JP7057844B2 - メサ側壁をクリーニングするためのシステムおよび方法 - Google Patents

メサ側壁をクリーニングするためのシステムおよび方法 Download PDF

Info

Publication number
JP7057844B2
JP7057844B2 JP2021001659A JP2021001659A JP7057844B2 JP 7057844 B2 JP7057844 B2 JP 7057844B2 JP 2021001659 A JP2021001659 A JP 2021001659A JP 2021001659 A JP2021001659 A JP 2021001659A JP 7057844 B2 JP7057844 B2 JP 7057844B2
Authority
JP
Japan
Prior art keywords
mesa
gas
template
gas flow
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021001659A
Other languages
English (en)
Other versions
JP2021129104A (ja
Inventor
エヌ パテル メユール
ブライアン フレッチャー エドワード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2021129104A publication Critical patent/JP2021129104A/ja
Application granted granted Critical
Publication of JP7057844B2 publication Critical patent/JP7057844B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本出願は、一般に、ナノ加工(例えばインプリント・リソグラフィ)のために使用されるテンプレートのメサ側壁のクリーニングに関する。
ナノ加工は、100ナノメートル以下のオーダーのフィーチャを有する非常に小さな構造の製造を含む。ナノ加工の一つの応用は、集積回路の作製である。半導体加工産業は、基板上に形成される単位面積当たりの回路を増加させながら、より大きな生産歩留まりを目指し続けている。ナノ製造における改善は、より大きなプロセス制御を提供し、スループットを改善する一方で、形成される構造の最小フィーチャ寸法の継続的な低減を可能にすることを含む。
1つのナノ製造技術は、一般に、ナノインプリント・リソグラフィと呼ばれる。ナノインプリント・リソグラフィは、例えば、集積デバイスの1つまたは複数のレイヤを製造することを含む様々な用途で有用である。集積デバイスの例には、CMOSロジック、マイクロプロセッサ、NANDフラッシュメモリ、NORフラッシュメモリ、DRAMメモリ、MRAM、3Dクロスポイントメモリ、Re-RAM、Fe-RAM、STT-RAM、MEMS等が含まれる。ナノインプリント・リソグラフィ・システムおよびプロセスの例は、米国特許第8,349,241号、米国特許第8,066,930号、および米国特許第6,936,194号などの多数の刊行物に詳細に記載されている。
前述の特許の各々に開示されているナノインプリント・リソグラフィ技術は、成形可能材料(重合可能)の層にレリーフパターンを形成し、レリーフパターンに対応するパターンを下地の基板の中または上に転写することを記載している。パターニングプロセスは、基板から離間したテンプレートを使用し、成形可能な液体がテンプレートと基板との間に適用(塗布)される。成形可能な液体は、成形可能な液体と接触するテンプレートの表面の形状に一致するパターンを有する固体層を形成するために固化される。固化後、テンプレートは、テンプレートと基板とが離間するように、固体層から分離される。次いで、基板および固体層は、固体層内のパターンに対応するレリーフ像を基板内に転写するため、エッチングプロセスなどの追加のプロセスに曝される。パターニングされた基板は、例えば、硬化、酸化、層形成、堆積、ドーピング、平坦化、エッチング、成形可能材料の除去、ダイシング、ボンディング、パッケージングなどを含む、デバイス(物品)製造のための既知の工程およびプロセスにさらに曝されうる。
インプリントの前に、テンプレートのパターニング表面は、1つ以上の前処理プロセスを使用して1つ以上の材料で前処理されてもよく、パターニング表面はまた、界面活性剤で噴霧されてもよい。パターニング表面は、テンプレートのメサ上にあり、メサは、リセスされた表面によって取り囲まれている。側壁は、リセスされた表面をメサに接続する。インプリントプロセスの間、成形可能な液体は、インプリントフィールドから押し出されて側壁に付着し、それにより、はみ出し(押し出し)を形成することがある。
方法のいくつかの実施形態は、ステージ上の1または複数のノズルの上で形成可能材料をインプリントするためのテンプレートを位置決めする工程であって、前記テンプレートは、パターニング表面、メサ、および少なくとも1つのメサ側壁を含む、工程と、前記1つ以上のノズルを通るガスの流れを前記少なくとも1つ以上のメサ側壁の一部に向ける工程と、を含む。
装置のいくつかの実施形態は、成形可能材料をインプリントするためのテンプレートを保持するように構成されたテンプレートチャックであって、前記テンプレートは、パターニング表面、メサ、およびメサ側壁を含む、テンプレートチャックと、前記テンプレートに対して移動可能であるステージであって、前記ステージは、基板チャックと前記メサ側壁にガスの流れを向けるように構成された1または複数のガス流路とを含む、ステージと、を備える。
図1は、ナノインプリント・リソグラフィ・システムの例示的な実施形態を示す。
図2は、成形可能材料が蓄積されたメサ側壁を有するメサの例示的な実施形態を示す。
図3は、メサ側壁の上にガスの流れを向けるガス流路の例示的な実施形態を示す。
図4Aは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。 図4Bは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。 図4Cは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。 図4Dは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。
図5Aは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。 図5Aは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。 図5Aは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。
図6Aは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。 図6Aは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。 図6Aは、一定期間にわたってガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。
図7Aは、アップリケ上の調節可能なガス流路の例示的な実施形態を示す。
図7Bは、アップリケ上の調節可能なガス流路の例示的な実施形態を示す。
図7Cは、アップリケ上の調節可能なガス流路の例示的な実施形態を示す。
図8Aは、アップリケ上のガス流路の例示的な実施形態を示す。
図8Bは、アップリケ上のガス流路の例示的な実施形態を示す。
図8Cは、アップリケ上のガス流路の例示的な実施形態を示す。
図9Aは、アップリケ上のガス流路の例示的な実施形態を示す。
図9Bは、アップリケ上のガス流路の例示的な実施形態を示す。
図9Cは、アップリケ上の調節可能なガス流路の例示的な実施形態を示す。
図9Dは、アップリケ上の調節可能なガス流路の例示的な実施形態を示す。
図10Aは、ガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。
図10Bは、ガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。
図11は、ナノインプリント・リソグラフィ・システムの例示的な実施形態の斜視図を示す。
図12は、基板、アップリケ、流体ディスペンサ、およびテンプレートの例示的な実施形態の平面図(z軸に沿った図)を示す。
図13は、基板、アップリケ、流体ディスペンサ、およびテンプレートの例示的な実施形態の平面図(z軸に沿った図)を示す。
図14は、基板およびアップリケの例示的な実施形態の平面図(z軸に沿った図)を示す。
図15は、基板およびアップリケの例示的な実施形態の平面図(z軸に沿った図)を示す。
図16は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。
図17は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。
図18は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。
図19は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。
図20は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。
以下の段落は、特定の説明的な実施形態を記載する。他の実施形態は、代替物、等価、および修正を含みうる。加えて、説明的な実施形態は、いくつかの特徴を含むことができ、特定の特徴は、本明細書で説明されるデバイス(装置)、システム、および方法のいくつかの実施形態に必須ではないことがある。さらに、いくつかの実施形態は、以下の説明的な実施形態のうちの2つ以上からの特徴を含む。
また、本明細書で使用されるように、「または」という用語は、一般に、包括的な「または」を指すが、「または」は、明示的に示される場合、または「または」が排他的な「または」でなければならないことを文脈が示す場合、排他的な「または」を指すことがある。
図1は、ナノインプリント・リソグラフィ・システム100の例示的な実施形態を示す。動作時、ナノインプリント・リソグラフィ・システム100は、基板102(例えばウエハ)上に成形可能材料124(例えばレジスト)を堆積させ、基板102上の成形可能材料124をインプリントするためのパターニング表面112を有するメサ(モールドとも呼ばれる)110を有するテンプレート108を使用することによって、基板102上のインプリント領域における形成可能材料124内に、レリーフパターンを有するパターン化層125を形成する。
単一のメサ110は、単一の基板102または複数の基板102上の複数のインプリント領域における成形可能材料124をインプリントするために使用されてもよい。複数のインプリント領域における成形可能材料をインプリントしている間、成形可能材料124は、例えば、浸透および蒸着(蒸発して表面上に堆積する成形可能材料124)の一方または両方を介して、メサ110の側壁上に蓄積しうる。例えば、図2は、成形可能材料124が蓄積されたメサ側壁240を有するメサ110を含むテンプレート108の例示的な実施形態を示す。メサ110によって実行されるインプリントの数が増加するにつれて、メサ側壁240上の成形可能材料124の蓄積は、成形可能材料124の蓄積がインプリント領域におけるパターン化層125に欠陥を生成し始める点に達しうる。例えば、はみ出しが形成し始めることがあり、はみ出しは、様々なインプリントおよびインプリント後の欠陥を引き起こしうる。
ナノインプリント・リソグラフィ・システム100は、1または複数のガス流路109(例えば、ノズル、通気口、開口)も含む。ガス流路109は、メサ110の側壁240の上を流れるガスのそれぞれの流れを放出し(例えば、向ける(導く)、吹き出す、吐き出す)、これにより、メサ側壁240上の成形可能材料124の蓄積の一部が除去される。このようなガスの例には、CDA(清浄乾燥空気および/または圧縮乾燥空気)、N2、およびHeが含まれる。いくつかの実施形態では、ガス流路109から放出されるガスは、ナノインプリント・リソグラフィ・システム100が動作される環境の半導体清浄度基準よりも優れているか、又はそれを満たしている。さらに、放出ガスの流れを構成するために、各ガス流路109のそれぞれの形状は、流量、流速、流動形状、流動圧力、流動方向、および流動質量のうちの1または複数に従って選択されてもよい。ナノインプリント・リソグラフィ・システム100は、成形可能材料124がメサ側壁から蒸発する速度を増加させるようにガスを加熱するヒータを含んでもよい。そして、ナノインプリント・リソグラフィ・システム100は、1または複数のファン(例えば送風機)を含んでもよく、1または複数のガス供給ラインを含んでもよく、1または複数のバルブを含んでもよく、異なる用途のためにガスの流量を調整してもよい。ナノインプリント・リソグラフィ・システム100は、1または複数のガス供給源に接続されてもよく、ガス流路109に供給されるガスの量、速度、タイミング、および/または混合を調整する1または複数の流量コントローラ(マスフローコントローラ)を含んでもよい。
図1に示される実施形態では、ガス流路109は、アップリケ(applique)106に取り付けられるか、または一体化される。しかしながら、いくつかの実施形態では、ガス流路109は、基板位置決めステージ107など、ナノインプリント・リソグラフィ・システム100の他の部材に取り付けられるか、または一体化される。そして、いくつかの実施形態では、ガス流路109は、ナノインプリント・リソグラフィ・システム100の任意の他の部材と一体化されず、かつ取り付けられない。いくつかの実施形態では、アップリケ106の上面は、基板チャック104および基板表面130のいずれかまたは両方の上面またはその近傍にあり、ガス流路109は、アップリケ106の上面より上に延設しないノズルである。そして、いくつかの実施形態では、ガス流路109は、特定の時間において、放出されたガスをテンプレートの特定の部分(メサ側壁240またはパターニング表面112など)に向けて案内する穴をアップリケ106内に含む。
さらに、いくつかの実施形態は、ガス流路109を昇降させる1または複数のアクチュエータに取り付けられる1または複数のガス流路109またはガス流路アセンブリを含む。例えば、これらの実施形態のいくつかは、(i)システム100がテンプレート108に対して基板102およびアップリケ106を移動させる前に、ガス流路109をテンプレート108から安全な距離まで下げ、(ii)ガス流路109を、それぞれのガスの流れを活性化する前にガス流の高さまで上昇させる。ガス流の高さの例は、基板表面130の高さを含み、基板102とパターニング表面112および流体ディスペンサ122のいずれかとの間のギャップ(間隙)の割合が含まれる。
アップリケ106は、テンプレート108の下の局所的なガス環境を安定化させるように、および/または、例えばテンプレートが基板表面130の上にないときに、パターニング表面112をパーティクル(粒子)から保護するのを助けるように構成されてもよい。
また、アップリケ106は、基板チャック104によって支持される。図1に示される実施形態のように、いくつかの実施形態では、アップリケ106は、アップリケのいずれの部分も基板チャック104と基板102との間に挟まれることなく、基板チャック104上に搭載される。加えて、いくつかの実施形態では、アップリケ106は、基板102の周囲を取り囲む。さらに、アップリケ106の上面は、(例えば、図1に示されるように)基板表面130の下にあってもよいし、(例えば、図8Cに示すように)基板表面130と同一平面上にあってもよい。
図1のナノインプリント・リソグラフィ・システム100では、基板102は、基板チャック104に結合される。基板チャック104の例としては、真空チャック、ピン型チャック、溝型チャック、静電チャック、電磁チャックが挙げられる。基板チャック104は、基板位置決めステージ107によって支持される。アップリケ106および/または基板位置決めステージ107は、1または複数のガス流路109の少なくとも一部を含んでもよい。
基板位置決めステージ107は、x軸、y軸、z軸、θ軸、およびφ軸のうちの1または複数に沿った並進運動または回転運動を提供しうる。また、基板位置決めステージ107、基板102、および基板チャック104は、ベース(図示せず)上に位置決めされてもよい。加えて、基板位置決めステージ107は、位置決めシステム又は位置決めサブシステムの一部であってもよい。
ナノインプリント・リソグラフィ・システム100は、テンプレート108も含む。テンプレート108は、z軸に沿って基板102に向かって延びるメサ110(モールドとも呼ばれる)を含む本体を含みうる。メサ110は、その上にパターニング表面112を有しうる。また、テンプレート108は、メサ110なしで形成されてもよい。したがって、いくつかの実施形態では、基板102に面するテンプレート108の表面は、メサ110として機能し、パターニング表面112は、基板102に面するテンプレート108の表面上に含まれる。テンプレート108またはメサ110を構成しうる材料の例は、溶融シリカ、石英、シリコン、有機ポリマ、シロキサンポリマ、ホウケイ酸ガラス、フルオロカーボンポリマ、金属、および硬化サファイアを含む。
パターニング表面112は、複数の離間したテンプレートリセス(recesses)114またはテンプレート突起(protrusions)116によって画定されるフィーチャを有するが、いくつかの実施形態は、他の構成(例えば平面表面)を含む。パターニング面112は、基板102上の成形可能材料124から形成されるパターン化層125のレリーフパターンの基礎(例えば逆)を形成するパターンを画定する。いくつかの実施形態では、パターニング表面112はフィーチャがなく、この場合、平坦な表面が基板102上の成形可能材料124から形成される。
テンプレート108は、テンプレートチャック118に結合されうる。テンプレートチャック118の例は、真空チャック、ピン型チャック、溝型チャック、静電チャック、および電磁チャックを含む。テンプレートチャック118は、テンプレート108を横切って変化する力をテンプレート108に加えるように構成されてもよい。テンプレートチャック118は、テンプレートチャック118、インプリントヘッド119、およびテンプレート108が、少なくともz軸方向に移動可能であるように、次にブリッジ120に移動可能に結合されうるインプリントヘッド119に結合されてもよい。いくつかの実施形態では、テンプレートチャック118、インプリントヘッド119、およびテンプレート108は、x軸、y軸、θ軸、およびφ軸の方向のうち1または複数の方向にも移動可能である。ナノインプリント・リソグラフィ・システム100は、テンプレート108を移動させる1または複数のモータを含んでもよい。
ナノインプリント・リソグラフィ・システム100は、流体ディスペンサ122も含む。流体ディスペンサ122は、ブリッジ120に移動可能に連結されてもよい。いくつかの実施形態では、流体ディスペンサ122およびテンプレートチャック118は、1つ以上の位置決め構成要素を共有する。そして、いくつかの実施形態では、流体ディスペンサ122およびテンプレートチャック118は、互いに独立して移動する。
動作中、流体ディスペンサ122は、例えばパターン(例えば液滴パターン)で、液体の成形可能材料124を基板102上に堆積する。また、例えば、成形可能材料124は、レジスト(例えばフォトレジスト)または別の重合可能材料であってもよく、成形可能材料124は、モノマを含む混合物を含んでもよい。
成形可能材料124は、設計上の考慮事項に応じて、所望の体積がパターニング表面112と基板102との間に画定される前または後に基板102上に供給(吐出、分配)されうる。異なる流体ディスペンサ122は、成形可能材料124を供給するために異なる技術を使用することができる。成形可能材料124が噴射可能である場合、インクジェットタイプの流体ディスペンサ124が、成形可能材料124を供給するために用いられてもよい。例えば、サーマルインクジェッティング、マイクロエレクトロメカニカルシステムベース(MEMSベース)インクジェッティング、および圧電インクジェッティングは、ジェッタブル液体を供給するための技術である。
さらに、追加の成形可能材料124は、例えば、液滴ディスペンス、スピンコーティング、浸漬コーティング、化学蒸着(CVD)、物理蒸着(PVD)、薄膜堆積、厚膜堆積などの様々な技術を使用して基板102に追加されてもよい。
ナノインプリント・リソグラフィ・システム100は、露光経路128に沿って化学線エネルギを導くエネルギ源126も含む。インプリントヘッド119及び基板位置決めステージ107は、テンプレート108および基板102を露光経路128上に(例えば重ね合わせて)位置決めするように構成されうる。カメラ136は、同様に、カメラ136の撮像領域が露光経路128の少なくとも一部と重なるように配置されてもよい。
成形可能材料124が基板上に堆積されると、インプリントヘッド119、基板位置決めステージ107のいずれか、またはその両方が、メサ110と基板102との間の距離を変化させて、成形可能材料124によって充填される所望の体積を画定する。例えば、インプリントヘッド119は、基板102上にある成形可能材料124と接触するようにメサ110を移動させる力をテンプレート108に加えうる。所望の体積が成形可能材料124で満たされた後、エネルギ源126は、露光経路128に沿って成形可能材料124に導かれ、基板表面130およびパターニング表面112の形状に一致して成形可能材料124を硬化、固化、または架橋(cross-link)させるエネルギ(例えば化学線(UV))を生成し、それによって基板102上にパターン化層125を画定する。成形可能材料124は、テンプレート108が成形可能材料124と接触している間に硬化され、基板102上にパターン化層125を形成する。したがって、ナノインプリント・リソグラフィ・システム100は、インプリントプロセスを使用して、パターニング表面112内のパターンの逆であるリセス(凹部)および突起(凸部)を有するパターン化層125を形成する。
インプリントプロセスは、基板表面130にわたって拡がる複数のインプリント領域で繰り返し実行されうる。例えば、インプリント領域の各々は、メサ110と同じサイズであってもよいし、メサ110のパターン領域115のみと同じサイズであってもよい。メサ110のパターン領域115は、基板102上にパターンをインプリントするために使用されるパターニング表面112の領域(例えば、テンプレートリセス114およびテンプレート突起116を含む領域)である。メサ110のパターン領域115は、はみ出し(押し出し)を防止するために使用される流体制御フィーチャを含んでもよい。いくつかの実施形態では、基板102は、1つのインプリント領域のみを有し、インプリント領域は、基板102またはメサ110でパターン化されうる基板102の領域と同じサイズである。また、いくつかの実施形態では、インプリント領域は重なり合う。インプリント領域のいくつかは、基板102の境界と交差する部分インプリント領域であってもよい。
パターン化層125は、各インプリント領域において基板表面130上の最高点より上の残膜厚(RLT)を有する残膜層を有するように形成されてもよい。パターン化層125は、残膜層の上に延在する突起などの1または複数のフィーチャを含んでもよい。これらの突起は、メサ110のパターニング表面112内のリセス114と一致する。
パターン化層125は、例えば、硬化、酸化、層形成、堆積、ドーピング、平坦化、エッチング、成形可能材料の除去、ダイシング、ボンディング、パッケージングなどを含む、物品(例えばデバイス)製造のための公知の工程およびプロセスに更に曝されうる。物品の例は、CMOSロジック、マイクロプロセッサ、NANDフラッシュメモリ、NORフラッシュメモリ、DRAMメモリ、MRAM、3Dクロスポイントメモリ、Re-RAM、Fe-RAM、STT-RAM、およびMEMSを含む。
ナノインプリント・リソグラフィ・システム100は、基板位置決めステージ107、インプリントヘッド119、流体ディスペンサ122、エネルギ源126、またはカメラ136など、1または複数の他の構成要素またはサブシステムと通信する1または複数のプロセッサ132(例えばコントローラ)によって調整、制御、または指示されることができ、1または複数の非一時的コンピュータ可読媒体134に格納されたコンピュータ可読プログラム内の命令に基づいて動作しうる。図1の実施形態を含むいくつかの実施形態では、1または複数のプロセッサ、および1または複数の非一時的コンピュータ可読媒体134は、ナノインプリント・リソグラフィ制御装置135に含まれる。ナノインプリント・リソグラフィ制御装置135は、ナノインプリント・リソグラフィ・システム100の操作を調整し、制御し、または指示する。
1または複数のプロセッサ132のそれぞれは、マイクロプロセッサ(例えば、単一コアマイクロプロセッサ、マルチコアマイクロプロセッサ)を含むことができる中央処理ユニット(CPU)、グラフィックス処理ユニット(GPU)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタルシグナルプロセッサ(DSP)、特別に構成されたコンピュータ、および他の電子回路(例えば他の集積回路)のうちの1または複数とすることができ、またはそれらを含むことができる。例えば、プロセッサ132は、専用のコントローラであってもよく、またはナノインプリント・リソグラフィ・システム・コントローラであるように特別に構成された汎用コンピューティングデバイスであってもよい。
非一時的コンピュータ可読媒体の例は、磁気ディスク(例えば、フロッピディスク、ハードディスク)、光ディスク(例えば、CD、DVD、ブルーレイ)、光磁気ディスク、磁気テープ、半導体メモリ(例えば、不揮発性メモリカード、フラッシュメモリ、ソリッドステートドライブ、SRAM、DRAM、EPROM、EEPROM)、ネットワーク結合ストレージ(NAS)、イントラネット接続非一時的コンピュータ可読記憶デバイス、およびインターネット接続非一時的コンピュータ可読記憶デバイスを含むが、これらに限定されない。
上述のように、図2は、成形可能材料124が蓄積されたメサ側壁240を有するメサ110を含むテンプレート108の例示的な実施形態を示す。メサ100は、パターニング表面112を含み、メサ110は、リセス面238によって取り囲まれている。メサ側壁240は、リセス面238をメサ110のパターニング表面112に接続する。メサ側壁240は、メサ110を取り囲む。メサ110が丸いか、または丸いコーナーを有する実施形態では、メサ側壁240は、丸いコーナーを有するか、またはコーナーを有さない連続壁である単一のメサ側壁を指す。テンプレート108は、また、パターニング表面112上にパターニング表面コーティングを含んでもよい。パターニング表面コーティングは、インプリントプロセス中に常に補充される剥離剤の単層であってもよい。
図3は、メサ110の側壁240上にガス331の流れを向ける(例えば導く)ガス流路109の例示的な実施形態を示す。基板位置決めステージ107が、基板102、基板チャック104、およびアップリケ106を、テンプレート108の下の位置と流体ディスペンサ122の下の位置との間で移動させると、ナノインプリント・リソグラフィ・システム100は、(例えば、1または複数の非一時的コンピュータ可読媒体134に記憶された命令に基づいて動作する1または複数のプロセッサ132の制御下で、)メサ側壁240の下にあるガス流路109に、メサ側壁240に向けてガス331の流れ(ガス流331)を向けさせる。この実施形態では、ナノインプリント・リソグラフィ・システム100は、メサ側壁240のx軸(またはy軸)上で閾値距離内にないガス流路109を活性化しない。したがって、ナノインプリント・リソグラフィ・システム100のいくつかの実施形態は、パターニング表面112上にガス流がないか、または実質的にガス流がないことに向ける。本明細書で使用されるように、ガス流331がガス流路109を離れるにつれて、ガス流331の全てがメサ側壁240に向かって、または(例えば、図10Aおよび10Bに示されるように)メサ110のパターニング表面112の外側境界領域、例えば、メサ側壁240の5mm以内であるパターニング表面112の部分を含む境界に向かって進行しているとき、ガス流331の実質的にいずれも、パターニング表面112の方へ向けられない。
また、図3の実施形態および以下の例示的な実施形態は、ガス331の流れをメサ側壁240に向けるが、他の実施形態は、ガス331の流れをメサ側壁240に向けて放出し、吹き出し、または他の方法で放出することができる。
図4A~Dは、ある期間にわたって、ガス331の流れをメサ110の側壁240に向けるガス流路109の例示的な実施形態を示す。当該期間中(時間=1から時間=4まで)、基板102、基板チャック104、アップリケ106、および貸す流路109は、(例えば、基板位置決めステージ107の移動に従って、)x軸に沿ってテンプレート108に対して移動する。
図4Aでは、時間=1でにおいて、いずれのメサ側壁240も、ガス流路109のx軸上の閾値距離内で移動しなかった。したがって、ナノインプリント・リソグラフィ・システム100は、ガス流路109に、メサ側壁240のいずれかにそれぞれのガスの流れを向けさせていない。
図4Bでは、時間=2において、メサ側壁240は、ガス流路109のx軸上の閾値距離内を移動した。したがって、ナノインプリント・リソグラフィ・システム100は、ガス流路109に、メサ側壁240にそれぞれのガス331の流れを向けさせた。
図4Cでは、時間=3において、メサ110のパターン領域115は、x軸に沿って、ガス流路109上にあり、ナノインプリント・リソグラフィ・システム100は、ガス流路109からのガスの流れを停止した。
図4Dでは、時間=4において、別のメサ側壁240が、ガス流路109のx軸上の閾値距離内に移動した。したがって、ナノインプリント・リソグラフィ・システム100は、ガス流路109に、他のメサ側壁240にそれぞれのガス331の流れを向けさせた。他のメサ側壁240が閾値距離の外側に移動すると、ナノインプリント・リソグラフィ・システム100は、ガス流路109からのガス331の流れを停止する。
図5A~Cは、ある期間にわたって、ガス331の流れをメサ110の側壁240に向けるガス流路109の例示的な実施形態を示す。当該期間中(時間=1から時間=3まで)、基板102、基板チャック104、アップリケ106、およびガス流路109は、(例えば、基板位置決めステージ107の移動に従って、)x軸に沿ってテンプレート108に対して移動する。
図5Aでは、時間=1において、メサ側壁240は、ガス流路109のx軸上の閾値距離内を移動した。したがって、ナノインプリント・リソグラフィ・システム100は、ガス流路109に、メサ側壁240にそれぞれのガス331の流れを向けさせた。
図5Bでは、時間=2において、x軸上で、メサ110のパターン領域115は、ガス流路109上にある。しかしながら、この実施形態では、ナノインプリント・リソグラフィ・システム100は、ガス流路109からのガス331の流れを継続する。
図5Cでは、時間=3において、別のメサ側壁240は、ガス流路109のx軸上の閾値距離内を移動した。したがって、ナノインプリント・リソグラフィ・システム100は、ガス流路109からのガス331の流れを継続する。他のメサ側壁240が閾値距離の外側に移動すると、ナノインプリント・リソグラフィ・システム100は、ガス流路109からのガス331の流れを停止する。
図6A~Cは、ある期間にわたって、ガスの流れをメサの側壁に向けるガス流路の例示的な実施形態を示す。図6Aでは、時間=1において、基板102、基板チャック104、アップリケ106、およびガス流路109は、(例えば、基板位置決めステージ107の移動に従って、)x軸に沿ってテンプレート108に対して移動している。
図6Bでは、時間=2において、ガス流路109は、メサ110に対して静止している。また、メサ側壁240は、ガス流路109の閾値距離内にある。この実施形態では、ガス流路109がメサ110に対して静止している一方で、ナノインプリント・リソグラフィ・システム100は、ガス流路109に、メサ側壁240にそれぞれのガス331の流れを向けさせる。また、例えば、基板102が基板チャック104から除去されているとき、新しい基板102が基板チャック104上に配置されているとき、流体ディスペンサ122がインプリント前に成形可能材料124を供給するための新しい領域141の上にあるとき、または流体ディスペンサ122が成形可能材料124を基板102上に堆積(例えばジェッティング)しているとき、ガス流路109はメサ110に対して静止していてもよい。そして、いくつかの実施態様において、ガス流路109は、異なるそれぞれのガス流量を有する。例えば、メサ110のパターニング表面112から最も遠い図7のガス流路109は、メサ110のパターニング表面112に最も近いガス流路よりも高いガス流量を有してもよい。
図6Cでは、時間=3において、ガス流路109は、メサ110から離れて移動し、ナノインプリント・リソグラフィ・システム100は、ガス流路109からのガス流を停止した。
図7Aは、アップリケ106上の調整可能なガス流路109の例示的な実施形態を示す。この実施形態では、アップリケ106の表面に対するガス流路109のガス放出角度は調節可能である。いくつかの実施形態では、ガス流路109のガス放出角度は、ナノインプリント・リソグラフィ・システム100によって、例えば、1または複数のモータ(例えばサーボモータ)或いは1または複数のアクチュエータを起動することによって調整されうる。この実施形態は、ガス流路109のガス放出角度AGを調節することができる範囲を示す。そして、ガス流路109のガス放出角度を変えることによって、放出されたガス流の方向を変えることができる。
図7Bは、アップリケ106上の調整可能なガス流路109の例示的な実施形態を示す。図7Aと同様に、アプリク106の表面に対するガスフローチャネル109のガス放出角度は調節可能である。しかし、この実施形態は、ナノインプリント・リソグラフィシステム100が、メサ側壁がガス流路109のガス流範囲内にあると判断することができるガス流範囲RGを示す。ガスフロー量範囲は、例えば、ガスフローの速度、ガスフローの速度、ガスフローの圧力、ガスフローの形状、ガスフローの質量、ガスの熱、ガスの含有量(例えば、ガスを構成する元素)、形成可能なデータの含有量、およびメサ側壁を構成するデータを含む、種々のパラメータに基づいて決定されてもよい。
図7Cは、アップリケ106上の調節可能なガス流路109の例示的な実施形態を示す。この実施形態では、アップリケ106の表面に垂直な角度に対し、2つのガス流路109のガス放出角度が、それらのガス流331のそれぞれをメサ側壁240にさらに向けるように調節されている。ナノインプリント・リソグラフィ・システム100は、例えば1または複数のモータを使用して、メサ側壁240に対するガス流路109の位置に基づいて、ガス流路109のガス放出角度を調整することができる。
図8Aは、アップリケ106上のガス流路109の例示的な実施形態を示す。アップリケ106は、断面図で示されている。この実施形態では、ガス流路109は、アップリケ106を通って延びる穴または他の開口である。ガス流路109は、ガス供給ホース831からガス流を受け取り、アップリケ109を通って受け取ったガス流を導く。また、アップリケ106の上面は、基板表面130よりも低い。
図8Bは、アップリケ106上のガス流路109の例示的な実施形態を示す。アップリケ106は、断面図で示されている。この実施形態では、ガス流路109は、アプリク106内のキャビティ833に接続する穴または他の開口であり、これは、ガス供給ホース831にも接続する。キャビティ833は、ガス供給ホース831からガス流を受け取り、アップリケ109を通って受け取ったガス流をガス流路109に導く。したがって、ガス流路109は、ガス供給ホース831からのガス供給を共有する。また、アップリケ106の上面は、基板表面130よりも低い。
図8Cは、アップリケ106上のガス流路109の例示的な実施形態を示す。この実施形態は、図8Aの実施形態と同様である。しかしながら、この実施形態では、アップリケ106の上面は、基板表面130と同一平面上にあるか、または実質的に同一平面上にある。
図9Aは、アップリケ106上のガス流路109の例示的な実施形態を示す。アップリケ106は、断面図で示されている。この実施形態では、ガス流路109は、アップリケの上面のリセス935内に位置するノズルである。ガス流路109の最高点は、アップリケ106の上面よりも低い。また、アップリケ106の上面は、基板表面130よりも低い。
図9Bは、アップリケ106上のガス流路109の例示的な実施形態を示す。アップリケ106は、断面図で示されている。この実施形態では、ガス流路109は、アップリケの上面のリセス935内に位置するノズルである。しかしながら、この実施形態では、ガス流路109の最高点は、アップリケ106の上面と同じ高さであるか、または実質的に同じ高さである。また、アップリケ106の上面は、基板表面130と同一平面上にあるか、または実質的に同一平面上にある。
図9Cは、アップリケ106上の調節可能なガス流路109の例示的な実施形態を示す。アップリケ106は、断面図で示されている。この実施形態では、調節可能なガス流路109は、アップリケの上面のリセス935内に位置する調節可能なノズルである。調節可能なガス流路109は、ガス流路109がリセス935の側壁に接触することなく所望の範囲を通してそれらのガス放出角度を調節することができるように、リセス935の側壁から十分に離れて配置される。ガス流路109の最高点は、アップリケ106の上面よりも低い。また、アップリケ106の上面は、基板表面130よりも低い。
図9Dは、アップリケ106上の調節可能なガス流路109の例示的な実施形態を示す。この実施形態は、図9Cの実施形態と同様である。しかしながら、この実施形態では、アップリケ106の上面は、基板表面130と同一平面上にあるか、または実質的に同一平面上にある。
図10Aは、ガス331の流れをメサ110の側壁240に向けるガス流路109の例示的な実施形態を示す。この実施形態はまた、メサ110上の境界領域113を示す。この実施形態では、ガス331のいずれの流れも、メサ110の側壁240または境界領域113以外のいずれにも向けられない。また、この実施形態は、図10Bの実施形態と同様に、異なる実施形態が、メサ110と、基板102と、ガス流路109との間に異なる距離を有してもよいことをさらに示す。
図10Bは、ガス331の流れをメサ110の側壁240に向けるガス流路109の例示的な実施形態を示す。この実施形態はまた、メサ110上の境界領域113を示す。この実施形態では、ガス流路109のガス放出角度は、ガス331のいずれの流れも、メサ110の側壁240または境界領域113以外のものに向けられないように調整されている。
図11は、ナノインプリント・リソグラフィ・システム100の例示的な実施形態の斜視図を示す。ナノインプリント・リソグラフィ・システム100のこの実施形態は、4列に配列された複数のガス流路109を含む。ガス流路109の各々に対するメサ110の相対位置に基づいて、システム100は、メサ110が図11に示された位置にあり、且つ、選択されたガス流路109のガス流を活性化する間、メサ110の側壁にそれら各々のガス流を向けるための位置にあるガス流路109(選択されたガス流路は参照番号109Aによって示され、斜線で示されている)を選択する。システム100は、システム100の構成要素の相対寸法;構成要素の共通座標系;構成要素の位置を共通座標系にマッピングするために使用することができるデータ;各ガス流路109のそれぞれの流路;各ガス流路109のそれぞれの調整可能な範囲;および、調整可能な各ガス流路109のそれぞれの調整可能な流路範囲、のうちの1または複数を説明する校正データを記憶することができる。また、システム100は、基板102、基板チャック104、アップリケ106、基板位置決めステージ107、およびガス流路109のうちの1または複数に対するメサ110の位置を示す位置センサを含んでもよい。加えて、システム100は、基板102に対するメサ110の移動経路(例えば、移動速度、移動方向)を示す移動データを記憶してもよい。システム100は、校正データ、位置センサからのデータ、および移動データのうちの1または複数に基づいて、ガス流路109を特定(識別)し、選択することができる。
また、調整可能なガス流路109を含むシステム100のいくつかの実施形態は、校正データ、位置センサからのデータ、および移動データのうちの1または複数に基づいて、1または複数のガス流路109のそれぞれのガス放出角度を調整する。
加えて、システム100のいくつかの実施形態は、活性化されるべきでないガス流路109、例えば、メサ110の(例えば、図2に示されるような)パターン領域にガス流を向けて、他のガス流路109のすべてを活性化するように配置されたガス流路109を特定(識別)する。
図12は、基板102、アップリケ106、流体ディスペンサ122、およびテンプレート108の例示的な実施形態の平面図(z軸に沿った図)を示す。テンプレート108はメサ110を含む。アップリケ106は、複数のガス流路109を含む。基板102は、複数のインプリント領域141を含む。インプリント領域141の各々の上に、それぞれのパターンが、成形可能材料(例えば、パターン化層)から形成されてもよい。アップリケ106および基板102を支持する基板位置決めステージは、アップリケ106および基板102をx軸およびy軸の両方に沿って移動させることができる。これにより、基板位置決めステージは、インプリント領域141上に成形可能材料を堆積させる流体ディスペンサ122の下に次いで、インプリント領域141上に堆積された成形可能材料内にパターン(例えば、パターン化層)を形成するテンプレート108の下に、各インプリント領域141を位置決めすることができる。
ガス流路109の位置に対するテンプレート108の位置に基づいて、システム100は、メサ110上、特にメサ110の側壁上にガスの流れを向けるように位置決めされるガス流路109を特定(識別)して選択する。次いで、システムは、選択されたガス流路(斜線で示され、その一部は参照番号109Aによって特定される)に、それぞれのガスの流れを放出させる。図12に示される実施形態では、メサ110のいずれかの部分にガス流を向けるように配置されたすべてのガス流路109が選択される。
図13は、基板102、アップリケ106、流体ディスペンサ122、およびテンプレート108の例示的な実施形態の平面図(z軸に沿った図)を示す。テンプレート108はメサ110を含む。アップリケ106は、複数のガス流路109を含む。基板102は、複数のインプリント領域141を含む。アップリケ106および基板102を支持する基板位置決めステージは、アップリケ106および基板102をx軸及びy軸の両方に沿って移動させることができる。
ガス流路109の位置に対するテンプレート108の位置に基づいて、システムは、メサ110、特にメサ110の側壁にガスの流れを向けるための位置にあるガス流路109を特定(識別)して選択する。次いで、システムは、選択されたガス流路(斜線で示され、その一部は参照番号109Aによって特定される)に、それらそれぞれのガス流を放出させる。図12に示される実施形態とは対照的に、図13に示される実施形態は、メサ110のパターニング領域にガス流を向けるように配置されるガス流路109を除いて、メサ110にガス流を向けるように配置されるガス流路109を選択する。
ガス流路109は、図11~図13に示される断面形状とは異なる断面形状を有してもよい。例えば、図14は、基板102およびアップリケ106の例示的な実施形態の平面図を示す。アップリケ106は、複数のガス流路109を含む。この実施形態では、ガス流路109は細長い通気孔である。
また、ガス流路109は、基板102の2以上の側部に配置されてもよい。例えば、図15は、基板102およびアップリケ106の例示的な実施形態の平面図を示す。アップリケ106は、複数のガス流路109を含む。この実施形態では、ガス流路109は、基板102の3つの側部に配置される。
図16は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。本明細書で説明されるこの動作フローおよび他の動作フローはそれぞれ、特定のそれぞれの順序で提示されるが、これらの動作フローのいくつかの実施形態は、提示された順序とは異なる順序で当該動作の少なくともいくつかを実行する。異なる順序の例には、同時、並列、重なり、並べ替え、同時、増加(incremental)、および交互(interleaved)の順序が含まれる。また、これらの動作フローのいくつかの実施形態は、本明細書で説明される動作フローのうちの2以上からの動作(例えば、ブロック)を含む。したがって、動作フローのいくつかの実施形態は、ブロックを省略し、ブロックを追加し(例えば、本明細書で説明される他の動作フローからのブロックを含む)、ブロックの順序を変更し、ブロックを結合し、または、本明細書で説明される動作フローの例示的な実施形態に比べてブロックをより多くのブロックに分割してもよい。
さらに、本明細書で説明されるこの動作フローおよび他の動作フローは、ナノインプリント・リソグラフィ制御装置によって実行されるが、これらの動作フローのいくつかの実施形態は、2以上のナノインプリント・リソグラフィ制御装置によって、或いは、1または複数の他の特別に構成されたコンピューティングデバイスによって実行される。
図16において、フローは、ブロックB1600で開始し、次いでブロックB1605に進み、ここで、ナノインプリント・リソグラフィ制御装置は校正データを取得する。次に、ブロックB1610において、ナノインプリント・リソグラフィ制御装置は、例えば、1または複数の位置センサから、メサの現在位置を記述する情報を取得する。
次いで、ブロックB1615において、ナノインプリント・リソグラフィ制御装置は、校正データおよびメサの現在位置に基づいて、ガス流路に対する1または複数のメサ側壁のそれぞれの位置を決定する。
次いで、フローはブロックB1620に移動し、ここで、ナノインプリント・リソグラフィ制御装置は、いずれかのメサ側壁が、いずれかのガス流路のそれぞれの流路(例えば、ガス流範囲)内に配置されているか否かを判断する。ナノインプリント・リソグラフィ制御装置が、1または複数のメサ側壁がいくつかのガス流路のそれぞれの流路内に配置されるいると判断した場合(B1620=Yes)、フローは、ブロックB1625に移動する。そうでない場合(ブロックB1620=No)、フローはブロックB1630に移動する。
ブロックB1625において、ナノインプリント・リソグラフィ制御装置は、ガス流路を活性化する。ナノインプリント・リソグラフィ制御装置は、全てのガス流路を活性化してもよいし、または、ナノインプリント・リソグラフィ制御装置は、それらの流路内にメサ側壁を有するガス流路のみを活性化してもよい。次いで、フローはブロックB1630に移動する。
ブロックB1630において、ナノインプリント・リソグラフィ制御装置は、(例えば、ユーザ入力から、ナノインプリント・リソグラフィ制御装置上で実行されているプログラムから)STOP命令(停止命令)を受け取ったか否かを判断する。STOP命令が受信されていない場合(B1630=No)、フローはブロックB1610に戻る。STOP命令が受信された場合(B1630=Yes)、フローはブロックB1635に移動する。
ブロックB1635では、ナノインプリント・リソグラフィ制御装置は、いずれかの活性ガス流路を非活性化し、次いで、ブロックB1640でフローを終了する。
図17は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。フローは、ブロックB1700で開始し、次いでブロックB1705に進み、そこで、ナノインプリント・リソグラフィ制御装置が校正データを取得する。
次に、ブロックB1710において、ナノインプリント・リソグラフィ制御装置は、例えば、1または複数の位置センサから、或いは、メサの移動を制御するプログラムから、メサの現在位置またはメサの移動経路を記述する情報を取得する。
次いで、ブロックB1715において、ナノインプリント・リソグラフィ制御装置は、メサが、ガス流路に対して静止しているか否かを判断する。ナノインプリント・リソグラフィ制御装置が、メサがガス流路に対して静止していないと判断した場合(B1715=No)、フローはブロックB1710に戻る。そうでない場合(B1715=Yes)、フローはブロックB1720に移動する。
ブロックB1720において、ナノインプリント・リソグラフィ制御装置は、校正データおよびメサの現在位置に基づいて、ガス流路に対する1または複数のメサ側壁のそれぞれの位置を決定する。
次に、ブロックB1725において、ナノインプリント・リソグラフィ制御装置は、いずれかのメサ側壁が、いずれかのガス流路のそれぞれの流路(例えば、ガス流範囲)に配置されているか否かを判断する。ナノインプリント・リソグラフィ制御装置が、1または複数のメサ側壁が1または複数のガス流路のそれぞれの流路内に配置されていると判定した場合(B1725=Yes)、フローはブロックB1730に移動する。そうでない場合(ブロックB1725=No)、フローはブロックB1735に移動する。
ブロックB1730において、ナノインプリント・リソグラフィ制御装置は、ガス流路を活性化する。例えば、ナノインプリント・リソグラフィ制御装置は、全てのガス流路を活性化してもよいし、ナノインプリント・リソグラフィ制御装置は、流路内にメサ側壁を有する1または複数のガス流路のみを活性化してもよい。次いで、フローはブロックB1735に移動する。
ブロックB1735において、ナノインプリント・リソグラフィ制御装置は、STOP命令(停止命令)を受け取ったか否かを判断する。STOP命令が受信されていない場合(B1735=No)、フローはブロックB1710に戻る。STOP命令が受信された場合(B1735=Yes)、フローはブロックB1740に移動する。
ブロックB1740では、ナノインプリント・リソグラフィ制御装置は、いずれかの活性ガス流路を非活性化し、次いで、ブロックB1745でフローを終了する。
したがって、図17に示される実施形態では、ナノインプリント・リソグラフィ制御装置は、メサがガス流路に対して静止している場合にのみ、ガス流路を活性化する。
図18は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。フローは、ブロックB1800で開始し、次いでブロックB1805に進み、そこで、ナノインプリント・リソグラフィ制御装置が校正データを取得する。
次に、ブロックB1810において、ナノインプリント・リソグラフィ制御装置は、例えば、1または複数の位置センサから、またはメサの移動を制御するプログラムから、メサの現在位置またはメサの移動経路を記述する情報を取得する。
次いで、フローはブロックB1815に進み、ナノインプリント・リソグラフィ制御装置は、校正データ、メサの現在位置、およびメサの移動経路に基づいて、ガス流路に対する1または複数のメサ側壁のそれぞれの位置を決定する。
次に、ブロックB1820において、ナノインプリント・リソグラフィ制御装置は、いずれかのメサ側壁が、現在、いずれかのガス流路のそれぞれのりゅうろ(例えば、ガス流範囲)内に配置されているか否かを判断する。ナノインプリント・リソグラフィ制御装置が、1または複数のメサ側壁が、現在、1または複数のガス流路のそれぞれの流路内に配置されていると判断した場合(B1820=Yes)、フローはブロックB1825に移動する。そうでない場合(ブロックB1820=No)、フローはブロックに移動する。
ブロックB1825において、ナノインプリント・リソグラフィ制御装置は、適用可能なガス流路(流路内にメサ側壁を有する1または複数のガス流路)を活性化する。次いで、フローはブロックB1830に移動する。
ブロックB1830において、ナノインプリント・リソグラフィ制御装置は、いずれかのメサ側壁が、時間ウィンドウ(例えば、0.1秒、0.05秒)内にいずれかのガス流路のそれぞれの流路内にあるであろうか否かを判定する。ナノインプリント・リソグラフィ-制御装置が、1または複数のメサ側壁が時間ウィンドウ内にいくつかのガス流路のそれぞれの流路内に配置されるであろうと判断した場合(B1830=Yes)、フローはブロックB1835に移動する。そうでない場合(ブロックB1830=No)、フローはブロックB1840に移動する。
ブロックB1835では、ナノインプリント・リソグラフィ制御装置は、適用可能なガス流路(時間ウィンドウ内において流路にメサ側壁を有するであろうガス流路)を活性化する。次いで、フローはブロックB1840に移動する。
ブロックB1840において、ナノインプリント・リソグラフィ制御装置は、STOP命令(停止命令)を受け取ったか否かを判断する。STOP命令が受信されていない場合(B1840=No)、フローはブロックB1810に戻る。STOP命令が受信された場合(B1840=Yes)、フローはブロックB1845に移動する。
ブロックB1845では、ナノインプリント・リソグラフィ制御装置は、いずれかの活性ガス流路を非活性化し、次いで、ブロックB1850でフローを終了する。
図19は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。フローは、ブロックB1900で開始し、次いでブロックB1905に進み、ここで、ナノインプリント・リソグラフィ制御装置は、N個のガス流路フローチャネル(ここで、Nは正の整数である)についての校正データを含む校正データを取得する。
次に、ブロックB1910において、ナノインプリント・リソグラフィ制御装置は、例えば、1または複数の位置センサから、またはメサの移動を制御するプログラムから、メサの現在位置またはメサの移動経路を記述する情報を取得する。
次いで、フローはブロックB1915に移動し、そこで、ナノインプリント・リソグラフィ制御装置は、カウンタnを1に設定する。
次いで、フローはブロックB1920に進み、ここで、ナノインプリント・リソグラフィ制御装置は、校正データ、メサの現在位置、およびメサの移動経路に基づいて、ガス流路nに対する1または複数のメサ側壁のそれぞれの位置を決定する。
次いで、ブロックB1925において、ナノインプリント・リソグラフィ制御装置は、メサ側壁が、現在、ガス流路nの流路(例えば、ガス流範囲)内にあるか否かを判断する。ナノインプリント・リソグラフィ制御装置が、メサ側壁が、現在、ガス流路nの流路内にあると判断した場合(B1925=Yes)、フローはブロックB1935に進む。そうでない場合(B1925=No)、フローはブロックB1930に移動し、ここで、ナノインプリント・リソグラフィ制御装置は、メサ側壁が、時間ウィンドウ内でガス流路nの流路内にあるであろうか否かを判断する。ナノインプリント・リソグラフィ制御装置が、メサ側壁が、時間ウィンドウ内でガス流路nの流路内にあるであろうと判断した場合(B1930=Yes)、フローはブロックB1935に進む。そうでない場合(B1930=No)、フローはブロックB1940に移動する。
ブロックB1935において、ナノインプリント・リソグラフィ制御装置は、ガス流路nに対する1または複数のメサ側壁の位置に少なくとも基づいて、ガス流路nについてのガス流量およびガス放出角度を決定する。また、ナノインプリント・リソグラフィ制御装置は、例えば、ガス流路nのガス流量、ガス流路nのガス流範囲、ガスの温度、ガスの内容、成形可能材料の内容、メサの移動速度、メサの移動方向、ディスペンサが現在基板上に成形可能材料を供給しているか否か、および、新しい基板が現在基板チャック上に配置されているか否か、のうちの1または複数にさらに基づいて、ガス流路nについてのガス流量およびガス放出角度を決定してもよい。
ブロックB1940において、ナノインプリント・リソグラフィ制御装置は、決定されたガス流量およびガス放出角度でガス流路nを活性化する。これは、例えば、1または複数のモータまたはアクチュエータを作動させることによって、ガス流路のガス放出角度を調節することを含みうる。したがって、いずれかの活性化されたガス流路は、異なるガス流量および異なるガス放出角度を有してもよい。また、活性ガス流路のガス放出角度および流量(流量はゼロよりも大きい)は、例えば、ガス流路に対するメサの移動または位置に従って、時間にわたって(例えば、B1910-B1955の後続の反復にわたって)変化することができる。次いで、フローはブロックB1945に進む。
ブロックB1945において、ナノインプリント・リソグラフィ制御装置は、例えばn<Nであるか否かを判断することにより、他のガス流路があるか否かを判断する。ナノインプリント・リソグラフィ制御装置が、他のガス流路があると判断した場合(B1945=Yes)、フローはブロックB1950に移動し、そこで、ナノインプリント・リソグラフィ制御装置は、カウンタnを1だけ増加させ、次いで、ブロックB1920に戻る。ナノインプリント・リソグラフィ制御装置が、他のガス流路がないと判断した場合(B1945=No)、フローはブロックB1955に移動する。
ブロックB1955において、ナノインプリント・リソグラフィ制御装置は、STOP命令(停止命令)を受け取ったか否かを判断する。STOP命令が受信されていない場合(B1955=No)、フローはブロックB1910に戻る。STOP命令が受信された場合(B1955=Yes)、フローはブロックB1960に移動する。
ブロックB1960において、ナノインプリント・リソグラフィ制御装置は、いずれかの活性ガス流路を非活性化し、次いで、ブロックB1965においてフローを終了する。
図20は、ガスを1または複数のメサ側壁に向けるための動作フローの例示的な実施形態を示す。フローは、ブロックB2000で開始し、次いでブロックB2005に進み、そこでナノインプリント・リソグラフィ制御装置が校正データを取得する。
次に、ブロックB2010において、ナノインプリント・リソグラフィ制御装置は、例えば、1または複数の位置センサから、またはメサの移動を制御するプログラムから、メサの現在位置またはメサの移動経路を記述する情報を取得する。
次に、ブロックB2015において、ナノインプリント・リソグラフィ制御装置は、連続するインプリント間の時間が閾値を超えるか否か(または、いくつかの実施形態では、次のインプリントまでの時間が閾値を超えるか否か)を判断する。ナノインプリント・リソグラフィ制御装置が、連続するインプリント間の時間が閾値を超えると判定した場合(B2015=Yes)、フローはブロックB2020に移動する。そうでない場合(B2015=No)、フローはブロックB2010に戻る。
ブロックB2020において、ナノインプリント・リソグラフィ制御装置は、校正データおよびメサの現在位置に基づいて、ガス流路に対する1または複数のメサ側壁のそれぞれの位置を決定する。
次に、ブロックB2025において、ナノインプリント・リソグラフィ制御装置は、いずれかのメサ側壁が、いずれかのガス流路のそれぞれの流路(例えば、ガス流範囲)内に配置されているか否かを判断する。ナノインプリント・リソグラフィ制御装置が、1または複数のメサ側壁が1または複数のガス流路のそれぞれの流路内に配置されていると判断した場合(B2025=Yes)、フローはブロックB2030に移動する。そうでない場合(ブロックB2025=No)、フローはブロックB2035に移動する。
ブロックB2030において、ナノインプリント・リソグラフィ制御装置は、ガス流路を活性化する。例えば、ナノインプリント・リソグラフィ制御装置は、全てのガス流路を活性化してもよいし、または、ナノインプリント・リソグラフィ制御装置は、それぞれの流路内にメサ側壁を有する1または複数のガス流路のみを活性化してもよい。加えて、ナノインプリント・リソグラフィ制御装置は、インプリント間の時間の長さに基づいて、活性化されたガス流路のガス流量を選択してもよい。例えば、インプリント間の時間がより短い場合、ガス流量はより高くなりうる。次いで、フローはブロックB2035に移動する。
ブロックB2035において、ナノインプリント・リソグラフィ制御装置は、STOP命令(停止命令)を受信したか否かを判断する。STOP命令が受信されていない場合(B2035=No)、フローはブロックB2010に戻る。STOP命令が受信された場合(B2035=Yes)、フローはブロックB2040に移動する。
ブロックB2040において、ナノインプリント・リソグラフィ制御装置は、いずれかの活性ガス流路を非活性化し、次いで、ブロックB2045においてフローを終了する。
したがって、いくつかの実施形態では、ナノインプリント・リソグラフィシステム100は、連続したインプリント間の時間が閾値を超えた場合、または次のインプリントまでの時間が閾値を超えた場合にのみ、基板102上におけるインプリント(例えば、パターン化層の形成)間の時間の量を決定し、ガス流路109のガス流を活性化する。
また、ガス流路が調節可能である場合、これらの動作フローの各々を修正してもよい。例えば、メサ側壁がガス流路の流路の調節可能な範囲内にあるか否かを判定するために修正されてもよい。メサ側壁がガス流路の流路の調節可能な範囲内にある場合、メサ側壁を流路に入れるためにガス流路に対して行う調節を決定し、そしてガス流路に対する調節を行う。

Claims (18)

  1. ステージ上の1または複数のガス流路の上で成形可能材料をインプリントするためのテンプレートを位置決めする工程であって、前記テンプレートは、パターニング表面、メサ、および少なくとも1つのメサ側壁を含む、工程と、
    前記1または複数のガス流路を通るガスの流れを前記少なくとも1つのメサ側壁の一部に向ける工程と、
    を含み、
    前記ステージは、基板を保持し、
    前記1または複数のガス流路を通る前記ガスの流れを前記少なくとも1つのメサ側壁に向けることは、前記成形可能材料が前記基板上に供給されている間で行われる、ことを特徴とする方法。
  2. ステージ上の1または複数のガス流路の上で成形可能材料をインプリントするためのテンプレートを位置決めする工程であって、前記テンプレートは、パターニング表面、メサ、および少なくとも1つのメサ側壁を含む、工程と、
    前記1または複数のガス流路を通るガスの流れを前記少なくとも1つのメサ側壁の一部に向ける工程と、
    を含み、
    前記1または複数のガス流路を通る前記ガスの流れを前記少なくとも1つのメサ側壁に向けることは、前記テンプレートが前記ステージに対して静止している間のみで行われる、ことを特徴とする法。
  3. ステージ上の1または複数のガス流路の上で成形可能材料をインプリントするためのテンプレートを位置決めする工程であって、前記テンプレートは、パターニング表面、メサ、および少なくとも1つのメサ側壁を含む、工程と、
    前記1または複数のガス流路を通るガスの流れを前記少なくとも1つのメサ側壁の一部に向ける工程と、
    を含み、
    前記1または複数のガス流路を通る前記ガスの流れを向ける前に、前記テンプレートの位置に対する前記ステージの位置に基づいて、複数のガス流路から前記1または複数のガス流路を選択することを更に含む、ことを特徴とする法。
  4. ステージ上の1または複数のガス流路の上で成形可能材料をインプリントするためのテンプレートを位置決めする工程であって、前記テンプレートは、パターニング表面、メサ、および少なくとも1つのメサ側壁を含む、工程と、
    前記1または複数のガス流路を通るガスの流れを前記少なくとも1つのメサ側壁の一部に向ける工程と、
    を含み、
    前記1または複数のガス流路を通る前記ガスの流れを前記少なくとも1つのメサ側壁に向けることは、基板交換中に行われ、または
    前記ガスの流れを向けるとき、各々のガス流路は、それぞれのガス流量を有し、前記ガス流量は、前記メサに対する前記ガス流路の相対位置に従って変化する、
    ことを特徴とする法。
  5. ステージ上の1または複数のガス流路の上で成形可能材料をインプリントするためのテンプレートを位置決めする工程であって、前記テンプレートは、パターニング表面、メサ、および少なくとも1つのメサ側壁を含む、工程と、
    前記1または複数のガス流路を通るガスの流れを前記少なくとも1つのメサ側壁の一部に向ける工程と、
    を含み、
    前記1または複数のガス流路を通る前記ガスの流れを前記少なくとも1つのメサ側壁に向けることは、前記テンプレートによる前記成形可能材料の連続的なインプリント間の期間中に、前記期間が閾値より長い場合にのみ行われる、ことを特徴とする法。
  6. 前記1または複数のガス流路を通る前記ガスの流れを前記少なくとも1つのメサ側壁に向けている間、実質的に、前記ガスの流れのいずれも、前記テンプレートの前記パターニング表面に向けられていない、ことを特徴とする請求項1乃至5のいずれか1項に記載の方法。
  7. 前記ステージは、基板を保持する基板チャックを含み、前記1または複数のガス流路は、前記基板チャックに隣接して配置される、ことを特徴とする請求項1乃至6のいずれか1項に記載の方法。
  8. 前記テンプレートの前記パターニング表面を用いて、前記ステージ上の基板チャックに保持された基板上の前記成形可能材料に1または複数のインプリントを行うことと、
    前記1または複数の物品を製造するように、前記1または複数のインプリントが行われた前記基板を加工することと、
    を含む1または複数の物品を製造することを更に含む、ことを特徴とする請求項1乃至7のいずれか1項に記載の方法。
  9. 成形可能材料をインプリントするためのテンプレートを保持するように構成されたテンプレートチャックであって、前記テンプレートは、パターニング表面、メサ、およびメサ側壁を含む、テンプレートチャックと、
    前記テンプレートに対して移動可能であるステージであって、前記ステージは、基板チャックと前記メサ側壁にガスの流れを向けるように構成された1または複数のガス流路とを含む、ステージと、
    前記基板チャックに保持された基板上に前記成形可能材料を供給するように構成された成形可能材料ディスペンサと、
    を備え
    前記ステージおよび前記1または複数のガス流路は、前記成形可能材料ディスペンサが前記基板上に前記成形可能材料を供給している間に前記ガスの流れを前記メサ側壁に向けるように構成されている、ことを特徴とする装置。
  10. 成形可能材料をインプリントするためのテンプレートを保持するように構成されたテンプレートチャックであって、前記テンプレートは、パターニング表面、メサ、およびメサ側壁を含む、テンプレートチャックと、
    前記テンプレートに対して移動可能であるステージであって、前記ステージは、基板チャックと前記メサ側壁にガスの流れを向けるように構成された1または複数のガス流路とを含む、ステージと、
    1または複数のメモリと、
    前記1または複数のメモリと通信し、前記1または複数のメモリと協働して、記テンプレートの位置に対する前記ステージの位置に基づいて複数のガス流路から前記1または複数のガス流路を選択る1または複数のプロセッサと、
    えることを特徴とする置。
  11. 前記1または複数のプロセッサは更に、前記1または複数のメモリと協働して、前記装置に、前記複数のガス流路のうち他のガス流路を通ってガスを流さないようにしながら、前記1または複数のガス流路を通る前記ガスの流れを前記メサ側壁に向けさせる、ことを特徴とする請求項10に記載の装置。
  12. 成形可能材料をインプリントするためのテンプレートを保持するように構成されたテンプレートチャックであって、前記テンプレートは、パターニング表面、メサ、およびメサ側壁を含む、テンプレートチャックと、
    前記テンプレートに対して移動可能であるステージであって、前記ステージは、基板チャックと前記メサ側壁にガスの流れを向けるように構成された1または複数のガス流路とを含む、ステージと、
    1または複数のメモリと、
    前記1または複数のメモリと通信し、前記1または複数のメモリと協働して、記テンプレートによる前記成形可能材料の連続的なインプリント間の期間を計算、前記期間が閾値より長い場合にのみ、前記期間中に、前記1または複数のガス流路を通る前記ガスの流れを前記メサ側壁に向ける、1または複数のプロセッサと、
    えることを特徴とする置。
  13. 成形可能材料をインプリントするためのテンプレートを保持するように構成されたテンプレートチャックであって、前記テンプレートは、パターニング表面、メサ、およびメサ側壁を含む、テンプレートチャックと、
    前記テンプレートに対して移動可能であるステージであって、前記ステージは、基板チャックと前記メサ側壁にガスの流れを向けるように構成された1または複数のガス流路とを含む、ステージと、
    1または複数のアクチュエータ、或いは1または複数のモータと、
    え、
    前記1または複数のガス流路のそれぞれのガス放出角度は、前記1または複数のアクチュエータによって、或いは1または複数のモータによって調整されるように構成されている、ことを特徴とする置。
  14. 成形可能材料をインプリントするためのテンプレートを保持するように構成されたテンプレートチャックであって、前記テンプレートは、パターニング表面、メサ、およびメサ側壁を含む、テンプレートチャックと、
    前記テンプレートに対して移動可能であるステージであって、前記ステージは、基板チャックと前記メサ側壁にガスの流れを向けるように構成された1または複数のガス流路とを含む、ステージと、
    を備え、
    前記1または複数のガス流路は、
    前記テンプレートが前記ステージに対して静止している間、
    前記ステージが成形可能材料ディスペンサに向かって移動している間、または
    前記ステージが前記成形可能材料ディスペンサから離れて移動している間
    においてのみ、前記ガスの流れを前記メサ側壁に向け、
    前記成形可能材料ディスペンサは、前記基板チャックに保持された基板上に前記成形可能材料を供給するように構成されている、ことを特徴とする置。
  15. 成形可能材料をインプリントするためのテンプレートを保持するように構成されたテンプレートチャックであって、前記テンプレートは、パターニング表面、メサ、およびメサ側壁を含む、テンプレートチャックと、
    前記テンプレートに対して移動可能であるステージであって、前記ステージは、基板チャックと前記メサ側壁にガスの流れを向けるように構成された1または複数のガス流路とを含む、ステージと、
    を備え、
    前記1または複数のガス流路は、2次元アレイで配列された複数のガス流路を含む、ことを特徴とする置。
  16. 前記1または複数のガス流路は、前記基板チャックに隣接して位置決めされている、ことを特徴とする請求項9乃至15のいずれか1項に記載の装置。
  17. 前記1または複数のガス流路は、前記ガスの流れを前記メサ側壁に向けながら、前記ガスの流れを前記パターニング表面から離れるように向けるように更に構成されている、ことを特徴とする請求項9乃至16のいずれか1項に記載の装置。
  18. 前記1または複数のガス流路は、2または複数のガス流路を含み、
    前記ステージは、軸に沿って前記基板チャックを移動させるように構成され、
    前記2または複数のガス流路は、前記軸に直交する列に配置される、ことを特徴とする請求項9乃至17のいずれか1項に記載の装置。
JP2021001659A 2020-02-11 2021-01-07 メサ側壁をクリーニングするためのシステムおよび方法 Active JP7057844B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/787,626 2020-02-11
US16/787,626 US10935885B1 (en) 2020-02-11 2020-02-11 System and method for cleaning mesa sidewalls

Publications (2)

Publication Number Publication Date
JP2021129104A JP2021129104A (ja) 2021-09-02
JP7057844B2 true JP7057844B2 (ja) 2022-04-20

Family

ID=74682924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001659A Active JP7057844B2 (ja) 2020-02-11 2021-01-07 メサ側壁をクリーニングするためのシステムおよび方法

Country Status (4)

Country Link
US (1) US10935885B1 (ja)
JP (1) JP7057844B2 (ja)
KR (1) KR20210102072A (ja)
TW (1) TWI795709B (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082045A (ja) 2014-10-16 2016-05-16 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法
US20200026183A1 (en) 2018-07-18 2020-01-23 Canon Kabushiki Kaisha Photodissociation Frame Window, Systems Including a Photodissociation Frame Window, and Methods of Using a Photodissociation Frame Window

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7490547B2 (en) 2004-12-30 2009-02-17 Asml Netherlands B.V. Imprint lithography
JP5235506B2 (ja) 2008-06-02 2013-07-10 キヤノン株式会社 パターン転写装置及びデバイス製造方法
DE102008028868A1 (de) * 2008-06-19 2009-12-24 Carl Zeiss Smt Ag Optische Baugruppe
CN101414119B (zh) * 2008-10-28 2011-06-22 吉林大学 用微米级模板构筑亚微米或纳米级模板的方法
JP2012039057A (ja) 2010-07-13 2012-02-23 Canon Inc インプリント装置及び物品の製造方法
WO2012063948A1 (ja) * 2010-11-12 2012-05-18 株式会社日立ハイテクノロジーズ 金型の微細パターン面清掃方法とそれを用いたインプリント装置
JP2013251462A (ja) 2012-06-01 2013-12-12 Canon Inc インプリント装置、および、物品の製造方法
US10131134B2 (en) 2015-10-30 2018-11-20 Canon Kabushiki Kaisha System and method for discharging electrostatic charge in nanoimprint lithography processes
JP6761329B2 (ja) 2016-11-22 2020-09-23 キヤノン株式会社 インプリント装置、インプリント方法および物品製造方法
JP2018163946A (ja) * 2017-03-24 2018-10-18 東芝メモリ株式会社 インプリント装置およびインプリント方法
US10895806B2 (en) 2017-09-29 2021-01-19 Canon Kabushiki Kaisha Imprinting method and apparatus
US10921706B2 (en) 2018-06-07 2021-02-16 Canon Kabushiki Kaisha Systems and methods for modifying mesa sidewalls

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082045A (ja) 2014-10-16 2016-05-16 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法
US20200026183A1 (en) 2018-07-18 2020-01-23 Canon Kabushiki Kaisha Photodissociation Frame Window, Systems Including a Photodissociation Frame Window, and Methods of Using a Photodissociation Frame Window

Also Published As

Publication number Publication date
JP2021129104A (ja) 2021-09-02
TW202202939A (zh) 2022-01-16
TWI795709B (zh) 2023-03-11
KR20210102072A (ko) 2021-08-19
US10935885B1 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
US10895806B2 (en) Imprinting method and apparatus
TWI710858B (zh) 用於控制壓印材料的擴散之方法、製造裝置的方法、和基板
WO2007067469A2 (en) Method for expelling gas positioned between a substrate and a mold
TWI794584B (zh) 產生液滴圖案之方法、用於以液滴圖案成型膜之系統以及以液滴圖案製造物品之方法
TW202105470A (zh) 壓印裝置及物品的製造方法
JP7210155B2 (ja) 装置、方法、および物品製造方法
KR20210052256A (ko) 슈퍼스트레이트 척, 사용 방법 및 물품의 제조 방법
US20200096863A1 (en) Method of fluid droplet offset and apparatus for imprint lithography
KR102247865B1 (ko) 임프린트 리소그래피를 위한 유체 액적 방법 및 장치
JP6701300B2 (ja) ナノインプリントシステムのスループットを改善するためのシステムおよび方法
JP7079085B2 (ja) インプリントリソグラフィのための液滴法および装置
JP7057844B2 (ja) メサ側壁をクリーニングするためのシステムおよび方法
JP7373334B2 (ja) インプリント装置及び物品の製造方法
US11373861B2 (en) System and method of cleaning mesa sidewalls of a template
KR102547578B1 (ko) 임프린트 필드의 에지를 구배 선량으로 조명하기 위한 시스템 및 방법
JP6821414B2 (ja) インプリント装置、及び物品の製造方法
JP6951483B2 (ja) 質量速度変動フィーチャを有するテンプレート、テンプレートを使用するナノインプリントリソグラフィ装置、およびテンプレートを使用する方法
KR20210015657A (ko) 임프린트 장치, 임프린트 방법 및 물품 제조 방법
JP7263036B2 (ja) 成形装置、成形方法および、物品製造方法
JP7512132B2 (ja) 平坦化装置、平坦化方法、物品の製造方法及びコンピュータプログラム
JP2023097334A (ja) テンプレート、テンプレートを形成する方法、装置及び物品を製造する方法
TW202216478A (zh) 藉由施加抽吸力和振動彎液面來清潔流體分配器的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220408

R151 Written notification of patent or utility model registration

Ref document number: 7057844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151