以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。
(射出成形機)
図1は、本実施形態による射出成形機の型開完了時の状態を示す図である。図2は、本実施形態による射出成形機の型締時の状態を示す図である。図1~図2において、X方向、Y方向およびZ方向は互いに垂直な方向である。X方向およびY方向は水平方向を表し、Z方向は鉛直方向を表す。型締装置100が横型である場合、X方向は型開閉方向であり、Y方向は射出成形機10の幅方向である。図1~図2に示すように、射出成形機10は、型締装置100と、エジェクタ装置200と、射出装置300と、移動装置400と、制御装置700と、フレーム900とを有する。以下、射出成形機10の各構成要素について説明する。
(型締装置)
型締装置100の説明では、型閉時の可動プラテン120の移動方向(図1および図2中右方向)を前方とし、型開時の可動プラテン120の移動方向(図1および図2中左方向)を後方として説明する。
型締装置100は、金型装置800の型閉、型締、型開を行う。型締装置100は例えば横型であって、型開閉方向が水平方向である。型締装置100は、固定プラテン110、可動プラテン120、トグルサポート130、タイバー140、トグル機構150、型締モータ160、運動変換機構170、および型厚調整機構180を有する。
固定プラテン110は、フレーム900に対し固定される。固定プラテン110における可動プラテン120との対向面に固定金型810が取付けられる。
可動プラテン120は、フレーム900に対し型開閉方向に移動自在とされる。フレーム900上には、可動プラテン120を案内するガイド101が敷設される。可動プラテン120における固定プラテン110との対向面に可動金型820が取付けられる。
固定プラテン110に対し可動プラテン120を進退させることにより、型閉、型締、型開が行われる。固定金型810と可動金型820とで金型装置800が構成される。
トグルサポート(リアプラテン)130は、固定プラテン110と間隔をおいて連結され、フレーム900上に型開閉方向に移動自在に載置される。尚、トグルサポート130は、フレーム900上に敷設されるガイドに沿って移動自在とされてもよい。トグルサポート130のガイドは、可動プラテン120のガイド101と共通のものでもよい。
尚、本実施形態では、固定プラテン110がフレーム900に対し固定され、トグルサポート130がフレーム900に対し型開閉方向に移動自在とされるが、トグルサポート130がフレーム900に対し固定され、固定プラテン110がフレーム900に対し型開閉方向に移動自在とされてもよい。
タイバー140は、固定プラテン110とトグルサポート130とを型開閉方向に間隔Lをおいて連結する。タイバー140は、複数本(例えば4本)用いられてよい。各タイバー140は、型開閉方向に平行とされ、型締力に応じて伸びる。少なくとも1本のタイバー140には、タイバー140の歪を検出するタイバー歪検出器141が設けられてよい。タイバー歪検出器141は、その検出結果を示す信号を制御装置700に送る。タイバー歪検出器141の検出結果は、型締力の検出などに用いられる。
尚、本実施形態では、型締力を検出する型締力検出器として、タイバー歪検出器141が用いられるが、本発明はこれに限定されない。型締力検出器は、歪ゲージ式に限定されず、圧電式、容量式、油圧式、電磁式などでもよく、その取付け位置もタイバー140に限定されない。
トグル機構150は、可動プラテン120とトグルサポート130との間に配設され、トグルサポート130に対し可動プラテン120を型開閉方向に移動させる。トグル機構150は、クロスヘッド151、一対のリンク群などで構成される。各リンク群は、ピンなどで屈伸自在に連結される第1リンク152および第2リンク153を有する。第1リンク152は可動プラテン120に対しピンなどで揺動自在に取付けられ、第2リンク153はトグルサポート130に対しピンなどで揺動自在に取付けられる。第2リンク153は、第3リンク154を介してクロスヘッド151に取付けられる。トグルサポート130に対しクロスヘッド151を進退させると、第1リンク152および第2リンク153が屈伸し、トグルサポート130に対し可動プラテン120が進退する。
尚、トグル機構150の構成は、図1および図2に示す構成に限定されない。例えば図1および図2では、各リンク群の節点の数が5つであるが、4つでもよく、第3リンク154の一端部が、第1リンク152と第2リンク153との節点に結合されてもよい。
型締モータ160は、トグルサポート130に取付けられており、トグル機構150を作動させる。型締モータ160は、トグルサポート130に対しクロスヘッド151を進退させることにより、第1リンク152および第2リンク153を屈伸させ、トグルサポート130に対し可動プラテン120を進退させる。型締モータ160は、運動変換機構170に直結されるが、ベルトやプーリなどを介して運動変換機構170に連結されてもよい。
運動変換機構170は、型締モータ160の回転運動をクロスヘッド151の直線運動に変換する。運動変換機構170は、ねじ軸171と、ねじ軸171に螺合するねじナット172とを含む。ねじ軸171と、ねじナット172との間には、ボールまたはローラが介在してよい。
型締装置100は、制御装置700による制御下で、型閉工程、型締工程、型開工程などを行う。
型閉工程では、型締モータ160を駆動してクロスヘッド151を設定速度で型閉完了位置まで前進させることにより、可動プラテン120を前進させ、可動金型820を固定金型810にタッチさせる。クロスヘッド151の位置や速度は、例えば型締モータエンコーダ161などを用いて検出する。型締モータエンコーダ161は、型締モータ160の回転を検出し、その検出結果を示す信号を制御装置700に送る。尚、クロスヘッド151の位置を検出するクロスヘッド位置検出器、およびクロスヘッド151の速度を検出するクロスヘッド速度検出器は、型締モータエンコーダ161に限定されず、一般的なものを使用できる。また、可動プラテン120の位置を検出する可動プラテン位置検出器、および可動プラテン120の速度を検出する可動プラテン速度検出器は、型締モータエンコーダ161に限定されず、一般的なものを使用できる。
型締工程では、型締モータ160をさらに駆動してクロスヘッド151を型閉完了位置から型締位置までさらに前進させることで型締力を生じさせる。型締時に可動金型820と固定金型810との間にキャビティ空間801(図2参照)が形成され、射出装置300がキャビティ空間801に液状の成形材料を充填する。充填された成形材料が固化されることで、成形品が得られる。キャビティ空間801の数は複数でもよく、その場合、複数の成形品が同時に得られる。
型開工程では、型締モータ160を駆動してクロスヘッド151を設定速度で型開完了位置まで後退させることにより、可動プラテン120を後退させ、可動金型820を固定金型810から離間させる。その後、エジェクタ装置200が可動金型820から成形品を突き出す。
型閉工程および型締工程における設定条件は、一連の設定条件として、まとめて設定される。例えば、型閉工程および型締工程におけるクロスヘッド151の速度や位置(型閉開始位置、速度切替位置、型閉完了位置、および型締位置を含む)、型締力は、一連の設定条件として、まとめて設定される。型閉開始位置、速度切替位置、型閉完了位置、および型締位置は、後側から前方に向けてこの順で並び、速度が設定される区間の始点や終点を表す。区間毎に、速度が設定される。速度切替位置は、1つでもよいし、複数でもよい。速度切替位置は、設定されなくてもよい。型締位置と型締力とは、いずれか一方のみが設定されてもよい。
型開工程における設定条件も同様に設定される。例えば、型開工程におけるクロスヘッド151の速度や位置(型開開始位置、速度切替位置、および型開完了位置を含む)は、一連の設定条件として、まとめて設定される。型開開始位置、速度切替位置、および型開完了位置は、前側から後方に向けて、この順で並び、速度が設定される区間の始点や終点を表す。区間毎に、速度が設定される。速度切替位置は、1つでもよいし、複数でもよい。速度切替位置は、設定されなくてもよい。型開開始位置と型締位置とは同じ位置であってよい。また、型開完了位置と型閉開始位置とは同じ位置であってよい。
尚、クロスヘッド151の速度や位置などの代わりに、可動プラテン120の速度や位置などが設定されてもよい。また、クロスヘッドの位置(例えば型締位置)や可動プラテンの位置の代わりに、型締力が設定されてもよい。
ところで、トグル機構150は、型締モータ160の駆動力を増幅して可動プラテン120に伝える。その増幅倍率は、トグル倍率とも呼ばれる。トグル倍率は、第1リンク152と第2リンク153とのなす角θ(以下、「リンク角度θ」とも呼ぶ)に応じて変化する。リンク角度θは、クロスヘッド151の位置から求められる。リンク角度θが180°のとき、トグル倍率が最大になる。
金型装置800の交換や金型装置800の温度変化などにより金型装置800の厚さが変化した場合、型締時に所定の型締力が得られるように、型厚調整が行われる。型厚調整では、例えば可動金型820が固定金型810にタッチする型タッチの時点でトグル機構150のリンク角度θが所定の角度になるように、固定プラテン110とトグルサポート130との間隔Lを調整する。
型締装置100は、固定プラテン110とトグルサポート130との間隔Lを調整することで、型厚調整を行う型厚調整機構180を有する。型厚調整機構180は、タイバー140の後端部に形成されるねじ軸181と、トグルサポート130に回転自在に保持されるねじナット182と、ねじ軸181に螺合するねじナット182を回転させる型厚調整モータ183とを有する。
ねじ軸181およびねじナット182は、タイバー140ごとに設けられる。型厚調整モータ183の回転は、回転伝達部185を介して複数のねじナット182に伝達されてよい。複数のねじナット182を同期して回転できる。尚、回転伝達部185の伝達経路を変更することで、複数のねじナット182を個別に回転することも可能である。
回転伝達部185は、例えば歯車などで構成される。この場合、各ねじナット182の外周に受動歯車が形成され、型厚調整モータ183の出力軸には駆動歯車が取付けられ、複数の受動歯車および駆動歯車と噛み合う中間歯車がトグルサポート130の中央部に回転自在に保持される。尚、回転伝達部185は、歯車の代わりに、ベルトやプーリなどで構成されてもよい。
型厚調整機構180の動作は、制御装置700によって制御される。制御装置700は、型厚調整モータ183を駆動して、ねじナット182を回転させることで、ねじナット182を回転自在に保持するトグルサポート130の固定プラテン110に対する位置を調整し、固定プラテン110とトグルサポート130との間隔Lを調整する。
尚、本実施形態では、ねじナット182がトグルサポート130に対し回転自在に保持され、ねじ軸181が形成されるタイバー140が固定プラテン110に対し固定されるが、本発明はこれに限定されない。
例えば、ねじナット182が固定プラテン110に対し回転自在に保持され、タイバー140がトグルサポート130に対し固定されてもよい。この場合、ねじナット182を回転させることで、間隔Lを調整できる。
また、ねじナット182がトグルサポート130に対し固定され、タイバー140が固定プラテン110に対し回転自在に保持されてもよい。この場合、タイバー140を回転させることで、間隔Lを調整できる。
さらにまた、ねじナット182が固定プラテン110に対し固定され、タイバー140がトグルサポート130に対し回転自在に保持されてもよい。この場合、タイバー140を回転させることで間隔Lを調整できる。
間隔Lは、型厚調整モータエンコーダ184を用いて検出する。型厚調整モータエンコーダ184は、型厚調整モータ183の回転量や回転方向を検出し、その検出結果を示す信号を制御装置700に送る。型厚調整モータエンコーダ184の検出結果は、トグルサポート130の位置や間隔Lの監視や制御に用いられる。尚、トグルサポート130の位置を検出するトグルサポート位置検出器、および間隔Lを検出する間隔検出器は、型厚調整モータエンコーダ184に限定されず、一般的なものを使用できる。
型厚調整機構180は、互いに螺合するねじ軸181とねじナット182の一方を回転させることで、間隔Lを調整する。複数の型厚調整機構180が用いられてもよく、複数の型厚調整モータ183が用いられてもよい。
尚、本実施形態の型厚調整機構180は、間隔Lを調整するため、タイバー140に形成されるねじ軸181とねじ軸181に螺合されるねじナット182とを有するが、本発明はこれに限定されない。
例えば、型厚調整機構180は、タイバー140の温度を調節するタイバー温調器を有してもよい。タイバー温調器は、各タイバー140に取付けられ、複数本のタイバー140の温度を連携して調整する。タイバー140の温度が高いほど、タイバー140は熱膨張によって長くなり、間隔Lが大きくなる。複数本のタイバー140の温度は独立に調整することも可能である。
タイバー温調器は、例えばヒータなどの加熱器を含み、加熱によってタイバー140の温度を調節する。タイバー温調器は、水冷ジャケットなどの冷却器を含み、冷却によってタイバー140の温度を調節してもよい。タイバー温調器は、加熱器と冷却器の両方を含んでもよい。
尚、本実施形態の型締装置100は、型開閉方向が水平方向である横型であるが、型開閉方向が上下方向である竪型でもよい。竪型の型締装置は、下プラテン、上プラテン、トグルサポート、タイバー、トグル機構、および型締モータなどを有する。下プラテンと上プラテンのうち、いずれか一方が固定プラテン、残りの一方が可動プラテンとして用いられる。下プラテンには下金型が取付けられ、上プラテンには上金型が取付けられる。下金型と上金型とで金型装置が構成される。下金型は、ロータリーテーブルを介して下プラテンに取付けられてもよい。トグルサポートは、下プラテンの下方に配設され、タイバーを介して上プラテンと連結される。タイバーは、上プラテンとトグルサポートとを型開閉方向に間隔をおいて連結する。トグル機構は、トグルサポートと下プラテンとの間に配設され、可動プラテンを昇降させる。型締モータは、トグル機構を作動させる。型締装置が竪型である場合、タイバーの本数は通常3本である。尚、タイバーの本数は特に限定されない。
尚、本実施形態の型締装置100は、駆動源として、型締モータ160を有するが、型締モータ160の代わりに、油圧シリンダを有してもよい。また、型締装置100は、型開閉用にリニアモータを有し、型締用に電磁石を有してもよい。
(エジェクタ装置)
エジェクタ装置200の説明では、型締装置100の説明と同様に、型閉時の可動プラテン120の移動方向(図1および図2中右方向)を前方とし、型開時の可動プラテン120の移動方向(図1および図2中左方向)を後方として説明する。
エジェクタ装置200は、金型装置800から成形品を突き出す。エジェクタ装置200は、エジェクタモータ210、運動変換機構220、およびエジェクタロッド230などを有する。
エジェクタモータ210は、可動プラテン120に取付けられる。エジェクタモータ210は、運動変換機構220に直結されるが、ベルトやプーリなどを介して運動変換機構220に連結されてもよい。
運動変換機構220は、エジェクタモータ210の回転運動をエジェクタロッド230の直線運動に変換する。運動変換機構220は、ねじ軸と、ねじ軸に螺合するねじナットとを含む。ねじ軸と、ねじナットとの間には、ボールまたはローラが介在してよい。
エジェクタロッド230は、可動プラテン120の貫通穴において進退自在とされる。エジェクタロッド230の前端部は、可動金型820の内部に進退自在に配設される可動部材830と接触する。エジェクタロッド230の前端部は、可動部材830と連結されていても、連結されていなくてもよい。
エジェクタ装置200は、制御装置700による制御下で、突き出し工程を行う。
突き出し工程では、エジェクタモータ210を駆動してエジェクタロッド230を設定速度で待機位置から突き出し位置まで前進させることにより、可動部材830を前進させ、成形品を突き出す。その後、エジェクタモータ210を駆動してエジェクタロッド230を設定速度で後退させ、可動部材830を元の待機位置まで後退させる。エジェクタロッド230の位置や速度は、例えばエジェクタモータエンコーダ211を用いて検出する。エジェクタモータエンコーダ211は、エジェクタモータ210の回転を検出し、その検出結果を示す信号を制御装置700に送る。尚、エジェクタロッド230の位置を検出するエジェクタロッド位置検出器、およびエジェクタロッド230の速度を検出するエジェクタロッド速度検出器は、エジェクタモータエンコーダ211に限定されず、一般的なものを使用できる。
(射出装置)
射出装置300の説明では、型締装置100の説明やエジェクタ装置200の説明とは異なり、充填時のスクリュ330の移動方向(図1および図2中左方向)を前方とし、計量時のスクリュ330の移動方向(図1および図2中右方向)を後方として説明する。
射出装置300は、フレーム900に対し進退自在なスライドベース301に設置され、金型装置800に対し進退自在とされる。射出装置300は、金型装置800にタッチし、金型装置800内のキャビティ空間801に成形材料を充填する。射出装置300は、例えば、シリンダ310、ノズル320、スクリュ330、計量モータ340、射出モータ350、圧力検出器360などを有する。
シリンダ310は、供給口311から内部に供給された成形材料を加熱する。成形材料は、例えば樹脂などを含む。成形材料は、例えばペレット状に形成され、固体の状態で供給口311に供給される。供給口311はシリンダ310の後部に形成される。シリンダ310の後部の外周には、水冷シリンダなどの冷却器312が設けられる。冷却器312よりも前方において、シリンダ310の外周には、バンドヒータなどの加熱器313と温度検出器314とが設けられる。
シリンダ310は、シリンダ310の軸方向(図1および図2中左右方向)に複数のゾーンに区分される。各ゾーンに加熱器313と温度検出器314とが設けられる。ゾーン毎に、温度検出器314の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。
ノズル320は、シリンダ310の前端部に設けられ、金型装置800に対し押し付けられる。ノズル320の外周には、加熱器313と温度検出器314とが設けられる。ノズル320の検出温度が設定温度になるように、制御装置700が加熱器313を制御する。
スクリュ330は、シリンダ310内において回転自在に且つ進退自在に配設される。スクリュ330を回転させると、スクリュ330の螺旋状の溝に沿って成形材料が前方に送られる。成形材料は、前方に送られながら、シリンダ310からの熱によって徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。その後、スクリュ330を前進させると、スクリュ330前方に蓄積された液状の成形材料がノズル320から射出され、金型装置800内に充填される。
スクリュ330の前部には、スクリュ330を前方に押すときにスクリュ330の前方から後方に向かう成形材料の逆流を防止する逆流防止弁として、逆流防止リング331が進退自在に取付けられる。
逆流防止リング331は、スクリュ330を前進させるときに、スクリュ330前方の成形材料の圧力によって後方に押され、成形材料の流路を塞ぐ閉塞位置(図2参照)までスクリュ330に対し相対的に後退する。これにより、スクリュ330前方に蓄積された成形材料が後方に逆流するのを防止する。
一方、逆流防止リング331は、スクリュ330を回転させるときに、スクリュ330の螺旋状の溝に沿って前方に送られる成形材料の圧力によって前方に押され、成形材料の流路を開放する開放位置(図1参照)までスクリュ330に対し相対的に前進する。これにより、スクリュ330の前方に成形材料が送られる。
逆流防止リング331は、スクリュ330と共に回転する共回りタイプと、スクリュ330と共に回転しない非共回りタイプのいずれでもよい。
尚、射出装置300は、スクリュ330に対し逆流防止リング331を開放位置と閉塞位置との間で進退させる駆動源を有していてもよい。
計量モータ340は、スクリュ330を回転させる。スクリュ330を回転させる駆動源は、計量モータ340には限定されず、例えば油圧ポンプなどでもよい。
射出モータ350は、スクリュ330を進退させる。射出モータ350とスクリュ330との間には、射出モータ350の回転運動をスクリュ330の直線運動に変換する運動変換機構などが設けられる。運動変換機構は、例えばねじ軸と、ねじ軸に螺合するねじナットとを有する。ねじ軸とねじナットの間には、ボールやローラなどが設けられてよい。スクリュ330を進退させる駆動源は、射出モータ350には限定されず、例えば油圧シリンダなどでもよい。
圧力検出器360は、射出モータ350とスクリュ330との間で伝達される力を検出する。検出した力は、制御装置700で圧力に変換される。圧力検出器360は、射出モータ350とスクリュ330との間の力の伝達経路に設けられ、圧力検出器360に作用する力を検出する。
圧力検出器360は、その検出結果を示す信号を制御装置700に送る。圧力検出器360の検出結果は、スクリュ330が成形材料から受ける圧力、スクリュ330に対する背圧、スクリュ330から成形材料に作用する圧力などの制御や監視に用いられる。
射出装置300は、制御装置700による制御下で、計量工程、充填工程および保圧工程などを行う。
計量工程では、計量モータ340を駆動してスクリュ330を設定回転数で回転させ、スクリュ330の螺旋状の溝に沿って成形材料を前方に送る。これに伴い、成形材料が徐々に溶融される。液状の成形材料がスクリュ330の前方に送られシリンダ310の前部に蓄積されるにつれ、スクリュ330が後退させられる。スクリュ330の回転数は、例えば計量モータエンコーダ341を用いて検出する。計量モータエンコーダ341は、計量モータ340の回転を検出し、その検出結果を示す信号を制御装置700に送る。尚、スクリュ330の回転数を検出するスクリュ回転数検出器は、計量モータエンコーダ341に限定されず、一般的なものを使用できる。
計量工程では、スクリュ330の急激な後退を制限すべく、射出モータ350を駆動してスクリュ330に対して設定背圧を加えてよい。スクリュ330に対する背圧は、例えば圧力検出器360を用いて検出する。圧力検出器360は、その検出結果を示す信号を制御装置700に送る。スクリュ330が計量完了位置まで後退し、スクリュ330の前方に所定量の成形材料が蓄積されると、計量工程が完了する。
充填工程では、射出モータ350を駆動してスクリュ330を設定速度で前進させ、スクリュ330の前方に蓄積された液状の成形材料を金型装置800内のキャビティ空間801に充填させる。スクリュ330の位置や速度は、例えば射出モータエンコーダ351を用いて検出する。射出モータエンコーダ351は、射出モータ350の回転を検出し、その検出結果を示す信号を制御装置700に送る。スクリュ330の位置が設定位置に達すると、充填工程から保圧工程への切替(所謂、V/P切替)が行われる。V/P切替が行われる位置をV/P切替位置とも呼ぶ。スクリュ330の設定速度は、スクリュ330の位置や時間などに応じて変更されてもよい。
尚、充填工程においてスクリュ330の位置が設定位置に達した後、その設定位置にスクリュ330を一時停止させ、その後にV/P切替が行われてもよい。V/P切替の直前において、スクリュ330の停止の代わりに、スクリュ330の微速前進または微速後退が行われてもよい。また、スクリュ330の位置を検出するスクリュ位置検出器、およびスクリュ330の速度を検出するスクリュ速度検出器は、射出モータエンコーダ351に限定されず、一般的なものを使用できる。
保圧工程では、射出モータ350を駆動してスクリュ330を前方に押し、スクリュ330の前端部における成形材料の圧力(以下、「保持圧力」とも呼ぶ。)を設定圧に保ち、シリンダ310内に残る成形材料を金型装置800に向けて押す。金型装置800内での冷却収縮による不足分の成形材料を補充できる。保持圧力は、例えば圧力検出器360を用いて検出する。圧力検出器360は、その検出結果を示す信号を制御装置700に送る。保持圧力の設定値は、保圧工程の開始からの経過時間などに応じて変更されてもよい。
保圧工程では金型装置800内のキャビティ空間801の成形材料が徐々に冷却され、保圧工程完了時にはキャビティ空間801の入口が固化した成形材料で塞がれる。この状態はゲートシールと呼ばれ、キャビティ空間801からの成形材料の逆流が防止される。保圧工程後、冷却工程が開始される。冷却工程では、キャビティ空間801内の成形材料の固化が行われる。成形サイクル時間の短縮のため、冷却工程中に計量工程が行われてよい。
尚、本実施形態の射出装置300は、インライン・スクリュ方式であるが、プリプラ方式などでもよい。プリプラ方式の射出装置は、可塑化シリンダ内で溶融された成形材料を射出シリンダに供給し、射出シリンダから金型装置内に成形材料を射出する。可塑化シリンダ内にはスクリュが回転自在にまたは回転自在に且つ進退自在に配設され、射出シリンダ内にはプランジャが進退自在に配設される。
また、本実施形態の射出装置300は、シリンダ310の軸方向が水平方向である横型であるが、シリンダ310の軸方向が上下方向である竪型であってもよい。竪型の射出装置300と組み合わされる型締装置は、竪型でも横型でもよい。同様に、横型の射出装置300と組み合わされる型締装置は、横型でも竪型でもよい。
(移動装置)
移動装置400の説明では、射出装置300の説明と同様に、充填時のスクリュ330の移動方向(図1および図2中左方向)を前方とし、計量時のスクリュ330の移動方向(図1および図2中右方向)を後方として説明する。
移動装置400は、金型装置800に対し射出装置300を進退させる。また、移動装置400は、金型装置800に対しノズル320を押し付け、ノズルタッチ圧力を生じさせる。移動装置400は、液圧ポンプ410、駆動源としてのモータ420、液圧アクチュエータとしての液圧シリンダ430などを含む。
液圧ポンプ410は、第1ポート411と、第2ポート412とを有する。液圧ポンプ410は、両方向回転可能なポンプであり、モータ420の回転方向を切り替えることにより、第1ポート411および第2ポート412のいずれか一方から作動液(例えば油)を吸入し他方から吐出して液圧を発生させる。尚、液圧ポンプ410はタンクから作動液を吸引して第1ポート411および第2ポート412のいずれか一方から作動液を吐出することもできる。
モータ420は、液圧ポンプ410を作動させる。モータ420は、制御装置700からの制御信号に応じた回転方向および回転トルクで液圧ポンプ410を駆動する。モータ420は、電動モータであってよく、電動サーボモータであってよい。
液圧シリンダ430は、シリンダ本体431、ピストン432、およびピストンロッド433を有する。シリンダ本体431は、射出装置300に対して固定される。ピストン432は、シリンダ本体431の内部を、第1室としての前室435と、第2室としての後室436とに区画する。ピストンロッド433は、固定プラテン110に対して固定される。
液圧シリンダ430の前室435は、第1流路401を介して、液圧ポンプ410の第1ポート411と接続される。第1ポート411から吐出された作動液が第1流路401を介して前室435に供給されることで、射出装置300が前方に押される。射出装置300が前進され、ノズル320が固定金型810に押し付けられる。前室435は、液圧ポンプ410から供給される作動液の圧力によってノズル320のノズルタッチ圧力を生じさせる圧力室として機能する。
一方、液圧シリンダ430の後室436は、第2流路402を介して液圧ポンプ410の第2ポート412と接続される。第2ポート412から吐出された作動液が第2流路402を介して液圧シリンダ430の後室436に供給されることで、射出装置300が後方に押される。射出装置300が後退され、ノズル320が固定金型810から離間される。
尚、本実施形態では移動装置400は液圧シリンダ430を含むが、本発明はこれに限定されない。例えば、液圧シリンダ430の代わりに、電動モータと、その電動モータの回転運動を射出装置300の直線運動に変換する運動変換機構とが用いられてもよい。
(制御装置)
制御装置700は、例えばコンピュータで構成され、図1~図2に示すようにCPU(Central Processing Unit)701と、メモリなどの記憶媒体702と、入力インターフェース703と、出力インターフェース704とを有する。制御装置700は、記憶媒体702に記憶されたプログラムをCPU701に実行させることにより、各種の制御を行う。また、制御装置700は、入力インターフェース703で外部からの信号を受信し、出力インターフェース704で外部に信号を送信する。
制御装置700は、型閉工程や型締工程、型開工程などを繰り返し行うことにより、成形品を繰り返し製造する。また、制御装置700は、型締工程の間に、計量工程や充填工程、保圧工程などを行う。成形品を得るための一連の動作、例えば計量工程の開始から次の計量工程の開始までの動作を「ショット」または「成形サイクル」とも呼ぶ。また、1回のショットに要する時間を「成形サイクル時間」とも呼ぶ。
一回の成形サイクルは、例えば、計量工程、型閉工程、型締工程、充填工程、保圧工程、冷却工程、型開工程、および突き出し工程をこの順で有する。ここでの順番は、各工程の開始の順番である。充填工程、保圧工程、および冷却工程は、型締工程の開始から型締工程の終了までの間に行われる。型締工程の終了は型開工程の開始と一致する。尚、成形サイクル時間の短縮のため、同時に複数の工程を行ってもよい。例えば、計量工程は、前回の成形サイクルの冷却工程中に行われてもよく、この場合、型閉工程が成形サイクルの最初に行われることとしてもよい。また、充填工程は、型閉工程中に開始されてもよい。また、突き出し工程は、型開工程中に開始されてもよい。ノズル320の流路を開閉する開閉弁が設けられる場合、型開工程は、計量工程中に開始されてもよい。計量工程中に型開工程が開始されても、開閉弁がノズル320の流路を閉じていれば、ノズル320から成形材料が漏れないためである。
制御装置700は、操作装置750や表示装置760と接続されている。操作装置750は、ユーザによる入力操作を受け付け、入力操作に応じた信号を制御装置700に出力する。表示装置760は、制御装置700による制御下で、操作装置750における入力操作に応じた操作画面を表示する。
操作画面は、射出成形機10の設定などに用いられる。操作画面は、複数用意され、切り替えて表示されたり、重ねて表示されたりする。ユーザは、表示装置760で表示される操作画面を見ながら、操作装置750を操作することにより射出成形機10の設定(設定値の入力を含む)などを行う。
操作装置750および表示装置760は、例えばタッチパネルで構成され、一体化されてよい。尚、本実施形態の操作装置750および表示装置760は、一体化されているが、独立に設けられてもよい。また、操作装置750は、複数設けられてもよい。
(トグル機構における潤滑構成)
次に、トグル機構150の摺動面に潤滑剤を供給する構成について、図3を用いて説明する。図3は、本実施形態に係る射出成形機10が備えるトグル機構150及び潤滑剤供給装置500の構成図である。
図3に示すように、可動プラテン120の軸受121と第1リンク152を連結ピン50により連結する連結部40が形成されている。同様に、第1リンク152と第2リンク153を連結ピン51により連結する連結部40が形成されている。第2リンク153とトグルサポート130の軸受131を連結ピン52により連結する連結部40が形成されている。第2リンク153と第3リンク154を連結ピン53により連結する連結部40が形成されている。第3リンク154とクロスヘッド151を連結ピン54により連結する連結部40が形成されている。
連結ピン50の連結部40において、連結ピン50は、一方の連結部材である第1リンク152の軸受穴に回り止め固定され、他方の連結部材である可動プラテン120の軸受121にブッシュ55(図4参照)が圧入され、ブッシュ55と連結ピン50の間の摺動面が潤滑されている。なお、連結ピン50は、可動プラテン120の軸受穴に回り止め固定され、第1リンク152の軸受にブッシュが圧入され、ブッシュと連結ピン50の間の摺動面が潤滑されていてもよい。同様に、連結ピン51~54の連結部40において、連結ピン51~54は、一方の連結部材と回り止め固定され、他方の連結部材にブッシュが圧入され、ブッシュと連結ピン51~54の間の摺動面が潤滑されていてもよい。
図3及び以下の説明において、連結ピン50の連結部40における摺動面を潤滑する構成を例に説明するが、その他の連結ピン51~54の連結部40における摺動面を潤滑する構成に適用してもよい。また、連結部40のうち少なくとも1つの連結部において適用してもよい。
射出成形機10は、潤滑剤供給装置500を備えている。潤滑剤供給装置500は、リザーバタンク501と、供給ポンプ502と、回収ポンプ503と、気体・潤滑剤分離器504と、を有している。なお、潤滑剤供給装置500は、各連結部40ごとに独立して設けられていてもよく、流路が分岐して共用する構成であってもよい。
リザーバタンク501は、潤滑剤を貯留可能な容器である。なお、潤滑剤の種類は限定するものではなく、例えば、グリスであってもよく、油であってもよい。供給ポンプ502は、リザーバタンク501から連結部40の供給接続口61(図4参照)に潤滑剤を供給する。
回収ポンプ503は、気体・潤滑剤分離器504を介して連結部40の回収接続口69(図4参照)と接続されており、回収接続口69から空気を吸引することにより潤滑剤を回収する。空気と共に回収された潤滑剤は、気体・潤滑剤分離器504で空気と潤滑剤が分離され、分離された空気は回収ポンプ503に吸引され、分離された潤滑剤は図示しないフィルタで異物が除去され、リザーバタンク501に戻される。なお、潤滑剤供給装置500の流路に示す矢印は潤滑剤の流れの向きを示す。
図4は、連結部40のA-A断面図である。図5は、本実施形態の連結部40における連結ピン50とブッシュ55の潤滑構造を説明する断面模式図である。なお、図5においては、図4における2つのブッシュ55のうちの一方のブッシュ55と連結ピン50のみを図示しており、第1リンク152を省略して図示している。また、図5は、連結ピン50の軸方向を紙面の左右方向としている。なお、連結ピン50の軸方向は、Y方向(図1参照)である。
連結ピン50には、端面に供給接続口61が設けられており、供給接続口61から連結ピン50の軸方向に伸びる供給路62が設けられている。即ち、供給路62の一端は供給接続口61が設けられている。供給路62の他端側に連結ピン50の径方向に延びる供給路63が設けられており、供給路63の他端側は連結ピン50の円周面に設けられた供給路開口部64で開口している。
可動プラテン120の軸受121に圧入されるブッシュ55の内周面には、リング状の溝である収集溝66が形成されている。収集溝66は、連結ピン50の軸方向について、供給路開口部64を挟むように両外側に配置されている。
2つの収集溝66の間において、ブッシュ55の内周面と連結ピン50の円周面との間には、潤滑剤が供給される軸受隙間65が形成される。また、収集溝66よりも軸方向の外側において、ブッシュ55の内周面と連結ピン50の円周面との間には、外側軸受隙間65Sが形成される。
また、ブッシュ55の外周面には、2つの収集溝66をつなぐ凹部溝67aが設けられている。ブッシュ55が軸受121に圧入されることにより、この凹部溝67aと軸受121の軸受穴の内周面との間に、回収路67が形成される。
ブッシュ55が圧入される軸受121には、軸受穴の内周面から外周面へと連通する回収路68が設けられている。回収路68の内周面側は回収路67に連通する。回収路68の外周面側は回収接続口69となる。なお、ブッシュ55を軸受121に圧入する際、回収路68の内周面側開口部がブッシュ55の凹部溝67aに面するように圧入することにより、回収路67と回収路68とを連通させることができる。
次に、潤滑剤の流れについて説明する。供給ポンプ502により供給接続口61から供給された潤滑剤は、矢印A1に示すように、供給路62を流れ、供給路63に分岐して流れ、連結ピン50の円周面に形成された供給路開口部64へと供給される。そして、供給路開口部64から供給された潤滑剤は、供給路開口部64からブッシュ55の内周面と連結ピン50の外周面との隙間である軸受隙間65を通り、収集溝66へと流れることで、ブッシュ55と連結ピン50の摺動面を潤滑する。
回収ポンプ503の動作により、収集溝66の内部は外空間よりも負圧となっている。このため、外側軸受隙間65Sには外空間から収集溝66へ向けての空気の流れが発生し、外側軸受隙間65Sにシール部材等を用いなくても、潤滑剤が外側軸受隙間65Sを介して外空間に流出することを防止することができる。
そして、外空間から外側軸受隙間65Sを介して収集溝66に流入する空気は、矢印B1に示すように、回収路67、回収路68を通り、回収接続口69から気体・潤滑剤分離器504を介して回収ポンプ503に吸引される。また、軸受隙間65から収集溝66に流入した潤滑剤も、矢印B1で示す空気の流れによって、回収路67、回収路68を通り、回収接続口69から気体・潤滑剤分離器504に流入する。その後、気体・潤滑剤分離器504で空気と分離された潤滑剤は図示しないフィルタで異物が除去され、リザーバタンク501に戻される。
なお、供給接続口61、供給路62,63および供給路開口部64は、連結ピン50に形成されているものとして説明したが、軸受121およびブッシュ55に形成され、ブッシュ55の内周面に設けられた供給路開口部から軸受隙間65に潤滑剤を供給するようにしてもよい。また、収集溝66は、ブッシュ55に形成されているものとして説明したが、連結ピン50に形成されていてもよい。
図6は、連結部から潤滑剤および空気を排出する排出機構70の構成の一例を説明する図である。ここでは、連結部として4つの連結部40A~40Dを備えている構成を例に説明する。なお、連結部40A~40Dは、図3に示す連結ピン50~54の連結部40のいずれかであってもよい。
排出機構70は、回収ポンプ503と、気体・潤滑剤分離器504と、流路を形成する配管71A~77および合流部72A,72B,74と、で構成されている。
図6に示す例においては、供給ポンプ502により、リザーバタンク501から各連結部40A~40Dの供給接続口61に潤滑剤が供給される。
また、連結部40Aの回収接続口69には配管71Aの一端が接続され、配管71Aの他端は合流部72Aの一方の供給口と接続される。連結部40Bの回収接続口69には配管71Bの一端が接続され、配管71Bの他端は合流部72Aの他方の供給口と接続される。合流部72Aは、2つの供給口と1つの吐出口を有している。合流部72Aの吐出口には配管73Aの一端が接続され、配管73Aの他端は合流部74の一方の供給口と接続される。
同様に、連結部40Cの回収接続口69には配管71Cの一端が接続され、配管71Cの他端は合流部72Bの一方の供給口と接続される。連結部40Dの回収接続口69には配管71Dの一端が接続され、配管71Dの他端は合流部72Bの他方の供給口と接続される。合流部72Bは、2つの供給口と1つの吐出口を有している。合流部72Bの吐出口には配管73Bの一端が接続され、配管73Bの他端は合流部74の他方の供給口と接続される。
合流部74は、2つの供給口と1つの吐出口を有している。合流部74の吐出口には配管75の一端が接続され、配管75の他端は気体・潤滑剤分離器504の入口と接続される。気体・潤滑剤分離器504の気体出口には配管76の一端が接続される。配管76の他端は回収ポンプ503の吸込口と接続される。回収ポンプ503の吐出口には配管77が接続されている。
このような構成により、連結部40Aから排出された潤滑剤および空気は、回収接続口69から配管71A、合流部72A、配管73A、合流部74、配管75を通って、気体・潤滑剤分離器504へと流入する。そして、気体・潤滑剤分離器504で気体(空気)と潤滑剤が分離され、分離された潤滑剤は貯留される。分離された気体は配管76を介して回収ポンプ503に吸引され、さらに配管77を通って、外部に排出される。また、連結部40B~40Dについても同様である。
ところで、ブッシュ55の摩耗により発生した金属粉によって配管に詰まりが生じたり、外側軸受隙間65Sを介して外空間から収集溝66に流入する粉塵によって外側軸受隙間65Sに詰まりが生じたりすることにより、回収ポンプ503による収集溝66の吸引が好適に実行できなくなるおそれがある。また、配管の破損や接続不良、回収ポンプ503の故障等によっても、回収ポンプ503による収集溝66の吸引が好適に実行できなくなるおそれがある。収集溝66の吸引が好適に実行できなくなると、軸受隙間65から収集溝66に流入した潤滑剤が排出されず、潤滑剤が外側軸受隙間65Sから外空間に漏れ出すおそれがる。
このため、本実施形態に係る射出成形機10は、回収ポンプ503による収集溝66内の吸引が正常に作動しているかを検出する検出器505(後述する図7参照)を備えている。
回収ポンプ503による収集溝66の吸引状態を検出する検出器505として、例えば気体用流量計を用いてもよい。気体用流量計は、排出機構70の流路上に配置され、検出した流量が所定の閾値以上であれば、回収ポンプ503による収集溝66の吸引が正常に作動していると判定することができる。なお、気体用流量計に潤滑剤を含んだ空気が流入することは好ましくないため、例えば、気体・潤滑剤分離器504の気体出口と回収ポンプ503とを接続する配管76を流れる気体の流量を検出する検出器位置83に設けられている。また、その他の配管に設ける場合、気体用流量計と図示しない潤滑剤分離手段との併用が好ましい。
また、検出器505として、圧力計を用いてもよい。圧力計は、排出機構70の流路から分岐して配置される。流路を流れる空気の流速が早いほど圧力計で検出される値も小さくなる。このため、圧力計の検出値に基づいて、回収ポンプ503による収集溝66内の潤滑剤の吸引が正常に作動していると判定することができる。
また、検出器505として、レーザ光の発光素子と受光素子の組を用いてもよい。排出機構70の配管にレーザ光を透過する窓を設けて、配管の外側に設けられた発光素子からのレーザ光が窓を介して流路内を横断し、さらに窓を介して配管の外側に設けられた受光素子に入射するように配置されている。回収ポンプ503による収集溝66内の潤滑剤の吸引が正常に作動している場合、流路内を潤滑剤が流れるのでレーザ光が遮られる。このため、受光素子でレーザ光を検知できたか否かを検出することにより、回収ポンプ503による収集溝66の吸引が正常に作動しているか否かを判定することができる。
また、検出器505として、ビデオカメラを用いてもよい。配管の外側から流路内を撮像可能な窓を設けて、ビデオカメラで流路内を流れる潤滑剤を撮像することにより、潤滑剤が流れているか否かを判定することができる。
次に、検出器505を設ける位置と検知範囲について説明する。例えば、検出器505を配管71Aの検出器位置81Aにのみ設けた場合、配管71A,73A,75,76,77、回収ポンプ503のいずれかに詰まり等の異常が発生すると、その異常を検知することができる。但し、検出器位置81Aに設けた検出器505だけでは、どの位置で詰まり等の異常が生じているかを特定することはできない。検出器位置81A~81Dにのみ設けた場合も同様である。
検出器505を配管73Aの検出器位置82Aに設けた場合、配管73A,75,76,77、回収ポンプ503のいずれかに詰まり等の異常が発生すると、その異常を検知することができる。但し、検出器位置82Aに設けた検出器505だけでは、どの位置で詰まり等の異常が生じているかを特定することはできない。検出器位置82Bにのみ設けた場合も同様である。
また、検出器505を配管71A~71Dのそれぞれの検出器位置81A~81Dに設けた場合、配管71A~71D,73A~73B,75,76,77、回収ポンプ503のいずれかに詰まり等の異常が発生すると、その異常を検知することができる。また、検出器位置81A~81Dに検出器505を設けたことにより、どの位置で詰まり等の異常が生じているかをある程度特定することができる。
図7は、本実施形態に係る射出成形機10が備える制御装置700の構成要素を機能ブロックで示す図である。なお、図7に図示される各機能ブロックは概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。各機能ブロックの全部または一部を、任意の単位で機能的または物理的に分散・統合して構成することが可能である。各機能ブロックにて行われる各処理機能は、その全部または任意の一部が、CPUにて実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現されうる。
制御装置700は、検出部710と、判定部720と、潤滑制御部730と、工程制御部740と、を有している。検出部710は、検出器505の検出値を取得する。判定部720は、検出部710で取得した検出値に基づいて、排出機構70の作動状態を判定する。潤滑制御部730は、供給ポンプ502および回収ポンプ503の作動・停止を制御する。工程制御部740は、成形サイクルの各工程(計量工程、型閉工程、型締工程、充填工程、保圧工程、冷却工程、型開工程、突き出し工程)に沿って、射出成形機10の各部(ここでは、型締モータ160を例示する。)を制御する。
次に、図8を用いて本実施形態に係る射出成形機10が備える潤滑剤供給装置500の制御について説明する。図8は、本実施形態に係る射出成形機10が備える潤滑剤供給装置500の制御を説明するフローチャートである。
ステップS101において、制御装置700の潤滑制御部730は、回収ポンプ503を作動させる。
ステップS102において、制御装置700の検出部710は、検出器505から排出機構70の作動状態に関する検出値を取得する。例えば、検出器505が流量計である場合、検出部710は流量計の検出値である流量を取得する。
ステップS103において、制御装置700の判定部720は、ステップS102で取得した検出値から排出機構70が正常に作動しているか否かを判定する。例えば、検出器505が流量計である場合、判定部720は検出した流量が所定の閾値以上である場合、排出機構70が正常に作動していると判定し、閾値未満の場合、排出機構70が正常に作動していないと判定する。排出機構70が正常に作動していると判定した場合(S103・Yes)、ステップS107に進み、供給ポンプ502の作動を許可すると判定する(作動許可判定)。そして、制御装置700の処理はステップS108に進む。
一方、回収ポンプ503が正常に作動していないと判定した場合(S103・No)、ステップS104に進み、供給ポンプ502の作動を許可しないと判定する(作動不許可判定)。そして、ステップS105において、潤滑制御部730は、回収ポンプ503を停止させる。また、ステップS106において、判定部720は、潤滑が好適におこなわれていないことを示すエラー信号を送信し、処理を終了する。なお、エラー信号の発報により、制御装置700はその旨を表示装置760に表示させてもよい。
ステップS108において、潤滑制御部730は、供給ポンプ502を作動させる。
ステップS109において、検出部710は、検出器505から排出機構70の作動状態に関する検出値を取得する。例えば、ステップS102と同様に検出器505が流量計である場合、検出部710は流量計の検出値である流量を取得する。
ステップS110において、制御装置700の判定部720は、ステップS109で取得した検出値から排出機構70が正常に作動しているか否かを判定する。例えば、ステップS103と同様に検出器505が流量計である場合、判定部720は検出した流量が所定の閾値以上である場合、排出機構70が正常に作動していると判定し、閾値未満の場合、排出機構70が正常に作動していないと判定する。排出機構70が正常に作動していると判定した場合(S110・Yes)、ステップS114に進み、供給ポンプ502の作動を許可すると判定する(作動許可判定)。そして、制御装置700の処理はステップS115に進む。
一方、回収ポンプ503が正常に作動していないと判定した場合(S110・No)、ステップS111に進み、供給ポンプ502の作動を許可しないと判定する(作動不許可判定)。そして、ステップS112において、潤滑制御部730は、供給ポンプ502および回収ポンプ503を停止させる。また、ステップS113において、判定部720は、潤滑が好適におこなわれていないことを示すエラー信号を送信し、処理を終了する。なお、エラー信号の発報により、制御装置700はその旨を表示装置760に表示させてもよい。また、工程制御部740は、型締モータ160を停止させてもよい。
ステップS115において、判定部720は、射出成形機10の運転を終了するか否かを判定する。運転を終了する場合(S115・Yes)、制御装置700の処理はステップS116に進む。ステップS116において、潤滑制御部730は、供給ポンプ502および回収ポンプ503を停止させ、処理を終了する。
以上、本実施形態に係る射出成形機10によれば、排出機構70が正常に作動していないときは、供給ポンプ502による軸受隙間65への潤滑剤の供給を停止する。これにより、収集溝66から潤滑剤があふれ、外側軸受隙間65Sから外部に潤滑剤が流出することを防止できる。これにより、潤滑剤による装置の汚れを防止して、成形品に潤滑剤が付着することを防止することができる。
また、ステップS101からステップS108に示すように、供給ポンプ502を作動させる前に排出機構70が正常に作動しているか否かを判定して、排出機構70が正常に作動していないときは供給ポンプ502の作動を不許可とすることにより、外側軸受隙間65Sから外部に潤滑剤が流出することを防止できる。
なお、図8の例において、ステップS101で供給ポンプ502を作動させる前に回収ポンプ503を作動させて、排出機構70の作動状態を判定した後に供給ポンプ502を作動させるものとしたがこれに限られるものではなく、供給ポンプ502と回収ポンプ503を動作させてから、作動状態を取得するようにしてもよい。即ち、ステップS101で回収ポンプ503と供給ポンプ502を作動させた後に、ステップS109に進み、その後、排出機構70の作動状態を判定するようにしてもよい。これにより、射出成形機10の起動時における立ち上げ時間を短縮することができる。
以上、射出成形機の実施形態等について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。