JP7059234B2 - フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法 - Google Patents

フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法 Download PDF

Info

Publication number
JP7059234B2
JP7059234B2 JP2019179723A JP2019179723A JP7059234B2 JP 7059234 B2 JP7059234 B2 JP 7059234B2 JP 2019179723 A JP2019179723 A JP 2019179723A JP 2019179723 A JP2019179723 A JP 2019179723A JP 7059234 B2 JP7059234 B2 JP 7059234B2
Authority
JP
Japan
Prior art keywords
film
pattern
phase shift
thin film
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019179723A
Other languages
English (en)
Other versions
JP2020095248A (ja
Inventor
勝 田辺
敬司 浅川
順一 安森
修 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to TW111137396A priority Critical patent/TWI816568B/zh
Priority to TW108137371A priority patent/TWI782237B/zh
Priority to TW112131103A priority patent/TWI835695B/zh
Priority to KR1020190145981A priority patent/KR102527313B1/ko
Priority to CN201911179769.3A priority patent/CN111258175A/zh
Publication of JP2020095248A publication Critical patent/JP2020095248A/ja
Priority to JP2022064454A priority patent/JP7204979B2/ja
Application granted granted Critical
Publication of JP7059234B2 publication Critical patent/JP7059234B2/ja
Priority to KR1020230054240A priority patent/KR102630136B1/ko
Priority to KR1020240010271A priority patent/KR20240017031A/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置に関する。
近年、LCD(Liquid Crystal Display)を代表とするFPD(Flat Panel Display)等の表示装置では、大画面化、広視野角化とともに、高精細化、高速表示化が急速に進んでいる。この高精細化、高速表示化のために必要な要素の1つが、微細で寸法精度の高い素子や配線等の電子回路パターンの作製である。この表示装置用電子回路のパターニングにはフォトリソグラフィが用いられることが多い。このため、微細で高精度なパターンが形成された表示装置製造用の位相シフトマスクやバイナリマスクといったフォトマスクが必要になっている。
例えば、特許文献1には、透明基板上に位相反転膜が備えられた位相反転マスクブランクが開示されている。このマスクブランクにおいて、位相反転膜は、i線(365nm)、h線(405nm)、g線(436nm)を含む複合波長の露光光に対して35%以下の反射率及び1%~40%の透過率を有するようにするとともに、パターン形成時にパターン断面の傾斜が急激に形成されるように酸素(O)、窒素(N)、炭素(C)の少なくとも1つの軽元素物質を含む金属シリサイド化合物からなる2層以上の多層膜で構成され、金属シリサイド化合物は、上記軽元素物質を含む反応性ガスと不活性ガスが0.5:9.5~4:6の比率で注入して形成されている。
また、特許文献2には、透明基板と、露光光の位相を変える性質を有しかつ金属シリサイド系材料から構成される光半透過膜と、クロム系材料から構成されるエッチングマスク膜と、を備えた位相シフトマスクブランクが開示されている。この位相シフトマスクブランクにおいて、光半透過膜とエッチングマスク膜との界面に組成傾斜領域が形成されている。組成傾斜領域では、光半透過膜のウェットエッチング速度を遅くする成分の割合が、深さ方向に向かって増加する。そして、組成傾斜領域における酸素の含有量は、10原子%以下である。
韓国登録特許第1801101号 特許第6101646号
近年の高精細(1000ppi以上)のパネル作製に使用される位相シフトマスクとしては、高解像のパターン転写を可能にするために、位相シフトマスクであって、かつホール径で、6μm以下、ライン幅で4μm以下の微細な位相シフト膜パターンが形成された位相シフトマスクが要求されている。具体的には、ホール径で1.5μmの微細な位相シフト膜パターンが形成された位相シフトマスクが要求されている。
また、より高解像のパターン転写を実現するため、露光光に対する透過率が15%以上の位相シフト膜を有する位相シフトマスクブランクおよび、露光光に対する透過率が15%以上の位相シフト膜パターンが形成された位相シフトマスクが要求されている。なお、位相シフトマスクブランクや位相シフトマスクの洗浄耐性(化学的特性)においては、位相シフト膜や位相シフト膜パターンの膜減りや表面の組成変化による光学特性の変化が抑制された洗浄耐性を有する位相シフト膜が形成された位相シフトマスクブランクおよび洗浄耐性を有する位相シフト膜パターンが形成された位相シフトマスクが求められている。
露光光に対する透過率の要求と洗浄耐性の要求を満たすため、位相シフト膜を構成する金属シリサイド化合物(金属シリサイド系材料)における金属とケイ素の原子比率におけるケイ素の比率を高くすることが効果的であるが、ウェットエッチング速度が大幅に遅く(ウェットエッチング時間が長く)なるとともに、ウェットエッチング液による基板へのダメージが発生し、透明基板の透過率が低下する等の問題があった。
そして、遷移金属とケイ素とを含有する遮光膜を備えたバイナリマスクブランクにおいて、ウェットエッチングによって遮光膜に遮光パターンを形成する際にも、洗浄耐性についての要求があり、上記と同様の問題があった。
そこで本発明は、上述の問題を解決するためになされたもので、本発明の目的は、遷移金属とケイ素とを含有する位相シフト膜や遮光膜といったパターン形成用薄膜に転写パターンをウェットエッチングにより形成する際に、ウェットエッチング時間を短縮でき、良好な断面形状を有する転写パターンが形成できるフォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法を提供することである。
本発明者はこれらの問題点を解決するための方策を鋭意検討した。まず、パターン形成用薄膜における遷移金属とケイ素の原子比率を、遷移金属:ケイ素が1:3以上である材料とし、パターン形成用薄膜におけるウェットエッチング液によるウェットエッチング時間を短縮するため、パターン形成用薄膜に酸素(O)が多く含まれるように成膜室内に導入するスパッタリングガス中に含まれる酸素ガスを調整してパターン形成用薄膜を形成した。その結果、転写パターンを形成するためのウェットエッチング速度は速くなったものの、位相シフトマスクブランクにおける位相シフト膜においては、露光光に対する屈折率が低下するために、所望の位相差(例えば180°)を得るための必要な膜厚が厚くなってしまう。また、バイナリマスクブランクにおける遮光膜においては、露光光に対する消衰係数が低下するために、所望の遮光性能(例えば、光学濃度(OD)が3以上)を得るための必要な膜厚が厚くなってしまう。パターン形成用薄膜の膜厚が厚くなることは、ウェットエッチングによるパターン形成においては不利であるとともに、膜厚が厚くなるため、ウェットエッチング時間の短縮効果としては限界があった。一方で、上述した遷移金属とケイ素の原子比率(遷移金属:ケイ素=1:3以上)とすると、パターン形成用薄膜の洗浄耐性を高められる等の有利な点があるため、この点においても、上述した遷移金属とケイ素の組成比から外れるようにすることは好ましくない。
そこで、本発明者は発想を転換し、成膜室内におけるスパッタリングガスの圧力を調整して、膜構造を変えることを検討した。基板上にパターン形成用薄膜を成膜する際には、成膜室内におけるスパッタリングガス圧力を0.1~0.5Paとすることが通常である。しかしながら、本発明者は、スパッタリングガス圧力をあえて0.5Paよりも大きくして、パターン形成用薄膜を成膜した。そして、0.8Pa以上3.0Pa以下のスパッタリングガス圧力でパターン形成用薄膜を成膜したところ、薄膜としての好適な特性を備えたうえで、パターン形成用薄膜に転写パターンをウェットエッチングにより形成する際に、エッチング時間を大幅に短縮でき、良好な断面形状を有する転写パターンが形成できることを見出した。そして、このようにして成膜されたパターン形成用薄膜は、通常のパターン形成用薄膜には見られない、柱状構造を有していた。本発明は、以上のような鋭意検討の結果なされたものであり、以下の構成を有する。
(構成1)透明基板上にパターン形成用薄膜を有するフォトマスクブランクであって、
前記フォトマスクブランクは、前記パターン形成用薄膜をウェットエッチングにより前記透明基板上に転写パターンを有するフォトマスクを形成するための原版であって、
前記パターン形成用薄膜は、遷移金属と、ケイ素とを含有し、
前記パターン形成用薄膜は、柱状構造を有していることを特徴とするフォトマスクブランク。
(構成2)前記パターン形成用薄膜は、
前記フォトマスクブランクの断面を80000倍の倍率で走査電子顕微鏡観察により得られた画像について、前記パターン形成用薄膜の厚み方向の中心部を含む領域について、縦64ピクセル×横256ピクセルの画像データとして抽出し、前記画像データをフーリエ変換することにより得られた空間周波数スペクトル分布において、空間周波数の原点に対応した最大信号強度に対して1.0%以上の信号強度を有する空間周波数スペクトルが存在していることを特徴とする構成1記載のフォトマスクブランク。
(構成3)前記パターン形成用薄膜は、前記1.0%以上の信号強度を有する信号が最大空間周波数を100%としたときに空間周波数の原点から2.0%以上離れた空間周波数にあることを特徴とする構成2記載のフォトマスクブランク。
(構成4)前記パターン形成用薄膜に含まれる前記遷移金属と前記ケイ素の原子比率は、遷移金属:ケイ素=1:3以上1:15以下であることを特徴とする構成1から3のいずれかに記載のフォトマスクブランク。
(構成5)前記パターン形成用薄膜は、少なくとも窒素または酸素を含有していることを特徴とする構成1から4のいずれかに記載のフォトマスクブランク。
(構成6)前記遷移金属は、モリブデンであることを特徴とする構成1から5のいずれかに記載のフォトマスクブランク。
(構成7)前記パターン形成用薄膜は、露光光の代表波長に対して透過率が1%以上80%以下、位相差が160°以上200°以下の光学特性を備えた位相シフト膜であることを特徴とする構成1から6のいずれかに記載のフォトマスクブランク。
(構成8)前記パターン形成用薄膜上に、該パターン形成用薄膜に対してエッチング選択性が異なるエッチングマスク膜を備えていることを特徴とする構成1から7のいずれかに記載のフォトマスクブランク。
(構成9)前記エッチングマスク膜は、クロムを含有し、実質的にケイ素を含まない材料からなることを特徴とする構成8記載のフォトマスクブランク。
(構成10)透明基板上に、遷移金属と、ケイ素とを含有するパターン形成用薄膜をスパッタリング法により形成するフォトマスクブランクの製造方法であって、
前記パターン形成用薄膜は、成膜室内に遷移金属とケイ素を含む遷移金属シリサイドターゲットを使用し、スパッタリングガスを供給した前記成膜室内のスパッタリングガス圧力が0.8Pa以上3.0Pa以下で形成することを特徴とするフォトマスクブランクの製造方法。
(構成11)前記遷移金属シリサイドターゲットの前記遷移金属とケイ素の原子比率は、遷移金属:ケイ素=1:3以上1:15以下であることを特徴とする構成10記載のフォトマスクブランクの製造方法。
(構成12)前記パターン形成用薄膜上に、該パターン形成用薄膜に対してエッチング選択性が異なる材料からなるスパッタターゲットを使用し、エッチングマスク膜を形成することを特徴とする構成10または11に記載のフォトマスクブランクの製造方法。
(構成13)前記パターン形成用薄膜および前記エッチングマスク膜は、インライン型スパッタリング装置を使用して形成することを特徴とする構成12に記載のフォトマスクブランクの製造方法。
(構成14)構成1から7のいずれかに記載のフォトマスクブランク、または構成10若しくは11に記載のフォトマスクブランクの製造方法によって製造されたフォトマスクブランクを準備する工程と、
前記パターン形成用薄膜上にレジスト膜を形成し、前記レジスト膜から形成したレジスト膜パターンをマスクにして前記パターン形成用薄膜をウェットエッチングして、前記透明基板上に転写用パターンを形成する工程と、を有することを特徴とするフォトマスクの製造方法。
(構成15)構成8若しくは9に記載のフォトマスクブランク、または構成12若しくは13に記載のフォトマスクブランクの製造方法によって製造されたフォトマスクブランクを準備する工程と、
前記エッチングマスク膜上にレジスト膜を形成し、前記レジスト膜から形成したレジスト膜パターンをマスクにして前記エッチングマスク膜をウェットエッチングして、前記パターン形成用薄膜上にエッチングマスク膜パターンを形成する工程と、
前記エッチングマスク膜パターンをマスクにして、前記パターン形成用薄膜をウェットエッチングして、前記透明基板上に転写用パターンを形成する工程と、を有することを特徴とするフォトマスクの製造方法。
(構成16)構成14または15に記載のフォトマスクの製造方法により得られたフォトマスクを露光装置のマスクステージに載置し、前記フォトマスク上に形成された前記転写用パターンを、表示装置基板上に形成されたレジストに露光転写する露光工程を有することを特徴とする表示装置の製造方法。
本発明に係るフォトマスクブランクまたはフォトマスクブランクの製造方法によれば、転写パターン用薄膜をウェットエッチングにより要求される微細な転写パターンを形成する際に、パターン形成用薄膜を洗浄耐性等の視点からケイ素リッチな金属シリサイド化合物にした場合であっても、ウェットエッチング液による基板へのダメージを起因とした透明基板の透過率の低下がなく、短いエッチング時間で、良好な断面形状を有する転写パターンが形成できるフォトマスクブランクを得ることができる。
また、本発明に係るフォトマスクの製造方法によれば、上述したフォトマスクブランクを用いてフォトマスクを製造する。このため、パターン形成用薄膜を洗浄耐性等の視点からケイ素リッチな金属シリサイド化合物にした場合であっても、ウェットエッチング液による基板へのダメージを起因とした透明基板の透過率の低下がなく、転写精度の良好な転写パターンを有するフォトマスクを製造することができる。このフォトマスクは、ラインアンドスペースパターンやコンタクトホールの微細化に対応することができる。
また、本発明に係る表示装置の製造方法によれば、上述したフォトマスクブランクを用いて製造されたフォトマスクまたは上述したフォトマスクの製造方法によって得られたフォトマスクを用いて表示装置を製造する。このため、微細なラインアンドスペースパターンやコンタクトホールを有する表示装置を製造することができる。
実施の形態1にかかる位相シフトマスクブランクの膜構成を示す模式図である。 実施の形態2にかかる位相シフトマスクブランクの膜構成を示す模式図である。 実施の形態3にかかる位相シフトマスクの製造工程を示す模式図である。 実施の形態4にかかる位相シフトマスクの製造工程を示す模式図である。 (a)実施例1の位相シフトマスクブランクの断面SEM像において、位相シフト膜の厚み方向の中心部の拡大写真(画像データ)である。同図(b)は、同図(a)の拡大写真(画像データ)をフーリエ変換した結果である。 実施例1の位相シフトマスクブランクにおける位相シフト膜の暗視野平面STEM写真である。 実施例1の位相シフトマスクの断面写真である。 同図(a)は、実施例2の位相シフトマスクブランクの断面SEM像において、位相シフト膜の厚み方向の中心部の拡大写真(画像データ)である。同図(b)は、同図(a)の拡大写真(画像データ)をフーリエ変換した結果である。 実施例2の位相シフトマスクの断面写真である。 同図(a)は、実施例3の位相シフトマスクブランクの断面SEM像において、位相シフト膜の厚み方向の中心部の拡大写真(画像データ)である。同図(b)は、同図(a)の拡大写真(画像データ)をフーリエ変換した結果である。 実施例3の位相シフトマスクの断面写真である。 同図(a)は、比較例1の位相シフトマスクブランクの断面SEM像において、位相シフト膜の厚み方向の中心部の拡大写真(画像データ)である。同図(b)は、同図(a)の拡大写真(画像データ)をフーリエ変換した結果である。 比較例1の位相シフトマスクの断面写真である。
実施の形態1.2.
実施の形態1、2では、位相シフトマスクブランクについて説明する。実施の形態1の位相シフトマスクブランクは、エッチングマスク膜に所望のパターンが形成されたエッチングマスク膜パターンをマスクにして、位相シフト膜をウェットエッチングにより透明基板上に位相シフト膜パターンを有する位相シフトマスクを形成するための原版である。また、実施の形態2の位相シフトマスクブランクは、レジスト膜に所望のパターンが形成されたレジスト膜パターンをマスクにして、位相シフト膜をウェットエッチングにより透明基板上に位相シフト膜パターンを有する位相シフト膜を形成するための原版である。
図1は実施の形態1にかかる位相シフトマスクブランク10の膜構成を示す模式図である。
図1に示す位相シフトマスクブランク10は、透明基板20と、透明基板20上に形成された位相シフト膜30と、位相シフト膜30上に形成されたエッチングマスク膜40とを備える。
図2は実施の形態2にかかる位相シフトマスクブランク10の膜構成を示す模式図である。
図2に示す位相シフトマスクブランク10は、透明基板20と、透明基板20上に形成された位相シフト膜30とを備える。
以下、実施の形態1および実施の形態2の位相シフトマスクブランク10を構成する透明基板20、位相シフト膜30およびエッチングマスク膜40について説明する。
透明基板20は、露光光に対して透明である。透明基板20は、表面反射ロスが無いとしたときに、露光光に対して85%以上の透過率、好ましくは90%以上の透過率を有するものである。透明基板20は、ケイ素と酸素を含有する材料からなり、合成石英ガラス、石英ガラス、アルミノシリケートガラス、ソーダライムガラス、低熱膨張ガラス(SiO-TiOガラス等)などのガラス材料で構成することができる。透明基板20が低熱膨張ガラスから構成される場合、透明基板20の熱変形に起因する位相シフト膜パターンの位置変化を抑制することができる。また、表示装置用途で使用される透明基板20は、一般に矩形状の基板であって、該透明基板の短辺の長さは300mm以上であるものが使用される。本発明は、透明基板の短辺の長さが300mm以上の大きなサイズであっても、透明基板上に形成される例えば2.0μm未満の微細な位相シフト膜パターンを安定して転写することができる位相シフトマスクを提供可能な位相シフトマスクブランクである。
位相シフト膜30は、遷移金属と、ケイ素とを含有する遷移金属シリサイド系材料で構成される。遷移金属として、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、チタン(Ti)、ジルコニウム(Zr)などが好適であり、特に、モリブデン(Mo)であるとさらに好ましい。
また、位相シフト膜30は、少なくとも窒素または酸素を含有していることが好ましい。上記遷移金属シリサイド系材料において、軽元素成分である酸素は、同じく軽元素成分である窒素と比べて、消衰係数を下げる効果があるため、所望の透過率を得るための他の軽元素成分(窒素など)の含有率を少なくすることができるとともに、位相シフト膜30の表面および裏面の反射率も効果的に低減することができる。また、上記遷移金属シリサイド系材料において、軽元素成分である窒素は、同じく軽元素成分である酸素と比べて、屈折率を下げない効果があるため、所望の位相差を得るための膜厚を薄くできる。また、位相シフト膜30に含まれる酸素と窒素を含む軽元素成分の合計含有率は、40原子%以上が好ましい。さらに好ましくは、40原子%以上70原子%以下、50原子%以上65原子%以下が望ましい。また、位相シフト膜30に酸素が含まれる場合は、酸素の含有率は、0原子%超40原子%以下であることが、欠陥品質、耐薬品性に於いて望ましい。
遷移金属シリサイド系材料としては、例えば、遷移金属シリサイドの窒化物、遷移金属シリサイドの酸化物、遷移金属シリサイドの酸化窒化物、遷移金属シリサイドの酸化窒化炭化物が挙げられる。また、遷移金属シリサイド系材料は、モリブデンシリサイド系材料(MoSi系材料)、ジルコニウムシリサイド系材料(ZrSi系材料)、モリブデンジルコニウムシリサイド系材料(MoZrSi系材料)であると、ウェットエッチングによる優れたパターン断面形状が得られやすいという点で好ましく、特にモリブデンシリサイド系材料(MoSi系材料)であると好ましい。
また、位相シフト膜30には、上述した酸素、窒素の他に、膜応力の低減やウェットエッチングレートを制御する目的で、炭素やヘリウム等の他の軽元素成分を含有してもよい。
位相シフト膜30は、透明基板20側から入射する光に対する反射率(以下、裏面反射率と記載する場合がある)を調整する機能と、露光光に対する透過率と位相差とを調整する機能とを有する。
位相シフト膜30は、スパッタリング法により形成することができる。
この位相シフト膜30は柱状構造を有している。この柱状構造は、位相シフト膜30を断面SEM観察により確認することができる。すなわち、本発明における柱状構造は、位相シフト膜30を構成する遷移金属とケイ素とを含有する遷移金属シリサイド化合物の粒子が、位相シフト膜30の膜厚方向(上記粒子が堆積する方向)に向かって伸びる柱状の粒子構造を有する状態をいう。なお、本願においては、膜厚方向の長さがその垂直方向の長さよりも長いものを柱状の粒子としている。すなわち、位相シフト膜30は、膜厚方向に向かって伸びる柱状の粒子が、透明基板20の面内に渡って形成されている。また、位相シフト膜30は、成膜条件(スパッタリング圧力など)を調整することにより、柱状の粒子よりも相対的に密度の低い疎の部分(以下、単に「疎の部分」ということもある)も形成されている。なお、位相シフト膜30は、ウェットエッチングの際のサイドエッチングを効果的に抑制し、パターン断面形状をさらに良化するために、位相シフト膜30の柱状構造の好ましい形態としては、膜厚方向に伸びる柱状の粒子が、膜厚方向に不規則に形成されているのが好ましい。さらに好ましくは、位相シフト膜30の柱状の粒子は、膜厚方向の長さが不揃いな状態であるのが好ましい。そして、位相シフト膜30の疎の部分は、膜厚方向において連続的に形成されていることが好ましい。また、位相シフト膜30の疎の部分は、膜厚方向に垂直な方向おいて断続的に形成されていることが好ましい。位相シフト膜30の柱状構造の好ましい形態としては、上記断面SEM観察により得られた画像について、フーリエ変換した指標を用いて、以下のようにあらわすことができる。すなわち、位相シフト膜30の柱状構造は、位相シフトマスクブランクの断面を80000倍の倍率で断面SEM観察により得られた画像について、位相シフト膜30の厚み方向の中心部を含む領域について、縦64ピクセル×横256ピクセルの画像データとして抽出し、この画像データをフーリエ変換により得られた空間周波数スペクトルは、空間周波数の原点に対応した最大信号強度に対して1.0%以上の信号強度を有する状態であることが好ましい。位相シフト膜30を上記に説明した柱状構造とすることにより、ウェットエッチング液を用いたウェットエッチングの際、位相シフト膜30の膜厚方向にウェットエッチング液が浸透しやすくなるので、ウェットエッチング速度が速くなり、ウェットエッチング時間を大幅に短縮することができる。従って、位相シフト膜30が、ケイ素リッチな金属シリサイド化合物であっても、ウェットエッチング液による基板へのダメージを起因とした透明基板の透過率の低下がない。また、位相シフト膜30が膜厚方向に伸びる柱状構造を有しているので、ウェットエッチングの際のサイドエッチングが抑制されるので、パターン断面形状も良好となる。
また、位相シフト膜30は、フーリエ変換することにより得られた空間周波数スペクトル分布の最大信号強度に対する1.0%以上の強度信号を有する信号が最大空間周波数を100%としたときに空間周波数の原点から2.0%以上離れた空間周波数にあることが好ましい。最大信号強度に対する1.0%以上の強度信号を有する信号が2.0%以上離れているということは、一定以上高い空間周波数成分が含まれていることを表している。すなわち、位相シフト膜30が微細な柱状構造である状態を示しており、この空間周波数が原点から離れた位置にあるほど位相シフト膜30をウェットエッチングにより形成して得られる位相シフト膜パターン30aのラインエッジラフネスが小さくなるので好ましい。
位相シフト膜30に含まれる遷移金属とケイ素の原子比率は、遷移金属:ケイ素=1:3以上1:15以下であることが好ましい。この範囲であると、位相シフト膜30のパターン形成時におけるウェットエッチングレート低下を、柱状構造により抑制する効果を大きくすることができる。また、位相シフト膜30の洗浄耐性を高めることができ、透過率を高めることも容易となる。位相シフト膜30の洗浄耐性を高める視点からは、位相シフト膜30に含まれる遷移金属とケイ素の原子比率は、遷移金属:ケイ素=1:4以上1:15以下、さらに好ましくは、遷移金属:ケイ素=1:5以上1:15以下が望ましい。
露光光に対する位相シフト膜30の透過率は、位相シフト膜30として必要な値を満たす。位相シフト膜30の透過率は、露光光に含まれる所定の波長の光(以下、代表波長という)に対して、好ましくは、1%以上80%以下であり、より好ましくは、15%以上65%以下であり、さらに好ましくは20%以上60%以下である。すなわち、露光光が313nm以上436nm以下の波長範囲の光を含む複合光である場合、位相シフト膜30は、その波長範囲に含まれる代表波長の光に対して、上述した透過率を有する。例えば、露光光がi線、h線およびg線を含む複合光である場合、位相シフト膜30は、i線、h線およびg線のいずれかに対して、上述した透過率を有する。
透過率は、位相シフト量測定装置などを用いて測定することができる。
露光光に対する位相シフト膜30の位相差は、位相シフト膜30として必要な値を満たす。位相シフト膜30の位相差は、露光光に含まれる代表波長の光に対して、好ましくは、160°以上200°以下であり、より好ましくは、170°以上190°以下である。この性質により、露光光に含まれる代表波長の光の位相を160°以上200°以下に変えることができる。このため、位相シフト膜30を透過した代表波長の光と透明基板20のみを透過した代表波長の光との間に160°以上200°以下の位相差が生じる。すなわち、露光光が313nm以上436nm以下の波長範囲の光を含む複合光である場合、位相シフト膜30は、その波長範囲に含まれる代表波長の光に対して、上述した位相差を有する。例えば、露光光がi線、h線およびg線を含む複合光である場合、位相シフト膜30は、i線、h線およびg線のいずれかに対して、上述した位相差を有する。
位相差は、位相シフト量測定装置などを用いて測定することができる。
位相シフト膜30の裏面反射率は、365nm~436nmの波長域において15%以下であり、10%以下であると好ましい。また、位相シフト膜30の裏面反射率は、露光光にj線が含まれる場合、313nmから436nmの波長域の光に対して20%以下であると好ましく、17%以下であるとより好ましい。さらに好ましくは15%以下であることが望ましい。また、位相シフト膜30の裏面反射率は、365nm~436nmの波長域において0.2%以上であり、313nmから436nmの波長域の光に対して0.2%以上であると好ましい。
裏面反射率は、分光光度計などを用いて測定することができる。
この位相シフト膜30は複数の層で構成されていてもよく、単一の層で構成されていてもよい。単一の層で構成された位相シフト膜30は、位相シフト膜30中に界面が形成され難く、断面形状を制御しやすい点で好ましい。一方、複数の層で構成された位相シフト膜30は、成膜のし易さ等の点で好ましい。
エッチングマスク膜40は、位相シフト膜30の上側に配置され、位相シフト膜30をエッチングするエッチング液に対してエッチング耐性を有する(位相シフト膜30とエッチング選択性が異なる)材料からなる。また、エッチングマスク膜40は、露光光の透過を遮る機能を有してもよいし、さらに、位相シフト膜30側より入射される光に対する位相シフト膜30の膜面反射率が350nm~436nmの波長域において15%以下となるように膜面反射率を低減する機能を有してもよい。エッチングマスク膜40は、クロム(Cr)を含有するクロム系材料から構成される。クロム系材料として、より具体的には、クロム(Cr)、又は、クロム(Cr)と、酸素(O)、窒素(N)、炭素(C)のうちの少なくともいずれか1つを含有する材料が挙げられる。又は、クロム(Cr)と、酸素(O)、窒素(N)、炭素(C)のうちの少なくともいずれか1つとを含み、さらに、フッ素(F)を含む材料が挙げられる。例えば、エッチングマスク膜40を構成する材料として、Cr、CrO、CrN、CrF、CrCO、CrCN、CrON、CrCON、CrCONFが挙げられる。
エッチングマスク膜40は、スパッタリング法により形成することができる。
エッチングマスク膜40が露光光の透過を遮る機能を有する場合、位相シフト膜30とエッチングマスク膜40とが積層する部分において、露光光に対する光学濃度は、好ましくは3以上であり、より好ましくは、3.5以上、さらに好ましくは4以上である。
光学濃度は、分光光度計またはODメーターなどを用いて測定することができる。
エッチングマスク膜40は、機能に応じて組成が均一な単一の膜からなる場合であってもよいし、組成が異なる複数の膜からなる場合であってもよいし、厚さ方向に組成が連続的に変化する単一の膜からなる場合であってもよい。
なお、図1に示す位相シフトマスクブランク10は、位相シフト膜30上にエッチングマスク膜40を備えているが、位相シフト膜30上にエッチングマスク膜40を備え、エッチングマスク膜40上にレジスト膜を備える位相シフトマスクブランクについても、本発明を適用することができる。
次に、この実施の形態1および2の位相シフトマスクブランク10の製造方法について説明する。図1に示す位相シフトマスクブランク10は、以下の位相シフト膜形成工程とエッチングマスク膜形成工程とを行うことによって製造される。図2に示す位相シフトマスクブランク10は、位相シフト膜形成工程によって製造される。
以下、各工程を詳細に説明する。
1.位相シフト膜形成工程
先ず、透明基板20を準備する。透明基板20は、露光光に対して透明であれば、合成石英ガラス、石英ガラス、アルミノシリケートガラス、ソーダライムガラス、低熱膨張ガラス(SiO-TiOガラス等)などのいずれのガラス材料で構成されるものであってもよい。
次に、透明基板20上に、スパッタリング法により、位相シフト膜30を形成する。
位相シフト膜30の成膜は、位相シフト膜30を構成する材料の主成分となる遷移金属とケイ素を含む遷移金属シリサイドターゲット、又は遷移金属とケイ素と酸素及び/又は窒素を含む遷移金属シリサイドターゲットをスパッタターゲットに使用して、例えば、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス及びキセノンガスからなる群より選ばれる少なくとも一種を含む不活性ガスからなるスパッタガス雰囲気、又は、上記不活性ガスと、酸素ガス、窒素ガス、二酸化炭素ガス、一酸化窒素ガス、二酸化窒素ガスからなる群より選ばれて酸素及び窒素を少なくとも含む活性ガスとの混合ガスからなるスパッタガス雰囲気で行われる。そして、位相シフト膜30は、スパッタリングを行う際における成膜室内のガス圧力が0.8Pa以上3.0Pa以下で形成する。ガス圧力の範囲をこのように設定することで、位相シフト膜30に柱状構造を形成することができる。この柱状構造により、後述するパターン形成時におけるサイドエッチングを抑制できるとともに、高エッチングレートを達成することができる。ここで、遷移金属シリサイドターゲットの遷移金属とケイ素の原子比率は、遷移金属:ケイ素=1:3以上1:15以下であることが、ウェットエッチング速度の低下を柱状構造によって抑制する効果が大きく、位相シフト膜30の洗浄耐性を高めることができ、透過率を高めることも容易となる等の点で、好ましい。
位相シフト膜30の組成及び厚さは、位相シフト膜30が上記の位相差及び透過率となるように調整される。位相シフト膜30の組成は、スパッタターゲットを構成する元素の含有比率(例えば、遷移金属の含有率とケイ素の含有率との比)、スパッタガスの組成及び流量などにより制御することができる。位相シフト膜30の厚さは、スパッタパワー、スパッタリング時間などにより制御することができる。また、位相シフト膜30は、インライン型スパッタリング装置を使用して形成することが好ましい。スパッタリング装置がインライン型スパッタリング装置の場合、基板の搬送速度によっても、位相シフト膜30の厚さを制御することができる。このように、位相シフト膜30の酸素と窒素を含む軽元素成分の含有率が40原子%以上70原子%以下となるように制御を行う。
位相シフト膜30が、単一の膜からなる場合、上述した成膜プロセスを、スパッタガスの組成及び流量を適宜調整して1回だけ行う。位相シフト膜30が、組成の異なる複数の膜からなる場合、上述した成膜プロセスを、スパッタガスの組成及び流量を適宜調整して複数回行う。スパッタターゲットを構成する元素の含有比率が異なるターゲットを使用して位相シフト膜30を成膜してもよい。成膜プロセスを複数回行う場合、スパッタターゲットに印加するスパッタパワーを成膜プロセス毎に変更してもよい。
2.表面処理工程
位相シフト膜30が、遷移金属と、ケイ素と、酸素を含有する遷移金属シリサイド酸化物や、遷移金属と、ケイ素と、酸素と、窒素を含有する遷移金属シリサイド酸化窒化物などの酸素を含有する遷移金属シリサイド材料からなる場合、この位相シフト膜30の表面について、遷移金属の酸化物の存在によるエッチング液による浸み込みを抑制するため、位相シフト膜30の表面酸化の状態を調整する表面処理工程を行うようにしてもよい。なお、位相シフト膜30が、遷移金属と、ケイ素と、窒素を含有する遷移金属シリサイド窒化物からなる場合、上述の酸素を含有する遷移金属シリサイド材料と比べて、遷移金属の酸化物の含有率が小さい。そのため、位相シフト膜30の材料が、遷移金属シリサイド窒化物の場合は、上記表面処理工程を行うようにしてもよいし、行わなくてもよい。
位相シフト膜30の表面酸化の状態を調整する表面処理工程としては、酸性の水溶液で表面処理する方法、アルカリ性の水溶液で表面処理する方法、アッシング等のドライ処理で表面処理する方法などが挙げられる。
このようにして、実施の形態2の位相シフトマスクブランク10が得られる。実施の形態1の位相シフトマスクブランク10の製造には、以下のエッチングマスク膜形成工程をさらに行う。
3.エッチングマスク膜形成工程
位相シフト膜形成工程の後、必要に応じて、位相シフト膜30の表面の表面酸化の状態を調整する表面処理を必要に応じて行い、その後、スパッタリング法により、位相シフト膜30上にエッチングマスク膜40を形成する。エッチングマスク膜40は、インライン型スパッタリング装置を使用して形成することが好ましい。スパッタリング装置がインライン型スパッタリング装置の場合、透明基板20の搬送速度によっても、エッチングマスク膜40の厚さを制御することができる。
エッチングマスク膜40の成膜は、クロム又はクロム化合物(酸化クロム、窒化クロム、炭化クロム、酸化窒化クロム、酸化窒化炭化クロム等)を含むスパッタターゲットを使用して、例えば、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス及びキセノンガスからなる群より選ばれる少なくとも一種を含む不活性ガスからなるスパッタガス雰囲気、又は、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス及びキセノンガスからなる群より選ばれる少なくとも一種を含む不活性ガスと、酸素ガス、窒素ガス、一酸化窒素ガス、二酸化窒素ガス、二酸化炭素ガス、炭化水素系ガス、フッ素系ガスからなる群より選ばれる少なくとも一種を含む活性ガスとの混合ガスからなるスパッタガス雰囲気で行われる。炭化水素系ガスとしては、例えば、メタンガス、ブタンガス、プロパンガス、スチレンガス等が挙げられる。そして、スパッタリングを行う際における成膜室内のガス圧力を調整することにより、位相シフト膜30と同様にエッチングマスク膜40を柱状構造にすることができる。これにより、後述するパターン形成時におけるサイドエッチ
ングを抑制できるとともに、高エッチングレートを達成することができる。
エッチングマスク膜40が、組成の均一な単一の膜からなる場合、上述した成膜プロセスを、スパッタガスの組成及び流量を変えずに1回だけ行う。エッチングマスク膜40が、組成の異なる複数の膜からなる場合、上述した成膜プロセスを、成膜プロセス毎にスパッタガスの組成及び流量を変えて複数回行う。エッチングマスク膜40が、厚さ方向に組成が連続的に変化する単一の膜からなる場合、上述した成膜プロセスを、スパッタガスの組成及び流量を成膜プロセスの経過時間と共に変化させながら1回だけ行う。
このようにして、実施の形態1の位相シフトマスクブランク10が得られる。
なお、図1に示す位相シフトマスクブランク10は、位相シフト膜30上にエッチングマスク膜40を備えているため、位相シフトマスクブランク10を製造する際に、エッチングマスク膜形成工程を行う。また、位相シフト膜30上にエッチングマスク膜40を備え、エッチングマスク膜40上にレジスト膜を備える位相シフトマスクブランクを製造する際は、エッチングマスク膜形成工程後に、エッチングマスク膜40上にレジスト膜を形成する。また、図2に示す位相シフトマスクブランク10において、位相シフト膜30上にレジスト膜を備える位相シフトマスクブランクを製造する際は、位相シフト膜形成工程後に、レジスト膜を形成する。
この実施の形態1の位相シフトマスクブランク10は、位相シフト膜30上にエッチングマスク膜40が形成されており、少なくとも位相シフト膜30は、柱状構造を有している。また、実施の形態2の位相シフトマスクブランク10は、位相シフト膜30が形成されており、この位相シフト膜30は柱状構造を有している。
この実施の形態1および2の位相シフトマスクブランク10は、ウェットエッチングにより位相シフト膜30をパターニングする際に、膜厚方向のエッチングが促進される一方でサイドエッチングが抑制されるので、断面形状が良好であり、所望の透過率を有する(例えば、透過率の高い)位相シフト膜パターンを、短いエッチング時間で形成することができる。従って、ウェットエッチング液による基板へのダメージを起因とした透明基板の透過率の低下がなく、高精細な位相シフト膜パターンを精度よく転写することができる位相シフトマスクを製造することができる位相シフトマスクブランクが得られる。
実施の形態3.4.
実施の形態3、4では、位相シフトマスクの製造方法について説明する。
図3は実施の形態3にかかる位相シフトマスクの製造方法を示す模式図である。図4は実施の形態4にかかる位相シフトマスクの製造方法を示す模式図である。
図3に示す位相シフトマスクの製造方法は、図1に示す位相シフトマスクブランク10を用いて位相シフトマスクを製造する方法であり、以下の位相シフトマスクブランク10のエッチングマスク膜40上にレジスト膜を形成する工程と、レジスト膜に所望のパターンを描画・現像を行うことにより、レジスト膜パターン50を形成し(第1のレジスト膜パターン形成工程)、該レジスト膜パターン50をマスクにしてエッチングマスク膜40をウェットエッチングして、位相シフト膜30上にエッチングマスク膜パターン40aを形成する工程(第1のエッチングマスク膜パターン形成工程)と、記エッチングマスク膜パターン40aをマスクにして、位相シフト膜30をウェットエッチングして透明基板20上に位相シフト膜パターン30aを形成する工程(位相シフト膜パターン形成工程)と、を含む。そして、第2のレジスト膜パターン形成工程と、第2のエッチングマスク膜パターン形成工程とをさらに含む。
図4に示す位相シフトマスクの製造方法は、図2に示す位相シフトマスクブランク10を用いて位相シフトマスクを製造する方法であり、以下の位相シフトマスクブランク10の上にレジスト膜を形成する工程と、レジスト膜に所望のパターンを描画・現像を行うことにより、レジスト膜パターン50を形成し(第1のレジスト膜パターン形成工程)、該レジスト膜パターン50をマスクにして位相シフト膜30をウェットエッチングして、透明基板20上に位相シフト膜パターン30aを形成する工程(位相シフト膜パターン形成工程)と、を含む。
以下、実施の形態3および4にかかる位相シフトマスクの製造工程の各工程を詳細に説明する。
実施の形態3にかかる位相シフトマスクの製造工程
1.第1のレジスト膜パターン形成工程
第1のレジスト膜パターン形成工程では、先ず、実施の形態1の位相シフトマスクブランク10のエッチングマスク膜40上に、レジスト膜を形成する。使用するレジスト膜材料は、特に制限されない。例えば、後述する350nm~436nmの波長域から選択されるいずれかの波長を有するレーザー光に対して感光するものであればよい。また、レジスト膜は、ポジ型、ネガ型のいずれであっても構わない。
その後、350nm~436nmの波長域から選択されるいずれかの波長を有するレーザー光を用いて、レジスト膜に所望のパターンを描画する。レジスト膜に描画するパターンは、位相シフト膜30に形成するパターンである。レジスト膜に描画するパターンとして、ラインアンドスペースパターンやホールパターンが挙げられる。
その後、レジスト膜を所定の現像液で現像して、図3(a)に示されるように、エッチングマスク膜40上に第1のレジスト膜パターン50を形成する。
2.第1のエッチングマスク膜パターン形成工程
第1のエッチングマスク膜パターン形成工程では、先ず、第1のレジスト膜パターン50をマスクにしてエッチングマスク膜40をエッチングして、第1のエッチングマスク膜パターン40aを形成する。エッチングマスク膜40は、クロム(Cr)を含むクロム系材料から形成される。エッチングマスク膜40が柱状構造を有している場合、エッチング速度が速く、サイドエッチングを抑制できる点で好ましい。エッチングマスク膜40をエッチングするエッチング液は、エッチングマスク膜40を選択的にエッチングできるものであれば、特に制限されない。具体的には、硝酸第二セリウムアンモニウムと過塩素酸とを含むエッチング液が挙げられる。
その後、レジスト剥離液を用いて、又は、アッシングによって、図3(b)に示されるように、第1のレジスト膜パターン50を剥離する。場合によっては、第1のレジスト膜パターン50を剥離せずに、次の位相シフト膜パターン形成工程を行ってもよい。
3.位相シフト膜パターン形成工程
第1の位相シフト膜パターン形成工程では、第1のエッチングマスク膜パターン40aをマスクにして位相シフト膜30をウェットエッチングして、図3(c)に示されるように、位相シフト膜パターン30aを形成する。位相シフト膜パターン30aとして、ラインアンドスペースパターンやホールパターンが挙げられる。位相シフト膜30をエッチングするエッチング液は、位相シフト膜30を選択的にエッチングできるものであれば、特に制限されない。例えば、フッ化アンモニウムとリン酸と過酸化水素とを含むエッチング液、フッ化水素アンモニウムと過酸化水素とを含むエッチング液が挙げられる。
ウェットエッチングは、位相シフト膜パターン30aの断面形状を良好にするために、位相シフト膜パターン30aにおいて透明基板20が露出するまでの時間(ジャストエッチング時間)よりも長い時間(オーバーエッチング時間)で行うことが好ましい。オーバーエッチング時間としては、透明基板20への影響等を考慮すると、ジャストエッチング時間に、そのジャストエッチング時間の20%の時間を加えた時間内とすることが好ましく、ジャストエッチング時間の10%の時間を加えた時間内とすることがより好ましい。
4.第2のレジスト膜パターン形成工程
第2のレジスト膜パターン形成工程では、先ず、第1のエッチングマスク膜パターン40aを覆うレジスト膜を形成する。使用するレジスト膜材料は、特に制限されない。例えば、後述する350nm~436nmの波長域から選択されるいずれかの波長を有するレーザー光に対して感光するものであればよい。また、レジスト膜は、ポジ型、ネガ型のいずれであっても構わない。
その後、350nm~436nmの波長域から選択されるいずれかの波長を有するレーザー光を用いて、レジスト膜に所望のパターンを描画する。レジスト膜に描画するパターンは、位相シフト膜30にパターンが形成されている領域の外周領域を遮光する遮光帯パターンや、位相シフト膜パターンの中央部を遮光する遮光帯パターンなどである。なお、レジスト膜に描画するパターンは、露光光に対する位相シフト膜30の透過率によっては、位相シフト膜パターン30aの中央部を遮光する遮光帯パターンがないパターンの場合もある。
その後、レジスト膜を所定の現像液で現像して、図3(d)に示されるように、第1のエッチングマスク膜パターン40a上に第2のレジスト膜パターン60を形成する。
5.第2のエッチングマスク膜パターン形成工程
第2のエッチングマスク膜パターン形成工程では、第2のレジスト膜パターン60をマスクにして第1のエッチングマスク膜パターン40aをエッチングして、図3(e)に示されるように、第2のエッチングマスク膜パターン40bを形成する。第1のエッチングマスク膜パターン40aは、クロム(Cr)を含むクロム系材料から形成される。第1のエッチングマスク膜パターン40aをエッチングするエッチング液は、第1のエッチングマスク膜パターン40aを選択的にエッチングできるものであれば、特に制限されない。例えば、硝酸第二セリウムアンモニウムと過塩素酸とを含むエッチング液が挙げられる。
その後、レジスト剥離液を用いて、又は、アッシングによって、第2のレジスト膜パターン60を剥離する。
このようにして、位相シフトマスク100が得られる。
なお、上記説明ではエッチングマスク膜40が、露光光の透過を遮る機能を有する場合について説明したが、エッチングマスク膜40が単に、位相シフト膜30をエッチングする際のハードマスクの機能のみを有する場合においては、上記説明において、第2のレジスト膜パターン形成工程と、第2のエッチングマスク膜パターン形成工程は行われず、位相シフト膜パターン形成工程の後、第1のエッチングマスク膜パターンを剥離して、位相シフトマスク100を作製する。
この実施の形態3の位相シフトマスクの製造方法によれば、実施の形態1の位相シフトマスクブランクを用いるため、エッチング時間を短縮でき、断面形状が良好な位相シフト膜パターンを形成することができる。従って、高精細な位相シフト膜パターンを精度よく転写することができる位相シフトマスクを製造することができる。このように製造された位相シフトマスクは、ラインアンドスペースパターンやコンタクトホールの微細化に対応することができる。
実施の形態4にかかる位相シフトマスクの製造工程
1.レジスト膜パターン形成工程
レジスト膜パターン形成工程では、先ず、実施の形態2の位相シフトマスクブランク10の位相シフト膜30上に、レジスト膜を形成する。使用するレジスト膜材料は、実施の形態3で説明したのと同様である。なお、必要に応じてレジスト膜を形成する前に、位相シフト膜30と密着性を良好にするため、位相シフト膜30に表面改質処理を行なうようにしても構わない。上述と同様に、レジスト膜を形成した後、350nm~436nmの波長域から選択されるいずれかの波長を有するレーザー光を用いて、レジスト膜に所望のパターンを描画する。その後、レジスト膜を所定の現像液で現像して、図4(a)に示されるように、位相シフト膜30上にレジスト膜パターン50を形成する。
2.位相シフト膜パターン形成工程
位相シフト膜パターン形成工程では、レジスト膜パターンをマスクにして位相シフト膜30をエッチングして、図4(b)に示されるように、位相シフト膜パターン30aを形成する。位相シフト膜パターン30aや位相シフト膜30をエッチングするエッチング液やオーバーエッチング時間は、実施の形態3で説明したのと同様である。
その後、レジスト剥離液を用いて、又は、アッシングによって、レジスト膜パターン50を剥離する(図4(c))。
このようにして、位相シフトマスク100が得られる。
この実施の形態4の位相シフトマスクの製造方法によれば、実施の形態2の位相シフトマスクブランクを用いるため、ウェットエッチング液による基板へのダメージを起因とした透明基板の透過率の低下がなく、エッチング時間を短くでき、断面形状が良好な位相シフト膜パターンを形成することができる。従って、高精細な位相シフト膜パターンを精度よく転写することができる位相シフトマスクを製造することができる。このように製造された位相シフトマスクは、ラインアンドスペースパターンやコンタクトホールの微細化に対応することができる。
実施の形態5.
実施の形態5では、表示装置の製造方法について説明する。表示装置は、上述した位相シフトマスクブランク10を用いて製造された位相シフトマスク100を用い、または上述した位相シフトマスク100の製造方法によって製造された位相シフトマスク100を用いる工程(マスク載置工程)と、表示装置上のレジスト膜に転写パターンを露光転写する工程(露光工程)とを行うことによって製造される。
以下、各工程を詳細に説明する。
1.載置工程
載置工程では、実施の形態3で製造された位相シフトマスクを露光装置のマスクステージに載置する。ここで、位相シフトマスクは、露光装置の投影光学系を介して表示装置基板上に形成されたレジスト膜に対向するように配置される。
2.パターン転写工程
パターン転写工程では、位相シフトマスク100に露光光を照射して、表示装置基板上に形成されたレジスト膜に位相シフト膜パターンを転写する。露光光は、365nm~436nmの波長域から選択される複数の波長の光を含む複合光や、365nm~436nmの波長域からある波長域をフィルターなどでカットし選択された単色光である。例えば、露光光は、i線、h線およびg線を含む複合光や、i線の単色光である。露光光として複合光を用いると、露光光強度を高くしてスループットを上げることができるため、表示装置の製造コストを下げることができる。
この実施の形態3の表示装置の製造方法によれば、高解像度、微細なラインアンドスペースパターンやコンタクトホールを有する、高精細の表示装置を製造することができる。
なお、以上の実施形態においては、パターン形成用薄膜を有するフォトマスクブランクや転写用パターンを有するフォトマスクとして、位相シフトマスク膜を有する位相シフトマスクブランクや位相シフトマスク膜パターンを有する位相シフトマスクを用いる場合を説明したが、これらに限定されるものではない。例えば、パターン形成用薄膜として遮光膜を有するバイナリマスクブランクや遮光膜パターンを有するバイナリマスクにおいても、本発明を適用することが可能である。
実施例1.
A.位相シフトマスクブランクおよびその製造方法
実施例1の位相シフトマスクブランクを製造するため、先ず、透明基板20として、1214サイズ(1220mm×1400mm)の合成石英ガラス基板を準備した。
その後、合成石英ガラス基板を、主表面を下側に向けてトレイ(図示せず)に搭載し、インライン型スパッタリング装置のチャンバー内に搬入した。
透明基板20の主表面上に位相シフト膜30を形成するため、まず、第1チャンバー内のスパッタリングガス圧力を1.6Paにした状態で、アルゴン(Ar)ガスと、窒素(N)ガスと、ヘリウム(He)ガスで構成される不活性ガス(Ar:18sccm、N:13sccm、He:50sccm)を導入した。そして、モリブデンとケイ素を含む第1スパッタターゲット(モリブデン:ケイ素=1:9)に7.6kWのスパッタパワーを印加して、反応性スパッタリングにより、透明基板20の主表面上にモリブデンとケイ素と窒素を含有するモリブデンシリサイドの窒化物を堆積させた。そして、膜厚150nmの位相シフト膜30を成膜した。
次に、位相シフト膜30付きの透明基板20を第2チャンバー内に搬入し、第2チャンバー内にアルゴン(Ar)ガスと窒素(N)ガスとの混合ガス(Ar: 65sccm、N:15sccm)を導入した。そして、クロムからなる第2スパッタターゲットに1.5kWのスパッタパワーを印加して、反応性スパッタリングにより、位相シフト膜30上にクロムと窒素を含有するクロム窒化物(CrN)を形成した(膜厚15nm)。次に、第3チャンバー内を所定の真空度にした状態で、アルゴン(Ar)ガスとメタン(CH:4.9%)ガスの混合ガス(30sccm)を導入し、クロムからなる第3スパッタターゲットに8.5kWのスパッタパワーを印加して、反応性スパッタリングによりCrN上にクロムと炭素を含有するクロム炭化物(CrC)を形成した(膜厚60nm)。最後に、第4チャンバー内を所定の真空度にした状態で、アルゴン(Ar)ガスとメタン(CH:5.5%)ガスの混合ガスと窒素(N)ガスと酸素(O)ガスとの混合ガス(Ar+CH:30sccm、N:8sccm、O:3sccm)を導入し、クロムからなる第4スパッタターゲットに2.0kWのスパッタパワーを印加して、反応性スパッタリングによりCrC上にクロムと炭素と酸素と窒素を含有するクロム炭化酸化窒化物(CrCON)を形成した(膜厚30nm)。以上のように、位相シフト膜30上に、CrN層とCrC層とCrCON層の積層構造のエッチングマスク膜40を形成した。
このようにして、透明基板20上に、位相シフト膜30とエッチングマスク膜40とが形成された位相シフトマスクブランク10を得た。
得られた位相シフトマスクブランク10の位相シフト膜30(位相シフト膜30の表面について、レーザーテック社製のMPM-100により透過率、位相差を測定した。位相シフト膜30の透過率、位相差の測定には、同一のトレイにセットして作製された、合成石英ガラス基板の主表面上に位相シフト膜30が成膜された位相シフト膜付き基板(ダミー基板)を用いた。位相シフト膜30の透過率、位相差は、エッチングマスク膜40を形成する前に位相シフト膜付き基板(ダミー基板)をチャンバーから取り出し、測定した。その結果、透過率は27%(波長:405nm)位相差は178°(波長:405nm)であった。
また、得られた位相シフトマスクブランク10について、X線光電子分光法(XPS)による深さ方向の組成分析を行った。
位相シフトマスクブランク10に対するXPSによる深さ方向の組成分析結果において、位相シフト膜30は、透明基板20と位相シフト膜30との界面の組成傾斜領域、および、位相シフト膜30とエッチングマスク膜40との界面の組成傾斜領域を除いて、深さ方向に向かって、各構成元素の含有率はほぼ一定であり、Moが8原子%、Siが40原子%、Nが48原子%、Oが4原子%であった。また、モリブデンとケイ素の原子比率は、1:5であり、1:3以上1:15以下の範囲内であった。また、軽元素である酸素、窒素の合計含有率は、52原子%であり、50原子%以上65原子%以下の範囲内であった。なお、位相シフト膜30に酸素が含有されているのは、スパッタリングガス圧力が0.8Pa以上と高く、成膜時のチャンバー内に微量の酸素が存在していたものと考えられる。
次に、得られた位相シフトマスクブランク10の転写パターン形成領域の中央の位置において、80000倍の倍率で断面SEM(走査電子顕微鏡)観察を行った結果、位相シフト膜30は、柱状構造を有していることが確認できた。すなわち、位相シフト膜30を構成するモリブデンシリサイド化合物の粒子が、位相シフト膜30の膜厚方向に向かって伸びる柱状の粒子構造を有していることが確認できた。そして位相シフト膜30の柱状の粒子構造は、膜厚方向の柱状の粒子が不規則に形成されており、かつ、柱状の粒子の膜厚方向の長さも不揃いな状態であることが確認できた。また、位相シフト膜30の疎の部分は、膜厚方向において連続的に形成されていることも確認できた。さらに、この断面SEM観察により得られた画像について、位相シフト膜30の厚み方向の中心部を含む領域について、縦64ピクセル×横256ピクセルの画像データとして抽出した(図5(a))。さらに、図5に示す画像データについてフーリエ変換を行った(図5(b))。フーリエ変換により得られた空間周波数スペクトル分布において、空間周波数の原点の信号強度(最大信号強度)は3136000で、上記最大信号強度とは別に、66150の信号強度を有する空間周波数スペクトルが存在していることを確認した。これは、空間周波数の原点に対応した最大信号強度に対して、66150/3136000=0.021(すなわち2.1%)となり、位相シフト膜30は、1.0%以上の信号強度を有する柱状構造であった。
また、図5(b)の上記フーリエ変換の画像について、空間周波数の原点、すなわち、図5(b)の画像の中心を原点(0)として、横軸256ピクセルの両端に対応する最大空間周波数を1(100%)としたときに、上記空間周波数の原点に対応した最大信号強度に対して2.1%の信号強度の信号は、上記原点から0.055、すなわち、5.5%離れた位置に信号を有する柱状構造を持った位相シフト膜30であった。なお、以降の実施例、比較例のフーリエ変換の画像においても、同様である。
また、この位相シフト膜30の膜厚中心付近において、膜厚方向に対して垂直方向100nm(基板の面内方向)の板状の試料を採取し、暗視野平面STEM観察を行った。暗視野平面STEM(走査型透過電子顕微鏡)観察結果を図6に示す。図6に示すように柱状の粒子部分(灰白色の部分)と粒子間(灰黒色の部分)と思われる灰白色と灰黒色の斑模様が観察された。この灰白色と灰黒色の箇所について、EDX分析(エネルギー分散型X線分析)により、位相シフト膜30を構成する元素(Mo、Si、N、O)の定量分析を行った(図示せず)。その結果、灰黒色の部分と灰白色の部分では、MoよりもSiの検出量(カウント数)が高く、灰黒色の部分における位相シフト膜30の構成元素の検出量(カウント数)は、灰白色の部分における位相シフト膜30の構成元素の検出量(カウント数)に比べて低いことが確認された。特に、灰黒色の部分におけるSiの検出量(カウント数)は、600(Counts)で、灰白色の部分におけるSiの検出量(カウント数)は、400(Counts)であり、他の元素と比べて検出量(カウント数)の差が大きかった。この結果から、位相シフト膜30は、相対的に密度の高い粒子部分(灰白色の部分)と、相対的に密度の低い疎の部分(灰黒色の部分)が形成されていることが確認された。この粒子部分は、図5や図7に示される柱状の粒子に対応するものである。なお、位相シフト膜30全体の膜密度は、従来の位相シフト膜の膜密度よりも低くなっている。
B.位相シフトマスクおよびその製造方法
上述のようにして製造された位相シフトマスクブランク10を用いて位相シフトマスク100を製造するため、先ず、位相シフトマスクブランク10のエッチングマスク膜40上に、レジスト塗布装置を用いてフォトレジスト膜を塗布した。
その後、加熱・冷却工程を経て、膜厚520nmのフォトレジスト膜を形成した。
その後、レーザー描画装置を用いてフォトレジスト膜を描画し、現像・リンス工程を経て、エッチングマスク膜上に、ホール径が1.5μmのホールパターンのレジスト膜パターンを形成した。
その後、レジスト膜パターンをマスクにして、硝酸第二セリウムアンモニウムと過塩素酸とを含むクロムエッチング液によりエッチングマスク膜をウェットエッチングして、第1のエッチングマスク膜パターン40aを形成した。
その後、第1のエッチングマスク膜パターン40aをマスクにして、フッ化水素アンモニウムと過酸化水素との混合溶液を純水で希釈したモリブデンシリサイドエッチング液により位相シフト膜30をウェットエッチングして、位相シフト膜パターン30aを形成した。このウェットエッチングは、断面形状を垂直化するためかつ要求される微細なパターンを形成するために、110%のオーバーエッチング時間で行った。実施例1におけるジャストエッチング時間は、後述する比較例におけるジャストエッチング時間に対して、0.15倍となり、エッチング時間を大幅に短縮することができた。
その後、レジスト膜パターンを剥離した。
その後、レジスト塗布装置を用いて、第1のエッチングマスク膜パターン40aを覆うように、フォトレジスト膜を塗布した。
その後、加熱・冷却工程を経て、膜厚520nmのフォトレジスト膜を形成した。
その後、レーザー描画装置を用いてフォトレジスト膜を描画し、現像・リンス工程を経て、第1のエッチングマスク膜パターン40a上に、遮光帯を形成するための第2のレジスト膜パターン60を形成した。
その後、第2のレジスト膜パターン60をマスクにして、硝酸第二セリウムアンモニウムと過塩素酸とを含むクロムエッチング液により、転写パターン形成領域に形成された第1のエッチングマスク膜パターン40aをウェットエッチングした。
その後、第2のレジスト膜パターン60を剥離した。
このようにして、透明基板20上に、転写パターン形成領域にホール径が1.5μmの位相シフト膜パターン30aと、位相シフト膜パターン30aとエッチングマスク膜パターン40bの積層構造からなる遮光帯が形成された位相シフトマスク100を得た。
得られた位相シフトマスクの断面を走査型電子顕微鏡により観察した。位相シフト膜パターンの断面は、位相シフト膜パターンの上面、下面および側面から構成される。この位相シフト膜パターンの断面の角度は、位相シフト膜パターンの上面と側面とが接する部位(上辺)と、側面と下面が接する部位(下辺)とのなす角度をいう。得られた位相シフトマスクの位相シフト膜パターン30aの断面の角度は74°であり、垂直に近い断面形状を有していた。実施例1の位相シフトマスクに形成された位相シフト膜パターン30aは、位相シフト効果を十分に発揮できる断面形状を有していた。位相シフト膜30が柱状構造とすることにより、位相シフト膜パターン30aが良好な断面形状となったのは、以下のメカニズムによるものと考える。図7の断面SEM写真の観察結果から、位相シフト膜30は、柱状の粒子構造(柱状構造)を有しており、膜厚方向に伸びる柱状粒子が不規則に形成されている。また、図6の暗視野平面STEM写真の観察結果、図7の断面SEM写真の観察結果から、位相シフト膜30は、相対的に密度の高い各柱状の粒子部分と、相対的に密度の低い疎の部分とで形成されている。これらの事実から、位相シフト膜30をウェットエッチングによってパターニングする際に、位相シフト膜30における疎の部分にエッチング液が浸透することにより、膜厚方向にエッチングが進行しやすくなる一方、膜厚方向に対して垂直な方向(基板面内の方向)には柱状の粒子が不規則に形成されていてこの方向の疎の部分が断続的に形成されているのでこの方向へのエッチングが進行しづらくてサイドエッチングが抑制されることから、位相シフト膜パターン30aが、垂直に近い良好な断面形状が得られたと考えられる。また、位相シフト膜パターンには、エッチングマスク膜パターンとの界面と、基板との界面とのいずれにも浸み込みは見られなかった。そのため、300nm以上500nm以下の波長範囲の光を含む露光光、より具体的には、i線、h線およびg線を含む複合光の露光光において、優れた位相シフト効果を有する位相シフトマスクが得られた。
このため、実施例1の位相シフトマスクを露光装置のマスクステージにセットし、表示装置上のレジスト膜に露光転写した場合、2.0μm未満の微細パターンを高精度に転写することができるといえる。
なお、図7の断面SEM写真は、実施例1の位相シフトマスクの製造工程において、第1のエッチングマスク膜パターン40aをマスクにして、モリブデンシリサイドエッチング液により位相シフト膜30をウェットエッチング(110%のオーバーエッチング)して、位相シフト膜パターン30aを形成し、レジスト膜パターンを剥離した後の断面SEM写真である。図7に示す通り、位相シフト膜パターン30aは、位相シフト膜30の柱状構造を維持しており、また、位相シフト膜30を除去した後の露出した透明基板20の表面はスムースで、透明基板20の表面荒れによる透過率低下は無視できる状態であった。
実施例2.
A.位相シフトマスクブランクおよびその製造方法
実施例2の位相シフトマスクブランクを製造するため、実施例1と同様に、透明基板として、1214サイズ(1220mm×1400mm)の合成石英ガラス基板を準備した。
実施例1と同じ方法により、合成石英ガラス基板を、インライン型のスパッタリング装置のチャンバーに搬入した。第1スパッタターゲット、第2スパッタターゲット、第3スパッタターゲット、第4スパッタターゲットとして、実施例1と同じスパッタターゲット材料を用いた。そして、第1チャンバー内のスパッタリングガス圧力を1.6Paにした状態で、アルゴン(Ar)ガスとヘリウム(He)ガスと窒素(N)ガスで構成される不活性ガスと、反応性ガスである一酸化窒素ガス(NO)と、の混合ガス(Ar:18sccm、N:15sccm、He:50sccm、NO:4sccm)を導入した。そして、モリブデンとケイ素を含む第1スパッタターゲット(モリブデン:ケイ素=1:9)に7.6kWのスパッタパワーを印加して、反応性スパッタリングにより、透明基板20の主表面上にモリブデンとケイ素と酸素と窒素を含有するモリブデンシリサイドの酸化窒化物を堆積させた。そして、膜厚140nmの位相シフト膜30を成膜した。
そして、透明基板に位相シフト膜を形成した後、チャンバーから取り出して、位相シフト膜の表面を、純水で洗浄を行った。純水洗浄条件は、温度30度、洗浄時間60秒とした。
その後、実施例1と同じ方法により、エッチングマスク膜40を成膜した。
このようにして、透明基板20上に、位相シフト膜30とエッチングマスク膜40とが形成された位相シフトマスクブランク10を得た。
得られた位相シフトマスクブランク10の位相シフト膜(位相シフト膜の表面を純水洗浄した位相シフト膜)について、レーザーテック社製のMPM-100により透過率、位相差を測定した。位相シフト膜の透過率、位相差の測定には、同一のトレイにセットして作製された、合成石英ガラス基板の主表面上に位相シフト膜30が成膜された位相シフト膜付き基板(ダミー基板)を用いた。位相シフト膜30の透過率、位相差は、エッチングマスク膜を形成する前に位相シフト膜付き基板(ダミー基板)をチャンバーから取り出し、測定した。その結果、透過率は33%(波長:365nm)位相差は169度(波長:365nm)であった。
また、得られた位相シフトマスクブランクについて、X線光電子分光法(XPS)による深さ方向の組成分析を行った。
その結果、実施例1と同様に、位相シフト膜30は、透明基板20と位相シフト膜30との界面の組成傾斜領域、および、位相シフト膜30とエッチングマスク膜40との界面の組成傾斜領域を除いて、深さ方向に向かって、各構成元素の含有率はほぼ一定であり、Moが7原子%、Siが38原子%、Nが45原子%、Oが10原子%であった。また、モリブデンとケイ素の原子比率は、1:5.4であり、1:3以上1:15以下の範囲内であった。また、軽元素である酸素、窒素、炭素の合計含有率は、55原子%であり、50原子%以上65原子%以下の範囲内であった。
次に、得られた位相シフトマスクブランク10の転写パターン形成領域の中央の位置において、80000倍の倍率で断面SEM観察を行った結果、位相シフト膜30が柱状構造を有していることが確認できた。すなわち、位相シフト膜30を構成するモリブデンシリサイド化合物の粒子が、位相シフト膜30の膜厚方向に向かって伸びる柱状の粒子構造を有していることが確認できた。そして位相シフト膜30の柱状の粒子構造は、膜厚方向の柱状の粒子が不規則に形成されており、かつ、柱状の粒子の膜厚方向の長さも不揃いな状態であることが確認できた。また、位相シフト膜30の疎の部分は、膜厚方向において連続的に形成されていることも確認できた。さらに、この断面SEM観察により得られた画像について、位相シフト膜30の厚み方向の中心部を含む領域について、縦64ピクセル×横256ピクセルの画像データとして抽出した(図8(a))。さらに、図8(a)に示す画像データについてフーリエ変換を行った(図8(b))。フーリエ変換により得られた空間周波数スペクトル分布において、空間周波数の原点の信号強度(最大信号強度)は2406000で、上記最大信号強度とは別に、39240の信号強度を有する空間周波数スペクトルが存在していることを確認した。これは、空間周波数の原点に対応した最大信号強度に対して、39240/2406000=0.016(すなわち1.6%)となり、位相シフト膜30は、1.0%以上の信号強度を有する柱状構造であった。
また、図8(b)のフーリエ変換の画像について、空間周波数の原点、すなわち、図8(b)の画像の中心を原点(0)として、横軸256ピクセルの両端を1(100%)としたとき、上記空間周波数の原点に対応した最大信号強度に対して1.6%の信号強度の信号は、上記原点から0.023、すなわち、2.3%離れた位置に信号を有する微細な柱状構造を持った位相シフト膜30であった。
また、実施例1と同様に、この位相シフト膜30の膜厚中心付近において、暗視野平面STEM観察を行った。その結果、実施例1と同様に位相シフト膜30には、各柱状の粒子部分と、疎の部分が形成されていることが確認された。
B.位相シフトマスクおよびその製造方法
上述のようにして製造された位相シフトマスクブランクを用いて、実施例1と同じ方法により、ホール径が1.5μmの位相シフト膜パターンを有する位相シフトマスクを製造した。位相シフト膜30へのウェットエッチングは、断面形状を垂直化するためかつ要求される微細なパターンを形成するために、110%のオーバーエッチング時間で行った。実施例2におけるジャストエッチング時間は、後述する比較例におけるジャストエッチング時間に対して、0.07倍となり、エッチング時間を大幅に短縮することができた。
得られた位相シフトマスクの断面を走査型電子顕微鏡により観察した。位相シフトマスクの位相シフト膜パターン30aの断面の角度は74°であり、垂直に近い断面形状を有していた。また、位相シフト膜パターンには、エッチングマスク膜パターンとの界面と、基板との界面とのいずれにも浸み込みは見られなかった。そのため、300nm以上500nm以下の波長範囲の光を含む露光光、より具体的には、i線、h線およびg線を含む複合光の露光光において、優れた位相シフト効果を有する位相シフトマスクが得られた。
このため、実施例2の位相シフトマスクを露光装置のマスクステージにセットし、表示装置上のレジスト膜に露光転写した場合、2.0μm未満の微細パターンを高精度に転写することができるといえる。
なお、図9の断面SEM写真は、実施例2の位相シフトマスクの製造工程において、第1のエッチングマスク膜パターン40aをマスクにして、モリブデンシリサイドエッチング液により位相シフト膜30をウェットエッチング(110%のオーバーエッチング)して、位相シフト膜パターン30aを形成し、レジスト膜パターンを剥離した後の断面SEM写真である。図9に示す通り、位相シフト膜パターン30aは、位相シフト膜30の柱状構造を維持しており、また、位相シフト膜30を除去した後の露出した透明基板20の表面はスムースで、透明基板20の表面荒れによる透過率低下は無視できる状態であった。
実施例3.
A.位相シフトマスクブランクおよびその製造方法
実施例3の位相シフトマスクブランクは、実施例1の位相シフトマスクブランクにおけるエッチングマスク膜を有しない位相シフトマスクブランクである。
実施例3の位相シフトマスクブランクを製造するため、実施例1と同様に、透明基板20として、1214サイズ(1220mm×1400mm)の合成石英ガラス基板を準備した。
実施例1と同じ成膜方法を用い透明基板20の主表面上に位相シフト膜30を形成するため、まず、第1チャンバー内のスパッタリングガス圧力を1.4Paにした状態で、アルゴン(Ar)ガスと、窒素(N)ガスと、ヘリウム(He)ガスで構成される不活性ガス(Ar:18sccm、N:13.5sccm、He:50sccm)を導入した。この成膜条件により、透明基板20上にモリブデンシリサイドの酸化窒化物からなる位相シフト膜30(膜厚:150nm)を形成した。
このようにして、透明基板20上に、位相シフト膜30が形成された位相シフトマスクブランク10を得た。
得られた位相シフトマスクブランク10の位相シフト膜について、レーザーテック社製のMPM-100により透過率、位相差を測定した。位相シフト膜の透過率、位相差の測定には、同一のトレイにセットして作製された、合成石英ガラス基板の主表面上に位相シフト膜30が成膜された位相シフト膜付き基板(ダミー基板)を用いた。その結果、透過率は24%(波長:405nm)位相差は183度(波長:405nm)であった。
この得られた位相シフトマスクブランク10の位相シフト膜30について、X線光電子分光法(XPS)による深さ方向の組成分析を行った結果、実施例1と同様に、位相シフト膜30は、深さ方向に向かって、各構成元素の含有率はほぼ一定であった。また、モリブデンとケイ素の原子比率は、1:5であり、1:3以上1:15以下の範囲内であった。また、軽元素である酸素、窒素、炭素の合計含有率は、52原子%であり、50原子%以上65原子%以下の範囲内であった。また、酸素の含有率は、0.3原子%であり、0原子%超40原子%以下の範囲内であった。
次に、得られた位相シフトマスクブランク10の転写パターン形成領域の中央の位置において、80000倍の倍率で断面SEM観察を行った結果、位相シフト膜30が、柱状構造を有していることが確認できた。すなわち、位相シフト膜30を構成するモリブデンシリサイド化合物の粒子が、位相シフト膜30の膜厚方向に向かって伸びる柱状の粒子構造を有していることが確認できた。そして位相シフト膜30の柱状の粒子構造は、膜厚方向の柱状の粒子が不規則に形成されており、かつ、柱状の粒子の膜厚方向の長さも不揃いな状態であることが確認できた。また、位相シフト膜30の疎の部分は、膜厚方向において連続的に形成されていることも確認できた。さらに、この断面SEM観察により得られた画像について、位相シフト膜30の厚み方向の中心部を含む領域について、縦64ピクセル×横256ピクセルの画像データとして抽出した(図10(a))。さらに、図10(a)に示す画像データについてフーリエ変換を行った(図10(b))。フーリエ変換により得られた空間周波数スペクトル分布において、空間周波数の原点の信号強度(最大信号強度)は31590000で、上記最大信号強度とは別に、47230の信号強度を有する空間周波数スペクトルが存在していることを確認した。これは、空間周波数の原点に対応した最大信号強度に対して、47230/3159000=0.015(すなわち1.5%)となり、位相シフト膜30は、1.0%以上の信号強度を有する柱状構造であった。
また、図10(b)のフーリエ変換の画像について、空間周波数の原点、すなわち、図10(b)の画像の中心を原点(0)として、横軸256ピクセルの両端を1(100%)としたとき、上記空間周波数の原点に対応した最大信号強度に対して1.5%の信号強度の信号は、上記原点から0.078、すなわち、7.8%離れた位置に信号を有する、空間周波数の大きい微細な柱状構造を持った位相シフト膜30であった。
また、実施例1と同様に、この位相シフト膜30の膜厚中心付近において、暗視野平面STEM観察を行った。その結果、実施例1と同様に位相シフト膜30には、各柱状の粒子と、疎の部分が形成されていることが確認された。
B.位相シフトマスクおよびその製造方法
上述のようにして製造された位相シフトマスクブランク10を用いて、実施例1と同じ方法により、ホール径が1.5μmの位相シフト膜パターンを有する位相シフトマスクを製造した。位相シフト膜30へのウェットエッチングは、断面形状を垂直化するためかつ要求される微細なパターンを形成するために、110%のオーバーエッチングタイムで行った。実施例3におけるジャストエッチング時間は、後述する比較例におけるジャストエッチング時間に対して、0.20倍となり、エッチング時間を大幅に短縮することができた。
得られた位相シフトマスクの断面を走査型電子顕微鏡により観察した。位相シフトマスクの位相シフト膜パターン30aの断面の角度は80°であり、垂直に近い断面形状を有していた。また、位相シフト膜パターンには、エッチングマスク膜パターンとの界面と、基板との界面とのいずれにも浸み込みは見られなかった。そのため、300nm以上500nm以下の波長範囲の光を含む露光光、より具体的には、i線、h線およびg線を含む複合光の露光光において、優れた位相シフト効果を有する位相シフトマスクが得られた。
このため、実施例3の位相シフトマスクを露光装置のマスクステージにセットし、表示装置上のレジスト膜に露光転写した場合、2.0μm未満の微細パターンを高精度に転写することができるといえる。
なお、図11の断面SEM写真は、実施例3の位相シフトマスクの製造工程において、第1のエッチングマスク膜パターン40aをマスクにして、モリブデンシリサイドエッチング液により位相シフト膜30をウェットエッチング(110%のオーバーエッチング)して、位相シフト膜パターン30aを形成し、レジスト膜パターンを剥離した後の断面SEM写真である。図11に示す通り、位相シフト膜パターン30aは、位相シフト膜30の柱状構造を維持しており、また、位相シフト膜30を除去した後の露出した透明基板20の表面はスムースで、透明基板20の表面荒れによる透過率は無視できる状態であった。ラインエッジラフネスは実施例1と比較してさらに良好なものであった。
なお、上述の実施例では、遷移金属としてモリブデンを用いた場合を説明したが、他の遷移金属の場合でも上述と同等の効果が得られる。
また、上述の実施例では、表示装置製造用の位相シフトマスクブランクや、表示装置製造用の位相シフトマスクの例を説明したが、これに限られない。本発明の位相シフトマスクブランクや位相シフトマスクは、半導体装置製造用、MEMS製造用、プリント基板用等にも適用できる。また、パターン形成用薄膜として遮光膜を有するバイナリマスクブランクや遮光膜パターンを有するバイナリマスクにおいても、本発明を適用することが可能である。
また、上述の実施例では、透明基板のサイズが、1214サイズ(1220mm×1400mm×13mm)の例を説明したが、これに限られない。表示装置製造用の位相シフトマスクブランクの場合、大型(Large Size)の透明基板が使用され、該透明基板のサイズは、一辺の長さが、300mm以上である。表示装置製造用の位相シフトマスクブランクに使用する透明基板のサイズは、例えば、330mm×450mm以上2280mm×3130mm以下である。
また、半導体装置製造用、MEMS製造用、プリント基板用の位相シフトマスクブランクの場合、小型(Small Size)の透明基板が使用され、該透明基板のサイズは、一辺の長さが9インチ以下である。上記用途の位相シフトマスクブランクに使用する透明基板のサイズは、例えば、63.1mm×63.1mm以上228.6mm×228.6mm以下である。通常、半導体製造用、MEMS製造用は、6025サイズ(152mm×152mm)や5009サイズ(126.6mm×126.6mm)が使用され、プリント基板用は、7012サイズ(177.4mm×177.4mm)や、9012サイズ(228.6mm×228.6mm)が使用される。
比較例1.
A.位相シフトマスクブランクおよびその製造方法
比較例1の位相シフトマスクブランクを製造するため、実施例1と同様に、透明基板として、1214サイズ(1220mm×1400mm)の合成石英ガラス基板を準備した。
実施例1と同じ方法により、合成石英ガラス基板を、インライン型のスパッタリング装置のチャンバーに搬入した。そして、第1チャンバー内のスパッタリングガス圧力を0.5Paにした状態で、アルゴン(Ar)ガスと窒素(N)ガスの混合ガス(Ar:30sccm、N:30sccm)を導入した。そして、モリブデンとケイ素を含む第1スパッタターゲット(モリブデン:ケイ素=1:9)に7.6kWのスパッタパワーを印加して、反応性スパッタリングにより、透明基板の主表面上にモリブデンとケイ素と窒素を含有するモリブデンシリサイドの窒化物を堆積させた。このようにして、膜厚144nmの位相シフト膜を成膜した。
その後、実施例1と同じ方法により、エッチングマスク膜を成膜した。
このようにして、透明基板上に、位相シフト膜とエッチングマスク膜とが形成された位相シフトマスクブランクを得た。
得られた位相シフトマスクブランクの位相シフト膜について、レーザーテック社製のMPM-100により透過率、位相差を測定した。位相シフト膜の透過率、位相差の測定には、同一のトレイにセットして作製された、合成石英ガラス基板の主表面上に位相シフト膜が成膜された位相シフト膜付き基板(ダミー基板)を用いた。位相シフト膜の透過率、位相差は、エッチングマスク膜を形成する前に位相シフト膜付き基板(ダミー基板)をチャンバーから取り出し、測定した。その結果、透過率は30%(波長:405nm)位相差は177度(波長:405nm)であった。
また、得られた位相シフトマスクブランクについて、X線光電子分光法(XPS)による深さ方向の組成分析を行った。その結果、位相シフト膜30は、透明基板20と位相シフト膜30との界面の組成傾斜領域、および、位相シフト膜30とエッチングマスク膜40との界面の組成傾斜領域を除いて、深さ方向に向かって、各構成元素の含有率はほぼ一定であり、Moが8原子%、Siが39原子%、Nが52原子%、Oが1原子%であった。また、モリブデンとケイ素の原子比率は、1:4.9であり、1:3以上1:15以下の範囲内であった。また、軽元素である酸素、窒素、炭素の合計含有率は、53原子%であり、50原子%以上65原子%以下の範囲内であった。
次に、得られた位相シフトマスクブランク10の転写パターン形成領域の中央の位置において、80000倍の倍率で断面SEM観察を行った結果、位相シフト膜において、柱状構造は確認できず、超微細な結晶構造もしくはアモルファス構造であることが確認できた。この断面SEM観察により得られた画像について、位相シフト膜30の厚み方向の中心部を含む領域について、縦64ピクセル×横256ピクセルの画像データとして抽出した(図12(a))。さらに、図12(a)に示す画像データについてフーリエ変換を行った(図12(b))。フーリエ変換により得られた空間周波数スペクトル分布において、空間周波数の原点の信号強度(最大信号強度)は2073000で、上記最大強度信号とは別な強い信号は確認できず、12600の信号強度を有する空間周波数スペクトルが存在するのみであった。これは、空間周波数の原点に対応した最大信号強度に対して、12600/2073000=0.006(すなわち0.6%)となり、位相シフト膜30は、1.0%以上の信号強度を有していない超微細な結晶構造もしくはアモルファス構造であった。
B.位相シフトマスクおよびその製造方法
上述のようにして製造された位相シフトマスクブランクを用いて、実施例1と同じ方法により、位相シフトマスクを製造した。位相シフト膜へのウェットエッチングは、断面形状を垂直化するためかつ要求される微細なパターンを形成するために、110%のオーバーエッチング時間で行った。比較例1におけるジャストエッチング時間は142分であり、長い時間であった。
また、図13の断面SEM写真は、比較例の位相シフトマスクの製造工程において、第1のエッチングマスク膜パターン40aをマスクにして、モリブデンシリサイドエッチング液により位相シフト膜30をウェットエッチング(110%のオーバーエッチング)して、位相シフト膜パターン30aを形成し、レジスト膜パターンを剥離する前の断面SEM写真である。図13に示す通り、位相シフト膜30を除去した後の露出した透明基板20の表面は荒れており、目視においても白濁した状態であった。従って、透明基板20の表面荒れによる透過率の低下は著しかった。
このため、比較例1の位相シフトマスクを露光装置のマスクステージにセットし、表示装置上のレジスト膜に露光転写した場合、2.0μm未満の微細パターンを転写することはできないことが予想される。
10…位相シフトマスクブランク、20…透明基板、30…位相シフト膜、
30a…位相シフト膜パターン、40…エッチングマスク膜、
40a…第1のエッチングマスク膜パターン、
40b…第2のエッチングマスク膜パターン、50…第1のレジスト膜パターン、
60…第2のレジスト膜パターン、100…位相シフトマスク

Claims (16)

  1. 透明基板上にパターン形成用薄膜を有するフォトマスクブランクであって、
    前記フォトマスクブランクは、前記パターン形成用薄膜をウェットエッチングにより前記透明基板上に転写パターンを有するフォトマスクを形成するための原版であって、
    前記パターン形成用薄膜は、遷移金属と、ケイ素とを含有し、
    前記パターン形成用薄膜は、膜厚方向に向かって伸びる柱状の粒子が前記透明基板の面内に渡って形成された柱状構造を有し
    前記パターン形成用薄膜には、相対的に密度の高い前記柱状の粒子の部分と、相対的に密度の低い疎の部分が存在していることを特徴とするフォトマスクブランク。
  2. 透明基板上にパターン形成用薄膜を有するフォトマスクブランクであって、
    前記フォトマスクブランクは、前記パターン形成用薄膜をウェットエッチングにより前記透明基板上に転写パターンを有するフォトマスクを形成するための原版であって、
    前記パターン形成用薄膜は、遷移金属と、ケイ素とを含有し、
    前記パターン形成用薄膜は、膜厚方向に向かって伸びる柱状の粒子が前記透明基板の面内に渡って形成された柱状構造を有し、
    前記パターン形成用薄膜には、該パターン形成用薄膜をエネルギー分散型X線分析により検出される前記パターン形成用薄膜の構成元素の検出数が相対的に高い柱状の粒子の部分と、前記構成元素の検出数が相対的に低い疎の部分が存在していることを特徴とするフォトマスクブランク。
  3. 前記パターン形成用薄膜に含まれる前記遷移金属と前記ケイ素の原子比率は、遷移金属:ケイ素=1:3以上1:15以下であることを特徴とする請求項1または2に記載のフォトマスクブランク。
  4. 透明基板上にパターン形成用薄膜を有するフォトマスクブランクであって、
    前記フォトマスクブランクは、前記パターン形成用薄膜をウェットエッチングにより前記透明基板上に転写パターンを有するフォトマスクを形成するための原版であって、
    前記パターン形成用薄膜は、遷移金属と、ケイ素とを含有し、かつ、前記遷移金属と前記ケイ素の原子比率は、遷移金属:ケイ素=1:3以上1:15以下であって、
    前記パターン形成用薄膜は、膜厚方向に向かって伸びる柱状の粒子が前記透明基板の面内に渡って形成された柱状構造を有し、
    前記パターン形成用薄膜には、該パターン形成用薄膜をエネルギー分散型X線分析により検出されるケイ素の検出数が相対的に高い柱状の粒子の部分と、ケイ素の検出数が相対的に低い疎の部分が存在していることを特徴とするフォトマスクブランク。
  5. 前記柱状の粒子は、前記パターン形成用薄膜の膜厚方向に対して垂直な方向に不規則に形成されていることを特徴とする請求項1から4のいずれかに記載のフォトマスクブランク。
  6. 前記パターン形成用薄膜の柱状構造は、
    前記フォトマスクブランクの断面を80000倍の倍率で走査電子顕微鏡観察により得られた画像について、前記パターン形成用薄膜の厚み方向の中心部を含む領域について、縦64ピクセル×横256ピクセルの画像データとして抽出し、前記画像データをフーリエ変換することにより得られた空間周波数スペクトル分布の画像において、前記空間周波数スペクトル分布の画像の中心を空間周波数の原点とし、前記空間周波数スペクトル分布の画像中で最大信号強度となる前記空間周波数の原点に対応し信号強度に対して1.0%以上の信号強度を有する空間周波数スペクトルが存在している状態であることを特徴とする請求項1から5のいずれかに記載のフォトマスクブランク。
  7. 前記パターン形成用薄膜の柱状構造は、前記画像データ上に、前記原点を0%とし、前記画像データの横256ピクセルの方向の両端に対応する最大空間周波数を100%とする横軸を設定したとき、前記1.0%以上の信号強度を有する信号が前記空間周波数の原点から2.0%以上離れた横軸上の位置に存在している状態であることを特徴とする請求項記載のフォトマスクブランク。
  8. 前記パターン形成用薄膜は、少なくとも窒素または酸素を含有していることを特徴とする請求項1からのいずれかに記載のフォトマスクブランク。
  9. 前記遷移金属は、モリブデンであることを特徴とする請求項1からのいずれかに記載のフォトマスクブランク。
  10. 前記パターン形成用薄膜は、露光光の代表波長に対して透過率が1%以上80%以下、位相差が160°以上200°以下の光学特性を備えた位相シフト膜であることを特徴とする請求項1からのいずれかに記載のフォトマスクブランク。
  11. 前記位相シフト膜は、少なくとも窒素または酸素を含有し、該位相シフト膜に含まれる、酸素と窒素を含む軽元素成分の合計含有率は、40原子%以上70原子%以下であることを特徴とする請求項10記載のフォトマスクブランク。
  12. 前記パターン形成用薄膜上に、該パターン形成用薄膜に対してエッチング選択性が異なるエッチングマスク膜を備えていることを特徴とする請求項1から11のいずれかに記載のフォトマスクブランク。
  13. 前記エッチングマスク膜は、クロムを含有し、実質的にケイ素を含まない材料からなることを特徴とする請求項12記載のフォトマスクブランク。
  14. 請求項1から11のいずれかに記載のフォトマスクブランク準備する工程と、
    前記パターン形成用薄膜上にレジスト膜を形成し、前記レジスト膜から形成したレジスト膜パターンをマスクにして前記パターン形成用薄膜をウェットエッチングして、前記透明基板上に転写パターンを形成する工程と、を有することを特徴とするフォトマスクの製造方法。
  15. 求項12若しくは13に記載のフォトマスクブランク準備する工程と、
    前記エッチングマスク膜上にレジスト膜を形成し、前記レジスト膜から形成したレジスト膜パターンをマスクにして前記エッチングマスク膜をウェットエッチングして、前記パターン形成用薄膜上にエッチングマスク膜パターンを形成する工程と、
    前記エッチングマスク膜パターンをマスクにして、前記パターン形成用薄膜をウェットエッチングして、前記透明基板上に転写パターンを形成する工程と、を有することを特徴とするフォトマスクの製造方法。
  16. 請求項14または15に記載のフォトマスクの製造方法により得られたフォトマスクを露光装置のマスクステージに載置し、前記フォトマスク上に形成された前記転写パターンを、表示装置基板上に形成されたレジストに露光転写する露光工程を有することを特徴とする表示装置の製造方法。
JP2019179723A 2018-11-30 2019-09-30 フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法 Active JP7059234B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
TW111137396A TWI816568B (zh) 2018-11-30 2019-10-17 光罩基底、光罩之製造方法及顯示裝置之製造方法
TW108137371A TWI782237B (zh) 2018-11-30 2019-10-17 光罩基底、光罩之製造方法及顯示裝置之製造方法
TW112131103A TWI835695B (zh) 2018-11-30 2019-10-17 光罩基底、光罩之製造方法及顯示裝置之製造方法
KR1020190145981A KR102527313B1 (ko) 2018-11-30 2019-11-14 포토마스크 블랭크, 포토마스크의 제조 방법 및 표시 장치의 제조 방법
CN201911179769.3A CN111258175A (zh) 2018-11-30 2019-11-27 光掩模坯料、光掩模坯料的制造方法、光掩模的制造方法及显示装置的制造方法
JP2022064454A JP7204979B2 (ja) 2018-11-30 2022-04-08 フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法
KR1020230054240A KR102630136B1 (ko) 2018-11-30 2023-04-25 포토마스크 블랭크, 포토마스크의 제조 방법 및 표시 장치의 제조 방법
KR1020240010271A KR20240017031A (ko) 2018-11-30 2024-01-23 포토마스크 블랭크, 포토마스크의 제조 방법 및 표시 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224907 2018-11-30
JP2018224907 2018-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022064454A Division JP7204979B2 (ja) 2018-11-30 2022-04-08 フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法

Publications (2)

Publication Number Publication Date
JP2020095248A JP2020095248A (ja) 2020-06-18
JP7059234B2 true JP7059234B2 (ja) 2022-04-25

Family

ID=71086169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019179723A Active JP7059234B2 (ja) 2018-11-30 2019-09-30 フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法

Country Status (1)

Country Link
JP (1) JP7059234B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413092B2 (ja) * 2020-03-12 2024-01-15 Hoya株式会社 フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法
KR20220135170A (ko) 2021-03-29 2022-10-06 호야 가부시키가이샤 포토마스크 블랭크, 포토마스크의 제조 방법 및 표시 장치의 제조 방법
TW202344917A (zh) 2022-01-25 2023-11-16 日商Hoya股份有限公司 光罩基底、轉印用光罩、轉印用光罩之製造方法及顯示裝置之製造方法
JP2023108276A (ja) 2022-01-25 2023-08-04 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、及び表示装置の製造方法
JP7375065B2 (ja) * 2022-02-24 2023-11-07 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び表示装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242293A (ja) 2007-03-28 2008-10-09 Dainippon Printing Co Ltd 階調マスク
JP2009122703A (ja) 2009-03-09 2009-06-04 Shin Etsu Chem Co Ltd 位相シフトマスクブランク及び位相シフトマスクの製造方法
JP2010156880A (ja) 2008-12-29 2010-07-15 Hoya Corp フォトマスクブランクの製造方法及びフォトマスクの製造方法
JP2012042983A (ja) 2011-12-02 2012-03-01 Dainippon Printing Co Ltd 階調マスク
JP2015125353A (ja) 2013-12-27 2015-07-06 Hoya株式会社 位相シフトマスクブランク及びその製造方法、並びに位相シフトマスクの製造方法
JP2018109792A (ja) 2013-03-19 2018-07-12 Hoya株式会社 位相シフトマスクブランク及びその製造方法、位相シフトマスクの製造方法、並びに表示装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242293A (ja) 2007-03-28 2008-10-09 Dainippon Printing Co Ltd 階調マスク
JP2010156880A (ja) 2008-12-29 2010-07-15 Hoya Corp フォトマスクブランクの製造方法及びフォトマスクの製造方法
JP2009122703A (ja) 2009-03-09 2009-06-04 Shin Etsu Chem Co Ltd 位相シフトマスクブランク及び位相シフトマスクの製造方法
JP2012042983A (ja) 2011-12-02 2012-03-01 Dainippon Printing Co Ltd 階調マスク
JP2018109792A (ja) 2013-03-19 2018-07-12 Hoya株式会社 位相シフトマスクブランク及びその製造方法、位相シフトマスクの製造方法、並びに表示装置の製造方法
JP2015125353A (ja) 2013-12-27 2015-07-06 Hoya株式会社 位相シフトマスクブランク及びその製造方法、並びに位相シフトマスクの製造方法

Also Published As

Publication number Publication date
JP2020095248A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
JP7059234B2 (ja) フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法
KR102630136B1 (ko) 포토마스크 블랭크, 포토마스크의 제조 방법 및 표시 장치의 제조 방법
JP7204496B2 (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法、及び表示装置の製造方法
JP7073246B2 (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法、及び表示装置の製造方法
JP7413092B2 (ja) フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法
TW202105043A (zh) 光罩基底、光罩之製造方法、及顯示裝置之製造方法
JP2021149092A (ja) フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法
JP7204979B2 (ja) フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法
TWI833171B (zh) 光罩基底、光罩之製造方法及顯示裝置之製造方法
TWI835695B (zh) 光罩基底、光罩之製造方法及顯示裝置之製造方法
JP7254470B2 (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法、及び表示装置の製造方法
JP7375065B2 (ja) マスクブランク、転写用マスクの製造方法、及び表示装置の製造方法
JP7159096B2 (ja) フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法
TWI782237B (zh) 光罩基底、光罩之製造方法及顯示裝置之製造方法
JP2022153264A (ja) フォトマスクブランク、フォトマスクの製造方法、および表示装置の製造方法
KR20220135170A (ko) 포토마스크 블랭크, 포토마스크의 제조 방법 및 표시 장치의 제조 방법
TW202141169A (zh) 光罩基底、光罩之製造方法及顯示裝置之製造方法
JP2022083394A (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法及び表示装置の製造方法
JP2021067728A (ja) フォトマスクブランク、フォトマスクブランクの製造方法、フォトマスクの製造方法及び表示装置の製造方法
KR20220071910A (ko) 위상 시프트 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 표시 장치의 제조 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220413

R150 Certificate of patent or registration of utility model

Ref document number: 7059234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150