JP7130484B2 - トナー粒子の製造方法 - Google Patents

トナー粒子の製造方法 Download PDF

Info

Publication number
JP7130484B2
JP7130484B2 JP2018138170A JP2018138170A JP7130484B2 JP 7130484 B2 JP7130484 B2 JP 7130484B2 JP 2018138170 A JP2018138170 A JP 2018138170A JP 2018138170 A JP2018138170 A JP 2018138170A JP 7130484 B2 JP7130484 B2 JP 7130484B2
Authority
JP
Japan
Prior art keywords
toner
acid
particles
polymerization
polymerizable monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018138170A
Other languages
English (en)
Other versions
JP2020016716A (ja
Inventor
優 笹野
武 辻野
康弘 橋本
順也 浅岡
洸紀 井上
健太 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018138170A priority Critical patent/JP7130484B2/ja
Publication of JP2020016716A publication Critical patent/JP2020016716A/ja
Application granted granted Critical
Publication of JP7130484B2 publication Critical patent/JP7130484B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、電子写真法による画像形成に使用される静電荷像現像用のトナー粒子の製造方法に関する。
近年、複写機やプリンターなどの画像形成装置に対する品質要求は厳しく、トナーに要求される性能も高度なものとなっている。特に、フルカラー複写機又はフルカラープリンタなどにおいては、小型化、軽量化、省エネ、高画質化や環境対応への要求が強く求められており、耐久性や低温定着性、不純物の低減の更なる向上が求められている。トナーとしても、より良好な耐久性や低温定着性、トナーの小粒径化、帯電性の環境差低減が求められている。
その要求に対して、重合によってトナーを製造する方法において、コア-シェル構造を有するトナーで、トナーの粒子径、平均円形度とトナーの硬度を適正な範囲にすることで、良好な保存性と定着性を得ることで高画質かつ耐久性に優れたトナーが得られる方法がある(特許文献1)。
また、ディスク型遠心分離機で固液分離することで不純物を除去し、トナー表面に不純物が残存しないようにし、トナー表面の極性基の配向を壊さないようにすることでトナーの帯電性が良好なトナーを得る方法がある(特許文献2)。
また、遠心沈降板の間隔を制御した遠心沈降装置を用い、遠心力を制御し、トナー粒子分散液のトナー粒子濃度を制御することでトナー粒子表面の極性基の配向を乱したり、トナー粒子の機械的強度を劣化させることなく、不純物を除去することで高画質なトナーを得る方法がある(特許文献3)。
特開2007-171272号公報 特開2004-341174号公報 特許第4467036号
上記特許文献1は、不純物の低減では未だ若干の課題が存在している。更に、高温高湿環境下や低温低湿環境下においては、耐久性に関して未だ若干の課題が存在している。
また、上記特許文献2は、濃縮の際に不純物の除去を優先させると濃縮装置内でのトナーの付着が増加したり、トナーがダメージを受けるといった課題がある。その結果、トナーの品質も小型かつ軽量な非磁性一成分現像のフルカラー複写機又はフルカラープリンタなどにおいては、耐久性に関して未だ若干の課題が存在している。また、低温低湿環境下における耐久性に関しても未だ若干の課題が存在している。さらに、高画質な画像が得られる小さい粒径のトナーを上記課題の発生を抑制させた上で濃縮しようとすると、トナーを十分に分離できず、清澄液側にトナーが混入し、収率の点で若干の課題が存在する。
また、上記特許文献3は、トナーに掛かる負荷が大きく、トナーへのダメージという点で若干の課題が存在し、機内付着に関しても若干の課題が存在する。また、小型かつ軽量な非磁性一成分現像のフルカラー複写機又はフルカラープリンタなどにおいては、耐久性に関して未だ若干の課題が存在している。さらに、低温低湿環境下における耐久性に関しても未だ若干の課題が存在している。
本発明は、上述の如き問題を解決したトナー粒子の製造方法を提供することである。即ち、遠心分離機においてトナーの機械的強度、帯電性を損なうことなく小粒径のトナーを高い生産効率で提供することにある。
本発明者らは、上記課題を解決すべく鋭意検討を行なった結果、以下の方法を見出した。
すなわち、本発明は、難水溶性無機微粒子を少なくとも含有する水系媒体を調製する調製工程と、
該調製工程で調製された該水系媒体中に、重合性単量体及び過酸化物系重合開始剤を含む重合性単量体組成物を分散せしめ、造粒して重合性単量体組成物の粒子を形成する造粒工程と
該造粒工程で形成された該重合性単量体組成物の粒子に含まれる該重合性単量体を重合させてトナー前駆体を生成させ、トナー前駆体分散液を得る重合工程と、
該重合工程で得られた該トナー前駆体分散液中のトナー前駆体の固形分率を上げる濃縮工程と、
を有するトナー粒子の製造方法において、
該重合工程では、該トナー前駆体に含まれる該重合性単量体の重合転化率が90%以上のときに重合開始剤である過硫酸化合物を添加し、
該重合開始剤に由来するイオン性残基の極性と該難水溶性無機微粒子の水系媒体中の極性が逆極性であり、
該濃縮工程は、遠心分離機を用いて行われる
ことを特徴とするトナー粒子の製造方法に関する。
重合工程と濃縮工程に特長のある本発明によれば、トナーの機械的強度、帯電性に優れた小粒径のトナーを高い生産効率で提供することができる。
分離沈降面積Σを算出する際のディスクの状態を表す模式図である。 遠心分離装置の断面図の一例である。 デカンタ型遠心分離機の断面図の一例である。
以下、本発明を詳細に説明する。
難水溶性無機微粒子を少なくとも含有する水系媒体を調製する調製工程と、重合性単量体を重合させてトナー前駆体を得る重合工程と、該水系媒体に該トナー前駆体を分散させたトナー前駆体分散液中のトナーの固形分率を上げる濃縮工程を有するトナー粒子の製造方法において、
該重工程では、該トナー前駆体に含まれる該重合性単量体の重合転化率が90%以上のときに重合開始剤を添加し、
該重合開始剤に由来するイオン性残基の極性と該難水溶性無機微粒子の水系媒体中の極性が逆極性であり、
該濃縮工程は、遠心分離機を用いて行いトナー粒子を製造することで本発明の効果が得られる。
本発明の効果が発現する理由は必ずしも明確にはなっていないが、本発明者らは次のように考えている。
通常遠心分離機を用いてトナー前駆体分散液を濃縮する場合、該トナー前駆体の粒子径が小さい程、遠心力を大きくする必要が生じる。また、生産効率を上げることを目的に短時間で濃縮工程を実施しようとする場合も、遠心力を大きくする必要がある。その結果、該トナー前駆体に大きな遠心力が掛かるため、該トナー前駆体に負荷がかかり、割れ欠けなどのダメージが生じる。それに対して、トナー前駆体表面に該難水溶性無機微粒子が付着することで該難水溶性無機微粒子がスペーサー粒子として機能するためトナー前駆体の機械的強度を向上させるとともに、機内付着を抑制する。このとき、重合工程で添加される重合開始剤に由来するイオン性残基の極性と該難水溶性無機微粒子の極性が逆極性であると、該重合開始剤由来のイオン性残基がトナー前駆体表面に存在することで逆極性を有する該難水溶性無機微粒子との吸着力が向上する。それにより該難水溶性無機微粒子が衝撃によりトナー前駆体表面から脱離する確率が低下するため、より優れた機内付着抑制が発揮できる。
該難水溶性無機微粒子としては、リン酸アルミニウム、リン酸マグネシウム、リン酸カルシウム、リン酸バリウム、リン酸亜鉛等の難水溶性リン酸金属塩と水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化第二鉄の難水溶性金属水酸化物及び炭酸バリウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩が好適に用いられる。特に、該難水溶性無機微粒子が難水溶性リン酸金属塩であると好ましい。これは、本発明の効果を発揮するのに帯電性に優れるためである。
また、該重合開始剤に由来するイオン性残基の極性が負であるとより好ましく、該重合開始剤が過硫酸化合物であると該難水溶性無機微粒子との吸着力が強固なためより一層好ましい。
該難水溶性無機微粒子のゼータ電位値の平均値をζとしたとき、
0.1mV≦ζ≦20mV
であると好ましい。
これは、0.1mV≦ζ≦20mVであると、該難水溶性無機微粒子のトナー前駆体表面への吸着力が十分であり、かつトナー前駆体同士が本発明に用いられる2価以上の金属イオンとの相互作用で適度に凝集するため好ましい。且つ該重合開始剤に由来するイオン性残基との相互作用も適度となり、トナー前駆体表面と該難水溶性無機微粒子の吸着が強固でありながらトナー前駆体同士が適度に凝集するため好ましい。
<難水溶性無機微粒子のゼータ電位測定>
該難水溶性無機微粒子のゼータ電位およびゼータ電位の平均値に対する標準偏差の測定は、Zetasizer Nano ZS(MALVERN社製)と測定条件および測定データを解析するための付属の専用ソフト「Dispersion Technology software 4.20」(MALVERN社製)を用いて算出した。具体的な測定方法は以下の通りである。
難水溶性無機微粒子を含有する水系媒体の製造が完了した後、水系媒体の一部を抜き取り、30℃で保持した。その後、各実施例の重合時におよそ対応する、ゼータ電位調整またはpH調整を行った。
ゼータ電位調整:電荷決定イオン含有水溶液の添加
pH調整:0.1N水酸化ナトリウム水溶液の添加
調製した水系媒体を一部抜き取り、容積10mlのシリンジに移した。次に、シリンジ先端を、イオン交換水で2回共洗いしたゼータ電位測定用キャピラリ-セル(DTS1060-Clear disposable zeta cell)の片方のサンプルポートに挿入し、気泡が発生しないように水系媒体をゆっくり注いだ。液がキャピラリ-部分に隙間なく注入されたことを確認した後、2つのサンプルポートに栓をした。セルを測定装置のセルホルダーに差し込み、検出部の蓋を閉じた。下記の測定条件で測定を行った。
F(ka)selection Model:Smoluchowski
Dispersant:Water
Temperature:重合時の温度(通常は70℃)
Result Calculation:General Purpose
測定終了後、表示される測定結果のレポート画面において「Zeta Potential」の値をゼータ電位の平均値とした。
該トナー前駆体が難水溶性無機微粒子で被覆され、被覆率が50%以上であると好ましい。これは、該トナー前駆体が水系媒体中で緩い凝集体を形成する際、該難水溶性無機微粒子がスペーサー粒子として作用するため遠心力が掛かっても凝集しすぎず緩い凝集体を維持しやすいためである。更に、該遠心分離機内で該トナー前駆体が機内付着をも抑制するためより望ましい。これも、該難水溶性無機微粒子がスペーサー粒子として作用し、且つ無機微粒子であるため硬度も十分高いため、衝撃を吸収し、該遠心分離機内での機内付着を抑制するためである。
<難水溶性無機微粒子のトナー粒子前駆体上での被覆率の算出方法>
本発明における難水溶性無機微粒子のトナー前駆体上での被覆率Xは、日立超高分解能電界放出形走査電子顕微鏡S-4800((株)日立ハイテクノロジーズ)にて撮影されたトナー表面画像を、画像解析ソフトImage-Pro Plus ver.5.0((株)日本ローパー)により解析して算出する。S-4800の画像撮影条件は以下の通りである。
(1)試料作製
試料台(アルミニウム試料台15mm×6mm)に導電性ペーストを薄く塗り、その上にトナー前駆体を吹きつける。さらにエアブローして、余分なトナーを試料台から除去し十分乾燥させる。試料台を試料ホルダにセットし、試料高さゲージにより試料台高さを36mmに調節する。
(2)S-4800観察条件設定
被覆率Xの算出は、S-4800の反射電子像観察により得られた画像を用いて行う。反射電子像は2次電子像と比べて無機微粒子のチャージアップが少ないため、被覆率Xを精度良く測定することが出来る。エネルギー分散型X線分析装置(EDAX)による元素分析を行い、モース硬度6-13でかつ70nm以上300nm以下の粒子の元素を特定した後、被覆率Xを算出する。
S-4800の鏡体に取り付けられているアンチコンタミネーショントラップに液体窒素を溢れるまで注入し、30分間置く。S-4800の「PC-SEM」を起動し、フラッシング(電子源であるFEチップの清浄化)を行う。画面上のコントロールパネルの加速電圧表示部分をクリックし、[フラッシング]ボタンを押し、フラッシング実行ダイアログを開く。フラッシング強度が2であることを確認し、実行する。フラッシングによるエミッション電流が20乃至40μAであることを確認する。試料ホルダをS-4800鏡体の試料室に挿入する。コントロールパネル上の[原点]を押し試料ホルダを観察位置に移動させる。
加速電圧表示部をクリックしてHV設定ダイアログを開き、加速電圧を[0.8kV]、エミッション電流を[20μA]に設定する。オペレーションパネルの[基本]のタブ内にて、信号選択を[SE]に設置し、SE検出器を[上(U)]および[+BSE]を選択し、[+BSE]の右の選択ボックスで[L.A.100]を選択し、反射電子像で観察するモードにする。同じくオペレーションパネルの[基本]のタブ内にて、電子光学系条件ブロックのプローブ電流を[Normal]に、焦点モードを[UHR]に、WDを[3.0mm]に設定する。コントロールパネルの加速電圧表示部の[ON]ボタンを押し、加速電圧を印加する。
(3)焦点調整
操作パネルのフォーカスつまみ[COARSE]を回転させ、ある程度焦点が合ったところでアパーチャアライメントの調整を行う。コントロールパネルの[Align]をクリックし、アライメントダイアログを表示し、[ビーム]を選択する。操作パネルのSTIGMA/ALIGNMENTつまみ(X,Y)を回転し、表示されるビームを同心円の中心に移動させる。次に[アパーチャ]を選択し、STIGMA/ALIGNMENTつまみ(X,Y)を一つずつ回し、像の動きを止める又は最小の動きになるように合わせる。アパーチャダイアログを閉じ、オートフォーカスで、ピントを合わせる。その後、倍率を50000(50k)倍に設定し、上記と同様にフォーカスつまみ、STIGMA/ALIGNMENTつまみを使用して焦点調整を行い、再度オートフォーカスでピントを合わせる。この操作を再度繰り返し、ピントを合わせる。ここで、観察面の傾斜角度が大きいと被覆率の測定精度が低くなりやすいので、ピント調整の際に観察面全体のピントが同時に合うものを選ぶことで、表面の傾斜が極力無いものを選択して解析する。
(4)画像保存
ABCモードで明るさ合わせを行い、サイズ640×480ピクセルで写真撮影して保存する。この画像ファイルを用いて下記の解析を行う。トナー前駆体一つに対して写真を1枚撮影し、少なくともトナー前駆体30粒子以上について画像を得る。
(5)画像解析
本発明では解析ソフト(Image-Pro Plus ver.5.0)を用いて、上述した手法で得た画像を2値化処理することで被覆率Xを算出する。このとき、上記一画面を正方形で12分割してそれぞれ解析する。画像解析ソフトの解析条件は以下の通りである。
ツールバーの「測定」から「カウント/サイズ」、「オプション」の順に選択し、二値化条件を設定する。オブジェト抽出オプションの中で8連結を選択し、平滑化を0とする。その他、予め選別、穴を埋める、包括線は選択せず、「境界線を除外」は「なし」とする。ツールバーの「測定」から「測定項目」を選択し、面積の選別レンジに2~107と入力する。
被覆率の計算は、正方形の領域を囲って行う。この時、領域の面積(C)は24000乃至26000ピクセルになるようにする。「処理」-2値化で自動2値化し、難水溶性無機微粒子の無い領域の面積の総和(D)を算出する。
正方形の領域の面積C、難水溶性無機微粒子の無い領域の面積の総和Dから下記式で被覆率aが求められる。
被覆率a(%)=100-(D/C×100) 式(2)
得られた全データの平均値を本発明における被覆率Xとする。
該造粒工程中の該難水溶性無機微粒子の個数平均粒径(D1)をDn1(μm)としたとき、
0.080(μm)≦Dn1(μm)≦1.000(μm) 式(3)
であると好ましく、より好ましくは、
0.080(μm)≦Dn1(μm)≦0.450(μm) 式(4)
である。これは、該造粒工程中の該難水溶性無機微粒子および該重合工程中に追加添加する該難水溶性無機微粒子の個数平均粒径(D1)が式(3)を満たすと、該難水溶性無機微粒子の粒径が適度な大きさであるため、トナー粒子の分散安定性を保持するスペーサー効果とトナー粒子表面を覆う被覆率が十分であることから本発明の効果がより一層発現するためである。
<重合性単量体の重合転化率の測定>
トナー中の重合性単量体の重合転化率の測定は、ガスクロマトグラフィー(GC)により、以下のようにして測定する。
100mlのアセトンに2.55mgのDMF(ジメチルホルムアミド)を加えて内部標準品入り溶媒をつくる。次に重合性単量体組成物分散液0.2gを精秤し上記溶媒で10mlの溶液とする。30分間超音波振とう機にかけた後、1時間放置する。次に0.5μmのメンブレンフィルターで濾過し、濾液4μlをガスクロマトグラフィーで分析した。
あらかじめ検量線を作成し、重合性ビニル系単量体と内部標準品DMFの質量比/面積比を求めておく。得られたクロマトグラムから未反応の重合性単量体量を計算し、重合転化率を求めた。
測定装置及び測定条件は、下記の通りである。
GC:島津製作所社 GC-14A
カラム:J&W Scientific社 DB-WAX(249μm×0.25μm×30m)
キャリアーガス:N2
オーブン:(1)70℃で2分ホールド、(2)5℃/分で220℃まで昇温
注入口:200℃
スプリット比:1:20
検出器:200℃(FID)
(濃縮装置)
本発明において、濃縮を行うために使用される装置としては、トナー前駆体分散液を収容する収容部内に、円錐状に配置させた複数の沈降板を設けた遠心沈降装置(※これ以降は、1)遠心沈降装置と省略する。)
投入したトナー前駆体分散液を遠心分離する外側回転筒と、前記外側回転筒内に相対回転可能に設けられたスクリューコンベアとを有するデカンタ型遠心分離機(※これ以降は、2)デカンタ型遠心分離機と省略する。)
等を使用することが好ましい。
前記した1)遠心沈降装置としては、アルファラバル(株)製やウエストファリアジャパン(株)製のノズル型遠心分離装置等があげられる。前記した2)デカンタ型遠心分離機としては、タナベウィルテック(株)製やIHI(株)製の連続式デカンタ型遠心分離機等があげられる。
本発明において、上記したいずれかの装置を使用して、トナー前駆体分散液を所定の固形分に濃縮する方法としては、以下のフローが可能であるが、いずれの方法を用いてもよい。
I)トナー前駆体分散液の一部を所定の固形分濃度以上に濃縮し、残りのトナー前駆体分散液中に再度投入・分散し、所定の固形分濃度のトナー前駆体分散液を得る方法。
II)トナー前駆体分散液全量を上記装置により処理し、所定の固形分に濃縮する方法。
次に本発明に用いる好適な1)遠心沈降装置の断面図の一例を図2に示すが、これに限定されるわけではない。
図2では、トナー前駆体分散液は、回転体32の中心部上部に設けられた液入口31より、案内筒33を通って、回転体32内部の処理室34に供給される。
処理室34の横断面形状は円形であって、この処理室において、処理物は遠心力で比重差により分離される。処理室34には、円錐形状のディスク(分離板)35が、回転軸の方向に沿って、小さな間隙を有して複数重ねられている。円錐形状のディスクの向きは、液抜き出し部37に向かう方向において、円錐がすぼまる向きであればよい。処理室34内に導入されたトナー前駆体分散液は、ディスク35の外周部側よりディスク間の間隙に入り、間隙を軸方向に向けて流れていくうちに、遠心力の作用でトナー前駆体分散液に濃度勾配が生じる。そして、濃縮された(固形分率が高い)高粘度のトナー前駆体分散液が、排出ノズル36方向へと流れ、排出ノズル36より外部に排出される。一方、比重の軽い分離水(清水)は回転体32の中心側へと流れ、回転体32の上部に設けられた液抜き出し部37より外部に排出される。
ここで、該濃縮工程で取り除かれる分散媒の処理量Q(m3/hr)[比重の軽い分離液(清水もしくは清澄水)の処理量]と、該ディスク型遠心分離機の分離沈降面積Σ(m2)との関係が、
0.2≦Q/Σ≦0.8
であると好ましい。これは、濃縮工程前のトナー前駆体分散液から、比重の軽い分離液(清水もしくは清澄液)を分離する、高い分離能力と該濃縮されたトナー前駆体分散液の生産効率が高いレベルで両立するためである。
この際、Qは比重の軽い分離液(清水もしくは清澄液)の流量であり、図1に示すディスクの状態を示す模式図に基づき、Σは
Σ=2.34×10-3×n2×N×cotα(r13-r23
(n:回転数、N:ディスクの枚数、α:ディスクの角度、r1:ディスクの外径の半径、r2:ディスクの内径の半径)
である。
本発明のトナー製造例においては、濃縮条件を変更する際、清澄液の流量や遠心力(回転数の二乗に比例)を変更した場合でも、Q/Σを一定に調整するためにディスクの枚数を変更するなどして対応した。
次に本発明に用いる好適な2)デカンタ型遠心分離機の断面図の一例を図3に示すが、これに限定されるわけではない。
図3に示したデカンタ型遠心分離機は、外側回転筒、及び該外側回転筒内に相対回転自在に設けられたスクリューコンベアを有する。図に示したデカンタ型遠心分離機では、トナー前駆体分散液を、スクリューコンベア51内に設けられたチューブ53を通って外側回転筒52内に供給する。前記回転筒を高速回転させることにより、濃縮された高粘度トナー前駆体分散液が、排出口55の方向に進み、排出口5から排出される。一方、トナー前駆体分散液から分離された分離液(水系媒体)は、分離液排出口56からオーバーフローして排出される。
本発明に用いられる遠心分離機はディスク型遠心分離機が好ましく、ノズル式ディスク型遠心分離機であると更に好ましい。これは、例えばデカンタ型遠心分離機であると、濃縮工程時に該デカンタ型遠心分離機内のスクリューによってトナー前駆体が掻き出されるのに対し、ディスク型遠心分離機であると、濃縮装置として、遠心分離機の遠心力のみでなく、水の流れをディスク間の間隔を制御することで層流に制御することによる効果によっても濃縮効率が向上するため、遠心力が小さくても濃縮が可能なためトナーに掛かる負荷が軽減できるためである。その結果、濃縮装置内部に対する機内付着や割れ欠けの抑制や高い生産効率を維持する点で好ましい。
ディスク型遠心沈降装置は、300G以上15000G以下の遠心力を加えることが好ましく、500G以上5000G以下の遠心力を加えることが更に好ましく、1000G以上5000G以下の遠心力を加えることがより一層好ましい。これは、濃縮効率が高く、トナーへのダメージも小さいためである。
また、該ディスクは複数配置され、その配置間隔が0.5mm以上1.0mm以下であると好ましい。これは、ディスク間の間隔が上述の範囲であると、水の流れをディスク間で層流にする効率が高く、濃縮効率が高いためである。
該濃縮装置がノズル式ディスク型遠心分離機であると、ノズル径が0.3mm以上5.0mm以下であると好ましく、0.5mm以上3.0mm以下であると更に好ましい。これは、ノズル詰まりの抑制と濃縮効率がより両立しやすいためである。特に、トナー前駆体の重量平均粒径(D4)が4.00μm以上12.00μm以下であると顕著である。
該濃縮工程において事前にノズル径より大きい粒径のトナー前駆体やゴミを除去する工程を有していても良い。
該濃縮装置に供給されるトナー前駆体分散液の温度としては、30℃以上であると好ましい。これは、該トナー前駆体分散液を構成する水系媒体の粘度が低下するため、トナー前駆体分散液から水系媒体を分離し易くなり、濃縮効率が高くなるためである。
該トナー前駆体が結晶性物質を含有する場合は、該濃縮装置に供給されるトナー前駆体分散液の温度としては、該結晶性物質の融点以下であると、トナー前駆体による該濃縮装置に対する機内付着が抑制されるため好ましい。
以下、本発明における、その他の製造装置について説明する。本発明では、公知のものが使用できるが、造粒工程における撹拌手段の一例としては、パドル翼、傾斜パドル翼、三枚後退翼、アンカー翼、フルゾーン翼(神鋼パンテック社製)、マックスブレンド(住友重機社製)、スーパーミックス(佐竹化学機械工業社製)、Hi-Fミキサー(綜研化学社製)等の撹拌翼を有するものを用いることができる。他にも、高剪断力を付与できる撹拌機がより好ましい。高剪断撹拌機としては、高速回転する撹拌ロータと該撹拌ロータを囲うように設けられたスクリーンとによって形成される撹拌室を備えているものが好ましく用いられる。具体的には、ウルトラタラックス(IKA社製)、ポリトロン(キネマティカ社製)、T.K.ホモミクサー(特殊機化工業社製)、クレアミックス(エムテクニック社製)、Wモーション(エムテクニック社製)、キャビトロン(ユーロテック社製)、シャープフローミル(太平洋機工社製)等が用いられる。
本発明において重合性単量体組成物が結晶性材料を含有すると定着性の点で優れるため好ましい。本発明に使用できる結晶性物質としては、ワックスや結晶性ポリエステル等、離型剤など公知のものを使用することができる。
本発明のトナーの場合、トナー粒子表面近傍側には結着樹脂のうち、高分子量成分が分布しているため、結晶性物質がトナー粒子表面近傍には相溶しにくいため分布しにくい。そのため、結晶性物質により定着性を良化させつつも、トナー粒子表面への露出は抑制されるため耐久性も両立できるため好ましい。
本発明に使用する結晶性物質の融点Tm(DSC最大吸熱ピーク)は、定着性と保存性の両立の点で50℃以上90℃以下であることが好ましい。さらに好ましい範囲は60℃以上85℃以下である。
本発明のトナーは、結晶性物質として、ワックスを含有してもよい。その場合、ワックスの少なくとも1つは、融点(温度20乃至200℃の範囲におけるDSC吸熱曲線の最大吸熱ピークに対応する温度)が30℃以上120℃以下であることが好ましく、50℃以上90℃以下であることがより好ましい。また、室温で固体のワックスであることが好ましく、特に、融点が50℃以上90℃以下の固体ワックスがトナーの耐ブロッキング性、多数枚耐久性、低温定着性及び耐オフセット性の点から好ましい。
ワックスとしては、パラフィンワックス、ポリオレフィンワックス、マイクロクリスタリンワックス及びフィッシャートロプシュワックスの如きポリメチレンワックス、アミドワックス、ペトロラタム等の石油系ワックス及びその誘導体、モンタンワックス及びその誘導体、カルナバワックス及びキャンデリラワックス等の天然ワックス及びそれらの誘導体、硬化ヒマシ油及びその誘導体、植物ワックス、動物ワックス、高級脂肪酸、長鎖アルコール、エステルワックス、ケトンワックス及びこれらのグラフト化合物、ブロック化合物の如き誘導体など公知のワックスを用いることが可能である。これらは単独又は併せて用いることができる。
本発明のトナー中のワックスの含有量は、結着樹脂100質量部に対して、3質量部以上30質量部以下が好ましく、3質量部以上20質量部以下がより好ましく、4質量部以上15質量部以下が更に好ましい。ワックスの添加量が下限値以上であるとオフセット防止効果が低くならず、上限値以下の場合は耐ブロッキング効果が低下せず、耐オフセット効果にも悪影響を与え難く、トナーのドラム融着やトナーの現像スリーブ融着を起こし難い。
本発明で用いられるワックスとしては炭化水素ワックスを用いている場合はより一層、耐ブロッキング効果、耐オフセット効果に優れ、トナーのトナー層規制部材やトナー担持体への融着を起こし難い。
ワックスとしては炭化水素ワックスを用い、かつ脂肪族のジオールと脂肪族のジカルボン酸により製造された結晶性ポリエステル樹脂もトナー粒子中に含有している場合、該結晶性ポリエステルとワックスとの相互作用により、結晶化が促進されやすい。このため、よりトナー粒子表層側においてワックスや結晶性ポリエステル樹脂が結着樹脂に相溶しにくく、重合工程中にトナー前駆体が凝集しにくいため望ましい。
なお、上記の如き物性を求めるにあたって、ワックスをトナーから抽出することを必要とする場合には、抽出方法は特に制限されるものではなく、任意の方法を用いることができる。例えば、所定量のトナーをトルエンにてソックスレー抽出し、得られたトルエン可溶分から溶剤を除去した後、クロロホルム不溶分を得る。その後、IR法などにより同定分析をする。
また、定量に関しては、示差走査熱量計(DSC)などにより定量分析を行う。本発明ではTAインスツルメンツジャパン社製DSC-2920を用いて測定を行う。測定時の比熱変化が出る前と出た後のベースラインの中間点の線と示差熱曲線との交点をガラス転移点とする。また、得られた昇温時のDSC曲線からワックス成分の最大吸熱ピーク温度を得る。
該結晶性ポリエステル樹脂としては、2価以上の多価カルボン酸とジオールの反応により得ることができる。その中でも、脂肪族ジオールと脂肪族ジカルボン酸を主成分とするポリエステルが、結晶化度が高く好ましい。結晶性ポリエステルは、1種類のみを用いても、複数種を併用しても良い。更に、結晶性ポリエステルの他に非晶質のポリエステルをトナーに含有させても良い。
本発明において結晶性ポリエステルとは、示差走査熱量測定(DSC)において昇温時に吸熱ピークがあり、降温時に発熱ピークを有するポリエステルを指し、その測定は「ASTM D 3417-99」に準じて行う。
このような結晶性ポリエステルを得るためのアルコール単量体としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、ノナメチレングリコール、デカメチレングリコール、ネオペンチルグリコール、1,4-ブタジエングリコールその他が挙げられる。
また、本発明においては上記の如きアルコール単量体が主成分として用いられるが、上記成分の他に、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA、1,4-シクロヘキサンジメタノール等の二価のアルコール、1,3,5-トリヒドロキシメチルベンゼン等の芳香族アルコール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセリン、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン等の三価のアルコール等を用いても良い。
上記結晶性ポリエステルを得るためのカルボン酸単量体としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、グルタコン酸、アゼライン酸、セバシン酸、ノナンジカルボン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸、イソフタル酸、テレフタル酸、n-ドデシルコハク酸、n-デドセニルコハク酸、シクロヘキサンジカルボン酸、これらの酸の無水物又は低級アルキルエステル等が挙げられる。
また、本発明においては上記の如きカルボン酸単量体を主成分として用いるが、上記の成分の他に三価以上の多価カルボン酸を用いても良い。
三価以上の多価カルボン酸成分としては、トリメリット酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、ピロメリット酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシル-2-メチル-2-メチレンカルボキシプロパン、及びこれらの酸無水物又は低級アルキルエステル等の誘導体等が挙げられる。
特に好ましい結晶性ポリエステルとしては、1,4-シクロヘキサンジメタノールとアジピン酸とを反応して得られるポリエステル、テトラメチレングリコール及びエチレングリコールとアジピン酸とを反応させて得られるポリエステル、ヘキサメチレングリコールとセバシン酸とを反応して得られるポリエステル、エチレングリコールとコハク酸とを反応して得られるポリエステル、エチレングリコールとセバシン酸とを反応して得られるポリエステル、テトラメチレングリコールとコハク酸とを反応して得られるポリエステル、ジエチレングリコールとデカンジカルボン酸とを反応して得られるポリエステルを挙げることができる。該結晶性ポリエステルは飽和ポリエステルであると一層望ましい。該結晶性ポリエステルが不飽和部分を有する場合と比較して、該過酸化物系重合開始剤との反応で架橋反応が起こらないため、該結晶性ポリエステルの溶解性の点で有利だからである。
本発明に用いられる結晶性ポリエステル樹脂は、通常のポリエステル合成法で製造することができる。例えば、ジカルボン酸成分とジアルコ-ル成分をエステル化反応、又はエステル交換反応せしめた後、減圧下又は窒素ガスを導入して常法に従って重縮合反応させることによって得ることができる。
結晶性ポリエステル樹脂の融点(DSC吸熱ピーク)としては、50.0℃以上90.0℃以下であることが好ましい。結晶性ポリエステル樹脂の融点(DSC吸熱ピーク)が、50.0℃以上90.0℃以下であると、トナー粒子が凝集しにくく、トナー粒子の保存性、定着性が維持でき、かつ重合法によりトナー粒子を製造する場合に重合性単量体への溶解性が高くなり、好ましい。結晶性ポリエステル樹脂の融点(DSC吸熱ピーク)は、示差走査熱量測定(DSC)によって測定することができる。また結晶性ポリエステル樹脂の融点は、使用するアルコール単量体やカルボン酸単量体の種類、重合度等によって調整することができる。
結晶性ポリエステルの重量平均分子量(Mw)は5,000以上35,000以下であることが好ましい。5,000以上35,000以下の範囲に重量平均分子量(Mw)を有する結晶性ポリエステルによれば、得られるトナー粒子において、結晶性ポリエステルの分散性が向上され、耐久安定性が向上するため望ましい。
結晶性ポリエステルの重量平均分子量(Mw)が5,000以上の場合では、結晶性ポリエステルの密度が高くなり、耐久安定性が向上する。一方、結晶性ポリエステルの重量平均分子量(Mw)が35,000以下の場合には、結晶性ポリエステルの溶融が迅速に行われ、分散状態が均一になるために、現像安定性が向上する。結晶性ポリエステルの重量平均分子量(Mw)は、使用するアルコール単量体やカルボン酸単量体の種類、重合時間や重合温度等によって調整することができる。
結晶性ポリエステルの酸価(AV)は0.0mgKOH/g以上20.0mgKOH/g以下であることが好ましく、0.0mgKOH/g以上10.0mgKOH/g以下であるとより望ましく、0.0mgKOH/g以上5.0mgKOH/g以下であると特に好ましい。酸価を下げることにより、画像形成時におけるトナーと紙との接着性は向上する。また重合法によりトナー粒子を製造する場合、結晶性ポリエステルの酸価(AV)が20.0mgKOH/g以下であると、トナー粒子同士の凝集が起こりにくくなる傾向にあり、また、トナー中における該結晶性ポリエステルの分布状態に偏りが出にくくなるため、帯電安定性及び耐久安定性が向上する。
本発明のトナーにおいては該非晶質ポリエステル樹脂の酸価は該結晶性ポリエステル樹脂の酸価より高いことが好ましい。これは、非晶性ポリエステル樹脂の酸価が結晶性ポリエステル樹脂の酸価がより高い場合は該結晶性ポリエステル樹脂の大半が非晶性ポリエステル樹脂よりトナー内部に分布することになり、該結晶性ポリエステル樹脂の融点以上での重合反応工程においてトナー表層側が過疎化されにくくトナー粒子が凝集しにくいためである。
本発明のトナーは荷電制御樹脂を含有していても良く、公知のものを使用して良く、例えば、スルホン酸基、スルホン酸塩基、4級アンモニウム塩基、カルボキシル基、水酸基、オキシカルボン酸基などを有する樹脂なども用いられる。
特に、該荷電制御樹脂がスルホン酸もしくはスルホン酸塩基、スルホン酸エステルで表わされる構造を有する重合体であると好ましい。これは、トナー粒子表面に該荷電制御樹脂が分布しやすいため帯電性の点で望ましいためである。
また、該荷電制御樹脂の酸価は該非晶性ポリエステル樹脂の酸価より高い方が好ましい。これは該荷電制御樹脂がトナー粒子の最表面に位置すると帯電性に最も有効に作用するためである。
<結晶性ポリエステル樹脂、非晶性ポリエステル樹脂やスチレン-アクリル樹脂の酸価の測定>
酸価は試料1gに含まれる酸を中和するために必要な水酸化カリウムのmg数である。本発明における酸価は、JIS K 0070-1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
0.1モル/L水酸化カリウムエチルアルコール溶液(キシダ化学社製)を用いて滴定を行う。前記水酸化カリウムエチルアルコール溶液のファクターは、電位差滴定装置(京都電子工業株式会社製 電位差滴定測定装置AT-510)を用いて求めることができる。0.100モル/L塩酸100mLを250mLトールビーカーに取り、前記水酸化カリウムエチルアルコール溶液で滴定し、中和に要した前記水酸化カリウムエチルアルコール溶液の量から求める。前記0.100モル/L塩酸は、JIS K 8001-1998に準じて作成されたものを用いる。
下記に酸価測定の際の測定条件を示す。
滴定装置:電位差滴定装置AT-510(京都電子工業株式会社製)
電極:複合ガラス電極ダブルジャンクション型(京都電子工業株式会社製)
滴定装置用制御ソフトウエア:AT-WIN
滴定解析ソフト:Tview
滴定時における滴定パラメーター並びに制御パラメーターは下記のように行う。
滴定パラメーター
滴定モード:ブランク滴定
滴定様式:全量滴定
最大滴定量:20mL
滴定前の待ち時間:30秒
滴定方向:自動
制御パラメーラー
終点判断電位:30dE
終点判断電位値:50dE/dmL
終点検出判断:設定しない
制御速度モード:標準
ゲイン:1
データ採取電位:4mV
データ採取滴定量:0.1mL
本試験;
測定サンプル0.100gを250mLのトールビーカーに精秤し、トルエン/エタノール(3:1)の混合溶液150mLを加え、1時間かけて溶解する。前記電位差滴定装置を用い、前記水酸化カリウムエチルアルコール溶液を用いて滴定する。
空試験;
試料を用いない(すなわちトルエン/エタノール(3:1)の混合溶液のみとする)以外は、上記操作と同様の滴定を行う。
得られた結果を下記式に代入して、酸価を算出する。
A=[(C-B)×f×5.61]/S
(式中、A:酸価(mgKOH/g)、B:空試験の水酸化カリウム溶液の添加量(mL)、C:本試験の水酸化カリウム溶液の添加量(mL)、f:水酸化カリウム溶液のファクター、S:試料(g)である。)
<結晶性ポリエステル樹脂、非晶性ポリエステル樹脂やスチレン-アクリル樹脂の水酸基価の測定>
水酸基価は、試料1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムのmg数である。本発明における水酸基価はJIS K 0070-1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
特級無水酢酸25.0gをメスフラスコ100mLに入れ、ピリジンを加えて全量を100mLにし、十分に振りまぜてアセチル化試薬を得る。得られたアセチル化試薬は、湿気、炭酸ガスなどに触れないように、褐色びんにて保存する。
1.0モル/L水酸化カリウムエチルアルコール溶液(キシダ化学社製)を用いて滴定を行う。水酸化カリウムエチルアルコール溶液のファクターは、電位差滴定装置(京都電子株式会社製 電位差滴定測定装置AT-510)を用いて求める。具体的には、1.00mol/L塩酸100mLを250mLトールビーカーに取り、水酸化カリウムエチルアルコール溶液で滴定し、中和に要した水酸化カリウムエチルアルコール溶液の量から求める。1.00mol/L塩酸は、JIS K 8001-1998に準じて作製されたものを用いる。
以下に、水酸基価測定の際の測定条件を示す。
滴定装置:電位差滴定装置AT-510(京都電子工業株式会社製)
電極:複合ガラス電極ダブルジャンクション型(京都電子工業株式会社製)
滴定装置用制御ソフトウエア:AT-WIN
滴定解析ソフト:Tview
滴定時における滴定パラメータ並びに制御パラメータは下記のように行う。
<滴定パラメータ>
滴定モード:ブランク滴定
滴定様式:全量滴定
最大滴定量:80mL
滴定前の待ち時間:30秒
滴定方向:自動
<制御パラメータ>
終点判断電位:30dE
終点判断電位値:50dE/dmL
終点検出判断:設定しない
制御速度モード:標準
ゲイン:1
データ採取電位:4mV
データ採取滴定量:0.5mL
<本試験>
測定サンプル2.00gを200mL丸底フラスコに精秤し、これに上記アセチル化試薬5.00mLを、ホールピペットを用いて正確に加える。この際、試料がアセチル化試薬に溶解しにくいときは、特級トルエンを少量加えて溶解する。
フラスコの口に小さな漏斗をのせ、97℃のグリセリン浴中にフラスコ底部1cmを浸して加熱する。このときフラスコの首の温度が浴の熱を受けて上昇するのを防ぐため、丸い穴をあけた厚紙をフラスコの首の付根にかぶせることが好ましい。
1時間後、グリセリン浴からフラスコを取り出して放冷する。放冷後、漏斗から水1.00mLを加えて振り動かして無水酢酸を加水分解する。さらに完全に加水分解するため、再びフラスコをグリセリン浴中で10分間加熱する。放冷後、エチルアルコール5.00mLで漏斗及びフラスコの壁を洗う。
得られたサンプルを250mLのトールビーカーに移し、トルエンとエタノール(3:1)の混合溶液100mLを加え、1時間かけて溶解する。電位差滴定装置を用い、水酸化カリウムエチルアルコール溶液を用いて滴定する。
<空試験>
試料を用いない(すなわち、トルエンとエタノール(3:1)の混合溶液のみとする)こと以外は、上記操作と同様の滴定を行う。
得られた結果を下記式に代入して、水酸基価を算出する。
A=[{(B-C)×28.05×f}/S]+D
ここで、A:水酸基価(mgKOH/g)、B:空試験の水酸化カリウムエチルアルコール溶液の添加量(mL)、C:本試験の水酸化カリウムエチルアルコール溶液の添加量(mL)、f:水酸化カリウムエチルアルコール溶液のファクター、S:試料(g)、D:樹脂の酸価(mgKOH/g)である。
<結晶性ポリエステル樹脂、非晶性ポリエステル樹脂やスチレン-アクリル樹脂の分子量および分子量分布>
試料の分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によって、ポリスチレン換算で算出される。酸基を有する樹脂の分子量を測定する場合は、カラム溶出速度が酸基の量にも依存してしまうため、予め酸基をキャッピングした試料を用意する必要がある。キャッピングにはメチルエステル化が好ましく、市販のメチルエステル化剤が使用できる。具体的には、トリメチルシリルジアゾメタンで処理する方法が挙げられる。
GPCによる分子量の測定は、以下のようにして行う。まず、室温で24時間かけて、測定サンプルをテトラヒドロフラン(THF)に溶解する。そして、得られた溶液を、ポア径が0.2μmの耐溶剤性メンブランフィルター「マイショリディスク」(東ソー社製)で濾過してサンプル溶液を得る。尚、サンプル溶液は、THFに可溶な成分の濃度が0.8質量%となるように調整する。このサンプル溶液を用いて、以下の条件で測定する。
装置:HLC8120 GPC(検出器:RI)(東ソー社製)
カラム:Shodex KF-801、802、803、804、805、806、807の7連(昭和電工社製)
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/min
オーブン温度:40.0℃
試料注入量:0.10mL
測定サンプルの分子量の算出にあたっては、標準ポリスチレン樹脂(例えば、商品名「TSKスタンダード ポリスチレン F-850、F-450、F-288、F-128、F-80、F-40、F-20、F-10、F-4、F-2、F-1、A-5000、A-2500、A-1000、A-500」、東ソー社製)を用いて作成した分子量校正曲線を使用する。
<非晶性ポリエステル樹脂、スチレン-アクリル樹脂やトナー粒子のガラス転移温度>
試料のガラス転移温度は、示差走査熱量計(DSC測定装置)を用いて測定する。
示差走査熱量計は、示差走査熱量分析装置「Q1000」(TA Instruments社製)を用い、ASTM D3418-82に準じて以下のように測定する。測定サンプルは2から5mg、好ましくは3mgを精密に秤量する。それをアルミニウム製のパン中に入れ、対照用に空のアルミパンを用いる。20℃で5分間平衡を保った後、測定範囲20乃至180℃の間で、昇温速度10℃/minで測定を行う。本発明においては、ガラス転移温度は中点法で求めることができる。
<該ポリエステル樹脂、該結晶性ポリエステル樹脂、該スチレンーアクリル樹脂およびトナーの結着樹脂の構造分析>
該ポリエステル樹脂、該結晶性ポリエステル樹脂、該荷電制御樹脂、該スチレンーアクリル樹脂およびトナーの結着樹脂の構造決定は、核磁気共鳴装置(1H-NMR、13C-NMR)並びにFT-IRスペクトルを用いて行うことができる。以下に用いる装置について記す。
各樹脂サンプルはトナー中から分取することで採取し、分析しても良い。
(i)1H-NMR、13C-NMR
日本電子製FT-NMR JNM-EX400(使用溶媒 重クロロホルム)
(ii)FT-IRスペクトル
Thermo Fisher Scientific Inc.製 AVATAR360FT-IR
<結晶性ポリエステル樹脂およびワックスのDSC吸熱ピーク温度の測定>
結晶性ポリエステル樹脂およびワックスのDSC吸熱ピーク温度は、示差走査熱量分析装置「Q1000」(TA Instruments社製)を用いてASTM D3418-82に準じて測定する。装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。
具体的には、トナー粒子約10mgを精秤し、これをアルミニウム製のパンの中に入れ、リファレンスとして空のアルミニウム製のパンを用い、測定温度範囲30~200℃の間で、昇温速度10℃/minで測定を行う。尚、測定においては、一度200℃まで昇温させ、続いて30℃まで降温し、その後に再度昇温を行う。この2度目の昇温過程での温度30~200℃の範囲におけるDSC曲線の最大の吸熱ピークとなる温度を、結晶性ポリエステル樹脂およびワックスのDSC吸熱ピーク温度とする。
(荷電制御剤)
本発明のトナーにおいては、公知の荷電制御剤を使用することができる。荷電制御剤の含有量は、トナー中の結着樹脂100質量部に対して、0.01質量部以上20質量部以下であることが好ましく、0.5質量部以上10質量部以下であることがより好ましい。
(顔料)
本発明のトナーは、着色剤として顔料を含有する。シアン系着色剤に用いられる顔料としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、並びに、塩基染料レーキ化合物が利用できる。具体的には、以下のものが挙げられる。C.I.ピグメントブルー15、15:1、15:2、15:3及び15:4。
マゼンタ系着色剤に用いられる顔料としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物及びペリレン化合物が利用できる。具体的には、以下のものが挙げられる。C.I.ピグメントバイオレット19、C.I.ピグメントレッド31、32、122、150、254、264及び269。
イエロー系着色剤に用いられる顔料としては、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物及びアリルアミド化合物が利用できる。具体的には、以下のものが挙げられる。C.I.ピグメントイエロー74、93、120、139、151、155、180及び185。
黒色着色剤としては、カーボンブラック、磁性体、並びに、上記イエロー系、マゼンタ系及びシアン系着色剤を用い黒色に調色されたものが利用できる。
顔料がカーボンブラック、C.I.ピグメントブルー15:3、C.I.ピグメントレッド122、150、32、269、C.I.ピグメントイエロー155、93、74、180及び185であると本発明の効果が高く好ましい。特に好ましくはカーボンブラック、C.I.ピグメントブルー15:3、C.I.ピグメントレッド122である。カーボンブラックの場合は、pHが6以上で吸油量(DBP)が30(cc/100g)以上120(cc/100g)以下であると好ましい。これは、本発明で用いられる重合開始剤が反応阻害されにくいためである。
これら顔料の添加量は、結着樹脂100質量部に対して、1質量部以上20質量部以下であることが好ましい。
(その他の添加剤)
本発明のトナーにおいては、本発明の効果を阻害しない範囲で各種特性付与を目的として公知の様々な無機、有機の添加剤を用いることが可能である。用いる添加剤は、トナーに添加した時の耐久性の点から、トナー粒子の重量平均径の3/10以下の粒径であることが好ましい。この添加剤の粒径とは、走査型電子顕微鏡におけるトナー粒子の表面観察により求めたその平均粒径を意味する。
これら添加剤の含有量は、トナー100質量部に対して、0.01質量部以上5質量部以下であることが好ましく、0.02質量部以上3質量部以下であることがより好ましい。これらの添加剤は、単独で用いても複数併用してもよい。
また、これらの添加剤は疎水化処理されていてもよい。疎水化処理の方法としては、シランカップリング剤又はチタンカップリング剤など各種カップリング剤を用いることが可能であるが、シリコーンオイルで疎水化度を高くすることが好ましい。高湿下での無機微粉体の水分吸着を抑制することができ、さらには、規制部材や帯電部材などの汚染が抑制することができるため、高品位の画像が得られるためである。
トナーの重量平均粒径(D4)としては4.0μm以上12.0μm以下であると好ましく、4.0μm以上9.0μm以下であるとより好ましい。重量平均粒径が4.0μm以上であると長期使用において耐久性や耐熱性に良好であり、重量平均粒径が12.0μm以下であるとトナーの着色力及び画像の解像度の点で良好となる。
<トナー粒子の重量平均粒径(D4)、個数平均粒径(D1)>
トナー粒子の重量平均粒径(D4)および個数平均粒径(D1)は、以下のようにして算出する。測定装置としては、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)を用いる。測定条件の設定及び測定データの解析は、付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いる。尚、測定は実効測定チャンネル数2万5千チャンネルで行う。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
尚、測定、解析を行う前に、以下のように前記専用ソフトの設定を行う。前記専用ソフトの「標準測定方法(SOM)を変更」画面において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。「閾値/ノイズレベルの測定ボタン」を押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、「測定後のアパーチャーチューブのフラッシュ」にチェックを入れる。前記専用ソフトの「パルスから粒径への変換設定」画面において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μm以上60μm以下までに設定する。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250mL丸底ビーカーに前記電解水溶液200mLを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、専用ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100mL平底ビーカーに前記電解水溶液30mLを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を0.3mL加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)を準備する。超音波分散器の水槽内に3.3Lのイオン交換水を入れ、この水槽中にコンタミノンNを2mL添加する。(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行ない、重量平均粒径(D4)および個数平均粒径(D1)、体積基準メジアン径、個数基準メジアン径を算出する。尚、前記専用ソフトでグラフ/体積%と設定したときの、「分析/体積統計値(算術平均)」画面の「平均径」が重量平均粒径(D4)であり、「中位径」が体積基準メジアン径(Dv50)である。また、前記専用ソフトでグラフ/個数%と設定したときの、「分析/個数統計値(算術平均)」画面の「平均径」が個数平均粒径(D1)であり、「中位径」が個数基準メジアン径(Dn50)である。
トナー粒子のガラス転移温度としては、保存性と定着性の観点から53℃以上75℃以下が好ましい。
トナー粒子の平均円形度としては平均円形度が0.975以上が好ましい。これはトナー粒子がトナー粒子間やトナー担持体、トナー層規制部材と均一に摩擦帯電する確率が高く、トナー粒子が受けるストレスも均一化されるためであり、帯電性や、トナー層規制部材への融着抑制の点で好ましい。
<トナー粒子の平均円形度の測定方法>
トナー粒子の平均円形度は、フロー式粒子像分析装置「FPIA-3000」(シスメックス社製)によって、校正作業時の測定及び解析条件で測定した。
具体的な測定方法は、以下の通りである。まず、ガラス製の容器中に予め不純固形物などを除去したイオン交換水約20mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.2ml加える。更に測定試料を約0.02g加え、超音波分散器を用いて2分間分散処理を行い、測定用の分散液とする。その際、分散液の温度が10℃以上40℃以下となる様に適宜冷却する。超音波分散器としては、発振周波数50kHz、電気的出力150Wの卓上型の超音波洗浄器分散器(例えば「VS-150」(ヴェルヴォクリーア社製))を用い、水槽内には所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
測定には、対物レンズとして「LUCPLFLN」(倍率20倍、開口数0.40)を搭載した前記フロー式粒子像分析装置を用い、シース液にはパーティクルシース「PSE-900A」(シスメックス社製)を使用した。前記手順に従い調製した分散液を前記フロー式粒子像分析装置に導入し、HPF測定モードで、トータルカウントモードにて2000個のトナー粒子を計測する。そして、粒子解析時の2値化閾値を85%とし、解析粒子径を円相当径1.977μm以上39.54μm未満に限定し、トナー粒子の平均円形度を求めた。
測定にあたっては、測定開始前に標準ラテックス粒子(例えば、Duke Scientific社製の「RESEARCH AND TEST PARTICLES Latex Microsphere Suspensions 5100A」をイオン交換水で希釈)を用いて自動焦点調整を行う。その後、測定開始から2時間毎に焦点調整を実施することが好ましい。
なお、本願実施例では、シスメックス社による校正作業が行われた、シスメックス社が発行する校正証明書の発行を受けたフロー式粒子像分析装置を使用した。解析粒子径を円相当径1.977μm以上、39.54μm未満に限定した以外は、校正証明を受けた時の測定及び解析条件で測定を行った。
〔重合性単量体〕
本発明に用いられる重合性単量体としては、スチレン以外にもラジカル重合が可能なビニル系重合性単量体が用いても良い。該ビニル系重合性単量体としては、単官能性重合性単量体或いは多官能性重合性単量体を使用することが出来る。単官能性重合性単量体としては、スチレン;α-メチルスチレン、β-メチルスチレン、ο-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレンの如きスチレン誘導体;メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、iso-プロピルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、tert-ブチルアクリレート、n-アミルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-ノニルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、ジメチルフォスフェートエチルアクリレート、ジエチルフォスフェートエチルアクリレート、ジブチルフォスフェートエチルアクリレート、2-ベンゾイルオキシエチルアクリレートの如きアクリル系重合性単量体;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、iso-プロピルメタクリレート、n-ブチルメタクリレート、iso-ブチルメタクリレート、tert-ブチルメタクリレート、n-アミルメタクリレート、n-ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、n-オクチルメタクリレート、n-ノニルメタクリレート、ジエチルフォスフェートエチルメタクリレート、ジブチルフォスフェートエチルメタクリレートの如きメタクリル系重合性単量体;メチレン脂肪族モノカルボン酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル、ギ酸ビニルの如きビニルエステル;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルの如きビニルエーテル;ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロピルケトンの如きビニルケトンが挙げられる。
多官能性重合性単量体としては、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2’-ビス(4-(アクリロキシ・ジエトキシ)フェニル)プロパン、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2,2’-ビス(4-(メタクリロキシ・ジエトキシ)フェニル)プロパン、2,2’-ビス(4-(メタクリロキシ・ポリエトキシ)フェニル)プロパン、トリメチロールプロパントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ジビニルベンゼン、ジビニルナフタリン、ジビニルエーテル等が挙げられる。
本発明においては、上記した単官能性重合性単量体を単独或いは、2種以上組み合わせて、又は、上記した単官能性重合性単量体と多官能性重合性単量体を組合せて使用する。
スチレン以外に用いる重合性単量体としてはスチレン誘導体、n-ブチルアクリレートや2-エチルヘキシルアクリレートなどのアクリル酸エステル系重合性単量体もしくはn-ブチルメタクリレートや2-エチルヘキシルメタクリレートなどのメタクリル酸エステル系重合性単量体が望ましい。これは重合性単量体を重合して得られる結着樹脂の強度や柔軟性の点で優れているためである。
本発明のトナーの製造方法として懸濁重合や溶解懸濁法を用いるが、懸濁重合の場合、以下の如き製造方法によって直接的にトナーを製造することが可能である。重合性単量体中にポリエステル樹脂などの極性樹脂、離型剤、着色剤、架橋剤、その他の添加剤を加え、ホモジナイザー、超音波分散機等によって均一に溶解又は分散せしめた重合性単量体組成物を、分散安定剤を有する水系媒体中に通常の撹拌機またはホモミクサー、ホモジナイザーなどにより分散せしめる。その際、重合性単量体組成物の液滴が所望のトナーのサイズを有するように撹拌速度・時間を調整し、造粒して重合性単量体組成物の粒子を形成する。その後は、分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌を行えば良い。重合開始剤を添加することで重合反応を進行させるが、重合温度は40℃以上、通常50~120℃の温度に設定して重合を行う。重合温度が95℃以上の場合は重合反応を行う容器を加圧して水系媒体が蒸発するのを抑制しても良い。重合反応後半に昇温しても良く、必要に応じpHを変更しても良い。更に、定着時の臭いの原因となる未反応の重合性単量体、副生成物等を除去するために反応後半に反応温度を上げる、もしくは反応後半、又は、反応終了後に一部水系媒体を留去しても良い。反応終了後、生成したトナー粒子前駆体分散液を得る。次に該トナー粒子前駆体分散液を濃縮、洗浄、ろ過により収集し、乾燥する。
造粒中の水系媒体中のpHは特に制約は受けないが、好ましくは、pH3.0~13.0、更に好ましくは3.0~7.0、特に好ましくは3.0~6.0である。pHが3.0未満の場合は分散安定剤の一部に溶解がおこり、分散安定化が困難になり、造粒出来なくなることがある。またpHが13.0を超える場合はトナー中に添加されている成分が分解されてしまうことがあり、本発明の効果が弱くなることがある。造粒を酸性領域で行った場合には、分散安定剤に由来する金属のトナー中における含有量が過剰となるのを抑制することができ、本発明の規定を満たすようなトナーが得られやすくなる。
また、トナー粒子の洗浄をpH2.5以下、より好ましくは、pH1.5以下の酸を用いて行うことが好ましい。トナー粒子の洗浄を酸で行うことにより、トナー粒子表面に存在する分散安定剤を低減することができる。洗浄に用いる酸としては、特に限定されるものではなく、塩酸、硫酸の如き無機酸を用いることができる。これによりトナー粒子の帯電性を所望の範囲に調整することも可能である。
本発明に用いられる分散安定剤としての難水溶性無機微粒子以外に有機系化合物、例えばポリビニルアルコール、ゼラチン、メチセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、デンプンを併用しても構わない。これら分散安定剤は、重合性単量体100質量部に対して0.01質量部以上2.0質量部以下を使用することが好ましい。
さらに、これら分散安定剤の微細化のため0.001質量%以上0.1質量%以下の界面活性剤を併用しても良い。具体的には市販のノニオン、アニオン、カチオン型の界面活性剤が利用できる。例えばドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウムが好ましく用いられる。
以下、具体的な製造方法、実施例、比較例をもって本発明をさらに詳細に説明するが、これは本発明を何ら限定するものではない。実施例10は参考例である。なお、以下の配合における部数は全て質量部である。
〔結晶性ポリエステル樹脂製造例1〕
減圧装置、水分離装置、窒素ガス導入装置、温度測定装置、撹拌装置を備えたオートクレープ中に、
・1,10-デカンジカルボン酸:210部
・1,10-デカンジカルボン酸ジメチル:50部
・1,10-デカンジオール:295部
・シュウ酸チタン酸カリウム:0.40部
上記ポリエステルモノマーを仕込み、窒素雰囲気下、常圧下で200℃で6時間反応を行い、その後更に10~20mmHgの減圧下で220℃で1.5時間反応してポリエステル樹脂1を得た。得られたポリエステル樹脂1の物性は酸価=1.3mgKOH/g、重量平均分子量(Mw)=21000、DSC吸熱ピーク=79.8℃であった。
〔結晶性ポリエステル樹脂製造例2〕
窒素雰囲気下で、滴下ロート、リービッヒ冷却管及び撹拌機を備えた耐圧反応機にキシレン50部とセバシン酸175.0部、及び1,12-ドデカンジオール210.1部を加えて210℃まで昇温した。このときの圧力は0.32MPaであった。これに下記材料をキシレン10部に溶解した混合物を滴下ロートに仕込んだものを2時間かけて加圧下(0.31MPa)で滴下した。
Figure 0007130484000001
滴下後、更に210℃で3時間反応を行い、溶液重合を完了した。その後、テトラブトキシチタネート0.80部を混合し、窒素雰囲気下、常圧下210℃で3時間縮重合反応を行った。その後テトラブトキシチタネートを0.010部追加し、210℃で2時間反応させた。その後、常圧に戻し、安息香酸37.0部とトリメリット酸4.00部を添加し、さらに220℃で5時間反応させて結晶性ポリエステル2を得た。得られたポリエステル樹脂2の物性は酸価=2.9mgKOH/g、重量平均分子量(Mw)=22000、DSC吸熱ピーク=80.3℃であった。
〔非晶性ポリエステル樹脂1の製造〕
減圧装置、水分離装置、窒素ガス導入装置、温度測定装置、撹拌装置を備えたオートクレープ中に、
テレフタレート:29.9部
ビスフェノールA-プロピレンオキサイド2モル付加物:51.7部
エチレングリコール:4.5部
テトラブトキシチタネート:0.125部
上記ポリエステルモノマーを仕込み、窒素雰囲気下、常圧下で200℃で5時間反応を行い、その後トリメリット酸を2.1部及びテトラブトキシチタネートを0.120部追加し、220℃で3時間反応させ、更に10~20mmHgの減圧下で2時間反応して非晶性ポリエステル樹脂1を得た。得られた非晶性ポリエステル樹脂1の物性は表3に示す。得られた非晶性ポリエステル樹脂の組成は表2に記載の仕込み量通りの組成であった。
〔非晶性ポリエステル樹脂2~10の製造〕
表2の原材料モノマー仕込み量にて、非晶性ポリエステル樹脂1と同様の操作を行い、非晶性ポリエステル樹脂2~10を製造した。得られた樹脂の物性を表3に示す。各非晶性ポリエステル樹脂の分子量と酸価の調整に関しては、適宜反応時間を調整して非晶性ポリエステル樹脂の物性が達成されるようにした。
Figure 0007130484000002
TPA:テレフタル酸
IPA:イソフタル酸
TMA:トリメリット酸
BPA(PO):ビスフェノールAプロピレンオキサイド2モル付加物
EG:エチレングリコール
Figure 0007130484000003
〔スチレン-アクリル樹脂1の製造〕
プロピレングリコールモノメチルエーテル100部を窒素置換しながら加熱し液温120℃以上で還流させ、そこへ、下記材料を混合したものを3時間かけて滴下した。
スチレン:91.7部
メチルメタクリレート:2.50部
メタクリル酸:3.30部
2-ヒドロキシエチルアクリレート:2.50部
ジtert-ブチルパーオキサイド(日油(株)製、商品名「パーブチルD」):1.25部
滴下終了後、溶液を3時間撹拌した後、液温170℃まで昇温しながら常圧蒸留し、液温170℃到達後は1hPaで減圧下1時間蒸留して脱溶剤し、樹脂固形物を得た。該固形物をテトラヒドロフランに溶解し、n-ヘキサンで再沈殿、析出した固体を濾別することでスチレンーアクリル樹脂1を得た。得られたスチレンーアクリル樹脂1の物性は以下の通りであった。
Mw=15000、酸価=20.0、水酸基価=10.0、Tg(中点法)=90.0℃
〔疎水性シリカ1の製造〕
シリカ(AEROSIL 200CF、日本アエロジル製)100部をヘキサメチルジシラザン10部で処理し、さらにジメチルシリコーンオイル20部で処理して疎水性シリカ1を得た。疎水性シリカ1の一次粒子径は12nm、疎水化度は97であった。
〔疎水性酸化チタン1の製造〕
酸化チタン(P25、日本アエロジル製)100部をトルエン中でγ-メルカプトプロピルトリメトキシシラン20部で処理し、濾過、乾燥して疎水性酸化チタン1を得た。疎水性酸化チタン1の一次粒子径は25nm、疎水化度は60であった。
(分散媒(水系媒体)の製造例1)
反応容器中のイオン交換水1000部に、リン酸ナトリウム(物質(2))14部、ならびに10%塩酸を4.5部投入し、N2パージしながら65℃で60分保温した。T.K.ホモミクサー(特殊機化工業製)を用いて、12000rpmにて撹拌しながら、イオン交換水10部に7.8部の塩化カルシウム(物質(1))を溶解した塩化カルシウム水溶液を一括投入し、その後60分間保持した後、60℃に降温し、難水溶性無機微粒子を含む水系媒体1を調製した。得られた水系媒体1の物性等を表4に示す。
(分散媒(水系媒体)の製造例2~5)
表4に記載される通りに物質(1)、物質(2)の含有量、pHを記載の値にするために10%塩酸部数を調整した以外は分散媒(水系媒体)の製造例1と同様にして、難水溶性無機微粒子を含む水系媒体2~5を製造した。得られた水系媒体2~5の物性等を表4に示す。
Figure 0007130484000004
<実施例1>
・スチレン 58部
・カーボンブラック(Orion Engineerred Carbons社製、商品名「Printex35」) 7部
・荷電制御剤(オリエント社製:ボントロンE-89) 0.25部
上記材料をアトライタ分散機(三井三池化工機株式会社)に投入し、さらに直径1.7mmのジルコニア粒子を用いて、220rpmで5時間分散させて、重合性単量体組成物を得た。
上記重合性単量体組成物に、
・スチレン 15部
・n-ブチルアクリレート 25部
・結晶性ポリエステル樹脂2 5部
・非晶性ポリエステル樹脂3 5部
・フィッシャートロプシュワックス 8部
(シューマンサゾール社製、商品名「C80」:DSC吸熱ピーク83.0℃)
を加えた。
別容器中で上記材料を65℃に保温し、T.K.ホモミクサー(特殊機化工業製)を用いて、500rpmにて均一に溶解、分散した。これに、重合開始剤t-ヘキシルパーオキシピバレート(日本油脂社製、商品名「パーヘキシルPV」、分子量:202、10時間半減期温度:53.2℃)10.0部と重合開始剤t-ブチルパーオキシイソブチレート(日本油脂社製、商品名「パーブチルIB」、分子量:160、10時間半減期温度:77.3℃)3.0部とを溶解し、重合性単量体組成物を調製した。
造粒タンク中の上記水系媒体1および上記重合性単量体組成物を投入し、65℃、N2パージ下において、T.K.ホモミクサーにて10000rpmで5分間撹拌し、造粒した。その後、重合タンクに移して、パドル撹拌翼で30回/分で撹拌しつつ70℃で6時間造粒を行った(重合転化率は98%であった)。その後、イオン交換水10部に重合開始剤である過硫酸カリウムを1.0部を溶解させた水溶液を添加し、さらに90℃に昇温し、2時間反応させ、トナー前駆体分散液を得た。
得られたトナー前駆体分散液を図2に記載の濃縮装置(ノズル式ディスク型遠心分離機 FESX610S-34CH アルファ・ラバル株式会社製)を用い、表5に記載の条件で濃縮工程を実施した。
濃縮工程終了後、30℃まで冷却し、10%塩酸を加えpH=2とした状態で2時間撹拌しながら分散安定剤を溶解させる。そのエマルションを加圧濾過しさらに2000部以上のイオン交換水で洗浄する。得られたケーキを再び、1000部のイオン交換水に戻し、10%塩酸を加えpH=1以下とした状態で2時間撹拌しながら、再洗浄する。上記と同様にそのエマルションをろ紙を用いて加圧濾過し、さらに2000部以上のイオン交換水で洗浄し、充分通気をした後、乾燥して風力分級し、トナー粒子(ブラック着色粒子)を得た。
得られたブラック着色粒子100部と、疎水性シリカ1を1.5部、及び疎水性酸化チタン1を0.3部加え、三井ヘンシェルミキサ(三井三池化工機株式会社製)で混合し、外添剤を有するトナー1を得た。得られたトナー1の物性等については表5に記載した。
<実施例2>
濃縮工程に用いる濃縮装置をタナベウィルテック(株)製の連続式デカンタ型遠心分離機に変更した以外は実施例1と同様にして外添剤を有するトナー2を製造した。得られたトナー2の物性等を表5に示す。
<実施例3>
水系媒体1を水系媒体2に変更した以外は実施例1と同様にして外添剤を有するトナー3を製造した。得られたトナー3の物性等を表5に示す。
<実施例4>
水系媒体1を水系媒体3に変更した以外は実施例1と同様にして外添剤を有するトナー4を製造した。得られたトナー4の物性等を表5に示す。
<実施例5>
水系媒体1を水系媒体4に変更した以外は実施例1と同様にして外添剤を有するトナー5を製造した。得られたトナー5の物性等を表5に示す。
<実施例6>
過硫酸カリウムを過硫酸ナトリウムに変更した以外は実施例1と同様にして外添剤を有するトナー6を製造した。得られたトナー6の物性等を表5に示す。
<実施例7>
過硫酸カリウムを過硫酸アンモニウムに変更した以外は実施例1と同様にして外添剤を有するトナー7を製造した。得られたトナー7の物性等を表5に示す。
<実施例8>
過硫酸カリウムを過リン酸カリウムに変更した以外は実施例1と同様にして外添剤を有するトナー8を製造した。得られたトナー8の物性等を表5に示す。
<実施例9>
過硫酸カリウムを過炭酸カリウムに変更した以外は実施例1と同様にして外添剤を有するトナー9を製造した。得られたトナー9の物性等を表5に示す。
<実施例10>
水系媒体1を水系媒体5に変更し、さらに、過硫酸カリウムを2,2’-アゾビス(2-メチルプロピオンアミジン)・二塩酸(和光純薬工業社製、商品名「V-50」、10時間半減期温度:56℃)に変更した以外は実施例1と同様にして外添剤を有するトナー10を製造した。得られたトナー10の物性等を表5に示す。
<実施例11>
過硫酸カリウム1.0部を溶解させた水溶液を添加するタイミングを、重合性単量体組成物の重合転化率が91%のときに変更した以外は実施例1と同様にして外添剤を有するトナー11を製造した。得られたトナー11の物性等を表5に示す。
<比較例1>
濃縮工程に用いる濃縮装置を加圧濾過器(アドバンテック東洋株式会社製:KST-293-10-UH)に変更した以外は実施例1と同様にして外添剤を有するトナー12を製造した。得られたトナー12の物性等を表5に示す。
<比較例2>
水系媒体1を水系媒体5に変更した以外は実施例1と同様にして外添剤を有するトナー13を製造した。得られたトナー13の物性等を表5に示す。
<比較例3>
水系媒体1を水系媒体5に変更し、過硫酸カリウムを2,2’-アゾビス(2-メチルプロピオンアミジン)・二塩酸(和光純薬工業社製、商品名「V-50」、10時間半減期温度:56℃)に変更した以外は実施例1と同様にして外添剤を有するトナー14を製造した。得られたトナー14の物性等を表5に示す。
<比較例4>
過硫酸カリウム1.0部を溶解させた水溶液を添加するタイミングを、重合性単量体組成物の重合転化率が88%のときに変更した以外は実施例1と同様にして外添剤を有するトナー15を製造した。得られたトナー15の物性等を表5に示す。
Figure 0007130484000005
トナー1~11製造時の濃縮工程における生産性の評価を行った。さらに、トナー1~11をそれぞれ評価機を用いて各種画像評価を行った。評価結果は表8に示す。
[比較例1~4]
トナー112~115製造時の濃縮工程における生産性の評価を行った。さらに、トナー112~115をそれぞれ評価機を用いて各種画像評価を行った。評価結果は表8に示す。
<濃縮装置機内付着>
濃縮工程終了後、濃縮装置を分解し、内部の付着状況を目視で確認した。
Figure 0007130484000006
<カブリ>
カブリの測定は、画像形成装置として後述の評価機を用い、下記の環境下で印字率1%にて2枚印刷する度に1分休止する方式で耐久試験を行い、初期から耐久13000枚印字後に各環境下において6日間放置した。
Figure 0007130484000007
その後の1枚目の画像サンプルのカブリ量を東京電色社製のREFLECT METER MODELTC-6DSを使用して測定し、下記式より算出した。耐久試験に用いた記録材としてはA4サイズの普通紙(キヤノンマーケティングジャパン社製、GF-C081A4)を用いた。
カブリ量(%)=(プリントアウト前の記録材の白色度)-(プリント後の記録材の非画像形成部(白地部)の白色度)
Figure 0007130484000008
31:液入口、32:回転体、33:案内筒、34:処理室、35:ディスク(分離板)、36:排出ノズル、37:液抜き出し部、51:スクリューコンベア、52:外側回転筒、53:原液投入チューブ、54:スクリュー羽根、55:排出口、56:分離液排出口

Claims (4)

  1. 難水溶性無機微粒子を少なくとも含有する水系媒体を調製する調製工程と、
    該調製工程で調製された該水系媒体中に、重合性単量体及び過酸化物系重合開始剤を含む重合性単量体組成物を分散せしめ、造粒して重合性単量体組成物の粒子を形成する造粒工程と
    該造粒工程で形成された該重合性単量体組成物の粒子に含まれる該重合性単量体を重合させてトナー前駆体を生成させ、トナー前駆体分散液を得る重合工程と、
    該重合工程で得られた該トナー前駆体分散液中のトナー前駆体の固形分率を上げる濃縮工程と、
    を有するトナー粒子の製造方法において、
    該重合工程では、該トナー前駆体に含まれる該重合性単量体の重合転化率が90%以上のときに重合開始剤である過硫酸化合物を添加し、
    該重合開始剤に由来するイオン性残基の極性と該難水溶性無機微粒子の水系媒体中の極性が逆極性であり、
    該濃縮工程は、遠心分離機を用いて行われる
    ことを特徴とするトナー粒子の製造方法。
  2. 前記重合開始剤である前記過硫酸化合物に由来するイオン性残基の極性が負である請求項1に記載のトナー粒子の製造方法。
  3. 前記難水溶性無機微粒子のゼータ電位値の平均値をζとしたとき、
    0.1mV<ζ≦20.0mV
    である請求項1または2に記載のトナー粒子の製造方法。
  4. 前記遠心分離機がディスク型遠心分離機である請求項1~のいずれか1項に記載のトナー粒子の製造方法。
JP2018138170A 2018-07-24 2018-07-24 トナー粒子の製造方法 Active JP7130484B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018138170A JP7130484B2 (ja) 2018-07-24 2018-07-24 トナー粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018138170A JP7130484B2 (ja) 2018-07-24 2018-07-24 トナー粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2020016716A JP2020016716A (ja) 2020-01-30
JP7130484B2 true JP7130484B2 (ja) 2022-09-05

Family

ID=69580958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138170A Active JP7130484B2 (ja) 2018-07-24 2018-07-24 トナー粒子の製造方法

Country Status (1)

Country Link
JP (1) JP7130484B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004652A (ja) 2002-03-26 2004-01-08 Konica Minolta Holdings Inc トナー製造装置、製造方法、トナー及びトナーの製造ライン
JP2007233016A (ja) 2006-02-28 2007-09-13 Nippon Zeon Co Ltd 重合トナーの製造方法
JP2009109916A (ja) 2007-10-31 2009-05-21 Nippon Zeon Co Ltd 重合トナーの製造方法
JP2009300719A (ja) 2008-06-13 2009-12-24 Canon Inc トナーの製造方法
JP2012078371A (ja) 2010-09-30 2012-04-19 Canon Inc トナー粒子の製造方法
JP2014098804A (ja) 2012-11-14 2014-05-29 Nippon Zeon Co Ltd トナーの製造方法
JP2014155893A (ja) 2013-02-14 2014-08-28 Mitsubishi Chemicals Corp ディスク型遠心分離装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148968A (ja) * 1996-11-21 1998-06-02 Brother Ind Ltd 重合トナー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004652A (ja) 2002-03-26 2004-01-08 Konica Minolta Holdings Inc トナー製造装置、製造方法、トナー及びトナーの製造ライン
JP2007233016A (ja) 2006-02-28 2007-09-13 Nippon Zeon Co Ltd 重合トナーの製造方法
JP2009109916A (ja) 2007-10-31 2009-05-21 Nippon Zeon Co Ltd 重合トナーの製造方法
JP2009300719A (ja) 2008-06-13 2009-12-24 Canon Inc トナーの製造方法
JP2012078371A (ja) 2010-09-30 2012-04-19 Canon Inc トナー粒子の製造方法
JP2014098804A (ja) 2012-11-14 2014-05-29 Nippon Zeon Co Ltd トナーの製造方法
JP2014155893A (ja) 2013-02-14 2014-08-28 Mitsubishi Chemicals Corp ディスク型遠心分離装置

Also Published As

Publication number Publication date
JP2020016716A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
US20180210361A1 (en) Toner
JP4987156B2 (ja) トナー
US10983451B2 (en) Toner
JP2018010288A (ja) トナー、該トナーを備えた現像装置及び画像形成装置
JP2018010286A (ja) トナー、現像装置及び画像形成装置
US9927728B2 (en) Method for producing toner particle
US20080038655A1 (en) Toner for Developing Electrostatic Latent Image
JP7130484B2 (ja) トナー粒子の製造方法
JP2018004879A (ja) トナー、及び該トナーを備えた現像装置
US20220365457A1 (en) Toner and method for producing toner
JP7187200B2 (ja) トナー粒子の製造方法
US11934147B2 (en) Toner
JP6659143B2 (ja) トナー粒子の製造方法
JP7166825B2 (ja) トナーの製造方法
JP6910816B2 (ja) トナー粒子の製造方法
JP6570368B2 (ja) トナーの製造方法及びトナー
JP7218115B2 (ja) 樹脂粒子の製造方法、および、トナー粒子の製造方法
US20230082471A1 (en) Toner processing apparatus and toner production method
JP2019032465A (ja) 磁性トナー
JP6120701B2 (ja) トナーの製造方法
US20220373906A1 (en) Toner
US20230273542A1 (en) Toner set, image forming method, and image forming apparatus
JP5317663B2 (ja) トナー
JP2017194634A (ja) トナー粒子の製造方法および撹拌装置
JP2017090668A (ja) トナー処理装置及びトナーの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220824

R151 Written notification of patent or utility model registration

Ref document number: 7130484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151