JP7017042B2 - 炭素繊維シートの製造方法 - Google Patents

炭素繊維シートの製造方法 Download PDF

Info

Publication number
JP7017042B2
JP7017042B2 JP2017165223A JP2017165223A JP7017042B2 JP 7017042 B2 JP7017042 B2 JP 7017042B2 JP 2017165223 A JP2017165223 A JP 2017165223A JP 2017165223 A JP2017165223 A JP 2017165223A JP 7017042 B2 JP7017042 B2 JP 7017042B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber sheet
sheet
heat
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017165223A
Other languages
English (en)
Other versions
JP2018040099A (ja
Inventor
良太 大倉
幹夫 井上
崇史 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2018040099A publication Critical patent/JP2018040099A/ja
Application granted granted Critical
Publication of JP7017042B2 publication Critical patent/JP7017042B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、炭素繊維シートの製造方法に関する。本発明の炭素繊維シートは、固体高分子型燃料電池(PEFC)、メタノール型燃料電池(DMFC)やリン酸型燃料電池(PAFC)のガス拡散体や不活性雰囲気の高温設備の断熱材として好ましく用いることができる。
固体高分子型燃料電池は、水素と酸素を供給することにより発電する。燃料電池において発電反応が起こる膜-電極接合体を構成するガス拡散体の材料としては、炭素繊維を樹脂炭化物で結着したカーボンペーパー、炭素繊維が交絡してなる炭素繊維不織布や炭素繊維織物が一般的に用いられる。ここで、カーボンペーパーや炭素繊維不織布に長径0.5mm以上の貫通孔が存在すると、固体高分子型燃料電池に組み込んだ場合、酸素や水素の透過や反応で生成した水の排出が面内で不均一になり、燃料電池の発電性能低下の原因となる。そのため、貫通孔が存在する箇所を燃料電池用の多孔質炭素電極基材として使用することは避けるため、製造した炭素繊維シートに多数の貫通孔があると、歩留まりが低下する。
このような問題に対して、特許文献1では、樹脂硬化シートのケイ素含有量を減らして焼成炉壁に付着するケイ素化合物の付着、脱落を抑制したり、焼成炉幅に対する樹脂硬化シートの幅を90%以下にすることで炉内に滞留する不純物濃度の低減、濃縮を防止したり、焼成炉におけるシート走行路の上方に、炭素材料で構成されるカバーシートを配置し、その下方を樹脂硬化シートが連続的に走行して、樹脂硬化シートをカバーシートで覆うことで、ケイ素化合物の付着を防止することができ、貫通孔の形成を抑制したり、焼成炉の排気を下部排気とすることで、排ガスダクトへ固形分および有機物が付着し、これが樹脂硬化シートに落下することで、貫通孔が形成されることを防止する方法が記載されている。また、特許文献2では、炭素繊維シート前駆体を耐熱シートでカバーして焼成することで、炉床への熱分解物の炭化物の堆積、炭素繊維シート破断を防止している。特許文献3,4では焼成炉の排気口を下面や側面に設けることで排気口周辺での析出物が多孔質炭素繊維シート上に脱落することを防止し、貫通孔等の外観不良を改善することが示されている。さらに特許文献5,6には炭素繊維シートの表面で端部が結着していない炭素繊維を折り取る方法や、樹脂炭化物による結着が外れた炭素短繊維を除去する方法が開示されている。
特開2011-65926号公報 特開2009-191406号公報 特開2010-196200号公報 特開2010-196201号公報 特開2008-34295号公報 特開2010-70433号公報
しかしながら特許文献1に記載の方法では、炉壁からのケイ素化合物の脱落や、カバーシートに付着したケイ素化合物の脱落により多孔質炭素電極基材にケイ素化合物粒子が付着し、多孔質炭素電極基材がロールと接触したり、巻き取る際に貫通孔が開くなどの問題がある。
また、特許文献2では、炉床上に脱落した粒状の炭化物の炭素繊維シートへの付着、耐熱シートでカバーできない箇所での炉天井や炉壁からの炭化物の脱落、炭素繊維シートへの付着より同様に貫通孔が開く問題がある。
特許文献3,4に記載の発明では、排気口から離れた場所での炉天井や炉壁に蓄積した析出物の脱落まで防止しきれない問題がある。
さらに特許文献5,6に記載の発明は、炭素繊維シート前駆体を高温炉の内部で熱処理し、一旦巻き取った後にクリーニングする方法では、高温炉の内部で発生した粒子が炭素繊維シート上ないしは下に付着したまま、高温炉の下流側の巻き取り装置を連続的に送られる際に、ロールと炭素繊維シートの間に粒子が挟み込まれたり、コアボビンに巻き取られる際に粒子が炭素繊維シートの層間に挟み込まれたりして、炭素繊維シートに貫通孔ができる原因となる。
したがって、従来技術では、長尺で貫通孔の少ない炭素繊維シートを提供することが困難であった。
そこで本発明は、従来の技術における上述した問題点に鑑みてなされたものであり、炭素繊維シート前駆体を焼成して炭素繊維シートとする際に、焼成炉内で粒子が付着した炭素繊維シートを炉外で巻き取ったりロールに押し付けることによる貫通孔の少ない長尺の炭素繊維シートを提供することを課題とする。
前記課題を解決するため、本発明は、少なくとも炭素繊維または炭素繊維化可能な有機繊維からなる炭素繊維シート前駆体を、最高温度1500~3000℃の高温炉の内部を連続的に走行させて熱処理し、炭素繊維シートを巻き取る炭素繊維シートの製造方法であって、前記高温炉の通過後に、炭素繊維シートの少なくとも片面をクリーニングした後、炭素繊維シートを巻き取ることを特徴とする、炭素繊維シートの製造方法である。
本発明によれば、貫通孔が少ない高品質な長尺の炭素繊維シートを提供することが可能である。
本発明における炭素繊維シート前駆体の熱処理方法の例を示す概略図である。 本発明における炭素繊維シートを吸引装置と吹付装置によりクリーニングする方法の例を示す側面図である。 本発明における炭素繊維シートを吸引装置と刷毛によりクリーニングする方法の例を示す側面図である。 本発明における炭素繊維シートのクリーニング箇所と接触するロールとの位置関係の例を示す側面図である。 本発明における炭素繊維シートを吸引装置と吹付装置によりクリーニングする方法の例を示す正面図である。 本発明における炭素繊維シートを吸引装置と刷毛によりクリーニングする方法の例を示す正面図である。
以下、本発明の最良の実施形態について、図面を参照しながら説明する。
<装置の説明>
図1は、炭素繊維シート前駆体の熱処理方法を示す概略図である。
図1に示す装置は、最高温度1500~3000℃の高温炉の内部を連続的に走行させて熱処理し、炭素繊維シート前駆体50を、高温炉100の内部を連続的に走行させることで、炭素繊維シート前駆体50を熱処理して、炭素繊維シート前駆体50を炭素繊維シート10とするものである。
高温炉100は、炭素繊維シート前駆体50を通過可能とする炉内空間101が貫通して設けられる。炉内空間101は2面の開口部を有し、一方が高温炉の入口(以下、炉入口という)105、他方が高温炉の出口(以下、炉出口)106となる。炭素繊維シート前駆体50は炉入口105より挿入され、炉床104上を滑るように炉出口106に向かって、高温に保たれた炉内空間101内を連続的に移動する。その際、炉入口105側には、炭素繊維シート前駆体50の上面を覆うように耐熱シート110が挿入されている。
最初に、高温炉100について説明する。
本発明に用いる高温炉100は、炭素繊維シート前駆体50を高温炉100の内部を連続的に走行させることができ、炭素繊維シート前駆体50を最高温度1500℃~3000℃で熱処理可能である。
特に図1に示す、炭素繊維シート前駆体を高温炉の内部で水平方向に搬送することが可能な高温炉、つまり横型炉が、熱処理時の基材の取り扱い、破断防止の点から好ましい。
炭素繊維シート10の好適な電気伝導性を保つために、高温炉の最高温度(熱処理温度)は1500℃以上が必要である。高温炉の最高温度(熱処理温度)が1500℃より低くなると、炭素繊維シート10の黒鉛化度が低くなり、電気伝導性や熱伝導性が低くなる。電気伝導性や熱伝導性が低い炭素繊維シート10を燃料電池の電極として用いると、電池としての性能低下に繋がってしまう。高温炉の最高温度(熱処理温度)を3000℃より高くすると、加熱のために莫大なエネルギーが必要になるとともに、炉に用いる炭素部材の消耗が著しくなるので、高温炉の最高温度(熱処理温度)は3000℃以下であることが重要である。高温炉の最高温度は、1800~2800℃がより好ましく、1900~2600℃が好適な電気伝導性、熱伝導性を保ち、装置のランニングコストを下げるためにさらに好ましい。
炭素繊維シート10と高温炉100自体の酸化を防止するため、高温炉100の内部を窒素やアルゴン等の不活性ガス雰囲気下に保つことが好ましい。高温炉100を構成する素材は炭素、黒鉛、金属、セラミックスを用いることが可能であるが、安価であることから炭素、黒鉛、金属が好ましく、1000℃以上となる部分は化学的安定性から炭素もしくは黒鉛がより好ましい。
高温炉100は1つの炉で、炭素繊維シート前駆体50を最高温度1500℃~3000℃で熱処理して炭素繊維シート10としてもよいが、最高温度600~1000℃の低温炉と併用して、炭素繊維シート前駆体50を低温炉を通過させて熱処理した後、さらに高温炉100で熱処理して炭素繊維シート10としてもよい。低温炉と高温炉100を併用する方法は炭素繊維シート前駆体50の熱処理による重量減少が多い低温炉での分解ガスが高温部に流れて固化析出することを防止できるため好ましい。

次に耐熱シート110について説明する。
耐熱シート110は、高温炉100内の不活性ガス雰囲気下1500~3000℃の範囲で分解を起こさない材料であれば良く、高温炉の内部での耐久性・耐熱性の高い炭素の多孔質構造を備えたシートで有ることが好ましい。耐熱シート110としては、炭素繊維で作られた不織布もしくは織物等が好適に用いられる。
炭素繊維で作られた不織布としては、炭素繊維化可能なポリアクリロニトリル(PAN)繊維を空気中で200~300℃に加熱することによって得られるPAN耐炎糸を不織布化し、熱処理して炭素化することにより得られる。炭素繊維で作られた織物としては、炭素繊維の長繊維を織物状にした織物や、PAN耐炎糸の長繊維の織物を炭素化して得られる織物や、PAN耐炎糸の紡績糸を織物とし、熱処理して炭素化して得られる織物などを用いることができる。
耐久性やハンドリング性の観点から、耐熱シート110は炭素繊維の織物であることが好ましく、耐摩耗性からPAN耐炎糸の紡績糸織物を炭素化した炭素繊維織物であることがさらに好ましい。
炭素繊維シート10上への熱分解ガスからの析出粒子等の異物粒子(以下、析出粒子等と略記する)の落下を防ぐために、炭素繊維シート前駆体50と、高温炉100を構成するマッフル上壁102との間に炭素繊維シート前駆体50よりも広幅の耐熱シート110を配設することが好ましい。ここで耐熱シート110の幅は、炭素繊維シート前駆体の幅よりも広ければ特に限定されないが、炭素繊維シート前駆体50の幅の1.0~1.5倍の範囲であることが好ましい。耐熱シート110の幅が炭素繊維シート10の幅の1.5倍より大きいと、耐熱シート110の幅の分だけ高温炉100の幅を広げる必要があり、高温炉100の設置費用やランニングコストの増加に繋がるため好ましくない。耐熱シート110の幅が1.0倍より小さいと、耐熱シート110で覆われていない炭素繊維シート前駆体50上へ析出粒子等が落下して、炭素繊維シート10がロールと接触したり、巻き取る際に貫通孔が開く。耐熱シート110の幅は、炭素繊維シート10の1.1~1.3倍の範囲であることがより好ましい。
耐熱シート110の目付は50~800g/mであることが好ましい。目付が50g/m未満の場合は、耐熱シート110の強度が弱く、長期間使用すると耐熱シート110が切れたりするため好ましくない。目付が800g/mを超えると、耐熱シート110が炭素繊維シート前駆体50と接している場合、耐熱シート110の自重により炭素繊維シート前駆体50に摩擦力がかかり、炭素繊維シート前駆体50に切れ目や欠けが発生しやすくなるため好ましくない。耐熱シート110の目付は、200~600g/mであることがより好ましい。
炭素繊維シート前駆体50の熱処理で発生する分解ガスを抜けやすくするため、耐熱シート110は多孔質材料であることが好ましい。好適なガス透過性を保持するため、耐熱シート110の空隙率は50~90%の範囲内に有ることが好ましく、60~80%の範囲内に有ることがさらに好ましい。空隙率が90%を超えると、耐熱シート110の強度が低くなりすぎ、耐久性が低くなる。

図2および図3は、高温炉下流側に配される巻き取り装置における炭素繊維シートのクリーニング方法を示す側面図である。
図1で、高温炉100内で熱処理された炭素繊維シート10は、途中複数のロール300に接しながら連続的に送られ、最終的にコアボビン40に巻き取られる。この際、炭素繊維シート10の表面に析出粒子等が付着したまま送られると、ロール300や炭素繊維シートの巻き取り体20の接触する位置(図中のX印)で、析出粒子等によって炭素繊維シート10に貫通孔ができたり、ロール300に傷がついたりする恐れがある。特に炭素繊維または炭素繊維化可能な繊維を炭素化可能な有機物で結着してなる炭素繊維シート前駆体を熱処理した、炭素繊維を炭素で結着した炭素繊維シートや炭素繊維が交絡した不織布である炭素繊維シートは貫通孔が発生しやすい。炭素繊維織物である炭素繊維シートは相対的には穴は開きにくいものの、炭素繊維シート内に異物粒子が押し込まれる問題が発生する。そのため、高温炉100の炉出口106の下流側に、析出粒子等を除去する吸引装置210や吹付装置220などのクリーニング装置が設けられている。
初めに、吸引装置210について説明する。
高温炉の下流側に吸引装置を設けることで、高温炉の通過後に、炭素繊維シートの少なくとも片面を吸引する方法によってクリーニングすることができる。吸引装置210には、集塵機211を接続することで、析出粒子等の除去および回収ができる。炭素繊維シート10自体の破壊と、炭素繊維シート10上から除去された析出粒子等の再付着防止の観点から、炭素繊維シート10から吸引する気体の流量は、粒子の吸引能力および基材の走行安定性の点から片側表面に対し、吸引幅あたり2~6L/分/mmであることが好ましく、3~5L/分/mmがより好ましく、4~5L/分/mmがさらに好ましい。また、吸引装置210の幅は、図5および図6に示すとおり、炭素繊維シート10の幅Wsより広いほうが、炭素繊維シート10の全幅を確実にクリーニングできることから好ましい。
次に、吹付装置220について説明する。
高温炉の下流側に吹付装置を設けることで、高温炉の通過後に、炭素繊維シートの少なくとも片面に、気体を吹き付ける方法によってクリーニングすることができる。吹き付ける気体としては、酸素、窒素、空気などを用いることができるが、コストの観点から、空気を吹き付けることが好ましい。気体の吹き付けにより、炭素繊維シート10自体を破壊したり、炭素繊維シート10の表面を破壊したりすることなく、析出粒子等を除去することができる。炭素繊維シート10自体の破壊防止と走行安定性、炭素繊維シート10上に付着した析出粒子等の除去の効果から、炭素繊維シート10に吹き付ける気体の流量は、片側表面に対し、吹き付け幅あたり0.1~3L/分/mmであることが好ましく、0.3~1.5L/分/mmがより好ましく、0.5~1L/分/mmがさらに好ましい。
吹き付ける角度は、炭素繊維シート10上の析出粒子等を吹き飛ばすために炭素繊維シート10の進行方向に対向する方向を0°としたときに、走行面に対して5~80°であることが好ましく、20~70°がより好ましい。また、吹き飛ばした析出粒子等が再付着しないように、吸引装置210と併用する方法が好ましい。また、吹付装置220の幅は、図5に示すとおり、炭素繊維シート10の幅Wsより広いほうが、炭素繊維シート10の全幅をクリーニングできることから好ましい。
吹き付け流量に対する吸引流量の比率は3~15が好ましく、4~10がより好ましく、5~8がさらに好ましい。吹き付け流量より吸引流量を多くすることで、吹き飛ばした析出粒子の吸い込みを確実に行うことができる。また、比率を高くしすぎないことで炭素繊維シート10が吸い寄せられて損傷したり、炭素繊維シート10の走行が不安定になることを防止する。
次に、刷毛230について説明する。
高温炉の下流側に刷毛を設けることで、高温炉の通過後に、炭素繊維シートの少なくとも片面を、刷毛で掃く方法によってクリーニングすることができる。刷毛230は、炭素繊維シート10自体を破壊したり、炭素繊維シート10の表面を破壊したりすることがないように、炭素繊維シート10を構成する炭素材料と同等またはそれよりやわらかい材質が好ましく、例えば、獣毛や合成繊維の刷毛が好適である。また、刷毛230は、図6に示すとおり、炭素繊維シート10の幅Wsより広いほうが、炭素繊維シート10の全幅をクリーニングできることから好ましい。

次に、ロール300について説明する。
高温炉100の下流側には、炭素繊維シート10の幅方向における張力バランスをとり、走行を安定させるために複数のロールが配されることが好ましい。複数のロールを配することで、幅方向の片側に張力が集中することを抑制でき、炭素繊維シート10が走行中に破断することなく連続的に巻き取ることができる。
複数のロールには、図4に示すとおり、炭素繊維シート10の一方の面11と接するロール301、302や他方の面12と接するロール303があり、析出粒子等が付着しやすい他方の面12が初めて接するロール303と接する前に析出粒子等を除去する吸引装置210や吹付装置220が設けられていることが好ましい。なお、複数のロールの配置は図4の構成に限定されず、炭素繊維シート10の物性に応じて適宜設定することができる。
次に、炭素繊維シート10をロール状に巻き取る方法としては、巻き取り軸30に配されたコアボビン40に長尺な炭素繊維シート10を連続して巻き取ることにより行うことができる。コアボビンの外径は直径76~330mmであることが好ましく、152~330mmであることがより好ましい。コアボビンの外径が直径76mmより小さいと、特に炭素繊維シートの厚さが0.2mm以上の場合に割れやすくなる。コアボビンの外径が直径330mmより大きいと炭素繊維シートの巻き取り体の外径が大きくなり、保管や輸送時においてコストアップに繋がるため好ましくない。
コアボビン40には、紙製や樹脂製や金属製など一般的に使用されるいずれの材質でも使用することができるが、重量やコスト面から紙製や樹脂製であることが好ましい。

<製造方法の説明>
本発明に係る炭素繊維シートの製造方法の一例は、炭素繊維または炭素繊維化可能な有機繊維を炭素化可能な有機物で結着してなる炭素繊維シート前駆体を、最高温度1500~3000℃の高温炉の内部を連続的に走行させて熱処理し、炭素繊維を有機物の炭化物で結着した炭素繊維シートとしてこれを巻き取るものであり、高温炉の通過後に炭素繊維シートの少なくとも片面をクリーニングした後に、炭素繊維シートを巻き取ることを特徴とするものである。
本例において熱処理される炭素繊維シート前駆体50の製造方法について説明する。
炭素繊維シート前駆体50は、少なくとも炭素繊維または炭素繊維化可能な有機繊維から構成される。より好ましい炭素繊維シート前駆体50は、炭素繊維または炭素繊維化可能な有機繊維を、炭素化可能な有機物で結着して構成される。
炭素繊維は、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維のいずれでも用いることができる。この中でも、得られた炭素繊維シート10の曲げ強度や引張強度を高くできるPAN系炭素繊維またはピッチ系炭素繊維を用いることが好ましく、PAN系炭素繊維を用いることがさらに好ましい。
炭素化可能な有機物は、炭素繊維シート前駆体50に含まれる炭素繊維間を結着する目的で、ポリビニルアルコール等の熱可塑性樹脂やフェノール樹脂などの熱硬化性樹脂等を用いることができる。
炭素短繊維または炭素化可能な有機繊維の短繊維を抄紙したシートに樹脂を含浸させた後、樹脂を硬化させたものを炭素繊維シート前駆体50とする場合は、短繊維の長さは3~12mmの範囲内にあることが好ましい。短繊維の長さが6~9mmの範囲内にあると、短繊維の抄紙の際に良好な分散性を得られるとともに、引張強度が高く、破れにくい炭素繊維シートを得ることができるためにより好ましい。
抄紙工程では、好適な長さに切断した炭素短繊維または炭素化可能な有機繊維の短繊維を水中に均一に分散させ、分散している短繊維を網上に抄造し、抄造した短繊維シートをポリビニルアルコールの水系分散液に浸漬し、浸漬したシートを引き上げて乾燥させる。ポリビニルアルコールは、短繊維同士を結着するバインダの役目を果たし、短繊維が分散した状態において、それらがバインダにより結着された状態の短繊維のシートが製造される。バインダとしては、他に、スチレン-ブタジエンゴム、エポキシ樹脂などを用いることが出来る。
樹脂含浸工程では、熱硬化性樹脂の溶液中に、抄紙工程で製造された短繊維のシートを浸漬し、浸漬されたシートを引き上げて乾燥させることにより炭素繊維シート前駆体50が製造される。
炭素繊維シート前駆体50に含まれる炭素化可能な有機物として樹脂を用いる場合、そのような樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、メラミン樹脂等の熱硬化性樹脂や、アクリル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等の熱可塑性樹脂を用いることができるが、炭化収率が高い熱硬化性樹脂を用いるのが好ましく、中でもフェノール樹脂を用いるのがより好ましい。
炭素繊維シート前駆体50には、炭素繊維、有機物以外にも、炭素繊維シート10に求められる性能に応じて、炭素粉末や金属粉末、無機粉末、金属繊維、無機繊維等を含ませることができる。燃料電池電極基材として用いる場合には、導電性向上や不純物低減のため炭素粉末を含ませることが好ましい。炭素粉末を用いる場合の比率は、炭素繊維シートの1~50質量%であることが、導電性向上のために好ましい。
炭素繊維シート前駆体50の製造方法の他の例としては、PAN耐炎糸を乾式工程で不織布化し、加熱ロールでカレンダー処理する方法が挙げられるが、これらに限定されるものではない。

次に、本発明における炭素繊維シート10の製造方法について説明する。
本発明の炭素繊維シート10の製造方法は、前述した炭素繊維シート前駆体50を、前述した高温炉100内で熱処理し、炭素繊維シート前駆体50を構成する有機物を炭化させて炭素繊維シート10を製造するものである。
炭素繊維シート前駆体50の走行方法は、炭素繊維シート前駆体50が高温炉100の炉入口105より高温炉100内に導入され、高温炉100を構成するマッフル下壁103上に設けられた炉床104上を水平に引きずらせながら搬送して熱処理した後、炉出口106より送り出された炭素繊維シート10を炉外でロール状に巻き取る方法が好ましい。この方法を用いると、炭素繊維シート前駆体50の搬送、走行が容易であり、長尺の炭素繊維シート10を製造できる方法として好ましい。
炭素繊維シート前駆体50は1枚でも複数枚重ねてでも搬送して熱処理することが出来るが、複数枚重ねて搬送することで、炭素繊維シート10の製造効率を高めることが出来るため好ましい。重ねる枚数は、均一な熱処理を行うため2~6枚が好ましく、2~4枚がより好ましい。下記の通り、複数枚重ねて搬送して熱処理する場合、析出粒子等は複数枚重ねた炭素繊維シート10の最上面に付着することが多いため、少なくとも重ねた炭素繊維シートの一番上のシートの上面をクリーニングすることが好ましい。炉床上を水平に引きずらせながら搬送して熱処理した場合、複数枚重ねた炭素繊維シートの最下面にも析出粒子等が付着しやすいため、重ねた炭素繊維シートの一番上のシートの上面および、一番下のシートの下面をクリーニングすることがより好ましい。複数枚重ねて搬送して熱処理した際に炭素繊維シート間に付着した析出粒子等も除去出来ることから、複数枚重ねて搬送した全シートの両面をクリーニングすることがさらに好ましい。
高温炉100は、前述したように高温炉100の内部を連続的に走行させることができる炉入口105と炉出口106に開口部を備えた開放型の炉であり、高温炉の内部には炉入口105や炉出口106から最高温度領域へと温度分布ができる。析出粒子等の発生箇所は高温炉100の構造や温度分布により異なるが、800~2500℃の温度領域で発生しやすい。特に、より高温領域で発生した有機物の熱分解ガスが炉内の温度分布にしたがって冷却される過程で固形状となり、マッフル上壁などに氷柱状となって蓄積しやすい。
そのため、1500~3000℃の範囲で熱処理する高温炉100の場合、図1に示すように、高温炉100の炉入口105から温度が2500℃に達するまでの範囲に相当する位置まで耐熱シート110を配置しておけば、有機物から発生する析出粒子等が炭素繊維シートへ落下することを防ぐことができる。つまり本発明においては、高温炉の内部に、炭素繊維シート前駆体よりも広幅の耐熱シートを、炭素シート前駆体の上側に配置しながら、炭素繊維シート前駆体を熱処理することが好ましい。ここで耐熱シートとは、前述のとおり、高温炉100内の不活性ガス雰囲気下1500~3000℃の範囲で分解を起こさない材料であれば特に限定されるものではない。
ただし、耐熱シート110を構成する炭素は、炭素繊維シート前駆体の熱分解物中に含まれる酸素や水素、雰囲気ガスである窒素との反応により減耗するため高温炉100の炉入口105から温度が2500℃に達するまでの全ての範囲に耐熱シート110を配置することが出来ないことがある。そのため、耐熱シート110は高温炉の入口(炉入口という)側から挿入されるとともに、炉入口105から炉出口106までの距離の30~90%が前記耐熱シートで覆われていることが好ましい。特開2007-2394号公報に示される屈曲部材などのガイド部材を炉内に設けた場合も、炉内全長に亘って耐熱シート110を配置することは作業性を悪くするため、耐熱シートが炉入口という側から挿入されるとともに、炉入口から炉出口までの距離の30~90%が耐熱シートで覆われていることが好ましい。耐熱シートで覆われない部分では熱処理中の炭素繊維シートに析出粒子等が付着しやすく、屈曲部材などのガイド部材に付着した析出粒子等も熱処理中の炭素繊維シート状に脱落しやすいため、本発明のクリーニング適用の効果は大きい。
耐熱シート110は炭素繊維シート前駆体50と一緒に走行させる必要はなく、高温炉100外の炉入口105や炉出口106に固定しておけばよい。固定方法は特に限定されるものではなく、炭素繊維シート前駆体50の熱処理中に耐熱シート110が大きく動かなければよい。炭素繊維シート前駆体50の熱処理が終わった後、耐熱シート110は高温炉100から容易に取り出せるようになっていると、耐熱シート110に付着した析出物の掃除を行うことができる。
耐熱シート110は、炭素繊維シート前駆体50と接するように配置することがより好ましい。つまり耐熱シートを、炭素シート前駆体と接するようにしながら、炭素繊維シート前駆体50を引きずって熱処理を行うことがより好ましい。耐熱シート110は複数枚重ねるようにして使用しても良い。
炉出口106より送り出された炭素繊維シート10上には耐熱シート110で覆えない部分で発生した析出粒子等が付着していることがあり、析出粒子等が付着したまま送られると、炭素繊維シート10と炭素繊維シートの巻き取り体20やロール300と接触する位置(図中のX印)と複数接触することで、析出粒子等によって炭素繊維シート10に貫通孔ができたり、ロール300に傷がつく等の恐れがある。
析出粒子等は主にマッフル上壁102に蓄積するため、析出粒子等は炭素繊維シート10の上面に付着することが多い。そのため、高温炉の通過後に炭素繊維シートの少なくとも片面をクリーニングするに際しては、少なくとも高温炉の内部を水平方向に搬送する際のシート上面をクリーニングすることが好ましい。より具体的には、炭素繊維シートを高温炉の内部で水平方向に搬送するに際して、少なくとも高温炉の内部を水平方向に搬送する際のシート上面をクリーニングすることが好ましい。さらに好ましくは、炉床104に付着した析出粒子等を炭素繊維シート10で引き摺った際に炭素繊維シート10の下面に付着した析出粒子等も除去できることから、シートの両面をクリーニングすることがより好ましい。なお、本発明において水平方向とは、完全な水平である0度を含むのはもちろんのこと、そこから±5度変化させた範囲を含む方向を意味するものとする。
クリーニング方法は、炭素繊維シートの少なくとも片面を吸引する方法、炭素繊維シートの少なくとも片面に気体を吹き付ける方法、炭素繊維シートの少なくとも片面を刷毛で掃く方法を挙げることができる。つまり炭素繊維シートのクリーニング方法は、前述したとおり吸引装置210や吹付装置220や刷毛230などがあり、そのいずれか、または組み合わせてクリーニングすることができる。取り除いた析出粒子等が炭素繊維シートに再付着することを防ぐために、吹付装置220や刷毛230と吸引装置210を組み合わせてクリーニングする方法が析出粒子等除去の効果とのバランスからより好ましく、炭素繊維シート10表面へのダメージをより軽減するために非接触でクリーニングできる吹付装置220と吸引装置210を組み合わせてクリーニングする方法が更に好ましい。
炭素繊維シート10の表面をクリーニングする他の方法として、粘着ロールにより析出粒子等を取り除く方法や高温炉100外で炭素繊維シートを垂直に走行させ振動を与えながら析出粒子等を取り除く方法を用いてもよい。

<炭素繊維シートの特性>
本発明で得られた炭素繊維シート10は、炭素繊維シートの幅と長さの積である面積が50m以上であることが好ましく、より好ましくは70m以上であり、0.5mm以上の長径を有する貫通孔の個数が0~0.2個/mであることが好ましく、より好ましくは0~0.18個/m、更に好ましくは0~0.15個/mである。炭素繊維シート中の0.5mm以上の長径を有する貫通孔の個数は、炭素繊維シート10の背面から光を透過し目視で観察することで検出することができ、貫通孔の長径は、例えば楕円形の場合には最も長い径部分を指し、目盛り付きのルーペで貫通孔を観察することで長径の長さを測定することができる。炭素繊維シートの面積は広いほど、撥水処理などの後加工を効率化できる。貫通孔は少ないほど、後加工時に貫通孔部分を避ける回数を減らし、屑発生を減らすことで加工が効率的にできる。
貫通孔を含む炭素繊維シート10を例えば固体高分子型の燃料電池に組み込んだ場合、面内での不均一な発電が生じ、電解質膜の劣化を促進するため、燃料電池の耐久性を悪化させることがある。したがって、貫通孔を含む炭素繊維シート10は燃料電池用途として使用することができず、貫通孔を含む箇所には印を付けて撥水処理などの後加工工程の後取り除いておく方がよい。
10 炭素繊維シート
11 一方の面
12 他方の面
20 炭素繊維シートの巻き取り体
30 巻き取り軸
40 コアボビン
50 炭素繊維シート前駆体
100 高温炉
101 炉内空間
102 マッフル上壁
103 マッフル下壁
104 炉床
105 高温炉の入口
106 高温炉の出口
107 熱源
110 耐熱シート
210 吸引装置
211 集塵機
220 吹付装置
221 圧縮機
230 刷毛
300 ロール
301 一方の面と接する初めてロール
302 一方の面と接するロール
303 他方の面と接する初めてのロール

Claims (10)

  1. 少なくとも炭素繊維または炭素繊維化可能な有機繊維からなる炭素繊維シート前駆体を、最高温度1500~3000℃の高温炉の内部を連続的に走行させて熱処理し、炭素繊維シートを巻き取る炭素繊維シートの製造方法であって、
    前記高温炉の通過後、高温炉の内部を水平方向に搬送する際のシートの上面が初めてロールと接する前に、炭素繊維シートの少なくとも面をクリーニングした後、炭素繊維シートを巻き取ることを特徴とする、炭素繊維シートの製造方法。
  2. 前記クリーニング方法が、シートの少なくとも片面を吸引する方法である、請求項1に記載の炭素繊維シートの製造方法。
  3. 前記クリーニング方法が、シートの少なくとも片面に気体を吹き付ける方法である、請求項1に記載の炭素繊維シートの製造方法。
  4. 前記クリーニング方法が、シートの少なくとも片面を刷毛で掃く方法である、請求項1に記載の炭素繊維シートの製造方法。
  5. 炭素繊維シート前駆体が、炭素繊維または炭素繊維化可能な有機繊維を炭素化可能な有機物で結着してなる、請求項1~のいずれかに記載の炭素繊維シートの製造方法。
  6. 前記炭素繊維シート前駆体を1枚もしくは複数枚重ねて、前記高温炉の内部を連続的に走行させて熱処理する、請求項1~のいずれかに記載の炭素繊維シートの製造方法。
  7. 前記高温炉の内部に、前記炭素繊維シート前駆体よりも広幅の耐熱シートを、前記炭素シート前駆体の上側に配置しながら熱処理する、請求項1~のいずれかに記載の炭素繊維シートの製造方法。
  8. 前記耐熱シートを、前記炭素シート前駆体と接するように配置する、請求項に記載の炭素繊維シートの製造方法。
  9. 前記耐熱シートが、前記高温炉の入口(炉入口という)側から挿入されたものであるとともに、炉入口から高温炉の出口(炉出口という)までの距離の30~90%が前記耐熱シートで覆われている、請求項又はに記載の炭素繊維シートの製造方法。
  10. 炭素繊維シートの幅と長さの積である面積が50m以上であり、
    0.5mm以上の長径を有する貫通孔の個数が、炭素繊維シート中に0~0.2個/mであることを特徴とする、請求項1~のいずれかに記載の炭素繊維シートの製造方法。

JP2017165223A 2016-09-01 2017-08-30 炭素繊維シートの製造方法 Active JP7017042B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016170496 2016-09-01
JP2016170496 2016-09-01

Publications (2)

Publication Number Publication Date
JP2018040099A JP2018040099A (ja) 2018-03-15
JP7017042B2 true JP7017042B2 (ja) 2022-02-08

Family

ID=61625202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165223A Active JP7017042B2 (ja) 2016-09-01 2017-08-30 炭素繊維シートの製造方法

Country Status (1)

Country Link
JP (1) JP7017042B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290032B2 (ja) * 2019-02-13 2023-06-13 東レ株式会社 炭素繊維シートの製造方法
JP7368283B2 (ja) * 2020-03-13 2023-10-24 帝人株式会社 炭素繊維電極基材の製造方法及び製造装置
DE102020115623B4 (de) * 2020-06-12 2022-01-05 Greenerity Gmbh Verfahren zur Bereitstellung einer gereinigten Gasdiffusionslage für elektrochemische Anwendungen
CN115406208B (zh) * 2022-08-13 2024-03-22 欧通(山东)纺织有限公司 一种碳纤维材料的处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264406A (ja) 2004-03-22 2005-09-29 Sakai Ovex Co Ltd 帯状繊維材料の流体処理方法および装置
JP2007231433A (ja) 2006-02-28 2007-09-13 Toray Ind Inc 糸条水洗装置および糸条の水洗方法
JP2008034295A (ja) 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材およびそれを用いた固体高分子型燃料電池
JP2009191406A (ja) 2008-02-15 2009-08-27 Toray Ind Inc 炭素繊維シートの製造方法
JP2010070433A (ja) 2008-09-22 2010-04-02 Toray Ind Inc 多孔質炭素シートおよびその製造方法
JP2011065926A (ja) 2009-09-18 2011-03-31 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材およびその製造方法
JP2012204142A (ja) 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材及びその製造方法
JP2013145640A (ja) 2012-01-13 2013-07-25 Toyota Motor Corp 燃料電池用拡散層の製造方法および燃料電池用拡散層

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264406A (ja) 2004-03-22 2005-09-29 Sakai Ovex Co Ltd 帯状繊維材料の流体処理方法および装置
JP2007231433A (ja) 2006-02-28 2007-09-13 Toray Ind Inc 糸条水洗装置および糸条の水洗方法
JP2008034295A (ja) 2006-07-31 2008-02-14 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材およびそれを用いた固体高分子型燃料電池
JP2009191406A (ja) 2008-02-15 2009-08-27 Toray Ind Inc 炭素繊維シートの製造方法
JP2010070433A (ja) 2008-09-22 2010-04-02 Toray Ind Inc 多孔質炭素シートおよびその製造方法
JP2011065926A (ja) 2009-09-18 2011-03-31 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材およびその製造方法
JP2012204142A (ja) 2011-03-25 2012-10-22 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材及びその製造方法
JP2013145640A (ja) 2012-01-13 2013-07-25 Toyota Motor Corp 燃料電池用拡散層の製造方法および燃料電池用拡散層

Also Published As

Publication number Publication date
JP2018040099A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
JP7017042B2 (ja) 炭素繊維シートの製造方法
TWI513087B (zh) 多孔質電極基材、其製造方法、前驅體片、膜-電極接合體以及固態高分子型燃料電池
JPWO2011065349A1 (ja) 多孔質電極基材およびその製造方法
KR101654488B1 (ko) 다공질 전극 기재, 그의 제조 방법, 막-전극 접합체 및 고체 고분자형 연료 전지
CN115341405A (zh) 多孔基材、多孔电极、碳纤维纸、碳纤维纸的制造方法、多孔基材的制造方法
JP5531389B2 (ja) 多孔質炭素シートの製造方法
JP6701698B2 (ja) 電極基材の搬送方法、電極基材の製造方法及びガス拡散電極の製造方法
JP6134606B2 (ja) 成形断熱材の製造方法および成形断熱材
JP5422894B2 (ja) 炭素繊維シートの製造方法
WO2004029353A1 (ja) 炭素質繊維織布、炭素質繊維織布の捲回物、固体高分子型燃料電池用ガス拡散層材料、炭素質繊維織布の製造方法、および固体高分子型燃料電池用ガス拡散層材料の製造方法
WO2004015175A1 (en) Pitch based graphite fabrics and needled punched felts for fuel cell gas diffusion layer substrates and high thermal conductivity reinforced composites
JP2015017344A (ja) 無機繊維、無機繊維集合体の製造方法、保持シール材、及び、排ガス浄化装置
JP6187753B2 (ja) 断熱材前駆体用炭素繊維不織布の製造方法および断熱材の製造方法
WO2017082276A1 (ja) 導電性多孔シート、固体高分子形燃料電池、及び導電性多孔シートの製造方法
JP7290032B2 (ja) 炭素繊維シートの製造方法
JP6750192B2 (ja) 固体高分子形燃料電池用ガス拡散層
JP7021869B2 (ja) 炭素繊維シ-ト、ガス拡散電極、膜-電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
JPH03121398A (ja) 断熱材
JP2007002394A (ja) 炭素繊維シート、炭素繊維シートの製造方法およびシート状物の熱処理炉
US11279836B2 (en) Intumescent nanostructured materials and methods of manufacturing same
JP2017066540A (ja) 炭素繊維及び炭素繊維シートの製造方法
JP6870787B1 (ja) 無機繊維成形体、排ガス浄化装置用マット及び排ガス浄化装置
JP3993151B2 (ja) 炭素質繊維織布の製造方法および固体高分子型燃料電池用ガス拡散層材料の製造方法
EP3565859B1 (en) Intumescent nanostructured materials and methods of manufacturing same
JP2003045443A (ja) 高分子電解質型燃料電池電極材用炭素繊維不織布、及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220110