは互いに同じであっても、相異なってもよい。また、1分子のブロック共重合体[D]が有する2つの重合体ブロック[A]の重量平均分子量は同一でも相異なってもよい。
重合体ブロック[A]の重量平均分子量Mw(A)は各々3,000~90,000、好ましくは3,500~80,000、より好ましくは4,000~60,000である。重合体ブロック[A]のMw(A)が3,000以上であることにより、ブロック共重合体水素化物[E]の機械的強度を良好なものとすることができる。一方重合体ブロック[A]のMw(A)が90,000以下であることにより、ブロック共重合体水素化物[E]の溶融成形性を良好なものとすることができる。
ブロック共重合体[D]中の、全重合体ブロック[A]がブロック共重合体[D]に占める重量分率wAと、重合体ブロック[B]または重合体ブロック[C]がブロック共重合体[C]に占める重量分率wBとは、所定の比率を有することが好ましい。即ちwAとwBとの比(wA/wB)は好ましくは50/50以上、より好ましくは53/47以上、さらにより好ましくは57/43以上であり、一方好ましくは95/5以下、より好ましくは85/15以下である。wA/wBを前記上限以下とすることにより、ブロック共重合体水素化物[E]に柔軟性を付与し、良好な機械的強度を付与することができる。wA/wBを前記下限以上とすることにより、良好な耐熱性を付与することができる。
ブロック共重合体水素化物[E]の水素化率(ブロック共重合体[D]の全不飽和結合のうち、ブロック共重合体水素化物[E]において水素化されたものの割合)は、好ましくは90%以上、好ましくは95%以上、より好ましくは99%以上である。水素化率が高いほど、成形体の耐候性、耐熱性及び透明性が良好である。ブロック共重合体水素化物[E]の水素化率は、H-NMR、又はGPCによるUV検出器及びRI検出器によるピーク面積の比較などにより求めうる。H-NMRは、具体的には、オルトジクロロベンゼン-d4を溶媒として、145℃で測定しうる。
ブロック共重合体水素化物[E]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、好ましくは40,000以上、より好ましくは41,000以上、さらにより好ましくは45,000以上であり、一方好ましくは150,000以下、より好ましくは130,000以下、さらにより好ましくは100,000以下としうる。ブロック共重合体水素化物[E]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下にする。Mw及びMw/Mnが上記範囲となるようにすると、成形した延伸フィルムの位相差の変化に対する耐熱性や機械的強度が良好である。
ブロック共重合体水素化物[E]の具体例及び製造方法としては、例えば国際公開第2016/152871号に開示される具体例及び製造方法が挙げられる。
〔1.1.5.脂環式構造含有重合体の割合〕
本発明の光学フィルムが脂環式構造含有重合体を含む樹脂からなる場合、当該樹脂における、脂環式構造含有重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造含有重合体の割合を当該範囲内とすることにより、高い機械的強度及び良好な光学的特性等の、脂環式構造含有重合体の利点を得ることができる。
〔1.1.6.任意の成分〕
光学フィルムを構成する樹脂は、脂環式構造含有重合体以外に、任意の成分を含有しうる。
任意の成分の例としては、架橋助剤が挙げられる。
架橋助剤の例としては、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム等のオキシム類;エチレンジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、シクロヘキシルメタクリレート、アクリル酸/酸化亜鉛混合物、アリルメタクリレート等のアクリレート若しくはメタクリレート類;ジビニルベンゼン、ビニルトルエン、ビニルピリジン等のビニルモノマー類;ヘキサメチレンジアリルナジイミド、ジアリルイタコネート、ジアリルフタレート、ジアリルイソフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル化合物類;N,N’-m-フェニレンビスマレイミド、N,N’-(4,4’-メチレンジフェニレン)ジマレイミド等のマレイミド化合物類等が挙げられる。架橋助剤としては、一種類を単独で用いてもよく、二種類以上を任意の割合で組み合わせて用いてもよい。得られる延伸フィルムの電気特性、耐熱性、耐溶剤性等の特性を向上させる観点からはアリル化合物類が好ましく、特に熱安定性の観点から、トリアリルイソシアヌレート(TAIC)が最も好ましい。
その他の任意の成分の例としては、酸化防止剤、紫外線吸収剤、光安定剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料や顔料などの着色剤;帯電防止剤などの配合剤が挙げられる。これらの配合剤は1種単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択される。
〔2.光学フィルムの製造方法〕
本発明の光学フィルムの製造方法は、脂環式構造含有重合体を含むフィルムを延伸する工程、及び前記フィルムを熱硬化する工程のうちの少なくとも一方を含む処理工程と、処理工程を経た後のフィルムの、少なくとも一方の面を粗化する工程と、を有する。以下の説明において、処理工程を経る前の脂環式構造含有重合体を含むフィルムを、処理工程を経た後のフィルムと区別する都合上、「原反フィルム」ということがある。また、処理工程を経た後のフィルムのうち、粗化する工程を経る前のフィルムを「粗化前フィルム」、粗化する工程を経た後のフィルムを「粗化フィルム」ということがある。
原反フィルムは、例えば、脂環式構造含有重合体を含む樹脂をフィルム状に成形すること等により製造することができる。脂環式構造含有重合体を含む樹脂の成形方法は、特に限定されず、溶融押出成形等の既知の方法を採用しうる。
原反フィルムの寸法は、製品たる光学フィルムとして所望の寸法を有するものが得られるよう適宜設定しうる。製造の効率上、原反フィルムは長尺状のフィルムであることが好ましい。原反フィルムの厚みは、好ましくは5μm以上、より好ましくは15μm以上であり、一方好ましくは200μm以下、より好ましくは170μm以下である。
〔2.1.処理工程〕
処理工程は、脂環式構造含有重合体を含むフィルムを延伸する工程(延伸工程)及び、脂環式構造含有重合体を含むフィルムを熱硬化する工程(熱硬化工程)のうちのいずれか一方の工程、または双方の工程を含む。熱硬化工程と延伸工程をともに含む場合、どちらの工程を先に行ってもよい。
〔2.1.1.延伸工程〕
延伸工程においては、一軸延伸、二軸延伸等の任意の態様としうる。また、延伸工程前のフィルムが長尺状のフィルムである場合、延伸の方向は、縦方向(長尺状のフィルムの長手方向に平行な方向)、横方向(長尺状のフィルムの幅方向に平行な方向)、及び斜め方向(縦方向でも横方向でも無い方向)のいずれであってもよい。
延伸倍率は、好ましくは1.05倍以上、より好ましくは1.1倍以上であり、一方好ましくは7倍以下、より好ましくは6倍以下である。延伸温度は、好ましくは80℃以上、より好ましくは100℃以上であり、一方好ましくは200℃以下、より好ましくは180℃以下である。
このような延伸の処理を行うことにより、大面積のフィルムを容易に得ることができる。また、製品として位相差を有するフィルムが求められる場合はかかる位相差を容易に得ることができる。一方、製品として位相差の少ないフィルムが求められる場合は、脂環式構造含有重合体として、例えば上に述べたブロック共重合体水素化物[E]を採用することにより、そのようなフィルムを容易に得ることができる。しかしながら、このような延伸の処理を行うことにより、得られたフィルムが、厚み方向の引張力を受けると容易に凝集破壊するフィルムとなり得る。ここで、本発明では、フィルムの少なくとも一方の面を粗化することにより、凝集破壊に起因する問題を抑制することができるので、延伸することにより得られる利点を享受しつつ、剥離強度をも高めることができる。
〔2.1.2.熱硬化工程〕
熱硬化工程は、例えば、フィルムが、脂環式構造含有重合体として結晶性の脂環式構造含有重合体を含む場合に、フィルムに含まれる結晶性の脂環式構造含有重合体を結晶化させて結晶化樹脂を含むフィルムを得る工程である。熱硬化工程では、結晶性の脂環式構造含有重合体を結晶化させて、例えば、結晶化度が1%以上の結晶化樹脂を主成分とするフィルムを得る。熱硬化工程は、脂環式構造含有重合体を含むフィルムの、少なくとも二の端辺を保持して緊張させた状態で所定の温度範囲にすることにより行いうる。以下、熱硬化工程に供する脂環式構造含有重合体を含むフィルムを、「硬化対象フィルム」ともいう。
硬化対象フィルムを緊張させた状態とは、硬化対象フィルムに張力がかかった状態をいう。ただし、この硬化対象フィルムを緊張させた状態には、硬化対象フィルムが実質的に延伸される状態を含まない。また、実質的に延伸されるとは、硬化対象フィルムのいずれかの方向への延伸倍率が通常1.1倍以上になることをいう。
硬化対象フィルムを保持する場合、適切な保持具によって硬化対象フィルムを保持する。保持具は、硬化対象フィルムの端辺の全長を連続的に保持しうるものでもよく、間隔を空けて間欠的に保持しうるものでもよい。例えば、所定の間隔で配列された保持具によって硬化対象フィルムの端辺を間欠的に保持してもよい。
熱硬化工程において、硬化対象フィルムは、当該硬化対象フィルムの少なくとも二の端辺を保持されて緊張した状態にされる。これにより、保持された端辺の間の領域において硬化対象フィルムの熱収縮による変形が妨げられる。硬化対象フィルムの広い面積において変形を妨げるためには、対向する二の端辺を含む端辺を保持して、その保持された端辺の間の領域を緊張した状態にすることが好ましい。例えば、矩形の枚葉の硬化対象フィルムでは、対向する二の端辺(例えば、長辺側の端辺同士、又は、短辺側の端辺同士)を保持して前記二の端辺の間の領域を緊張した状態にすることで、その枚葉の硬化対象フィルムの全面において変形を妨げることができる。また、長尺の硬化対象フィルムでは、幅方向の端部にある二の端辺(即ち、長辺側の端辺)を保持して前記二の端辺の間の領域を緊張した状態にすることで、その長尺の硬化対象フィルムの全面において変形を妨げることができる。このように変形を妨げられた硬化対象フィルムは、熱収縮によってフィルム内に応力が生じても、シワ等の変形の発生が抑制される。硬化対象フィルムとして延伸工程を経た後の原反フィルムを用いる場合は、延伸方向(二軸延伸の場合は延伸倍率が大きい方向)と直交する少なくとも二の端辺を保持することで変形の抑制がより確実なものとなる。
熱硬化工程における変形をより確実に抑制するためには、より多くの端辺を保持することが好ましい。よって、例えば、枚葉の硬化対象フィルムでは、その全ての端辺を保持することが好ましい。具体例を挙げると、矩形の枚葉の硬化対象フィルムでは、四つの端辺を保持することが好ましい。
硬化対象フィルムの端辺を保持しうる保持具としては、硬化対象フィルムの端辺以外の部分では硬化対象フィルムと接触しないものが好ましい。このような保持具を用いることにより、より平滑性に優れる光学フィルムを得ることができる。
また、保持具としては、保持具同士の相対的な位置を熱硬化工程においては固定しうるものが好ましい。このような保持具は、熱硬化工程において保持具同士の位置が相対的に移動しないので、熱硬化工程における硬化対象フィルムの実質的な延伸を抑制しやすい。
好適な保持具としては、例えば、矩形の硬化対象フィルム用の保持具として、型枠に所定間隔で設けられ硬化対象フィルムの端辺を把持しうるクリップ等の把持子が挙げられる。また、例えば、長尺の硬化対象フィルムの幅方向の端部にある二の端辺を保持するための保持具としては、テンター延伸機に設けられ硬化対象フィルムの端辺を把持しうる把持子が挙げられる。
長尺の硬化対象フィルムを用いる場合、その硬化対象フィルムの長手方向の端部にある端辺(即ち、短辺側の端辺)を保持してもよいが、前記の端辺を保持する代わりに硬化対象フィルムの結晶化処理を施される領域の長手方向の両側を保持してもよい。例えば、硬化対象フィルムの結晶化処理を施される領域の長手方向の両側に、硬化対象フィルムを熱収縮しないように保持して緊張させた状態にしうる保持装置を設けてもよい。このような保持装置としては、例えば、2つのロールの組み合わせ、押出機と引き取りロールとの組み合わせ、などが挙げられる。これらの組み合わせによって硬化対象フィルムに搬送張力等の張力を加えることで、結晶化処理を施される領域において当該硬化対象フィルムの熱収縮を抑制できる。そのため、前記の組み合わせを保持装置として用いれば、硬化対象フィルムを長手方向に搬送しながら当該硬化対象フィルムを保持できるので、光学フィルムの効率的な製造ができる。
熱硬化工程では、前記のように硬化対象フィルムの少なくとも二の端辺を保持して緊張させた状態で、当該硬化対象フィルムを、脂環式構造含有重合体のガラス転移温度Tg以上、脂環式構造含有重合体の融点Tm以下の温度にする。前記のような温度にされた硬化対象フィルムにおいては、脂環式構造含有重合体の結晶化が進行する。そのため、この熱硬化工程により、結晶化した脂環式構造含有重合体を含むフィルムが得られる。この際、結晶化した脂環式構造含有重合体を含むフィルムの変形を妨げながら緊張した状態にしているので、当該フィルムの平滑性を損なうことなく、結晶化を進めることができる。
熱硬化工程における温度範囲は、前記のように、脂環式構造含有重合体のガラス転移温度Tg以上、脂環式構造含有重合体の融点Tm以下の温度範囲において任意に設定しうる。中でも、結晶化の速度が大きくなるような温度に設定することが好ましい。熱硬化工程における硬化対象フィルムの温度は、好ましくはTg+20℃以上、より好ましくはTg+30℃以上であり、好ましくはTm-20℃以下、より好ましくはTm-40℃以下である。熱硬化工程における温度を前記範囲の上限以下にすることにより、光学フィルムの白濁を抑制できるので、光学的に透明なフィルムが求められる場合に適した光学フィルムが得られる。
熱硬化工程において用いる加熱装置としては、加熱装置と硬化対象フィルムとの接触が不要であることから、硬化対象フィルムの雰囲気温度を上昇させうる加熱装置が好ましい。好適な加熱装置の具体例を挙げると、オーブン及び加熱炉が挙げられる。
熱硬化工程において、硬化対象フィルムを前記の温度範囲に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは10分以下である。熱硬化工程で、脂環式構造含有重合体の結晶化を十分に進行させることにより、光学フィルムの可撓性を高めることができる。また、処理時間を前記範囲の上限以下にすることにより、光学フィルムの白濁を抑制できるので、光学的に透明なフィルムが求められる場合に適した光学フィルムが得られる。
〔2.2.粗化工程〕
粗化工程は、処理工程を経た後の原反フィルム(粗化前フィルム)の、少なくとも一方の面を粗化する工程である。粗化工程では、粗化後のフィルム(粗化フィルム)の少なくとも一方の面における、表面の最大高さRzが150nm以上3000nm以下で、かつ、算術平均粗さRaが30nm以上1000nm以下となるように粗化を行う。
粗化前フィルムの粗化方法は、特に限定されず、粗化工程を経た後に得られる粗化フィルムの少なくとも一方の面における表面粗度を上記所定範囲とすることができる任意の方法を選択しうる。粗化方法の例としては、バフ処理、ブラスト処理、ヘアライン処理、及びドライエッチング(コロナ放電、プラズマ処理、EUV露光)が挙げられる。これらの方法のうち、高速処理可能、処理部のクリーン度の確保の観点から、バフ処理が好ましい。本発明においてコロナ放電処理及びプラズマ処理等により粗化工程を行う場合、一般的なコロナ放電処理及びプラズマ処理における強度よりも高い強度(例えば1000w/m)で粗化処理を行う。
[3.光学フィルムの物性値]
[3.1.フィルム表面のRzおよびRa]
本発明の光学フィルムの少なくとも一方の面において、最大高さRzが150nm以上3000nm以下で、かつ、算術平均粗さRaが30nm以上1000nm以下である。最大高さRzは好ましくは200nm以上、より好ましくは300nm以上であり、好ましくは2000nm以下である。算術平均粗さRaは、好ましくは40nm以上、より好ましくは45nm以上であり、好ましくは700nm以下である。
例えば、延伸等によりフィルムに含まれる脂環式構造含有重合体が強配向することで凝集破壊部分が生じた場合であっても、RzおよびRaが上記範囲内となるように、フィルムの表面を粗化することにより当該凝集破壊部分が剥がされうるので、剥離強度を高めることができる。本発明において、光学フィルムは、一方の面または双方の面の表面粗さ(Ra、Rz)が、上述の範囲となるように粗化されていればよい。
光学フィルムの表面の算術平均粗さRa及び最大高さRzは、カラー3Dレーザー顕微鏡((株)キーエンス製 VK-9700)を用いて、JIS B 0601-2001に準拠して測定することができる。
[3.2.内部ヘイズ]
本発明の光学フィルムの内部ヘイズは、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下である。内部ヘイズを前記上限値以下とすることにより、透明性が高くなり、偏光子保護フィルム等の光学フィルムの用途に適したものとなる。
内部ヘイズは、例えば、ヘイズメーター(日本電色工業社製「NDH5000」)を用いて測定することができる。
[3.3.位相差]
本発明の光学フィルムは、面内方向の位相差Reが、好ましくは3nm以下、より好ましくは2.5nm以下、さらに好ましくは2nm以下である。また、本発明の光学フィルムは、厚み方向の位相差Rthの絶対値が、好ましくは3nm以下、より好ましくは2.5nm以下、さらに好ましくは2nm以下である。本発明の光学フィルムのうち、脂環式構造含有重合体としてブロック共重合体水素化物を含むものにおいて、面内方向の位相差Reおよび厚み方向のRthの絶対値を上記範囲とすることが好ましい。
光学フィルムの面内方向の位相差及び厚み方向の位相差の絶対値は、測定装置としてAXOMETRICS社製「AxoScan」を用いて、測定波長590nmで測定しうる。前記の測定装置を用いる場合、光学フィルムの面内方向及び厚み方向の位相差は、当該光学フィルムの平均屈折率を用いて算出する。ここで、平均屈折率とは、光学フィルムの面内方向であって互いに垂直な2方向の屈折率、及び、当該光学フィルムの厚み方向の屈折率の平均値をいう。
[3.4.寸法]
本発明の光学フィルムの寸法は、製品としての所望の寸法となるよう適宜設定しうる。製造の効率上、本発明の光学フィルムは長尺状のフィルムとして製造しうる。本発明の光学フィルムの厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、一方好ましくは200μm以下、より好ましくは170μm以下である。
〔4.光学フィルムの用途〕
本発明の光学フィルムは、脂環式構造含有重合体を含むことによる高い機械的強度及び良好な光学的特性を有する。加えて、本発明の光学フィルムは、被着体との剥離強度が高い。したがって、本発明の光学フィルムは、液晶表示装置及び有機エレクトロルミネッセンス表示装置などの表示装置において、他の層を保護する保護フィルムとして好適に用いうる。特に、本発明の光学フィルムは、偏光板において偏光子を保護する偏光子保護フィルムとして特に良好に機能することができる。
本発明の光学フィルムを偏光子保護フィルムとして用いる場合、偏光子との間に、接着剤層を備えてもよい。
本発明の光学フィルムを適用する偏光子は、特に限定されず、任意の既知のものを用いうる。偏光子の例としては、ポリビニルアルコールフィルムに、ヨウ素、二色性染料等の材料を吸着させた後、延伸加工したものが挙げられる。接着剤層を構成する接着剤の例としては、各種の重合体をベースポリマーとしたものが挙げられる。かかるベースポリマーの例としては、例えば、アクリル重合体、シリコーン重合体、ポリエステル、ポリウレタン、ポリエーテル、及び合成ゴムが挙げられる。
以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
〔評価方法〕
〔重量平均分子量及び数平均分子量の測定方法〕
重合体の重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
〔ガラス転移温度Tg及び融点Tmの測定方法〕
窒素雰囲気下で300℃に加熱した試料を液体窒素で急冷し、示差操作熱量計(DSC)を用いて、10℃/分で昇温して試料のガラス転移温度Tg及び融点Tmを求めた。
また、Tgが2つ以上あるブロック共重合体水素化物の場合は、試料をプレス成形して、長さ50mm、幅10mm、厚さ1mmの試験片を作製し、JIS-K7244-4法に基づき、粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製、ARES)を使用して、-100℃から+150℃の範囲で、昇温速度5℃/分で粘弾性スペクトルを測定し、これから2つ以上のTgを求めた。例えばTgが2つの場合、損失正接tanδの低温側のピークトップ温度から、ソフトセグメントに由来するガラス転移温度Tg1、高温側のピークトップ温度から、ハードセグメントに由来するガラス転移温度Tg2を求めた。
〔結晶性重合体の水素添加率、及びブロック共重合体水素化物の水素化率の測定方法〕
重合体の水素添加率は、オルトジクロロベンゼン-d4を溶媒として、145℃で、H-NMR測定により測定した。
〔重合体の結晶化度測定方法〕
フィルムに含まれる重合体の結晶化度は、JIS K0131に準じて、X線回折により確認した。具体的には、広角X線回折装置(RINT 2000、株式会社リガク製)を用いて、結晶化部分からの回析X線強度を求め、全体の回析X線強度との比から、下記式(I)によって結晶化度を求めた。
Xc=K・Ic/It (I)
上記式(I)において、Xcは被検試料の結晶化度、Icは結晶化部分からの回析X線強度、Itは全体の回析X線強度、Kは補正項を、それぞれ表す。
〔剥離強度の測定方法〕
被着体として、ノルボルネン系重合体を含む樹脂のフィルム(ゼオノアフィルム、ガラス転移温度160℃、厚み100μm、日本ゼオン社製、延伸処理は特にされていないもの)を用意した。測定対象フィルム(実施例および比較例のフィルム)の片面及び被着体の片面に、コロナ処理を施した。測定対象フィルムのコロナ処理を施した面、及び被着体のコロナ処理した面の両方に接着剤を付着させ、接着剤を付着させた面同士を貼り合わせた。この際、接着剤としてはUV接着剤CRBシリーズ(トーヨーケム社製)を用いた。その後、無電極UV照射装置(ヘレウス社製)を用い、ランプとしてDバルブを使用し、ピーク照度100mW/cm、積算光量3000mJ/cmの条件でUV照射を行い、接着剤を硬化させた。これにより、測定対象フィルム及び被着体を備えるサンプルフィルムを得た。
得られたサンプルフィルムについて、90度剥離試験を実施した。即ち、サンプルフィルムを15mmの幅に裁断して、測定対象フィルム側をスライドガラスの表面に粘着剤にて貼り合わせた。この際、粘着剤としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。高性能型デジタルフォースゲージZP-5N(イマダ社製)の先端に被着体を挟み、スライドガラスの表面の法線方向に300mm/minの速度で被着体を牽引し、牽引の力の大きさを剥離強度として測定した。
〔参考例:剥離強度の測定方法の妥当性の評価〕
上に述べた測定方法による剥離強度の測定が、被着体が偏光子である場合の剥離強度の評価を反映したものであると言えるか否かを評価する実験を行った。
特開2005-70140号公報の実施例1に記載される方法と同様の方法により、偏光フィルム及び接着剤を用意した。また、測定対象フィルムとして、本願実施例1で得られた処理前延伸フィルム及び電子線照射延伸フィルムを用意した。測定対象フィルムの片面にコロナ処理を施し、この面を、偏光フィルムの片方の表面に、接着剤を介して貼合した。偏光フィルムのもう片方の表面には、トリアセチルセルロースフィルムを、接着剤を介して貼合した。その後、80℃で7分間乾燥させて接着剤を硬化させて、サンプルフィルムを得た。得られたサンプルフィルムについて、上に述べた〔剥離強度の測定方法〕におけるものと同様の90度剥離試験を行った。その結果、本願実施例1で得られた値と同様のFa及びFbの値が得られた。このことから、上に述べた測定方法による剥離強度の測定が、被着体が偏光子である場合の剥離強度の評価を反映したものであると言える。
〔フィルムの内部ヘイズの測定方法〕
フィルムの内部ヘイズは以下のようにして測定した。
まず、フィルムから、50mm×50mmのサイズに切り出して、試験片を得た。続いて、試験片の両表面に、厚み50μmの透明光学粘着フィルム(3M社製「8146-2」)を介して、シクロオレフィンフィルム(日本ゼオン社製「ゼオノアフィルム」、厚み40μm)を貼合して、シクロオレフィンフィルム/透明光学粘着フィルム/試験片/透明光学粘着フィルム/シクロオレフィンフィルムの層構成を有する試料複層体を得た。次いで、この試料複層体のヘイズを、ヘイズメーター(日本電色工業社製「NDH5000」)を用いて測定した。
別途、シクロオレフィンフィルム、透明光学粘着フィルム、透明光学粘着フィルム、及び、シクロオレフィンフィルムをこの順に備える参照用積層体を形成した。そして、この参照用積層体のヘイズを、前記のヘイズメーターで測定した。測定された参照用積層体のヘイズは、0.04%であった。この参照用積層体のヘイズ0.04%は、シクロオレフィンフィルム2枚分のヘイズと透明光学粘着フィルム2枚分のヘイズとの和である。
前記の試料複層体のヘイズから、シクロオレフィンフィルム2枚分のヘイズ値と透明光学粘着フィルム2枚分のヘイズ値の和0.04%を差し引いて、試験片の内部ヘイズを得た。
〔面内方向の位相差及び厚み方向の位相差の絶対値の測定方法〕
実施例および比較例のフィルムを、波長590nmで位相差測定装置(Axometric社製 製品名「Axoscan」)を用いて測定することにより、各例のフィルムの面内方向の位相差Re及び厚み方向の位相差Rthの絶対値を求めた。
〔光学フィルムの最大高さRz及び算術平均粗さRaの測定〕
光学フィルムの表面の算術平均粗さRa及び最大高さRzは、カラー3Dレーザー顕微鏡((株)キーエンス製 VK-9700)を用いて、JIS B 0601-2001に準拠して測定した。
〔製造例1.ジシクロペンタジエンの開環重合体の水素添加物の製造〕
金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解した溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。
得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。
濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素添加物を含む反応液が得られた。この反応液は、水素添加物が析出してスラリー溶液となっていた。
前記の反応液に含まれる水素添加物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素添加物28.5部を得た。この水素添加物の水素添加率は99%以上、ガラス転移温度(Tg)は95℃、融点(Tm)は262℃であった。
〔実施例1〕
(1-1.樹脂の調製)
製造例1で得たジシクロペンタジエンの開環重合体の水素添加物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合して、フィルムの材料となる樹脂を得た。
(1-2.粗化前フィルムの製造)
(1-1)で得た樹脂を、内径3mmのダイ穴を4つ備えた二軸押出機に投入した。前記の二軸押出機によって、樹脂を熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、樹脂のペレットを得た。前記の二軸押出機の運転条件を、以下に示す。
・バレル設定温度:270℃~280℃
・ダイ設定温度:250℃
・スクリュー回転数:145rpm
・フィーダー回転数:50rpm
引き続き、得られたペレットを、Tダイを備える熱溶融押出しフィルム成形機に供給した。Tダイから樹脂を押出し、1m/分の速度でロールに巻き取ることにより、前記の樹脂からなる長尺の原反フィルム(厚み50μm)を製造した。前記のフィルム成形機の運転条件を、以下に示す。
・バレル温度設定:280℃~290℃
・ダイ温度:270℃
・スクリュー回転数:30rpm
その後、原反フィルムを100mm×100mmのサイズに裁断し、小型二軸延伸機(東洋精機製作所社製)を用いて、フィルムの4辺の端部をクリップで把持して、延伸温度110℃、延伸倍率1.3倍で連続的に固定端一軸延伸を実施し、粗化前フィルムを得た。この時の粗化前フィルムにおける重合体の結晶化度は4%であった。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=8、Rz(nm)=30であった。剥離強度Faを測定したところ、0.1N/mであった。
(1-3.粗化フィルムの製造及び評価)
表面粗化装置として、1000番の番手を備えたバフロールを使用し、粗化前フィルムの一方の面を粗化処理し、表面粗さがRa(nm)=200、Rz(nm)=800の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定したところ、1.5N/mであった。
〔実施例2〕
(2-1.粗化前フィルムの製造)
(1-2.粗化前フィルムの製造)にて得られた100mm×100mmのサイズに裁断した原反フィルムを、小型二軸延伸機(東洋精機製作所社製)を用いて、フィルムの4辺の端部をクリップで把持して、温度145℃にて熱硬化処理を実施し、粗化前フィルムを得た。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=3、Rz(nm)=12であった。剥離強度Faを測定したところ0.1N/mであった。
(2-2.粗化フィルムの製造及び評価)
表面粗化装置として、1000番の番手を備えたバフロールを使用し、粗化前フィルムの一方の面を粗化処理し、表面粗さが、Ra(nm)=220、Rz(nm)=860の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定しFbを求めたところ、1.5N/mであった。
〔実施例3〕
(3-1.粗化前フィルムの製造)
シクロオレフィン系重合体を含む樹脂(ガラス転移温度126℃のノルボルネン重合体の樹脂、日本ゼオン社製)のペレットを100℃で5時間乾燥した。その後、乾燥した樹脂のペレットを、単軸の押出し機に供給した。樹脂は押出し機内で溶融された後、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押出されて、冷却された。これにより、厚み50μm、幅500mmの原反フィルムを得た。原反フィルムを100mm×100mmのサイズに裁断し、小型二軸延伸機(東洋精機製作所社製)を用いて、フィルムの4辺の端部をクリップで把持して、延伸温度145℃、延伸倍率1.3倍で連続的に固定端一軸延伸を実施し、粗化前フィルムを得た。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=4、Rz(nm)=10であった。剥離強度Faを測定したところ0.1N/mであった。
(3-2.粗化フィルムの製造及び評価)
表面粗化装置として、1000番の番手を備えたバフロールを使用し、粗化前フィルムの一方の面を粗化処理し、表面粗さが、Ra(nm)=300、Rz(nm)=900の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定しFbを求めたところ、1.1N/mであった。
〔実施例4〕
(4-1.ブロック共重合体[D])
十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製反応器に、脱水シクロヘキサン256部、脱水スチレン25.0部、及びn-ジブチルエーテル0.65部を仕込み、60℃で攪拌しながらn-ブチルリチウム(15%シクロヘキサン溶液)1.35部を添加して重合反応を開始した。さらに、攪拌しながら60℃で60分反応させた。この時点での重合転化率は99.5%であった(ガスクロマトグラフィーにより測定、以下にて同じ。)。次に、脱水イソプレン50.0部を加え、同温度で30分攪拌を続けた。この時点での重合転化率は99%であった。その後、更に、脱水スチレンを25.0部加え、同温度で60分攪拌した。この時点での重合転化率はほぼ100%であった。次いで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させ、ブロック共重合体[C]を含む重合反応溶液を得た。得られたブロック共重合体[D]の重量平均分子量(Mw)は44,900、分子量分布(Mw/Mn)は1.03であった。
(4-2.ブロック共重合体水素化物[E])
(4-1)で得た重合反応溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒としてシリカ-アルミナ担持型ニッケル触媒(E22U、ニッケル担持量60%;日揮化学工業社製)4.0部及び脱水シクロヘキサン350部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度170℃、圧力4.5MPaにて6時間水素化反応を行った。
水素化反応終了後、反応溶液をろ過して水素化触媒を除去した。ろ液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、製品名「Songnox1010」)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。次いで、上記溶液を、円筒型濃縮乾燥器(日立製作所社製、製品名「コントロ」)を用いて、温度260℃、圧力0.001MPa以下で、溶液から溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。連続して溶融ポリマーを、濃縮乾燥器に連結した孔径20μmのステンレス製焼結フィルターを備えたポリマーフィルター(富士フィルター社製)により、温度260℃でろ過した後、ダイから溶融ポリマーをストランド状に押出し、冷却後、ペレタイザーによりブロック共重合体水素化物[E]を得た。
得られたブロック共重合体水素化物は、スチレン由来の繰り返し単位を含有するブロック(以下、適宜「St」という。)、及びイソプレン由来の繰り返し単位を含有するブロック(以下、適宜「Ip」という。)からなる3元ブロック共重合体であり、それぞれのブロックの重量比は、St:Ip:St=25:50:25であった。該ブロック共重合体水素化物[E]のMwは45,100、Mw/Mnは1.04、主鎖及び芳香環の水素化率はほぼ100%、ガラス転移温度Tg1は-50℃、Tg2は140℃であった。
(4-3.樹脂の調製)
(4-2)で得られたブロック共重合体水素化物[E]100部と、架橋助剤(タイク(日本化成株式会社製))5部とを混合して、フィルムの材料となる樹脂を得た。
(4-4.粗化前フィルムの製造)
(1-1)で得た樹脂に代えて、(4-3)で得た樹脂を用いた他は、実施例1の(1-2)と同様にして、粗化前フィルムを得た。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=7、Rz(nm)=20であった。剥離強度Faを測定したところ0.1N/mであった。
(4-5.粗化フィルムの製造)
実施例1の(1-3)と同様にして、表面粗さが、Ra(nm)=500、Rz(nm)=1600の実施例3の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定したところ、2.1N/mであった。
〔比較例1~3〕
実施例1の(1-2)で得られた粗化前フィルムを比較例1のフィルムとし、実施例3の(3-1)で得られた粗化前フィルムを比較例2のフィルムとし、実施例4の(4-4)で得られた粗化前フィルムを比較例3のフィルムとし、各実施例品と同様に評価を行った。
実施例及び比較例の評価結果(表面粗さ(Ra、Rz)、剥離強度、内部ヘイズ、位相差(Re、Rth))を表1にまとめて示す。
Figure 0007140124000001
表1の結果から、脂環式構造含有重合体を含むフィルムの少なくとも一方の面を、最大高さRzが150nm以上3000nm以下で、かつ、算術平均粗さRaが30nm以上1000nm以下となるように粗化処理することにより、剥離強度が高く偏光子保護フィルムとして有用に用いうる光学フィルムが得られたことが分かった。

Claims (6)

  1. 脂環式構造含有重合体を含むフィルムの、少なくとも一方の面を粗化してなる光学フィルムであって、
    少なくとも一方の面において、最大高さRzが150nm以上3000nm以下であり、かつ、算術平均粗さRaが30nm以上1000nm以下であ
    前記脂環式構造含有重合体が結晶性であり、結晶化度が1%以上である、光学フィルム。
  2. 内部ヘイズが5%以下である、請求項1に記載の光学フィルム。
  3. 前記脂環式構造含有重合体は、ブロック共重合体水素化物[E]であり、
    前記ブロック共重合体水素化物[E]は、ブロック共重合体[D]の水素化物であり、
    前記ブロック共重合体[D]は、重合体ブロック[A]と重合体ブロック[B]とからなるか、又は前記重合体ブロック[A]と重合体ブロック[C]とからなり、
    前記重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位[I]を主成分とする重合体ブロックであり、
    前記重合体ブロック[B]は、芳香族ビニル化合物由来の繰り返し単位[I]及び鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックであり、
    前記重合体ブロック[C]は、鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである、請求項1または2に記載の光学フィルム。
  4. 面内方向の位相差Reが3nm以下、厚み方向の位相差Rthの絶対値が3nm以下である、請求項3に記載の光学フィルム。
  5. 偏光子保護フィルムである、請求項1~のいずれか1項に記載の光学フィルム。
  6. 請求項1~のいずれか1項に記載の光学フィルムの製造方法であって、
    脂環式構造含有重合体を含むフィルムを延伸する工程、及び前記フィルムを熱硬化する工程のうちの少なくとも一方を含む処理工程と、
    前記処理工程を経た後のフィルムの、少なくとも一方の面を粗化する工程と、を有する、光学フィルムの製造方法。
JP2019534499A 2017-08-02 2018-07-30 光学フィルム及びその製造方法 Active JP7140124B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017150130 2017-08-02
JP2017150130 2017-08-02
PCT/JP2018/028445 WO2019026842A1 (ja) 2017-08-02 2018-07-30 光学フィルム及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2019026842A1 JPWO2019026842A1 (ja) 2020-08-20
JP7140124B2 true JP7140124B2 (ja) 2022-09-21

Family

ID=65232665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019534499A Active JP7140124B2 (ja) 2017-08-02 2018-07-30 光学フィルム及びその製造方法

Country Status (3)

Country Link
JP (1) JP7140124B2 (ja)
TW (1) TW201910398A (ja)
WO (1) WO2019026842A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814019B (zh) * 2020-07-29 2023-09-01 日商柯尼卡美能達股份有限公司 光學薄膜、偏光板及液晶顯示裝置
TWI816459B (zh) * 2022-07-06 2023-09-21 住華科技股份有限公司 光學膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194067A (ja) 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2006309033A (ja) 2005-04-28 2006-11-09 Kaneka Corp 光学用フィルムの製造方法
JP2012103355A (ja) 2010-11-08 2012-05-31 Sekisui Chem Co Ltd 偏光板用保護フィルムの製造方法、偏光板用保護フィルム、複合偏光板、偏光板及び液晶表示装置
JP2017122857A (ja) 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487759B2 (ja) * 2009-06-30 2014-05-07 日本ゼオン株式会社 フィルム及びその製造方法
JP5810679B2 (ja) * 2011-06-30 2015-11-11 日本ゼオン株式会社 フィルムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194067A (ja) 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2006309033A (ja) 2005-04-28 2006-11-09 Kaneka Corp 光学用フィルムの製造方法
JP2012103355A (ja) 2010-11-08 2012-05-31 Sekisui Chem Co Ltd 偏光板用保護フィルムの製造方法、偏光板用保護フィルム、複合偏光板、偏光板及び液晶表示装置
JP2017122857A (ja) 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置

Also Published As

Publication number Publication date
JPWO2019026842A1 (ja) 2020-08-20
WO2019026842A1 (ja) 2019-02-07
TW201910398A (zh) 2019-03-16

Similar Documents

Publication Publication Date Title
JP5587063B2 (ja) 二軸光学ポリノルボルネン系フィルム及びその製造方法、それを具備した一体型光学補償偏光板及びその製造方法、及びそのフィルム及び/または偏光板を備える液晶表示装置
WO2018135360A1 (ja) タッチパネル用フィルム積層体
CN108291997B (zh) 多层膜、制造方法、圆偏振片、防反射膜以及有机电致发光显示装置
JP6729550B2 (ja) 位相差板及び位相差板の製造方法
WO2015002020A1 (ja) 光学用フィルム及びその製造方法
WO2018135359A1 (ja) タッチパネル用フィルム積層体
JP7184133B2 (ja) 位相差フィルム及びその製造方法
JPWO2013136975A1 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、並びに位相差フィルムの製造方法
JP7140124B2 (ja) 光学フィルム及びその製造方法
TW201802505A (zh) 積層薄膜及偏光板
TWI808262B (zh) 光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置
TW201817596A (zh) 光學薄膜、及其製造方法、以及多層薄膜
JP2017134305A (ja) 延伸フィルム、製造方法、偏光板及び表示装置
JP6303275B2 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、位相差フィルム、製造方法、及び用途
CN108431653B (zh) 光学层叠体及其制造方法、偏振片以及显示装置
WO2022163416A1 (ja) 光学フィルム及びその製造方法、並びに偏光フィルム
TWI794524B (zh) 光學薄膜、光學堆疊體及液晶顯示裝置
JP7322889B2 (ja) 成形体及びその製造方法
JPWO2017150313A1 (ja) 偏光解消フィルム及びその製造方法
TWI829817B (zh) 堆疊體及其製造方法、圓偏光板、顯示裝置以及觸控面板
WO2022255076A1 (ja) 基材フィルム、光学積層体及びその製造方法、並びに、偏光板の製造方法
JP2010026098A (ja) 位相差フィルム、複合偏光板、偏光板および液晶表示装置
JP2010243818A (ja) 位相差補償フィルムの製造方法、位相差補償フィルム、複合偏光板、偏光板及び液晶表示装置
TW202328230A (zh) 光學膜、多層薄膜及其製造方法以及偏光板
WO2022209818A1 (ja) 光学フィルム及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R150 Certificate of patent or registration of utility model

Ref document number: 7140124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150