JP7137477B2 - データキャッシング - Google Patents

データキャッシング Download PDF

Info

Publication number
JP7137477B2
JP7137477B2 JP2018555917A JP2018555917A JP7137477B2 JP 7137477 B2 JP7137477 B2 JP 7137477B2 JP 2018555917 A JP2018555917 A JP 2018555917A JP 2018555917 A JP2018555917 A JP 2018555917A JP 7137477 B2 JP7137477 B2 JP 7137477B2
Authority
JP
Japan
Prior art keywords
memory
memory cell
read
sense amplifier
bank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018555917A
Other languages
English (en)
Other versions
JP2019515409A (ja
Inventor
カズヒコ カジガヤ
Original Assignee
マイクロン テクノロジー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン テクノロジー,インク. filed Critical マイクロン テクノロジー,インク.
Publication of JP2019515409A publication Critical patent/JP2019515409A/ja
Priority to JP2021113929A priority Critical patent/JP2021168225A/ja
Application granted granted Critical
Publication of JP7137477B2 publication Critical patent/JP7137477B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0842Multiuser, multiprocessor or multiprocessing cache systems for multiprocessing or multitasking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0616Improving the reliability of storage systems in relation to life time, e.g. increasing Mean Time Between Failures [MTBF]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0877Cache access modes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • G06F13/1673Details of memory controller using buffers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0656Data buffering arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/223Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2253Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2253Address circuits or decoders
    • G11C11/2255Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2253Address circuits or decoders
    • G11C11/2257Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2273Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2275Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1032Reliability improvement, data loss prevention, degraded operation etc
    • G06F2212/1036Life time enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/62Details of cache specific to multiprocessor cache arrangements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/12Group selection circuits, e.g. for memory block selection, chip selection, array selection

Description

<関連出願の参照>
本特許出願は、2017年4月25出願の「データキャッシング」という名称のPCT出願PCT/US2017/029420に対して優先権を主張する。さらに、そのPCT出願は、2016年4月27日出願の「データキャッシング」という名称のカジガヤによる米国特許出願15/140,073に対して優先権を主張する。各出願は本出願の譲受人に譲渡され、各出願は参照によりその全体が本明細書に組み込まれる
以下の説明は、全般に亘って、メモリデバイスに関連し、より具体的にはデータキャッシングに関する。
メモリデバイスは、コンピュータ、無線通信機器、カメラ、デジタルディスプレイ、及びそのようなものなどの様々な電子機器に情報を記憶するために広く使用されている。情報は、メモリデバイスの異なる状態をプログラミングすることによって保存される。例えば、バイナリデバイスには2つの状態があり、多くの場合、論理「1」又は論理「0」で表される。他のシステムでは、2つより多くの状態が記憶されることがある。記憶された情報にアクセスするために、電子デバイスは、メモリデバイスの保存状態を読出し、又は感知することができる。情報を記憶するために、電子デバイスは、メモリデバイス内の状態を、書込み、又はプログラムすることができる。
ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、ダイナミックRAM(DRAM)、同期ダイナミックRAM(SDRAM)、FeRAM、相変化RAM(PCRAM)、スピン注入RAM(STT-RAM)、抵抗RAM(ReRAM)、磁気RAM(MRAM)、フラッシュメモリ、及びその他のものなど、様々な種類のメモリデバイスが存在する。メモリデバイスは、揮発性又は不揮発性であってよい。フラッシュメモリなどの不揮発性メモリは、外部電源がない場合でも、長時間データを保存できる。例えば、DRAMなどの揮発性メモリデバイスは、外部電源によって定期的にリフレッシュされない限り、時間の経過とともに保存状態が失われることがある。バイナリメモリデバイスは、例えば、充電又は放電されたキャパシタを含むことができる。帯電したキャパシタは、リーク電流によって時間の経過とともに放電される可能性があり、その結果、保存情報が失われる。揮発性メモリの或る実施形態では、読出しや書込みの速度が速くなるなどのパフォーマンス上の利点があるが、非揮発性の態様(データを定期的にリフレッシュせずに保持する機能など)は、有利となる場合がある。
いくつかのケースでは、FeRAMは、DRAMと同様の速度及び不揮発性の特性をもって、動作させることができる。しかし、このような場合、FeRAMのメモリセルに用いられる強誘電体キャパシタは、強誘電体キャパシタ内の強誘電材料の分極と反転が繰り返される結果、疲労を受ける可能性があり、残留分極の減少を招く。また、書込み動作が連続的に同じ分極方向に行われると、「インプリント」と呼ばれるメモリセルのヒステリシス特性におけるシフトが、メモリセルのリライト特性のその後の劣化を招くことがある。従って、FeRAMは、DRAMと比較して、その寿命期間において、読出しと書込み動作の回数が少なくなる。
本開示の実施形態について、以下の図を参照して説明する。
本開示の種々の実施形態による、メモリデバイスの一実施例を示したものである。 本開示の種々の実施形態による、それらの実施形態のメモリデバイスのような或るメモリデバイスのメモリブロック及びメモリ領域のアーキテクチャの一実施例を示している。 本開示の種々の実施形態による、それらの実施形態のメモリブロックのメモリ領域のような或るメモリブロックのメモリ領域のアーキテクチャの一実施例を示している。 本開示の種々の実施形態による、それらの実施形態のメモリブロックのメモリ領域のような或るメモリブロックのメモリ領域のアーキテクチャの一実施例を示している。 本開示の種々の実施形態による、図1から図4を用いて説明したメモリデバイス、メモリブロック、又はメモリ領域の複数のメモリバンクのような複数のメモリバンクを含む装置を示している。 本開示の種々の実施形態による、強誘電体メモリセルの一実施例を示している。 本開示の種々の実施形態による、センスアンプ及びビットラインプリチャージ回路の回路図の実施例を示している。 本開示の種々の実施形態による、センスラッチ(例えば、センス回路)基板制御回路の回路図の一実施例を示している。 本開示の種々の実施形態による、ロードコマンドを発行してメモリセルからセンスアンプに論理1又はハイレベル論理値をロードするときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形の一実施例を示している。 本開示の種々の実施形態による、ロードコマンドを発行してメモリセルからセンスアンプに論理0又はローレベル論理値をロードするときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形の一実施例を示している。 本開示の種々の実施形態による、ストアコマンドを発行してセンスアンプにストアされた論理1又はハイレベル論理値をメモリセルに記憶させるときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形の一実施例を示している。 本開示の種々の実施形態による、ストアコマンドを発行してセンスアンプにストアされた論理0又はローレベル論理値をメモリセルに記憶させるときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形の一実施例を示している。 本開示の種々の実施形態による、データワードが、複数のメモリセルから1つのロウバッファにロードされ、その後メモリセルからではなくロウバッファから読み出される動作のシーケンスの一実施例を示している。 本開示の種々の実施形態による、データワードが複数のメモリセルから1つのロウバッファにロードされ、又はデータワードがロウバッファに書き込まれ、その後メモリセルからではなくロウバッファから読み出される動作のシーケンスの一実施例を示している。 本開示の種々の実施形態による、主記憶サブシステムを含むシステムの図を示している。 本開示の種々の実施形態による、ロードコマンドを発行してメモリセルからセンスアンプに論理1又はハイレベル論理値をロードするときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形の一実施例を示している。 本開示の種々の実施形態による、データワードが第1の複数のメモリセルからロウバッファにロードされ、その後、第2の複数のメモリセルに記憶される動作のシーケンスの一実施例を示す。 本開示の種々の実施形態による、メモリデバイス又はシステムを動作させる方法を説明するフローチャートを示している。 本開示の種々の実施形態による、メモリデバイス又はシステムを動作させる方法を説明するフローチャートを示している。
開示される技術は、複数のメモリセル(例えば、Fe-RAM又はハイブリッドRAM(HRAM)セルのような強誘電体メモリセル)を有するメモリデバイスに関連する。強誘電体メモリセルは、強誘電体膜を有する情報記憶キャパシタを有する。時間が経つにつれて、強誘電体膜が劣化し、強誘電体メモリセルの性能が低下することがある。本明細書に記載の技術の一実施形態において、或るメモリセルのデータは、そのメモリセルの第1回目の読出しの実行時にロウバッファのセンスアンプにキャッシングされてもよい。そのメモリセルの第1回目の読出しの後、そのメモリセルの少なくとも第2回目の読出しの実行の決定時に、そのメモリセルのデータは、そのメモリセルからではなく、センスアンプから読み出されるようにすることができる。この方法では、メモリセルに実行される直接読出しの回数を低減することができ、メモリセルの寿命が延長されるようにすることができる。また、センスアンプにデータをキャッシングすることで、消費電力を削減することもできる。メモリデバイスの複数のバンクのデータをそれぞれのロウバッファにキャッシングすることにより、メモリデバイスがマルチページキャッシュの一種として動作させられるようにすることができる。新しいデータをメモリセルに保存するときに、その新しいデータがセンスアンプに書き込まれ、それからメモリセルに書き込まれるようにすることができる。続いて、その新しいデータは、メモリセルからセンスアンプにその新しいデータをロードすることなく、センスアンプから読み出されるようにすることができる(即ち、その新しいデータが既にセンスアンプにキャッシングされているためである)。繰り返しになるが、メモリセルの直接読出し数が減少し、メモリセルの寿命が延びるようにすることができ、消費電力が低減されるようにすることができる。メモリセルから新しいデータを読み出す前にロードコマンドを発行する必要がないため、コマンドバスの効率もまた改善されるようにすることができる。
本明細書で説明する技術の別の実施形態では、マルチコアプロセッサのプロセスは、各メモリバンクがロウバッファに対応付けられているメモリデバイスにおけるメモリバンクの異なるグループにマッピングされるようにすることができる。或るメモリバンク内の或るメモリアドレスに関連付けられた複数のメモリセルは、1つのデータワードを取得するためにアドレス指定されるようにすることができる。それらの複数のメモリセルは、複数のプロセス中の1つのプロセスからそのメモリアドレスに対応する最初のメモリ読出し要求を受信したときにアドレス指定されるようにすることができる。そのプロセスからのそのメモリアドレスに対応する2回目のメモリ読出し要求の受信時に、上記データワードを取得するために、そのメモリバンクに関連付けられているロウバッファがアドレス指定されるようにすることができる。メモリバンクの異なるグループへのプロセスのマッピングは、そのメモリデバイスのロウバッファ内のヒット率を増加させる傾向がある。これは、メモリセルへの直接読出しの回数を減らし、メモリセルの寿命を増加させ、メモリデバイスによる電力消費を削減することができる。
上記で導入した開示の実施形態は、メモリデバイスのコンテキストにおいて更に後述する。次に、ハイブリッドメモリの具体例について説明する。開示の、これら及び他の実施形態については更に、ハイブリッドメモリの構成、動作、及び使用に関連する装置図、システム図、及びフローチャートを参照しながら説明し、記載する。
図1は、本開示の種々の実施形態による、メモリデバイス100の一実施例を示している。メモリデバイス100には、複数のメモリブロック(例えば、第1のメモリブロック105-a、第2のメモリブロック105-b、及び第8のメモリブロック105-hを含む8つのメモリブロック)に配置された複数のメモリセルが含まれるようにすることができる。これらのメモリセルは、或るカラムアドレス、或るロウアドレス、及び或るバンクアドレスを含む或るアドレスによってアドレス指定されるようにすることができる。上記カラムアドレスは、カラムアドレスバッファ110によって受信され、カラムデコーダ115及びパラレル/シリアル変換回路145に印加されるようにすることができる。上記ロウアドレスは、ロウアドレスバッファ120によって受信され、バンク制御回路135に印加されるようにすることができ、そのバンク制御回路135はそのロウアドレスをロウデコーダ125に順次供給することができる。上記バンクアドレスは、バンクアドレスバッファ130によって受信され、バンク制御回路135に印加されるようにすることができる。
上記メモリセルのサブセットから読み出されたデータは、読出し/書込み(RW)アンプ140で増幅され、パラレル/シリアル変換回路145によってシリアルデータストリームに変換され、データ入出力バッファ150に一時的に記憶される。上記メモリセルのサブセットに書き込まれるデータは、上記メモリセルの上記サブセットに書き込まれる前に、データ入出力バッファ150に一時的に記憶され、パラレル/シリアル変換回路145によって並列データストリームに変換され、RWアンプ140で増幅されるようにすることができる。
読出しコマンド又は書込みコマンドは、コマンドデコーダ155によって、受信されデコードされるようにすることができる。デコードされたコマンドがコマンドデコーダ155からチップ制御回路160に供給されるようにすることができ、モード信号がモード回路165から上記チップ制御回路160に供給されるようにすることができる。上記チップ制御回路160は、カラムアドレスバッファ110、ロウアドレスバッファ120、バンクアドレスバッファ130、バンク制御回路135、RWアンプ140、及びパラレル/シリアル変換回路145を制御する複数の信号を供給するようにすることができる。クロック生成回路170は、パラレル/シリアル変換回路145、データ入出力バッファ150、コマンドデコーダ155、及びチップ制御回路160に1つ以上のクロック信号を供給することができる。
メモリコントローラは、メモリデバイス100の種々の構成部分を介して、メモリデバイス100のメモリセルの動作を制御することができる。例えば、メモリコントローラは、メモリブロック105のメモリセルにアクセスするために、メモリブロック105の所望のワードライン及びデジットラインをアクティブにするために、カラム、ロウ、及びバンクアドレス信号を生成してよい。上記メモリコントローラはまた、メモリデバイス100の動作中に使用される様々な電圧電位を生成及び制御することができる。全般を通して、本明細書で論じる印加電圧の振幅、形状、又は持続時間は、調整され又は変更されるようにすることができ、メモリデバイス100を動作させることにおいて論じられる種々の動作に対して異なるようにすることができる。
図2は、本開示の種々の実施形態による、メモリデバイス100のような或るメモリデバイスのメモリブロック105及びメモリ領域205のアーキテクチャ200の一実施例を示している。各ブロック105及び各メモリ領域205は、複数のメモリセルを含むことができる。いくつかの実施例では、ブロック105は8つのブロック(例えば、第1のメモリブロック105-a、第2のメモリブロック105-b、第3のメモリブロック105-c、第4のメモリブロック105-d、第5のメモリブロック105-e、第6のメモリブロック105-f、第7のメモリブロック105-g、及び第8のメモリブロック105-h)を含むことができる。
図2に示す各メモリブロック105は、複数のメモリ領域205に細分化されるようにすることができる。例えば、第1のメモリブロック105-aは、第1のメモリ領域205-a、第2のメモリ領域205-b、第3のメモリ領域205-c、及び第4のメモリ領域205-dに細分化されるようにすることができる。いくつかの実施例では、各メモリブロック105は、各メモリブロック105の第1の次元(例えば、水平方向の次元)に沿って実装されたカラムデコーダ115-aと、各メモリブロックの第2の次元(例えば、垂直方向の次元)に沿って実装されたロウデコーダ125-aとを用いて、メモリチップの長方形の領域をカバーすることができる。
図3は、本開示の種々の実施形態による、メモリブロック105-aのメモリ領域205-aのような或るメモリブロックのメモリ領域のアーキテクチャ300の一実施例を示している。メモリ領域205-aは、複数のメモリバンク305(例えば、第1のメモリバンク305-a、第2のメモリバンク305-b、第3のメモリバンク305-c、第14のメモリバンク305-n、第15のメモリバンク305-o、及び第16のメモリバンク305-pを含む16個のメモリバンク)を含むことができる。
図3に示すように、メモリバンク305内のメモリセルは、カラムデコーダ310及び複数のメモリバンクごとロウデコーダ315(例えば、第1のロウデコーダ315-a、第2のロウデコーダ315-b、第3のロウデコーダ315-c、第14のロウデコーダ315-n、第15のロウデコーダ315-o、及び第16のロウデコーダ315-p)と、複数のメモリバンクごとバンク制御回路320(例えば、第1のバンク制御回路320-a、第2のバンク制御回路320-b、第3のバンク制御回路320-c、第14のバンク制御回路320-n、第15のバンク制御回路320-o、及び第16のバンク制御回路320-p)とによってアドレス指定することができる。いくつかの実施例では、カラムアドレスがカラムデコーダに供給されるようにし、バンクアドレス、ロウアドレス、及びロードコマンド又はストアコマンドが各バンク制御回路320に供給されるようにすることができる。各バンク制御回路320は、関連付けられたアドレスラッチ325(例えば、第1のアドレスラッチ325-a、第2のアドレスラッチ325-b、第3のアドレスラッチ325-c、第14のアドレスラッチ325-n、第15のアドレスラッチ325-o、又は第16のアドレスラッチ325-p)にロウアドレスをラッチし、そのロウアドレスを対応するロウデコーダ315に受け渡すことができる。
ロードコマンドの期間でのメモリバンク305のアドレス指定時には、メモリバンク305に関連付けられたロウバッファ330内の複数のセンスアンプ(例えば、第1のメモリバンク305-aに関連付けられたロウバッファ330-a/330-b内の複数のセンスアンプ)が、複数のメモリセルからデータを受信し、それらのデータを増幅し、IOライン335上での読出しのためにそのデータをラッチすることができる。ストアコマンドの期間でのメモリバンク305のアドレス指定時には、IOライン335上のデータは、ロウバッファ330内のセンスアンプによって増幅され、複数のメモリセルに記憶されるようにすることができる。
各バンク制御回路320は、ロウバッファ330のセンスアンプに、多くの制御信号を供給することができる。いくつかの実施例では、制御信号は、バンクセレクト(BS)信号、プレート電圧(PL)、絶縁ゲート制御信号(TG)、ビットラインプリチャージ信号(PCB)、センスアンププリチャージ信号(PCS)、リファレンス電圧アプリケーション信号(REF)、又はセンス回路活性化信号(CS)を含むことができる。メモリバンク内でデータをロード又は記憶させる際のこれらの信号を使用する実施例については、図9から図14、図16、及び図17を参照して説明する。
図4は、本開示の種々の実施形態による、メモリブロック105-aのメモリ領域205-aのような或るメモリブロックのメモリ領域のアーキテクチャの一実施例を示している。メモリ領域205-aは、複数のメモリサブバンク405(例えば、第1のメモリのサブバンク405-a、第2のメモリサブバンク405-b、第3のメモリサブバンク405-c、第14のメモリサブバンク405-n、第15のメモリサブバンク405-o、及び第16のメモリサブバンク405-pを含む16個のサブバンク)を含むことができる。
図4に示すように、メモリサブバンク405内のメモリセルは、カラムデコーダ410、複数のメモリバンクごとロウデコーダ415(例えば、第1のロウデコーダ415-a、第2のロウデコーダ415-b、第3のロウデコーダ415-c、第14のロウデコーダ415-n、第15のロウデコーダ415-o、及び第16のロウデコーダ415-p)、及びバンク制御回路420によってアドレス指定されるようにすることができる。いくつかの実施例では、カラムアドレスがカラムデコーダ410に供給され、バンクアドレス、ロウアドレス、及びロードコマンド又はストアコマンドがバンク制御回路420に供給されるようにすることができる。バンク制御回路420は、メモリサブバンクごとアドレスラッチ425(例えば、第1のアドレスラッチ425-a、第2のアドレスラッチ425-b、第3のアドレスラッチ425-c、第14のアドレスラッチ425-n、第15のアドレスラッチ425-o、又は第16のアドレスラッチ425-p)のいずれかにおいてロウアドレスをラッチし、そのロウアドレスを対応するロウデコーダ415に受け渡すことができる。
ロードコマンドの期間でのメモリサブバンク405のアドレス指定時には、メモリサブバンク405に関連付けられたロウバッファ430内の複数のセンスアンプ(例えば、第1ののメモリサブバンク405-aに関連付けられたロウバッファ430-a/430-b内の複数のセンスアンプ)が複数のメモリセルからデータを受信し、そのデータを増幅し、IOライン435での読出しのためにそのデータをラッチすることができる。ストアコマンドの期間でのメモリバンク405のアドレス指定時には、IOライン435上のデータは、ロウバッファ430内のセンスアンプによって増幅され、複数のメモリセルに記憶されるようにすることができる。
バンク制御回路420は、ロウバッファ430のセンスアンプに、多くの制御信号を供給することができる。いくつかの実施例では、制御信号は、バンクセレクト(BS)信号、プレート電圧(PL)、絶縁ゲート制御信号(TG)、ビットラインプリチャージ信号(PCB)、センスアンププリチャージ信号(PCS)、リファレンス電圧アプリケーション信号(REF)、又はセンス回路活性化信号(CS)を含むことができる。メモリバンク内でデータをロード又は記憶させるときのこれらの信号を使用する実施例については、図9から図14、図16、及び図17を参照して説明する。また、上記実施例は、メモリサブバンク内でデータをロード又は記憶することに、同様の方法で適用されるようにすることができる。
図3に関連して説明したメモリバンクごとバンク制御回路320は、メモリバンク305への独立したインターリーブアクセスを供給するために使用されるようにすることができるが、図4に関連して説明した共有バンク制御回路420よりも多くのチップ面積をとる可能性がある。しかしながら、バンクアドレスとともに、共有バンク制御回路420にサブバンクアドレスを提供することにより、すべてのメモリサブバンクに関連付けられたすべてのロウバッファの読み書きが可能となる。いくつかのメモリサブバンク405のためのローディング及びストアリングのプロセスと、他のメモリサブバンク405のための読出し及び書込みのプロセスが、インターリーブされるようにすることができる。ただし、同じ領域内のいくつかのメモリサブバンク405のためのローディング及び/又はストアリングのプロセスの場合には、メモリサブバンクインターリーブは使用できない場合がある。
図5は、本開示の種々の実施形態による、図1から図4を用いて説明したメモリデバイス100、メモリブロック105、又はメモリ領域205の複数のメモリバンクのような複数のメモリバンク305を含む装置500を示している。いくつかの実施例では、装置500は、第1のメモリバンク305-a、第2のメモリバンク305-b、及び第3のメモリバンク305-cを含むことができる。装置500は、代わりに、より多くの又はより少ないメモリバンク305を含むことができる。
各メモリバンク305は、異なる状態を記憶させるためにプログラム可能な複数のメモリセル505を含んでいてもよい。例えば、各メモリセル505は、論理0と論理1で示される2つの状態を記憶させるようにプログラム可能であり得る。いくつかのケースでは、メモリセル505は、2つより多くの論理状態を記憶するように構成されるようにすることができる。メモリセル505は、プログラム可能な状態を表す電荷を記憶するキャパシタを含むことができる。例えば、荷電キャパシタ及び非荷電キャパシタは2つの論理状態を表すことができる。DRAMアーキテクチャは、一般的にこのような設計を使用することができ、それに採用されるキャパシタは線形な電気分極特性を持つ誘電体材料を含むことができる。これに対して、強誘電体メモリセルは、誘電体材料として強誘電性を有するキャパシタを含むことができる。強誘電体材料は、非線形な分極特性を有する。
読み書きなどの動作は、適切なワードライン(WL)とビットライン(BL)をアクティブにする又は選択することによって、メモリセル505上で実行されるようにすることができる。いくつかのケースでは、ビットラインは、デジットラインと呼ばれる場合がある。ワードライン又はビットラインのアクティブ化又は選択は、それぞれのラインに電圧電位を印加することを含むことができる。ワードライン及びビットラインは導電性材料から成っていてよい。いくつかの実施例では、ワードライン及びビットラインは、金属製であってよい(例えば、銅、アルミニウム、金、タングステンなど)。メモリセル505の各ロウは、単一のワードライン(例えば、WLm1、WLm2、WLmj-1、又はWLmj。ここで、mはメモリバンクインジケータ、jはメモリバンク305をアドレス指定するワードラインの数)に接続され、メモリセル505の各カラムは単一のビットライン(例えば、BLm1、BLm2、BLm3、BLm4、BLmk-1、又はBLmk。ここで、kはメモリバンクをアドレス指定するビットラインの数)に接続されるようにすることができる。ワードラインとビットラインの交点は、メモリセルのアドレスと呼ばれることがある。或るメモリバンク305に関連付けられた1つのワードラインとすべてのビットラインをアクティブにすることにより、データワードを複数のセンスアンプ510を含む(例えば、センスアンプSAm1 510-a、SAm2 510-b、SAm3 510-c、SAm4 510-d、SAmk-1 510-e、及びSAmk 510-fを含む)ロウバッファに読み込むことができる。
いくつかのアーキテクチャにおいて、メモリセル505の論理記憶デバイス、例えば、キャパシタは、選択デバイスによってビットラインから電気的に絶縁されるようにすることができる。ワードラインは、選択デバイスに接続され、選択デバイスを制御することができる。例えば、選択デバイスはトランジスタとすることができ、ワードラインはそのトランジスタのゲートに接続されるようにすることができる。ワードラインをアクティブにすると、メモリセル505のキャパシタとそれに対応するビットラインとの間に、電気的な接続が生じるようにすることができる。メモリセル505に関連付けられているワードラインをアクティブにすると、メモリセル505を読み書きする目的でアクセスされるメモリセル505に関連付けられたビットラインを有効にすることができる。
読出し動作中にメモリセル505にアクセスすると、そのメモリセルのビットラインに関連付けられているセンスアンプ510によって、そのメモリセル505に記憶されている論理値が検知されるようにすることができる。例えば、上記センスアンプ510は、上記メモリセル505の記憶状態又は論理値を決定するために、関連するビットラインの論理値(例えば、電圧)をリファレンス信号(例えば、図示しない基準電圧)と比較することができる。例えば、上記ビットラインが上記基準電圧よりも高い電圧を有している場合、上記センスアンプ510は、上記メモリセル505の記憶状態が論理1又はハイレベル論理値であると決定することができ、上記ビットラインが上記基準電圧よりも低い電圧を有している場合、上記センスアンプ510は、上記メモリセル505の記憶状態が論理ゼロ又はローレベル論理値であると決定することができる。センスアンプ510は、電圧の差を検知及び増幅するために様々なトランジスタ又はアンプを含むことができ、これはラッチと呼ばれることがある。それで、メモリセル505の検知された論理状態は、IOラインに出力することができる。
メモリセル505は、そのメモリセル505に関連するワードラインとデジットラインを同様にアクティブにすることによって、設定又は書込みが可能である。上述したように、ワードラインをアクティブにすると、メモリセル505の対応するロウがそれぞれのビットラインに電気的に接続される。そのメモリセル505に関連付けられているワードラインがアクティブになっている間に、或るメモリセル505に関連するビットラインを制御することにより、メモリセル505が書き込まれる、即ち或る論理値がそのメモリセル505に記憶されるようにすることができる。なお、強誘電体キャパシタを有するメモリセルの場合、そのメモリセル505は、強誘電体キャパシタの両端に電圧を印加することにより書き込まれるようにすることができる。
いくつかのメモリアーキテクチャでは、メモリセル505にアクセスすることが、記憶されている論理状態を低下させ又は破壊することがあり、そして、元の論理状態を上記メモリセル505に復帰させるために、再書込み又はリフレッシュ動作が実行されるようにすることができる。例えば、DRAMでは、ある検知動作中にキャパシタが部分的又は完全に放電され、記憶された論理状態が破損する可能性がある。従って、記憶された論理状態は、検知動作の後に再書込みされるようにすることができる。更に、1つのワードラインをアクティブにすると、そのロウ内のすべてのメモリセルが放電される結果になる可能性があるため、上記ロウ内のすべてのメモリセル505が再書込みされる必要がある可能性がある。
DRAMアーキテクチャを含むいくつかのメモリアーキテクチャは、外部電源によって定期的にリフレッシュされない限り、時間の経過とともにそれらの記憶状態を失う可能性がある。例えば、充電されたキャパシタは、リーク電流によって時間の経過とともに放電し、記憶情報が失われることがある。これらのいわゆる揮発性メモリデバイスのリフレッシュレートは比較的高い可能性があり、例えば、DRAMに対して毎秒10回のリフレッシュ動作が行われるため、大幅な消費電力が発生する可能性がある。ますます大きくなるメモリアレイに伴い、消費電力の増加により、特にバッテリなどの有限電源に依存するモバイルデバイスのためのメモリアレイのデプロイメント又は動作が阻害される可能性がある(例えば、電源、発熱、材料限界など)。
第2のメモリバンク305-bの各ビットラインは、ロウバッファ内のそれぞれのセンスアンプの入力端子に選択的に結合されるようにすることができる。例えば、複数の絶縁ゲート515(例えば、nMOSトランジスタ)の各々は、それぞれ、上記第2のメモリバンク305-bの或るビットライン(例えば、BLm1、BLm2、BLm3、BLm4、BLmk-1、又はBLmk)と、センスアンプ(例えば、センスアンプSAm1 510-a、SAm2 510-b、SAm3 510-c、SAm4 510-d、SAmk-1 510-e、又はSAmk 510-f)の対応する1つとに結合されているソース及びドレイン端子を有することができる。絶縁ゲート515のゲート端子に印加される領域制御信号(TGm)は、その絶縁ゲート515を動作させてその絶縁ゲート515を開き、第2のメモリバンク305-bのビットラインをセンスアンプ510から切り離し、又は絶縁ゲート515を閉じて、第2のメモリバンク305-bのビットラインをセンスアンプ510に結合することができる。絶縁ゲート515が閉じられている場合、データワードは、アクティブにされたワードラインに関連付けられたメモリセル505のロウに対して、読み出されたり又は書き込まれたりするようにすることができる。
各ビットラインは、ビットラインプリチャージ回路520に関連付けられるようにすることができる。メモリセル505のロウの読出し中に、ビットラインプリチャージ回路520は、絶縁ゲート515が開いている間、上記ビットラインをローレベルにプリチャージすることができる。その後、ワードラインがアクティブにされ、絶縁ゲート515が閉じられてセンスアンプ510に上記ビットラインが結合され、絶縁ゲート515が上記アクティブにされたワードラインに関連付けられたメモリセル505に記憶されているデータワードを上記ビットライン上に読み出すことができる。次に、上記センスアンプ510は、上記ビットラインの電圧を基準電圧と比較して、上記メモリセル505の記憶状態を決定することができる。上記メモリセル505の記憶状態は、センスアンプ510において記憶され(例えばラッチされ)てもよい。第2のメモリバンク305-bの次のアクセスが、直前のアクセスと同じワードラインに関連付けられている場合、上記メモリセルに記憶されているデータは、上記メモリセル505からではなく上記センスアンプ510から読み出されるようにすることができる。センスアンプ510に記憶されているデータにアクセスすることは、メモリセルの1つ又は複数の追加アクセスを省略することができる。そのメモリセル505からではなくメモリセル505のサブセットに記憶されたデータがセンスアンプ510から読み出される場合、メモリセル505はセンスアンプ510に結合される必要はなく、絶縁ゲート515は開いたままにすることができる。また、ビットラインは、メモリセル505のプレート電圧(PLm)と同じ電圧レベルにプリチャージされるようにすることができる。プレート電圧とビットラインの両方が同じ電圧(例えば、VSSなどの低電圧レベル)で保持されている場合は、メモリセル505に関連付られたリーク電流が最小化され、メモリセル505の長寿命化が可能となる。
図6は、本開示の種々の実施形態による、強誘電体メモリセル600の一実施例を示している。強誘電体メモリセル600は、選択デバイス及び論理記憶部品を含むことができる。選択デバイスは、ソース端子605、ドレイン端子610、及びゲート端子645を有するトランジスタを含むことができる。論理記憶部品は、2つの導電性電極、セルプレート電極(PLT)、及びストレージノード電極(SN)を含むキャパシタ620を含むことができる。キャパシタ620の電極は、絶縁性の強誘電体材料で分離されるようにすることができる。上述したように、キャパシタ620を充放電することにより、種々の状態が記憶されるようにすることができる。
いくつかの実施例において、ソース及びドレイン端子605、610は、p型シリコン基板625内に形成されたn型不純物層(又はウェル)とすることができる。ソース及びドレイン端子605、610は、素子分離絶縁膜630及び635によって他の活性領域から絶縁されるようにすることができる。ゲート誘電体膜640は、ソース端子605、基板625、及びドレイン端子610の部分上に形成されるようにすることができる。ゲート端子645は、ゲート誘電体膜640上に形成されるようにすることができる。
また、ソース端子605は、第1の金属線及び/又は(例えば、ストレージノード(VSN)にある)導電性VIA(貫通端子)によって、キャパシタ620のストレージノード電極(SN)に結合されるようにすることができる。また、キャパシタ620のセルプレート電極(PLT)は、第2の金属線及び/又は導電VIAによって、セルプレートノード(PL)に結合されるようにすることができる。ドレイン端子610は、第3の金属線及び/又は導電VIAによって、ビットライン(BL)650に結合されるようにすることができる。ゲート端子645は、第4の金属線及び/又は導電VIAによって、ワードライン(WL)655に結合されるようにすることができる。
動作において、高電圧レベル(例えば、VPP)がワードライン(WL)655に印加されるようにして選択デバイスをアクティブにし、ストレージノード(VSN)とビットライン(BL)650との間の電流フローを誘導することができる。逆に、低電圧レベル(例えば、VKK)がワードライン(WL)655に印加されるようにして、選択デバイスを非アクティブにし、ストレージノード(VSN)とビットライン(BL)650の間の電流フローを阻止することができる。ワードライン(WL)655が低電圧レベルである場合、セルプレートノード(PL)、ビットライン(BL)650、及び基板625の電圧(例えば、Psub電圧)が低電圧レベル(例えば、VSS)に保持するようにすることができ、選択デバイスにおけるリーク電流を低減することができる。ワードライン(WL)655が低電圧レベルに保持されていて、セルプレートノード(PL)の電圧、ビットライン(BL)650、及び基板625の電圧が低電圧レベル(例えば、VSS)に保持されているこの状態は、メモリセル600に記憶されているデータがそのメモリセル600ではなくビットライン(BL)650に結合したセンスアンプから読み出されるときに維持される。即ち、ワードライン(WL)655の電圧レベルは、低電圧レベル(例えば、VKK)に保持されるようにすることができ、また、ビットライン(BL)650上の電圧は、メモリセル600に記憶されているデータがセンスアンプにロードされる場合又は新しいデータがメモリセル600に書き込まれる場合に、選択デバイスを通した電流の流れの結果として変動することが許容されるようにすることができる。
図7は、本開示の種々の実施形態による、センスアンプ705及びビットラインプリチャージ回路710の回路図700の実施例を示している。いくつかの実施例において、センスアンプ705は、図5を参照して説明したいずれかのセンスアンプ510の例示的実施形態であってよい。いくつかの実施例では、センスアンプ705は、ノードBLSm及び/BLSm上の電圧を比較するセンス回路を含むことができる。ここで、/BLSmは、BLSmに関する調和(又は差動)ノードであって、また、BLSm及び他の信号における表記「m」は、それらの信号がメモリバンク「m」に対して生成されることを示している。センス回路は、センス電圧をラッチすることができる。例えば、センス回路は、2つのpMOSトランジスタ715-a、715-b及び2つのnMOSトランジスタ720-a、720-bを含む、4つのトランジスタのセットを含むことができる。センスアンプ705はまた、それぞれBLSm及び/BLSmノードをI/OレジスタのノードIO及び/IOに結合するための、トランジスタの第1の組(例えば、nMOSトランジスタ725-aと730-a)及びトランジスタの第2の組(例えば、nMOSトランジスタ725-b及び730-b)を含むことができる。トランジスタの各組のソース及びドレイン端子は、BLSm又は/BLSmのいずれかのノードとI/OレジスタノードIO又は/IOのいずれかの間で、直列に結合されるようにすることができる。各組の1つのトランジスタのゲート端子(例えば、トランジスタ725-a及び725-bのゲート端子)は、バンクセレクト信号BSmによって駆動されるようにすることができ、各組における他のトランジスタのゲート端子(例えば、トランジスタ730-a及び730-bのゲート端子)は、カラム選択信号YSによって駆動されるようにすることができる。
センスアンプ705は、(センスアンプ705において)ビットラインBLmに接続されたメモリセルに記憶されているデータをロードする前に、ノードBLSm及び/BLSmを第1の電圧(例えば、VSS)にバイアスするために動作可能な、センスアンププリチャージ回路を含むことができる。上記センスアンププリチャージ回路は、低電圧電位(例えば、VSS又はグランド)とノードのBLSm又は/BLSmの間がソース及びドレイン端子によって結合され、センスアンププリチャージ(PCSm)信号によって駆動されるゲート端子を備えたトランジスタ735-a及び735-bの組を含むことができる。ノードBLSmと/BLSmの間がソース及びドレイン端子によって結合される第3のトランジスタ740はまた、PCSm信号によって駆動されるゲート端子を有することができる。
センスアンプ705はまた、ノード/BLSmを基準電圧(Vref)にバイアスするために動作可能な、バイアス回路を含んでいてもよい。ノード/BLSmは、BLSm及び/BLSmノードを低電圧電位にプリチャージした後であって、(センスアンプ705において)ビットラインBLmに接続されたメモリセルに記憶されるデータをロードする前に、基準電圧にバイアスされるようにすることができる。バイアス回路は、ノード/BLSmと基準電圧(Vref)電位に維持されるノードとの間がソース及びドレイン端子によって結合されるトランジスタ745を含むことができる。トランジスタ745のゲート端子は、REFm信号によって駆動されるようにすることができる。
ビットラインプリチャージ回路710は、ビットラインBLmと低電圧電位(例えば、VSS又はグランド)との間がソース及びドレイン端子によって結合されたトランジスタ750を含んでもよい。トランジスタ750のゲート端子は、ビットラインプリチャージ(PCBm)信号によって駆動されてもよい。PCBm信号は、ビットラインBLmを介してメモリセルからセンスアンプ705にデータをロードしない場合に、ビットラインBLmをローレベル(例えば、VSS)にプルするようにアサートされるようにすることができる。
ビットラインBLmは、絶縁ゲート515-aによってセンスアンプ705に結合されるようにすることができる。絶縁ゲート515-aは、ビットラインBLmとノードBLSmとの間がソース及びドレイン端子によって結合されたトランジスタを含むことができる。そのトランジスタのゲート端子は、図5を参照して説明したように、領域制御信号TGmによって駆動されるようにすることができる。
図8は、本開示の種々の実施形態による、センスラッチ(例えば、センス回路)基板制御回路800の回路図の一実施例を示している。センスラッチ基板制御回路800は、基板電圧の第1セット(例えば、VDD及びVSS)又は基板電圧の第2セット(例えば、VDL及びVSH)を、図7を参照して説明したセンス回路等のセンス回路に供給するために使用されるようにすることができる。基板電圧の第1セットは、第1のpMOS基板電圧VDD、及び第1のnMOS基板電圧VSSを含むことができる。基板電圧の第2セットは、第2のpMOS基板電圧VDL、及び第2のnMOS基板電圧VSHを含むことができる。第1のpMOS基板電圧(VDD)は、第2のpMOS基板電圧(VDL)より高くすることができる。第1のnMOS基板電圧(VSS)は、第2のnMOS基板電圧(VSH)より低くすることができる。電圧選択回路835は、pMOS基板電圧(atノードNWm)とnMOS基板電圧(atノードPWm)を出力するために、センスラッチ基板制御回路800を構成することができる。ノードNWmとPWmにおける電圧は、基板電圧の第1セット又は基板電圧の第2セットを用いて、センスアンプのセンス回路(例えば、図7を参照して説明したセンスアンプ705のセンス回路)を構成するために使用されるようにすることができる。基板電圧の第1セットは、他のタイミングにおいてセンス回路に対してより高い閾値電圧を供給することができ、それによってセンスアンプを含むロウバッファのリーク電流を低減することができる。基板電圧の第2セットは、メモリセルに記憶されたデータをセンスアンプにロードする場合、センスアンプに記憶されたデータをメモリセルに記憶する場合、センスアンプからデータを読み出す場合、又はセンスアンプにデータを書き込む場合に、センス回路に対してより低い閾値電圧(Vt)を供給することができる。
いくつかの実施例において、センスラッチ基板制御回路800は、第1のpMOSトランジスタ805、第2のpMOSトランジスタ810、第1のnMOSトランジスタ815、及び第2のnMOSトランジスタ820を含むことができる。第1のpMOSトランジスタ805は、ノードNWmと第1のpMOS基板電圧VDDに維持されるノードとの間がソース及びドレイン端子によって結合されるようにすることができる。いくつかの実施例において、ノードNWmは、図7を参照して説明したセンスアンプ705のセンス回路に、pMOS基板電圧を供給することができる。第2のpMOSトランジスタ810は、ノードNWmと第2のpMOS基板電圧VDLとの間がソース及びドレイン端子によって結合されるようにすることができる。第1のnMOSトランジスタ815は、ノードPWmと第1のnMOS基板電圧VSSに維持されるノードとの間がソース及びドレイン端子によって結合されるようにすることができる。いくつかの実施例において、ノードPWmは、図7を参照して説明したセンスアンプ705のセンス回路にnMOS基板電圧を供給することができる。第2のnMOSトランジスタ820は、ノードPWmと第2のnMOS基板電圧との間がソース及びドレイン端子によって結合されるようにすることができる。
電圧選択回路835は、入力としてセンスアンプイネーブル(SEm)信号とバンクセレクション(BSm)信号とを有するNORゲート830を含むことができる。NORゲート830の出力は、電圧選択回路835の非反転出力840を供給することができる。電圧選択回路835の非反転出力840は、インバータ845によって受信されるようにすることができる。インバータ845の出力は、電圧選択回路835の反転出力850を供給することができる。第2pMOSトランジスタ810及び第1nMOSトランジスタ815のゲート端子は、非反転出力840に結合されるようにすることができ、第1pMOSトランジスタ805及び第2nMOSトランジスタ820のゲート端子は、反転出力850に結合されるようにすることができる。
動作において、(ロード又は記憶動作の間の)SEm信号又は(読出し又は書込み動作の間の)BSm信号のアサーションが、電圧選択回路835の非反転出力840がローレベルにプルされるようにさせ、電圧選択回路835の反転出力850がハイレベルにプルされるようにさせ、第2のpMOSトランジスタ810を導通させてノードNWmをVDLにプルするようにさせ、そして、第2のnMOSトランジスタ820を導通させてノードPWmをVSHにプルするようにさせる。アサートされていたSEm信号及びBSm信号がなくなると、電圧選択回路835の非反転出力840がハイレベルにプルされ、電圧選択回路835の反転出力850がローレベルにプルされるようにさせ、第1のpMOSトランジスタ805を導通させてノードNWmをVDDにプルさせるようにさせ、第1のnMOSトランジスタ815を導入させてノードPWmをVSSにプルするようにさせる。
図9は、本開示の種々の実施形態による、ロードコマンドを発行してメモリセルからセンスアンプに論理1又はハイレベル論理値をロードするときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形900の一実施例を示している。例えば、センスアンプは、ハイレベル論理値のロードの前にローレベル論理値を記憶していると仮定されている。更なる実施例として、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
センスアンププリチャージ期間905では、PCS信号はローレベル(VSS)からハイレベル(VDD)に切り換えられ、CS信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができる。PCS信号をハイレベルに切り換えることは、/BLSノードをローレベル(VSS)にプルしてBLSノードをローレベル(VSS)に保持するプルダウントランジスタの組を含む、センスアンププリチャージ回路を有効にする。また、センスアンププリチャージ期間の間は、先行してアサートされたワードライン(WL')がハイレベル(VPP)からローレベル(VKK)に切り換えられるようにすることができる。先行してアサートされたワードラインを切り換えた後、PCS信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができ、それによってセンスアンププリチャージ回路が無効になり、そして、PCB信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができ、それによってビットラインプリチャージ回路が無効になる。
センスアンププリチャージ期間905に続くセル選択及び読出し期間910の間に、TG信号がローレベル(VSS)からハイレベル(VPP)に切り換えられるようにして、絶縁ゲートを閉じてビットライン(BL)をBLSノードに結合するようにすることができる。実質的には、絶縁ゲートを閉じるのと並行して、REF信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにして、/BLSノードに基準電圧(Vref)を印加するトランジスタのゲートを駆動するようにすることができる。それで、ワードライン(WL)がアサートされて(ローレベル(VKK)からハイレベル(VPP)に移行されて)、データワードを記憶しているメモリセルのセットを選択し、記憶されていた論理値をビットライン(BL)上及びBLSノード上に読み出すようにすることができる。実施例として、図9は、論理値を論理1又はハイレベルの論理値として示している。実質的に、ワードライン(WL)をアサートするのと並行して、メモリセルのセットのセルプレート電圧(PL)がローレベル(VSS)からハイレベル(VDD)に切り換えられ、REF信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができる。セルプレート電圧を上げると、記憶された論理値はメモリセルから読み出されることができる。記憶されている論理値をビットライン上及びBLSノード上に読み出した後、TG信号をハイレベル(VPP)からローレベル(VSS)に切り換えられるようにして、絶縁ゲートを開いて、ビットライン(BL)をBLSノードから切り離すようにすることができる。
セル選択及び読み出し期間910に続く検知増幅期間915において、CS信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにし、センスアンプに、BLSノードに読み出された論理値と/BLSノードに印加される参照信号(Vref)との間の差を増幅させるようにすることができる。その増幅は、BLSノードをハイレベル(VDD)に駆動し、/BLSノードをローレベル(VSS)に駆動する。BLSノードに読み出された論理値の増幅に続いて、TG信号がローレベル(VSS)からハイレベル(VPP)に切り換えられるようにして、検知増幅期間915に続く再書込み期間920において再度絶縁ゲートを閉じるようにすることができる。
再書込み期間920の間に、BLSノード上の増幅された論理レベル(即ち、論理1)が、ビットライン(BL)に戻される。その後、セルプレート電圧(PL)がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにして、論理1又はハイレベル論理値をメモリセルに再書込みするようにすることができる。
再書込み期間920に続くビットラインプリチャージ期間925の間に、TG信号がハイレベル(VPP)からローレベル(VSS)に切り換えられるようにして、絶縁ゲートを再度開くようにすることができる。また、PCB信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにして、ビットライン(BL)に対してハイレベル(VDD)からローレベル(VSS)に移行させるようにすることもできる。ビットラインがプリチャージされた後、プレート電圧とビットライン電圧の両方が同じ電圧(例えば、VSSなどの低電圧レベル)に保持されるようにすることができ、それによって、メモリセルに関連付けられたリーク電流を軽減し、メモリセルの長寿命化が実現するようにすることができる。
波形900は、メモリセルが破壊読出しモードで動作するように構成されていると仮定している。メモリセルが破壊読出しモードで動作するように構成されていない場合、再書込み期間920の間にデータをメモリセルに戻す必要はない。
図10は、本開示の種々の実施形態による、ロードコマンドを発行してメモリセルからセンスアンプに論理0又はローレベル論理値をロードするときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形1000の一実施例を示している。例えば、センスアンプは、ローレベル論理値のロードの前にハイレベル論理値を記憶していると仮定されている。更なる実施例として、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
センスアンププリチャージ期間1005では、PCS信号はローレベル(VSS)からハイレベル(VDD)に切り換えられ、CS信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができる。PCS信号をハイレベルに切り換えることは、/BLSノードをローレベル(VSS)にプルしてBLSノードをローレベル(VSS)に保持するプルダウントランジスタの組を含む、センスアンププリチャージ回路を有効にする。また、センスアンププリチャージ期間の間は、先行してアサートされたワードライン(WL')がハイレベル(VPP)からローレベル(VKK)に切り換えられるようにすることができる。先行してアサートされたワードラインを切り換えた後、PCS信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができ、それによってセンスアンププリチャージ回路が無効になり、そして、PCB信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができ、それによってビットラインプリチャージ回路が無効になる。
センスアンププリチャージ期間1005に続くセル選択及び読出し期間1010の間に、TG信号がローレベル(VSS)からハイレベル(VPP)に切り換えられるようにして、絶縁ゲートを閉じてビットライン(BL)をBLSノードに結合するようにすることができる。絶縁ゲートを閉じるのと実質的に並行して、REF信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにして、/BLSノードに基準電圧(Vref)を印加するトランジスタのゲートを駆動するようにすることができる。それで、ワードライン(WL)がアサートされて(ローレベル(VKK)からハイレベル(VPP)に移行されて)、データワードを記憶しているメモリセルのセットを選択し、記憶されていた論理値をビットライン(BL)上及びBLSノード上に読み出すようにすることができる。実施例として、図10は、論理値を論理0又はローレベルの論理値として示している。ワードライン(WL)をアサートするのと実質的に並行して、メモリセルのセットのセルプレート電圧(PL)がローレベル(VSS)からハイレベル(VDD)に切り換えられ、REF信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにすることができる。セルプレート電圧を上げると、記憶された論理値はメモリセルから読み出されることができる。記憶されている論理値をビットライン上及びBLSノード上に読み出した後、TG信号をハイレベル(VPP)からローレベル(VSS)に切り換えられるようにして、絶縁ゲートを開いて、ビットライン(BL)をBLSノードから切り離すようにすることができる。
セル選択及び読み出し期間1010に続く検知増幅期間1015において、CS信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにし、センスアンプに、BLSノードに読み出された論理値と/BLSノードに印加される参照信号(Vref)との間の差を増幅させるようにすることができる。その増幅は、BLSノードをローレベル(VSS)に駆動し、/BLSノードをハイレベル(VDD)に駆動する。BLSノードに読み出された論理値の増幅に続いて、TG信号がローレベル(VSS)からハイレベル(VPP)に切り換えられるようにして、検知増幅期間1015に続く再書込み期間1020において再度絶縁ゲートを閉じるようにすることができる。
再書込み期間1020の間に、BLSノード上の増幅された論理レベル(即ち、論理0)が、ビットライン(BL)に戻され、論理0又はローレベル論理値がメモリセルに再書き込みされる。その後、セルプレート電圧(PL)がハイレベル(VDD)からローレベル(VSS)に切り換えられ得る。
再書込み期間1020に続くビットラインプリチャージ期間1025の間に、TG信号がハイレベル(VPP)からローレベル(VSS)に切り換えられるようにして、絶縁ゲートを再度開くようにすることができる。また、PCB信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにして、それによってビットラインプリチャージ回路を再度有効にすることができる。ビットラインがプリチャージされた後、プレート電圧とビットライン電圧の両方が同じ電圧(例えば、VSSなどの低電圧レベル)に保持されるようにすることができ、それによって、メモリセルに関連付けられたリーク電流を軽減し、メモリセルの長寿命化が実現するようにすることができる。
波形1000は、メモリセルが破壊読出しモードで動作するように構成されていると仮定している。メモリセルが破壊読出しモードで動作するように構成されていない場合、再書込み期間1020の間にデータをメモリセルに戻す必要はない。
図11は、本開示の種々の実施形態による、ストアコマンドを発行してセンスアンプにストアされた論理1又はハイレベル論理値をメモリセルに記憶させるときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形1100の一実施例を示している。例えば、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
データ転送期間1105に先立って、センスアンプのBLSノードは記憶される論理1を表すハイレベル(VDD)にプルされるようにすることができ、上記センスアンプの/BLSノードはローレベル(VSS)にプルされるようにすることができる。また、データ転送期間の前に、論理1が記憶されるメモリセルに結合されたビットライン(BL)がローレベル(VSS)に保持されるようにすることができる。
データ転送期間1105では、PCB信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにし、それによりビットラインプリチャージ回路を無効にするようにすることができる。また、TG信号がローレベル(VSS)からハイレベル(VPP)に切り換えられるようにして、絶縁ゲートを閉じるようにし、ビットライン(BL)をBLSノードに結合するようにすることもできる。絶縁ゲートを閉じることは、BLSノードのハイレベル(即ち、記憶されるべき高い論理)がビットライン(BL)に転送されるようにする。
書込み期間1110の間に、メモリセルのセルプレート電圧(PL)は、ローレベル(VSS)からハイレベル(VDD)に一時的に切り換えられるようにし、その後ローレベルに戻されるようにし、論理1又はハイレベルの論理値をメモリセルに再書込みするようにすることができる。
上記書込み期間に続くビットラインプリチャージ期間1115において、TG信号がハイレベル(VPP)からローレベル(VSS)に切り換えられるようにして、絶縁ゲートを再度開くことができる。また、PCB信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにして、それによりビットラインプリチャージ回路を再度有効にし、ビットライン(BL)に対してハイレベル(VDD)からローレベル(VSS)に移行させるようにすることができる。ビットラインがプリチャージされた後、プレート電圧とビットライン電圧の両方が同じ電圧(例えば、VSSなどの低電圧レベル)に保持されるようにし、それによって、メモリセルに関連付けられたリーク電流が軽減され、メモリセルの長寿命化が実現するようにすることができる。
図12は、本開示の種々の実施形態による、ストアコマンドを発行してセンスアンプにストアされた論理0又はローレベル論理値をメモリセルに記憶させるときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形1200の一実施例を示している。例えば、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
データ転送期間1205に先立って、センスアンプのBLSノードは記憶される論理0を表すローレベル(Vss)にプルされるようにすることができ、上記センスアンプの/BLSノードはハイレベル(VDD)にプルされるようにすることができる。また、データ転送期間の前に、論理0が記憶されるメモリセルに結合されたビットライン(BL)がローレベル(VSS)に保持されるようにすることができる。
データ転送期間1205では、PCB信号がハイレベル(VDD)からローレベル(VSS)に切り換えられるようにし、それによりビットラインプリチャージ回路を無効にするようにすることができる。また、TG信号がローレベル(VSS)からハイレベル(VPP)に切り換えられるようにして、絶縁ゲートを閉じるようにし、ビットライン(BL)をBLSノードに結合するようにすることもできる。絶縁ゲートを閉じることは、BLSノードのローレベル(即ち、記憶されるべき論理0)がビットライン(BL)に転送されるようにする。
書込み期間1210の間に、メモリセルのセルプレート電圧(PL)は、ローレベル(VSS)からハイレベル(VDD)に一時的に切り換えられるようにすることができ、そのときに論理ゼロ又はローレベルの論理値がメモリセルに再書込みされるようにすることができ、その後セルプレート電圧がローレベルに戻されるようにすることができる。
上記書込み期間に続くビットラインプリチャージ期間1215において、TG信号がハイレベル(VPP)からローレベル(VSS)に切り換えられるようにして、絶縁ゲートを再度開くことができる。また、PCB信号がローレベル(VSS)からハイレベル(VDD)に切り換えられるようにして、それによりビットラインプリチャージ回路を再度有効にするようにすることができる。ビットラインがプリチャージされた後、プレート電圧とビットライン電圧の両方が同じ電圧(例えば、VSSなどの低電圧レベル)に保持されるようにし、それによって、メモリセルに関連付けられたリーク電流が軽減され、メモリセルの長寿命化が実現するようにすることができる。
いくつかのケースでは、図16又は17を用いて説明するように、ロードコマンドと併せて、ウェアレベリングが実行されるようにすることができる。
図13は、本開示の種々の実施形態による、データワードが、複数のメモリセルから1つのロウバッファにロードされ、その後メモリセルからではなくロウバッファから読み出される動作1300のシーケンスの一実施例を示している。例えば、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
時刻t1では、ロードコマンド(LD)が(複数のメモリセルに記憶されている)第1データワードをロウバッファにロードするために発行されるようにすることができる。ロードコマンドは、バンクアドレス(BAm)と第1のデータワードの第1のロウアドレス(RAa)に関連付けられるようにすることができる。いくつかの実施例では、ロードコマンドが図9又は図10を用いて説明したように実行されるようにすることができる。第1のデータワードがロウバッファ内にロードされた後、そのロウバッファから第1のデータワードを読み取るために、多数のリードコマンドが発行されるようにすることができる。例えば、バンクアドレス(BAm)とカラムアドレス(CA)に関連付けられた読出しコマンド(RD)が、時刻t1に続く時刻t2で発行されるようにすることができる。時刻t1に続いて、任意の数の追加のリードコマンドが発行されるようにすることができる。「miss」を返すreadコマンドを発行すると、時刻t3でロードコマンドが発行されるようにし、第2のデータワードがロウバッファに読み込まれるようにすることができる。第2のデータワードは、バンクアドレス(BAm)と第2のロウアドレス(RAb)に関連付けられるようにすることができる。第2のデータワードは、時間t3の後に、任意の回数、ロウバッファから読み出すことができる。ロウバッファの読出しの間では、対応するデータワードを記憶するメモリセルが乱されない。限られた回数しか読み出すことができないメモリセルの場合、ロウバッファ内でのデータワードのキャッシングは、メモリセルを含むメモリの寿命を延ばすことができる。
図13にも示されるように、ロードコマンドの発行時に、複数のセンスイネーブル(SEm)信号がアサートされるようにすることができる。図8を用いて説明したように、SEm信号のアサーションは、センスアンプを含むロウバッファへのデータワードのロード時に、センスアンプのセンス回路の閾値電圧(Vt)を低くすることができる。同様に、リードコマンドの発行時に、バンクセレクト(BSm)信号がアサートされるようにすることができる。図8を用いて説明したように、BSm信号のアサーションは、センスアンプを含むロウバッファからのデータワードの読出し時に、センスアンプのセンス回路の閾値電圧(Vt)を低くすることができる。
図13にも示されるように、BSm信号のアサーションと組み合わせてカラム選択信号(YS)がアサートされるようにすることができる。リードコマンドの発行時におけるBSmとYSの両方の信号のアサーションは、図7を用いて説明したように、データワードがロウバッファ(即ち、複数のセンスアンプ)から読み出されることを可能にすることができる。
図14は、本開示の種々の実施形態による、データワードが複数のメモリセルから1つのロウバッファにロードされ、又はデータワードがロウバッファに書き込まれ、その後メモリセルからではなくロウバッファから読み出される動作1400のシーケンスの一実施例を示している。例えば、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
時刻t1では、ロードコマンド(LD)が(複数のメモリセルに記憶されている)第1データワードをロウバッファにロードするために発行されるようにすることができる。ロードコマンドは、バンクアドレス(BAm)と第1のロウアドレス(RAa)に対応するワードラインのアサーションに関連付けられるようにすることができる。いくつかの実施例では、ロードコマンドが図9又は図10を用いて説明したように実行されるようにすることができる。第1のデータワードがロウバッファ内にロードされた後、そのロウバッファから第1のデータワードを読み取るために、多数のリードコマンド(図示せず)が発行されるようにすることができる。
時刻t2では、(例えば、メモリコントローラから)第2のデータワードをロウバッファに書き込むために、ライトコマンド(WR)が発行されるようにすることができる。ライトコマンドは、ロウバッファのバンクアドレス(BAm)とカラムアドレス(CA)に関連付けられるようにすることができる。第2のデータワードがロウバッファに書き込まれた後、ロウバッファから第2のデータワードを読み出すために、多数のリードコマンド(図示せず)が発行されるようにすることができる。時刻t3では、複数のメモリセルに第2のデータワードを記憶させるためにストアコマンド(ST)が発行されるようにすることができる。ストアコマンドは、バンクアドレス(BAm)に関連付けられるようにすることができるが、本実施例では対応するワードラインがやはりアサートされているため、ロウアドレス(例えば、ロウアドレスRAa)は必要ない。複数のメモリセル内の第2のデータワードのストアに続いて、いくつかの実施例では、(例えば、時間t3に続く時刻t4で)上記ロウバッファの上記バンクアドレス(BAm)及び上記カラムアドレス(CA)に関連付けられているリードコマンド(RD)が発行されるようにすることができる。任意の数の追加のリードコマンドが、時間t2又は時間t3に続いて、発行されるようにすることができる。
「miss」を返すreadコマンドを発行すると、時刻t5でロードコマンドが発行されるようにし、第3のデータワードがロウバッファに読み込まれるようにすることができる。第3のデータワードは、バンクアドレス(BAm)と第2のロウアドレス(RAb)に関連付けられるようにすることができる。第3のデータワードは、時間t5の後に、任意の回数、ロウバッファから読み出すことができる。ロウバッファの読出しの間では、対応するデータワードを記憶するメモリセルが乱されることはない。限られた回数しか読み出すことができないメモリセルの場合、ロウバッファ内でのデータワードのキャッシングは、メモリセルを含むメモリの寿命を延ばすことができる。
図14にも示されるように、ロードコマンド又はストアコマンドの発行時に、複数のセンスイネーブル(SEm)信号がアサートされるようにすることができる。図8を用いて説明したように、SEm信号のアサーションは、センスアンプを含むロウバッファへのデータワードのロード時、又はロウバッファに記憶されたデータワードの複数のメモリセルへの記憶時に、センスアンプのセンス回路の閾値電圧(Vt)を低くすることができる。同様に、リードコマンド又はライトコマンドの発行時に、バンクセレクト(BSm)信号がアサートされるようにすることができる。図8を用いて説明したように、BSm信号のアサーションは、センスアンプを含むロウバッファからのデータワードの読出し時、又はメモリコントローラからロウバッファ内に受信されたデータワードの書込み時に、センスアンプのセンス回路の閾値電圧(Vt)を低くすることができる。それ以外の場合、ロウバッファのセンスアンプに関連付けられているセンス回路の閾値電圧が上昇されるようにして、ロウバッファのリーク電流が減少するようにすることができる。
図14にも示されるように、BSm信号のアサーションと組み合わせてカラム選択信号(YS)がアサートされるようにすることができる。リードコマンド又はライトコマンドの発行時におけるBSmとYSの両方の信号のアサーションは、図7を用いて説明したように、データワードがロウバッファ(即ち、複数のセンスアンプ)から読み出されることを可能にすることができる。
図15は、本開示の種々の実施形態による、主記憶サブシステムを含むシステム1500の図を示している。システム1500は、各種部品を接続又は物理的にサポートするプリント基板である又はそれを含むデバイス1505を含むことができる。
デバイス1505は、主記憶サブシステム1510を含んでいてもよく、図1に記載のメモリデバイス100の一実施例であってもよい。主記憶サブシステム1510には、メモリコントローラ1565と複数のメモリバンク1570が含まれるようにすることができる。いくつかの実施例において、メモリバンク1570は、図3又は図5を参照して説明したメモリバンクの実施例であってもよく、各メモリバンクは、図3、図5、又は図7を参照して説明したように構成された(センスアンプを含む)ロウバッファと関連付けられるようにすることができる。
デバイス1505はまた、プロセッサ1515、ダイレクトメモリアクセスコントローラ(DMAC)1520、BIOSコンポーネント1525、(複数の)周辺機器1530、及び入出力コントローラ1535が含まれるようにすることができる。デバイス1505の構成要素は、バス1540を介して互いに電子通信することができる。プロセッサ1515は、メモリコントローラ1565を介して主記憶サブシステム1510を動作させるように構成されるようにすることができる。いくつかのケースでは、メモリコントローラ1565がプロセッサ1515に内蔵されるようにすることができる。プロセッサ1515は、汎用プロセッサ、ディジタル信号プロセッサ(DSP)、アプリケーション固有集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)又はその他のプログラマブル論理デバイス、離散ゲート又はトランジスタ論理、離散ハードウェアコンポーネント、又はこれらの種類のコンポーネントの組合せとすることができる。いくつかの実施例では、プロセッサ1515はマルチコアプロセッサとすることができる。更に例えば、プロセッサ1515は、メモリ管理ユニット(MMU)1560を含むことができる。更にいくつかの実施例では、MMU1560は、トランスレーションルックアサイドバッファ(TLB)を含むことができる。プロセッサ1515は、本明細書で説明する種々の機能を実行することができる。プロセッサ1515は、例えば、メモリバンク1570に記憶されたコンピュータ読出し可能な命令を実行して、デバイス1505に種々の機能又はタスクを実行させるように構成することができる。
DMAC1520は、プロセッサ1515が主記憶サブシステム1510内で直接メモリアクセスを実行できるようにすることができる。
BIOSコンポーネント1525は、ファームウェアとして動作させられる基本入出力システム(BIOS)を含むソフトウェアコンポーネントであり、システム1500の様々なハードウェアコンポーネントを初期化して実行することができる。BIOSコンポーネント1525はまた、プロセッサ1515と、例えば、(複数の)周辺機器1530、入出力コントローラ1535などの、他の様々なコンポーネントとの間のデータフローを管理することもできる。BIOSコンポーネント1525は、読出し専用メモリ(ROM)、フラッシュメモリ、又は任意の他の不揮発性メモリに記憶されているプログラム又はソフトウェアを含むことができる。
(複数の)周辺機器1530は、デバイス1505に内蔵されている任意の入出力デバイス、又はそのようなデバイス用のインタフェースであってよい。周辺デバイスの実施例は、ディスクコントローラ、サウンドコントローラ、グラフィックスコントローラ、イーサネットコントローラ、モデム、USBコントローラ、シリアル若しくはパラレルポート、又は周辺機器相互接続(PCI)若しくはアクセラレーテッドグラフィックスポート(AGP)スロットなどの周辺カードスロットを含んでよい。
入出力コントローラ1535は、プロセッサ1515と(複数の)周辺機器1530、(複数の)入力デバイス1545、(複数の)出力デバイス1550、及び/又はサブメモリデバイス1555(例えば、ハードディスクドライブ(HDD)及び/又はソリッドステートドライブ(SSD))との間のデータ通信を管理することができる。入出力コントローラ1535は、デバイス1505に統合されていない周辺機器を管理することもできる。いくつかのケースでは、入出力コントローラ1535は、外部周辺機器への物理的な接続又はポートを表す場合がある。
(複数の)入力デバイス1545は、デバイス1505又はそのコンポーネントに入力を供給するデバイス、又はデバイス1505にとって外部の信号を表すことができる。これは、ユーザーインターフェイス又は他のデバイスとの間のインタフェースを含むことができる。いくつかのケースでは、(複数の)入力デバイス1545は、(複数の)周辺機器1530を介してデバイス1505とインタフェースする周辺機器を含んでいてもよく、又はそれは入出力コントローラ1535によって管理されるようにすることができる。
(複数の)出力デバイス1550は、デバイス1505又はそのコンポーネントのいずれかからの出力を受信するように構成されたデバイス又はデバイス1505にとって外部の信号を表すことができる。(複数の)出力デバイス1550の実施例は、ディスプレイ、オーディオスピーカ、印刷装置、別のプロセッサ又はプリント回路基板等を含むことができる。いくつかのケースでは、(複数の)出力デバイス1550は、複数の周辺機器1530のいずれかを介してデバイス1505とインタフェースするか、又は入出力コントローラ1535によって管理されるようにすることができる周辺機器を含んでいてもよい。
メモリコントローラ1565及びメモリバンク1570を含むデバイス1505のコンポーネントは、それらの機能を実行するように設計された回路を含むことができる。これは、例えば、導電性線、トランジスタ、キャパシタ、インダクタ、抵抗器、アンプ、又はその他のアクティブ又は非アクティブな素子などの、本明細書で説明する機能を実行するように構成された様々な回路要素を含んでよい。
いくつかの実施例では、プロセッサ1515によって実行されるオペレーティングシステム(OS)は、メモリデバイス(例えば、主記憶サブシステム1510)内のメモリバンクの異なるグループにマルチコアプロセッサのプロセス(又はコア)をマップすることができる。各メモリバンクは、例えば図3、図5、又は図7を参照して説明したように、ロウバッファに関連付けられるようにすることができる。メモリバンクのグループへのプロセス(又はコア)のマッピングは、ロウバッファ内のデータの空間的な局所性を維持するために使用されるようにすることができ、それによって、複数のメモリセルからデータワードが取得されるときにヒットの可能性が高くなる。ヒット率が向上すると、メモリセルのアクセス数が減少されるようにすることができ、そのことは、いくつかのケースでは読出し待ち時間を短縮させたり、及び/又はメモリセルの寿命を延ばしたりすることができる。いくつかの実施例では、プロセス(又はコア)のメモリバンクのグループへのマッピングは、プロセス(又はコア)のワーキングセットのサイズの変更に応じて変更されるようにすることができる。いくつかの実施例では、ワーキングセット内の連続ページは、メモリバンクの或るグループ内の異なるメモリバンクのロウバッファに展開されるようにすることができる。
いくつかの実施例では、プロセッサ1515は16コアを持つことができ、主記憶サブシステム1510が512のメモリバンクに分割されるようにすることができる。これらの実施例では、メモリバンクがコアに均等に割り当てられるようにすることができ(例えば、各コアは32のメモリバンクの異なるグループにマップされるようにすることができ(例えば、コア1はメモリバンク1から32にマップされ、コア2はメモリバンク33から64にマップされ、・・・、コア16はメモリバンク481から512にマップされるようにすることができ))、又は不均等に割り当てられるようにすることができる(例えば、異なるコアが異なる数のメモリバンクにマッピングされるようにすることができる)。
いくつかの実施例では、プロセッサ1515は、読出しコマンド又は書込みコマンドの少なくとも1つを発行することができる。リードコマンドの発行時に、メモリコントローラ1565は、そのリードコマンドに関連付けられているメモリアドレス(例えば、バンクアドレスとロウアドレス)を識別することができ、メモリバンクに関連付けられているロウバッファからデータワードを読み取ることを試みることができる。ロウバッファにヒットがある場合、メモリコントローラ1565は、例えば図9、図10、又は図13を参照して説明したように、ロウバッファに記憶されたデータワードをプロセッサ1515に供給することができる。ロウバッファにミスがあると、例えば図9又は10を参照して説明したように、メモリコントローラ1565は、データワードに対してそれがメモリバンク内の複数のメモリセルから読み出されるようにさせ、そのデータワードがプロセッサ1515に供給されるようにロウバッファに記憶されるようにさせることができる。ライトコマンドの発行時に、メモリコントローラ1565は、例えば図11又は12を参照して説明したように、そのライトコマンドに関連付けられているメモリアドレス(例えば、バンクアドレスとロウアドレス)を識別することができ、メモリバンクに関連付けられているロウバッファにデータワードを書き込むことができる。それで、ロウバッファに記憶されたデータワードは、例えば図11、図12、又は図14を参照して説明したように、メモリバンクの複数のメモリセルに記憶されるようにすることができる。
図16及び図17は、本開示において説明した技術が、例えば、第1のロウアドレスに関連付けられた第1の複数のメモリセルから読み出されたデータが、そのデータをメモリデバイスから読む必要なく(例えば、メモリ入出力動作の必要がなく)、第2のロウアドレスに関連付けられた第2の複数のメモリセルに記憶されるようにすることができる、ウェアレベリング動作を実行するために、どのように使用されるようにすることができるかを示している。いくつかの実施例では、ウェアレベリング動作は、メモリデバイスの各メモリバンク(又はサブバンク)に対して実行されたローディング及びストアリングプロセスの数をカウントすることにより実行されるようにすることができ、或るメモリバンク(又はサブバンク)内における所定数のローディング及びストアリングプロセスの性能に応じて、ウェアレベリング動作がそのメモリバンク(又はサブバンク)内で実行されるようにすることができる。いくつかの実施例では、ウェアレベリング動作の間にデータワードが記憶されるメモリセルは、データギャップ(例えば、非データワード又はもはや有用ではないデータワード)に関連付けられた複数のメモリセルとして識別されるようにすることができる。
図16は、本開示の種々の実施形態による、ロードコマンドを発行してメモリセルからセンスアンプに論理1又はハイレベル論理値をロードするときに、様々な端子に印加されたり様々なノードに現れる可能性のある波形1600の一実施例を示している。例えば、センスアンプは、ハイレベル論理値のロードの前にローレベル論理値を記憶していると仮定されている。更なる実施例として、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
波形1600は、ワードライン(WL)及び先行してアサートされたワードライン(WL')の波形以外は、図9を参照して説明した波形900に類似している。より詳しくは、波形1600には、先行してアサートされたワードライン(WL')波形はなく、ワードライン(WL)波形は、絶縁ゲートを開く直前(又は実質的に並列)のビットラインプリチャージ期間925の開始時に、ローレベル(VKK)に移行させられる。この方法では、ビットライン(BL)のローレベル(VSS)へのプリチャージに続いて、メモリバンク(又はサブバンク)が、異なるワードラインに関連付けられた新しいロウアドレスを受け取るために準備されるようにすることができる。それによって、セル選択の間にセンスアンプに記憶された論理値が、その論理値が読み出されたメモリセルとは異なるメモリセルにストアされるようにすることができる(例えば、ウェアレベリング動作が実行されるようにすることができる)。
図17は、本開示の種々の実施形態による、データワードが第1の複数のメモリセルからロウバッファにロードされ、その後、第2の複数のメモリセルにストアされる動作1700のシーケンスの一実施例を示す。更なる実施例として、メモリセルは、図5又は6を用いて説明したメモリセル505又は600の1つであってもよく、及びセンスアンプは、図5を参照して説明したセンスアンプの1つであってもよい。
時刻t1では、ロードコマンド(LD)が(第1の複数のメモリセルに記憶されている)1つのデータワードをロウバッファにロードするために発行されるようにすることができる。ロードコマンドは、バンクアドレス(BAm)と第1のロウアドレス(RAa)に対応するワードラインのアサーションに関連付けられるようにすることができる。いくつかの実施例では、ロードコマンドが図9又は図10を用いて説明したように実行されるようにすることができる。データワードがロウバッファ内にロードされた後、そのロウバッファからデータワードを読み取るために、第1の数のリードコマンド(図示せず)が発行され又は発行されないようにすることができる。
時刻t2では、第2の複数のメモリセルにデータワード(これはロウバッファに記憶されている)を記憶するために、ストアコマンド(ST)が発行されるようにすることができる。ストアコマンドは、バンクアドレス(BAm)と第2のロウアドレス(RAb)に対応するワードラインのアサーションに関連付けられるようにすることができる。データワードが第2の複数のメモリセルに記憶された後、ロウバッファからデータワードを読み出すために第2の数のリードコマンド(図示せず)が発行され又は発行されないようにすることができる。
図18は、本開示の種々の実施形態による、メモリデバイス又はシステムを動作させる方法1800を説明するフローチャートを示している。方法1800の動作は、図1又は図15を参照して説明したメモリデバイス100又はシステム1500などのメモリデバイス又はシステム上若しくは内部において、又は図3、図4、図5、図6、図15、又は図18を参照して説明したメモリバンク又はメモリセルを含むメモリデバイス又はシステム上若しくは内部において、実行されるようにすることができる。いくつかの実施例では、方法1800の動作は、図1又は図15を参照して説明したメモリコントローラ1565及び/又はメモリデバイス100のようなメモリコントローラ及び/又はメモリデバイスによって又はその制御下で実行されるようにすることができる。いくつかの実施例では、メモリコントローラ及び/又はメモリデバイスは、以下に説明する機能を実行するためのメモリバンクの機能要素を制御するコードのセットを実行するようにすることができる。これに加えて又はこれの代わりに、メモリコントローラ及び/又はメモリデバイスは、以下で説明する機能の側面を特定目的のハードウェアを使用して実行するようにすることができる。
ブロック1805において、本方法は、例えば図9又は10を参照して説明したように、メモリセルの最初の読出しを実行する際に、ロウバッファのセンスアンプにおいてメモリセルのデータをキャッシングすることを含むようにすることができる。いくつかの実施例では、メモリセルは、強誘電体メモリセルを含んでいてもよい。いくつかの実施例では、強誘電体メモリセルは、破壊読出しモードで動作するように構成されてよい。
ブロック1810において、本方法は、例えば図13を参照して説明したように、メモリセルの最初の読出しを実行した後に、メモリセルの少なくとも2回目の読出しの実行を決定することを含むようにすることができる。メモリセルの2回目の読出しは、メモリセルの最初の読出しに続くメモリセルの次の読出しを含むようにすることができる。
ブロック1815において、本方法は、例えば図13を参照して説明したように、メモリセルの少なくとも2回目の読出しのために、センスアンプからメモリセルのデータを読み出すことを含むようにすることができる。
ブロック1820において、そしてメモリセルが破壊読出しモードで動作するように構成されている場合に、本方法は、例えば図9又は10を参照して説明したように、センスアンプにおいてメモリセルのデータをキャッシングした後、メモリセルにそのメモリセルのデータを書き戻すことを任意で含むようにすることができる。
ブロック1825では、本方法は、例えば図16又は17を参照して説明したように、センスアンプにキャッシュされたメモリセルのデータを、そのセンスアンプに結合された別のメモリセルに書き込むこと(例えば、ウェアレベリング動作の実行)を任意で含むようにすることができる。
いくつかの実施例では、方法1800は、センスアンプにおいてメモリセルのデータをキャッシングする前に、絶縁ゲートを閉じて、上記メモリセルが結合されているビットラインを上記センスアンプに結合することを含むようにすることができる。本方法はまた、センスアンプにおいてメモリセルのデータをキャッシングした後に絶縁ゲートを開放し、ビットラインをセンスアンプから切り離すことを含むようにすることもできる。本方法がブロック1820での(複数の)再書込み動作を含んでいる場合、本方法は、メモリセルのデータをそのメモリセルに書き戻した後に、絶縁ゲートを開くことを含むようにすることができる。ブロック1820での(複数の)再書込み動作が実行されているいくつかの実施例では、本方法は、センスアンプにおいてメモリセルのデータを増幅している間に絶縁ゲートを開き、メモリセルのデータをそのメモリセルに書き戻す前に絶縁ゲートを閉じ、メモリセルのデータをそのメモリセルに書き戻した後に絶縁ゲートを再度開くことを含むようにすることができる。いくつかの実施例において、本方法は、メモリセルのセルプレートと同じ電圧にビットラインをプリチャージすることを含むようにすることができる。本方法がブロック1820での(複数の)再書込み動作を含んでいない場合には、センスアンプにおいてメモリセルのデータをキャッシングすることに続いて絶縁ゲートを開いた後に、プリチャージが実行されるようにすることができる。本方法がブロック1820での(複数の)再書込み動作を含んでいる場合には、(複数の)再書込み動作に続いて絶縁ゲートを開いた後に、プリチャージが実行されるようにすることができる。いくつかの実施例では、絶縁ゲートが開いている間(即ち、ビットラインがセンスアンプから切り離されている間)、メモリセルの少なくとも2回目の読出しのために、メモリセルのデータはセンスアンプから読み取られるようにすることができる。
図19は、本開示の種々の実施形態による、メモリデバイス又はシステムを動作させる方法1900を説明するフローチャートを示している。方法1900の動作は、図1又は図15を参照して説明したメモリデバイス100又はシステム1500などのメモリデバイス又はシステム上若しくは内部において、又は図3、図4、図5、図6、図15、又は図18を参照して説明したメモリバンク又はメモリセルを含むメモリデバイス又はシステム上若しくは内部において、実行されるようにすることができる。いくつかの実施例では、方法1900の動作は、図1又は図15を参照して説明したプロセッサ1515,メモリコントローラ1565、及び/又はメモリデバイス100のようなプロセッサ、メモリコントローラ、及び/又はメモリデバイスによって又はその制御下で実行されるようにすることができる。いくつかの実施例では、プロセッサ、メモリコントローラ、及び/又はメモリデバイスは、以下に説明する機能を実行するためのメモリバンクの機能要素を制御するコードのセットを実行するようにすることができる。更に又は代わりに、プロセッサ、メモリコントローラ、及び/又はメモリデバイスは、特定目的のハードウェアを使用して、以下で説明する機能の側面を実行するようにすることができる。
ブロック1905では、本方法は、例えば図15を参照して説明したように、メモリデバイス内のメモリバンクの異なるグループにマルチコアプロセッサのプロセスをマッピングすることを含むようにすることができる。各メモリバンクは、ロウバッファに関連付けられるようにすることができる。いくつかの実施例では、マルチコアプロセッサのプロセスは、メモリバンクの異なるグループへのマッピングを行うマルチコアプロセッサのマッピングコアに少なくとも部分的に基づいて、メモリバンクの異なるグループにマップされるようにすることができる。
ブロック1910では、メモリバンク内のメモリアドレスに関連付けられた複数のメモリセルをアドレス指定して、複数のプロセスのうちの或るプロセスから上記メモリアドレスに関連付けられた最初のメモリ読出し要求を受信したときにデータワードを取得することを含むことができる。
ブロック1915では、本方法は、メモリバンクに関連付けられているロウバッファをアドレス指定して、プロセスからそのメモリアドレスに関連付けられた少なくとも2番目のメモリ読出し要求を受信したときにそのデータワードを取得することを含むようにすることができる。2番目のメモリ読出し要求は、第1のメモリ読出し要求後のそのメモリセルの次の読出し要求を含むようにすることができる。
方法1800及び1900は実施可能な実装を記載しており、方法1800及び1900の動作及び手順は、他の実装が可能であるように再配置又はさもなければ変更されるようにすることができることに注意されたい。いくつかの実施例では、方法1800及び1900の態様が組み合わされるようにすることができる。
或る装置について説明する。いくつかの実施例では、本装置は、メモリセルの最初の読出しを行う際にロウバッファのセンスアンプでメモリセルのデータをキャッシングする手段と、上記メモリセルの最初の読出しを実行した後に少なくとも2回目の上記メモリセルの読出しを実行することを決定する手段と、上記メモリセルの少なくとも2回目の読出しのために上記センスアンプから上記メモリセルのデータを読み出すための手段を含んでいてもよい。
いくつかの実施例では、上記メモリセルは、強誘電体メモリセルを含む。いくつかの実施例では、上記強誘電体メモリセルは破壊読出しモードで動作するように構成される。いくつかの実施例では、本装置は、上記センスアンプにおいて上記メモリセルのデータをキャッシングした後に、そのメモリセルのデータをそのメモリセルに書き戻す手段を含んでいてもよい。いくつかの実施例では、本装置は、上記センスアンプで上記メモリセルのデータをキャッシングする前に、絶縁ゲートを閉じて、上記メモリセルが結合されているビットラインを上記センスアンプに結合する手段と、上記メモリセルのデータを上記メモリセルに書き戻した後に上記絶縁ゲートを開いて、上記ビットラインを上記センスアンプから分離するための手段を含んでいてもよい。
いくつかの実施例では、上記絶縁ゲートが開いている間は、少なくとも2回目の上記メモリセル読出しのために、上記メモリセルのデータは上記センスアンプから読み出される。いくつかの実施例では、本装置は、上記絶縁ゲートを開いた後に、上記ビットラインを上記メモリセルのセルプレートと同じ電圧にプリチャージする手段を含んでいてもよい。いくつかの実施例では、本装置は、上記センスアンプで上記メモリセルのデータをキャッシングする前に、上記絶縁ゲートを閉じて、上記メモリセルが結合されている上記ビットラインを上記センスアンプに結合する手段と、上記センスアンプにおいて上記メモリセルのデータをキャッシングした後に上記絶縁ゲートを開いて、上記ビットラインを上記センスアンプから分離するための手段を含んでいてもよい。
いくつかの実施例では、本装置は、上記センスアンプにキャッシングされた上記メモリセルのデータを上記センスアンプに結合した別のメモリセルに書き込む手段を含んでいてもよい。いくつかの実施例では、上記メモリセルの2回目の読出しは、上記メモリセルの最初の読出しの後の上記メモリセルの次の読出しを含む。
或る装置について説明する。いくつかの実施例では、本装置は、マルチコアプロセッサのプロセスを、各メモリバンクがロウバッファに関連付けられているメモリデバイス内のメモリバンクの異なるグループにマッピングするための手段と、メモリバンク内のメモリアドレスに関連付けられている複数のメモリセルをアドレス指定して、複数のプロセスのうちの或るプロセスからの上記メモリアドレスに関連付けられた最初のメモリ読出し要求を受信したときにデータワードを取得する手段と、上記プロセスから上記メモリアドレスに関連付けられた少なくとも2回目のメモリ読出し要求を受信したときに、上記メモリバンクに関連付けられているロウバッファをアドレス指定して上記データワードを取得する手段とを含んでもよい。
いくつかの実施例では、上記マルチコアプロセッサのプロセスは、メモリバンクの異なるグループへのマッピングを行う上記マルチコアプロセッサのマッピングコアに少なくとも部分的に基づいて、上記メモリバンクの異なるグループにマップされるようにすることができる。いくつかの実施例では、2回目のメモリ読出し要求は、最初のメモリ読出し要求の後の複数のメモリセルの次の読出し要求を含む。
或る装置について説明する。いくつかの実施例において、本装置は、複数のメモリセルと、複数のセンスアンプを備え、その複数のセンスアンプが上記複数のメモリセルから読み出された最後のデータワードを一時的にキャッシングする動作が可能な複数のデータ記憶エレメントを備える、ロウバッファと、メモリ読出し要求に関連付けられたメモリアドレスを受信し、上記複数のメモリセルから上記メモリアドレスに関連付けられたデータワードを読み出すための手段と、上記メモリアドレスに関連付けられた次のメモリ読出し要求の受信時に、上記ロウバッファの上記複数のデータ記憶エレメントから上記データワードを読み出すための手段とを含んでいてよい。
いくつかの実施例では、本装置は、複数の絶縁ゲートと、各ビットラインが上記複数のメモリセルの対応するサブセット及び対応する絶縁ゲートを介して対応するセンスアンプに結合されている複数のビットラインとを含んでいてよい。いくつかの実施例において、本装置は、上記複数のメモリセルから読み出された最後のデータワードを上記複数のデータ記憶エレメントにキャッシングする前に上記複数の絶縁ゲートを閉じるための手段と、上記キャッシングの後に上記複数の絶縁ゲートを開くための手段とを含んでいてよい。いくつかの実施例において、上記複数のメモリセルは、複数の強誘電体メモリセルを含む。
いくつかの実施例では、上記複数のメモリセルが、破壊読出しモードで動作するように構成されている。いくつかの実施例では、本装置は、上記複数のデータ記憶エレメントにキャッシュされるデータワードを、上記データワードが上記複数のデータ記憶エレメントにキャッシュされた後に、上記複数のメモリセルに書き戻す手段を含んでいてよい。いくつかの実施例では、上記データワードは、同じメモリセルのセットから読み出されそして書き戻される。いくつかの実施例では、上記データワードは、メモリセルの第1のセットから読み出され、メモリセルの第2のセットに書き戻される。いくつかの実施例では、上記複数のメモリセルの電圧をセルプレートと同じ電圧にして上記複数のビットラインをプリチャージする動作が可能な少なくとも1つのプリチャージ回路を含んでいてよい。
或る装置について説明する。いくつかの実施例では、本装置は、データプロセッサ、主記憶、及び主記憶とデータプロセッサ間でデータを転送するための手段を含んでいてよい。いくつかの実施例において、主記憶は、複数のメモリバンクに配置された複数のメモリセルと、複数のセンスアンプを備え、メモリバンクの上記複数のセンスアンプが上記メモリバンクから読み出された最後のデータワードを一時的にキャッシングする動作が可能な複数のデータ記憶エレメントを備える、メモリバンクごとのロウバッファと、メモリ読出し要求に関連付けられたメモリアドレスを受信するための手段と、メモリバンクから上記メモリアドレスに関連付けられたデータワードを読み出すための手段と、上記メモリアドレスに関連付けられた次のメモリ読出し要求の受信時に、上記メモリバンクに関連付けられた上記ロウバッファの上記複数のデータ記憶エレメントから上記データワードを読み出すための手段とを含んでいてよい。
いくつかの実施例では、データプロセッサはマルチコアプロセッサを含み、そのマルチコアプロセッサは、主記憶内のメモリバンクの異なるグループにマルチコアプロセッサのプロセスをマップする動作が可能である。いくつかの実施例では、マルチコアプロセッサは、マルチコアプロセッサのプロセスを、メモリバンクの異なるグループへのマッピングを行うマルチコアプロセッサのマッピングコアに少なくとも部分的に基づいて、メモリバンクの異なるグループにマップする動作が可能である。いくつかの実施例において、複数のメモリセルは、複数の強誘電体メモリセルを含む。いくつかの実施例では、複数のメモリセルが破壊読出しモードで動作するように構成されている。いくつかの実施例では、本装置は、ロウバッファの複数のデータ記憶エレメントにキャッシュされるデータワードを、上記データワードが上記複数のデータ記憶エレメントにキャッシュされた後に上記データワードが読み出された上記メモリバンクに書き戻す手段を含んでいてよい。
本書類における記載は例を提示するものであり、クレームに記載されている範囲、適用性、又は実施例を制限するものではない。開示の範囲を逸脱することなく、議論された要素の機能及び組合せ(arrangement)を変更することができる。種々の実施例では、必要に応じて様々な手順(procedures)やコンポーネントを省略、代用、又は追加できる。また、幾つかの実施例に関して説明した特徴は、他の実施例で組み合わせられてもよい。
ここに記載されている説明は、添付図面と合わせて、構成例を示し、実装可能なすべての実施例、又はクレームの範囲内にあるすべての例を表すものではない。本明細書において「実施例」、「例」、及び「例示的な」といった類の用語は、「実施例、例、又は例示として役立つ」という意味であり、「好ましい」又は「他の例より有利な」を意味するものではない。詳細な説明には、記載された技術の理解を提供する目的での特定の詳細が含まれる。これらの技術は、しかし、これらの特定の詳細なしに実施することができる。幾つかの例では、説明される実施例の概念をあいまいにしないようにするために、よく知られている構造やデバイスはブロックダイアグラム形式で示されている。
添付の図では、同様のコンポーネント又はフィーチャーが同じ参照ラベルを持つ場合がある。更に、同じタイプの様々なコンポーネントは、参照ラベルの後に同様のコンポーネントの中で区別をつけるダッシュ及び第2のレベルを付けることにより、区別が付けられている。第1の参照ラベルが明細書で使用される場合、その説明は第2の参照ラベルに関係なく同じ第1の参照ラベルを持つ類似のコンポーネントのいずれかに適用される。
本明細書に記載される情報及び信号は、種々の異なる技術及び技法のいずれを用いても表すことができる。例えば、上記の説明を通して参照される可能性があるデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは、電圧、電流、電磁波、磁場や粒子、光波場や光子、又はそれらの任意の組み合わせによって表すことができる。或る図面は、信号を1つの信号として示すことができる。しかしそれは、当業者ならば、それは信号群の様々なビット幅を持つことができるバスを表してよいことを理解するだろう。
本明細書に用いられる、「仮想接地」とは、約ゼロボルト(0V)の電圧で保持されているが直接接地には接続されていない電気回路のノードをいう。従って、仮想接地の電圧は、一時的に変動し、定常状態では約0Vに戻る場合がある。仮想接地は、オペアンプと抵抗で構成される分圧器など、様々な電子回路要素を使用して実装することができる。他の実装も可能である。
「電子通信」という用語は、コンポーネント間の電子的なフローをサポートするコンポーネント間の関係を指す。これは、コンポーネント間の直接接続を含んでもよく、又は中間コンポーネントを含んでもよい。電子通信のコンポーネントは(例えば、通電回路で)、アクティブに電子や信号を交換できる、又は(例えば、非通電回路で)、アクティブに電子や信号を交換はできないが、通電されている回路上では電子又は信号を交換できるように構成され動作可能としてよい。例として、スイッチ(例えば、トランジスタ)を介して物理的に接続された2つのコンポーネントは、スイッチの状態(つまり、オープン又はクローズ)に関係なく、電子通信になっている。
メモリデバイス100を含む本明細書で説明しているデバイスは、シリコン、ゲルマニウム、シリコンゲルマニウム合金、ガリウム砒素、窒化ガリウム等の半導体基板上に形成することができる。いくつかのケースでは、基板は、半導体ウェーハである。その他の場合には、基板は、ガラス上に形成されたシリコン(SOG)又はサファイア上に形成されたシリコン(SOP)などの、絶縁膜上に形成されたシリコン(SOI)基板であってもよいし、又は他の基板上の半導体材料のエピタキシャル層であってもよい。基板又は基板のサブ領域の導電率は、限定されるものではないが、リン、ホウ素、又はヒ素を含む種々の化学種を用いたドーピングを通して制御することができる。ドーピングは、基板の初期形成又は成長の間に、イオン注入により、又は他のドーピング手段により実行することができる。
本明細書で説明するトランジスタは、電界効果トランジスタ(FET)を表し、ソース、ドレイン、及びゲートを含む3つの端子デバイスから構成され得る。端子は、金属などの導電性材料を介して他の電子素子に接続することができる。ソースとドレインは導電性であり、例えば縮退等、高濃度にドープされた、半導体領域を含むことができる。ソースとドレインは、低濃度にドープされた半導体領域又はチャネルによって分離することができる。チャネルがn型(すなわち、大半のキャリアが電子)の場合、FETはn型FETと呼ぶことができる。同様に、チャネルがpタイプの場合(すなわち、大半のキャリアがホールである場合)、FETはp型FETと呼ぶことができる。チャネルは、絶縁ゲート酸化物によって覆うことができる。チャネルの導電率は、ゲートに電圧を印加することによって制御することができる。例えば、n型FET又はp型FETにそれぞれ正の電圧又は負の電圧を印加すると、チャネルが導電性になり得る。トランジスタの閾値電圧以上の電圧がトランジスタゲートに印加されると、トランジスタは「オン」又は「アクティブ」になることができる。トランジスタの閾値電圧よりも小さい電圧がトランジスタゲートに印加されると、トランジスタは「オフ」又は「非アクティブ」になることができる。
本明細書の開示に関連して説明されている様々な例示のブロック、コンポーネント、及びモジュールは、汎用プロセッサ、DSP、ASIC、FPGA若しくはその他のプログラマブル論理デバイス、ディスクリートゲート若しくはトランジスタロジック、ディスクリートハードウェアコンポーネント、又は本明細書で説明した機能を実行するように設計されたこれらの任意の組合せを用いて、実装又は実行することができる。汎用プロセッサは、マイクロプロセッサであってもよいが、その代わりに、プロセッサは従来のプロセッサ、コントローラ、マイクロコントローラ、又はステートマシンであってもよい。また、プロセッサは、コンピューティングデバイスの組合せ(例えば、DSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つ以上のマイクロプロセッサ、又は任意の他のそのような構成など)として実装することもできる。
本明細書で説明する機能は、ハードウェア、プロセッサにより実行されるソフトウェア、ファームウェア、又はそれらの任意の組合せに実装することができる。プロセッサにより実行されるソフトウェアに実装される場合、その機能は、コンピュータ読取り可能媒体上に1つ以上の命令又はコードとして保存又は転送することができる。その他の例と実装は、開示及び添付したクレームの範囲内にある。例えば、ソフトウェアの性質上、上記の機能は、プロセッサによって実行されるソフトウェア、ハードウェア、ファームウェア、ハードワイヤ接続、又はこれらの任意の組合せによって実行されるソフトウェアを用いて実装することができる。機能の実装はまた、機能の各部分が異なる物理的な場所に実装されるように配置されることを含み、様々な場所に物理的に配置されてよい。また、本明細書で用いられているように、請求項に含まれるものとして、項目のリスト(例えば、「少なくとも1つの」又は「1つ以上」のような語句によって始まる項目のリスト)で使用される「又は」は、例えば、A,B,又はCの少なくとも1つのリストがA又はB又はC又はAB又はAC又はBC又はABC(すなわち、A及びB及びC)を意味するように、すべてを含むリストを指している。
コンピュータ読取り可能な媒体には、非一過性コンピュータ記憶媒体と、コンピュータプログラムを1か所から別の場所へ移すことを容易にする任意の媒体を含む通信媒体が含まれている。非一過性記憶媒体は、汎用又は特定目的のコンピュータによってアクセスできる任意の利用可能な媒体であってもよい。例として、これらに制限されないが、非一過性コンピュータ読取り可能媒体は、RAM、ROM、電気的消去可能プログラマブル読取り専用メモリ(EEPROM)、コンパクトディスク(CD)ROM若しくはその他の光ディスク記憶装置、磁気ディスク記憶装置、若しくはその他の磁気記憶デバイス、又は命令又はデータ構造形式の所望のプログラムコード手段を運搬又は記憶するために使用可能で、汎用又は特定目的のコンピュータ、或いは汎用又は特定目的のプロセッサによってアクセス可能な任意の他の非一過性媒体を含むことができる。
また、任意の接続が適切にコンピュータ読取り可能媒体と呼ばれる。例えば、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、又は赤外線、無線、及びマイクロ波等のワイヤレス技術を使用して、WEBサイト、サーバ、又はその他のリモートソースからソフトウェアを送信する場合、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、又は赤外線、無線、及びマイクロ波等のワイヤレス技術は、媒体の定義に含まれている。ディスク(Disk及びDisc)は、本明細書で使用されるように、CD、レーザディスク、光ディスク、デジタル多用途ディスク(DVD)、フロッピーディスク、及びブルーレイディスクを含む。ディスク(disk)は通常、磁気的にデータを再生する。また、ディスク(disc)は、レーザで光学的にデータを再現する。上記の組合せも、コンピュータ読取り可能媒体の範囲に含まれている。
本明細書は、当業者が当該開示のものを製造する又は利用することを可能とするために提供される。開示に対する種々の変更は当業者にとって容易に明らかであり、本明細書で定義される一般的な原理は、開示の範囲から逸脱することなく他のバリエーションに適用することができる。このように、開示は、本明細書に記載された例及び設計に限定されるものではないが、本明細書に開示されている原理及び新規な特徴に合致した最も広い範囲に合致するものである。

Claims (16)

  1. メモリデバイスを動作させる方法であって、
    第1のメモリセルの最初の読出しを実行するときに、ロウバッファのセンスアンプにおいて、メモリセルのバンクの前記第1のメモリセルから読み出された論理値をキャッシングすることであり、前記センスアンプは、前記第1のメモリセルに関連付けられたロウアドレスが前記メモリセルの前記バンクに対応するアドレスラッチにラッチされることに少なくとも部分的に基づいて、及び前記第1のメモリセルから読み出された前記論理値が前記ロウバッファの前記センスアンプにおいてキャッシングされることに少なくとも部分的に基づいて、前記第1のメモリセルから読み出された前記論理値を含むことと、
    前記第1のメモリセルから読み出された前記論理値をキャッシングすることに少なくとも部分的に基づいて、前記第1のメモリセルの前記最初の読出しを実行した後に、前記第1のメモリセルの少なくとも2回目の読出しを実行することを決定することと、
    第2のロウアドレスに関連付けられた1つ以上のメモリセル上でアクセス動作を実行した後に前記第1のメモリセルの少なくとも前記2回目の読出しのために、前記センスアンプから前記第1のメモリセルから読み出された前記論理値を読み出すことと、
    を含む、備える方法。
  2. 少なくとも前記第1のメモリセルは強誘電体メモリセルを含む、請求項1に記載の方法。
  3. 前記第1のメモリセルは、破壊読出しモードで動作するように構成され、前記方法は、
    前記センスアンプにおいて前記第1のメモリセルから読み出された前記論理値をキャッシングした後、前記第1のメモリセルから読み出された前記論理値を前記第1のメモリセルに書き戻すことを更に含む、
    請求項2に記載の方法。
  4. 前記センスアンプにおいて前記第1のメモリセルから読み出された前記論理値をキャッシングする前に、絶縁ゲートを閉じ、前記第1のメモリセルが結合されているビットラインを前記センスアンプに結合することと、
    前記第1のメモリセルから読み出された前記論理値を前記第1のメモリセルに書き戻した後に、前記絶縁ゲートを開いて、前記センスアンプから前記ビットラインを切り離すことと
    を更に含む、請求項3に記載の方法。
  5. 前記第1のメモリセルから読み出された前記論理値は、前記絶縁ゲートが開いている間に、前記第1のメモリセルの少なくとも前記2回目の読出しのために、前記センスアンプから読み出される、請求項4に記載の方法。
  6. 前記絶縁ゲートを開いた後に、前記第1のメモリセルのセルプレートと同じ電圧に前記ビットラインをプリチャージすることを更に含む、請求項4に記載の方法。
  7. 前記センスアンプにおいて前記第1のメモリセルから読み出された前記論理値をキャッシングする前に、絶縁ゲートを閉じ、前記第1のメモリセルが結合されているビットラインを前記センスアンプに結合することと、
    前記センスアンプにおいて前記第1のメモリセルから読み出された前記論理値をキャッシングした後に、前記絶縁ゲートを開き、前記センスアンプから前記ビットラインを切り離すことと
    を更に含む、請求項1に記載の方法。
  8. 前記センスアンプにキャッシュされた前記第1のメモリセルから読み出された前記論理値を、前記センスアンプに結合された第2のメモリセルに書き込むことを更に含む、請求項1に記載の方法。
  9. 前記第1のメモリセルの前記2回目の読出しは、前記第1のメモリセルの前記最初の読出し後の前記第1のメモリセルの次の読出しを含む、請求項1に記載の方法。
  10. メモリサブシステムを動作させる方法であって、
    各メモリバンクがロウバッファに関連付けられているメモリデバイスのメモリバンクの異なるグループに、マルチコアプロセッサのプロセスをマッピングすることと、
    メモリバンク内のメモリアドレスに関連付けられた複数のメモリセルをアドレス指定して、データワードの読出しのための最初のメモリ読出し要求を受信したときに前記データワードを取得することであって、前記最初のメモリ読出し要求を受信したときに前記メモリアドレスの内のロウアドレスは前記メモリバンクに対応するアドレスラッチにラッチされることと、
    前記プロセスから、前記メモリアドレスに関連付けられた、前記データワードの読出しのための少なくとも2回目のメモリ読出し要求を受信したときに、前記メモリバンクに関連付けられたロウバッファをアドレス指定して、前記データワードを取得することと
    を含む、方法。
  11. 前記マルチコアプロセッサはコアを含み、前記メモリバンクの異なるグループに前記マルチコアプロセッサの前記プロセスをマッピングすることは、前記メモリバンクの異なるグループ前記マルチコアプロセッサの前記コアをマッピングすることに少なくとも部分的に基づく、請求項10に記載の方法。
  12. 前記2回目のメモリ読出し要求は、前記最初のメモリ読出し要求の後の前記複数のメモリセルの次の読出し要求を含む、請求項10に記載の方法。
  13. データプロセッサであり、前記データプロセッサは、マルチコアプロセッサを含み、前記マルチコアプロセッサは、主記憶内のメモリバンクの異なるグループに前記マルチコアプロセッサのプロセスをマッピングする、前記データプロセッサと、
    前記主記憶と、
    前記主記憶と前記データプロセッサの間でデータを転送するように構成されたメモリコントローラとを含み、
    前記主記憶は、
    複数のメモリバンクに配置された複数のメモリセルと
    記メモリバンクから読み出された複数の論理値を一時的にキャッシングする動作が可能な複数のセンスアンプを含む、メモリバンクごとのロウバッファと、
    前記メモリコントローラからメモリ読出し要求に関連付けられたメモリアドレスを受信することと、メモリバンクから前記メモリアドレスに関連付けられた前記複数の論理値を読み出すことと、前記ロウバッファの前記複数のセンスアンプのうちの少なくとも1つにおいて前記複数の論理値をキャッシングすることであり、前記メモリバンクから読み出された前記複数の論理値の前記メモリアドレスの内のロウアドレスは前メモリバンクに対応するアドレスラッチにラッチされ、前記複数のセンスアンプは前記複数の論理値と、前記メモリバンクからの少なくとも1つのその他のメモリセルから読み出された論理値とを含むことと、前記メモリアドレスの前記ロウアドレスに関連付けられた次のメモリ読出し要求の受信時に、前記メモリバンクに関連付けられた前記ロウバッファの前記複数のセンスアンプから前記複数の論理値を読み出すこととの動作が可能であるコントローラと、
    を含む、データ処理システム。
  14. 前記マルチコアプロセッサは、前記マルチコアプロセッサの前記プロセスを、前記メモリバンクの異なるグループへの前記マルチコアプロセッサのマッピングコアに少なくとも部分的に基づいて、前記メモリバンクの異なるグループにマップする動作が可能である、
    請求項13に記載のデータ処理システム。
  15. 前記複数のメモリセルは、複数の強誘電体メモリセルを含む、請求項13に記載のデータ処理システム。
  16. 前記複数のメモリセルが破壊読出しモードで動作するように構成され、前記コントローラは、前記複数のセンスアンプキャッシングされている前記複数の論理値を、前記複数の論理値が前記複数のセンスアンプキャッシングされた後に、前記複数の論理値が読み出された前記メモリバンクに書き戻す動作が可能である、請求項15に記載のデータ処理システム。
JP2018555917A 2016-04-27 2017-04-25 データキャッシング Active JP7137477B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021113929A JP2021168225A (ja) 2016-04-27 2021-07-09 データキャッシング

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/140,073 US10082964B2 (en) 2016-04-27 2016-04-27 Data caching for ferroelectric memory
US15/140,073 2016-04-27
PCT/US2017/029420 WO2017189579A2 (en) 2016-04-27 2017-04-25 Data caching

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021113929A Division JP2021168225A (ja) 2016-04-27 2021-07-09 データキャッシング

Publications (2)

Publication Number Publication Date
JP2019515409A JP2019515409A (ja) 2019-06-06
JP7137477B2 true JP7137477B2 (ja) 2022-09-14

Family

ID=60158303

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018555917A Active JP7137477B2 (ja) 2016-04-27 2017-04-25 データキャッシング
JP2021113929A Pending JP2021168225A (ja) 2016-04-27 2021-07-09 データキャッシング

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021113929A Pending JP2021168225A (ja) 2016-04-27 2021-07-09 データキャッシング

Country Status (6)

Country Link
US (3) US10082964B2 (ja)
EP (1) EP3449376A4 (ja)
JP (2) JP7137477B2 (ja)
KR (3) KR20200104432A (ja)
CN (2) CN113127379B (ja)
WO (1) WO2017189579A2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082964B2 (en) 2016-04-27 2018-09-25 Micron Technology, Inc Data caching for ferroelectric memory
KR102548599B1 (ko) * 2016-06-17 2023-06-29 삼성전자주식회사 버퍼메모리를 포함하는 메모리 장치 및 이를 포함하는 메모리 모듈
KR102630116B1 (ko) * 2016-10-18 2024-01-29 에스케이하이닉스 주식회사 데이터 저장 장치 및 그것의 동작 방법
US10217494B2 (en) * 2017-06-28 2019-02-26 Apple Inc. Global bit line pre-charging and data latching in multi-banked memories using a delayed reset latch
EP3662474B1 (en) * 2017-07-30 2023-02-22 NeuroBlade Ltd. A memory-based distributed processor architecture
US10403347B2 (en) 2018-01-29 2019-09-03 Micron Technology, Inc. Apparatuses and methods for accessing ferroelectric memory including providing reference voltage level
US10636469B2 (en) * 2018-05-09 2020-04-28 Micron Technology, Inc. Cell voltage accumulation discharge
US10636459B2 (en) * 2018-05-30 2020-04-28 Micron Technology, Inc. Wear leveling
US11360704B2 (en) 2018-12-21 2022-06-14 Micron Technology, Inc. Multiplexed signal development in a memory device
US11373695B2 (en) * 2019-12-18 2022-06-28 Micron Technology, Inc. Memory accessing with auto-precharge
US20220244870A1 (en) * 2021-02-03 2022-08-04 Alibaba Group Holding Limited Dynamic memory coherency biasing techniques
US11798608B2 (en) * 2021-12-28 2023-10-24 Micron Technology, Inc. Techniques to perform a sense operation
JP2024002003A (ja) * 2022-06-23 2024-01-11 キオクシア株式会社 メモリデバイス及びメモリシステム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210073A (ja) 2000-01-21 2001-08-03 Sharp Corp 不揮発性半導体記憶装置およびそれを用いたシステムlsi
US20050111275A1 (en) 2003-11-26 2005-05-26 Oliver Kiehl Cost efficient row cache for DRAMs
JP2007512657A (ja) 2003-11-26 2007-05-17 インテル・コーポレーション メモリ性能を改善する方法および装置
US20070156947A1 (en) 2005-12-29 2007-07-05 Intel Corporation Address translation scheme based on bank address bits for a multi-processor, single channel memory system
JP2012221338A (ja) 2011-04-12 2012-11-12 Hitachi Ltd 半導体装置、不揮発性メモリ装置の制御方法
JP2013114644A (ja) 2011-12-01 2013-06-10 Fujitsu Ltd メモリモジュールおよび半導体記憶装置
JP2016506009A (ja) 2013-01-08 2016-02-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated 開放されたロウの好適する数をもつメモリ装置
JP6208796B2 (ja) 2008-08-13 2017-10-04 コーニング インコーポレイテッド 規則性メソポーラス炭素−ケイ素ナノ複合材料の合成

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694205A (en) * 1985-06-03 1987-09-15 Advanced Micro Devices, Inc. Midpoint sense amplification scheme for a CMOS DRAM
US5270967A (en) 1991-01-16 1993-12-14 National Semiconductor Corporation Refreshing ferroelectric capacitors
JPH06208796A (ja) * 1993-11-01 1994-07-26 Hitachi Ltd 半導体メモリ
JPH07211062A (ja) * 1994-01-10 1995-08-11 Mitsubishi Electric Corp 半導体記憶装置
JPH11339466A (ja) * 1998-03-27 1999-12-10 Fujitsu Ltd 破壊読出型メモリ回路、リストア用アドレス記憶・制御回路及びセンスアンプ
KR100329024B1 (ko) * 1998-03-27 2002-03-18 아끼구사 나오유끼 파괴 읽기형 메모리 회로, 이를 위한 리스토어 회로 및 감지 증폭기
DE10014387C1 (de) * 2000-03-23 2001-09-27 Infineon Technologies Ag Integrierter Speicher mit Bitleitungsreferenzspannung und Verfahren zum Erzeugen der Bitleitungsreferenzspannung
TW525185B (en) * 2000-03-30 2003-03-21 Matsushita Electric Ind Co Ltd Semiconductor memory device having normal and standby modes, semiconductor integrated circuit and mobile electronic unit
CN1303612C (zh) 2001-08-01 2007-03-07 联华电子股份有限公司 选择性存储器刷新电路与刷新方法
JP2003059273A (ja) * 2001-08-09 2003-02-28 Hitachi Ltd 半導体記憶装置
US20030058681A1 (en) * 2001-09-27 2003-03-27 Intel Corporation Mechanism for efficient wearout counters in destructive readout memory
KR100463599B1 (ko) * 2001-11-17 2004-12-29 주식회사 하이닉스반도체 불휘발성 강유전체 메모리 장치 및 그의 구동방법
US6873536B2 (en) 2002-04-19 2005-03-29 Texas Instruments Incorporated Shared data buffer in FeRAM utilizing word line direction segmentation
US7048237B2 (en) * 2003-04-08 2006-05-23 Air Techniques, Inc. Mounting assembly for a dental x-ray system
KR100492781B1 (ko) * 2003-05-23 2005-06-07 주식회사 하이닉스반도체 멀티비트 제어 기능을 갖는 불휘발성 강유전체 메모리 장치
KR100596849B1 (ko) * 2004-01-12 2006-07-04 주식회사 하이닉스반도체 차동 데이터를 갖는 불휘발성 강유전체 메모리 장치
JP2005243164A (ja) * 2004-02-27 2005-09-08 Toshiba Corp 半導体記憶装置
US7239557B2 (en) * 2005-06-17 2007-07-03 Micron Technology, Inc. Program method with optimized voltage level for flash memory
US7372746B2 (en) * 2005-08-17 2008-05-13 Micron Technology, Inc. Low voltage sensing scheme having reduced active power down standby current
KR100802248B1 (ko) 2005-12-30 2008-02-11 주식회사 하이닉스반도체 비휘발성 반도체 메모리 장치
US7599208B2 (en) * 2006-07-27 2009-10-06 Hynix Semiconductor Inc. Nonvolatile ferroelectric memory device and refresh method thereof
US7307911B1 (en) * 2006-07-27 2007-12-11 International Business Machines Corporation Apparatus and method for improving sensing margin of electrically programmable fuses
US7738306B2 (en) 2007-12-07 2010-06-15 Etron Technology, Inc. Method to improve the write speed for memory products
US20090248955A1 (en) * 2008-03-31 2009-10-01 Satoru Tamada Redundancy for code in rom
US7843725B2 (en) * 2008-06-11 2010-11-30 Micron Technology, Inc. M+L bit read column architecture for M bit memory cells
US7813201B2 (en) * 2008-07-08 2010-10-12 Atmel Corporation Differential sense amplifier
US9208902B2 (en) * 2008-10-31 2015-12-08 Texas Instruments Incorporated Bitline leakage detection in memories
US8023334B2 (en) * 2008-10-31 2011-09-20 Micron Technology, Inc. Program window adjust for memory cell signal line delay
KR101053525B1 (ko) * 2009-06-30 2011-08-03 주식회사 하이닉스반도체 감지 증폭기 및 이를 이용한 반도체 집적회로
US8310893B2 (en) 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8982659B2 (en) * 2009-12-23 2015-03-17 Intel Corporation Bitline floating during non-access mode for memory arrays
JP2011197819A (ja) * 2010-03-17 2011-10-06 Toshiba Corp 半導体装置
US8208314B2 (en) * 2010-06-01 2012-06-26 Aptina Imaging Corporation Sequential access memory elements
JP6097222B2 (ja) * 2010-12-24 2017-03-15 マイクロン テクノロジー, インク. メモリ用連続的ページ読み出し
JP5243568B2 (ja) 2011-02-23 2013-07-24 株式会社半導体理工学研究センター センスアンプ回路
US9432298B1 (en) * 2011-12-09 2016-08-30 P4tents1, LLC System, method, and computer program product for improving memory systems
US8953395B2 (en) * 2012-02-23 2015-02-10 Apple Inc. Memory with variable strength sense amplifier
US8954672B2 (en) * 2012-03-12 2015-02-10 Advanced Micro Devices, Inc. System and method for cache organization in row-based memories
US8996782B2 (en) * 2012-03-23 2015-03-31 Kabushiki Kaisha Toshiba Memory system and bank interleaving method
US9070424B2 (en) * 2012-06-29 2015-06-30 Samsung Electronics Co., Ltd. Sense amplifier circuitry for resistive type memory
US8848419B2 (en) * 2012-08-09 2014-09-30 Taiwan Semiconductor Manufacturing Co., Ltd. Sensing memory element logic states from bit line discharge rate that varies with resistance
US9418714B2 (en) * 2013-07-12 2016-08-16 Nvidia Corporation Sense amplifier with transistor threshold compensation
US8964496B2 (en) * 2013-07-26 2015-02-24 Micron Technology, Inc. Apparatuses and methods for performing compare operations using sensing circuitry
KR20150064880A (ko) * 2013-12-04 2015-06-12 에스케이하이닉스 주식회사 반도체 장치 및 그의 구동방법
US20150228314A1 (en) * 2014-02-10 2015-08-13 Qualcomm Incorporated Level shifters for systems with multiple voltage domains
US9330731B2 (en) * 2014-02-17 2016-05-03 Taiwan Semiconductor Manufacturing Company Ltd. Circuits in strap cell regions
KR102237735B1 (ko) 2014-06-16 2021-04-08 삼성전자주식회사 저항성 메모리 장치의 메모리 코어, 이를 포함하는 저항성 메모리 장치 및 저항성 메모리 장치의 데이터 감지 방법
US9286971B1 (en) * 2014-09-10 2016-03-15 Apple Inc. Method and circuits for low latency initialization of static random access memory
US20160093353A1 (en) * 2014-09-27 2016-03-31 Qualcomm Incorporated Dual stage sensing current with reduced pulse width for reading resistive memory
JP6514074B2 (ja) * 2015-09-11 2019-05-15 株式会社東芝 判定回路
US9542998B1 (en) * 2015-11-02 2017-01-10 Synopsys, Inc Write assist circuit integrated with leakage reduction circuit of a static random access memory for increasing the low voltage supply during write operations
US10082964B2 (en) 2016-04-27 2018-09-25 Micron Technology, Inc Data caching for ferroelectric memory
US11367480B2 (en) * 2019-12-04 2022-06-21 Marvell Asia Pte, Ltd. Memory device implementing multiple port read

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210073A (ja) 2000-01-21 2001-08-03 Sharp Corp 不揮発性半導体記憶装置およびそれを用いたシステムlsi
US20050111275A1 (en) 2003-11-26 2005-05-26 Oliver Kiehl Cost efficient row cache for DRAMs
JP2007512657A (ja) 2003-11-26 2007-05-17 インテル・コーポレーション メモリ性能を改善する方法および装置
US20070156947A1 (en) 2005-12-29 2007-07-05 Intel Corporation Address translation scheme based on bank address bits for a multi-processor, single channel memory system
JP6208796B2 (ja) 2008-08-13 2017-10-04 コーニング インコーポレイテッド 規則性メソポーラス炭素−ケイ素ナノ複合材料の合成
JP2012221338A (ja) 2011-04-12 2012-11-12 Hitachi Ltd 半導体装置、不揮発性メモリ装置の制御方法
JP2013114644A (ja) 2011-12-01 2013-06-10 Fujitsu Ltd メモリモジュールおよび半導体記憶装置
JP2016506009A (ja) 2013-01-08 2016-02-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated 開放されたロウの好適する数をもつメモリ装置

Also Published As

Publication number Publication date
CN113127379A (zh) 2021-07-16
CN109154909B (zh) 2021-05-28
KR102434162B1 (ko) 2022-08-19
US10082964B2 (en) 2018-09-25
KR102151659B1 (ko) 2020-09-04
CN113127379B (zh) 2023-12-01
US20190004713A1 (en) 2019-01-03
KR20200104432A (ko) 2020-09-03
US11520485B2 (en) 2022-12-06
EP3449376A2 (en) 2019-03-06
JP2021168225A (ja) 2021-10-21
KR20180128089A (ko) 2018-11-30
US20200379655A1 (en) 2020-12-03
JP2019515409A (ja) 2019-06-06
CN109154909A (zh) 2019-01-04
EP3449376A4 (en) 2019-12-25
KR20210128034A (ko) 2021-10-25
WO2017189579A3 (en) 2018-07-26
WO2017189579A2 (en) 2017-11-02
US20170315737A1 (en) 2017-11-02
US10776016B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
JP7137477B2 (ja) データキャッシング
JP7101216B2 (ja) Feram-dramハイブリッドメモリ
US11501814B2 (en) Parallel access techniques within memory sections through section independence
US9886991B1 (en) Techniques for sensing logic values stored in memory cells using sense amplifiers that are selectively isolated from digit lines

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210727

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210803

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210910

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210914

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211130

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220315

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220705

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220712

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220809

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R150 Certificate of patent or registration of utility model

Ref document number: 7137477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150