JP7005501B2 - 固体撮像装置およびその駆動方法、並びに電子機器 - Google Patents

固体撮像装置およびその駆動方法、並びに電子機器 Download PDF

Info

Publication number
JP7005501B2
JP7005501B2 JP2018535586A JP2018535586A JP7005501B2 JP 7005501 B2 JP7005501 B2 JP 7005501B2 JP 2018535586 A JP2018535586 A JP 2018535586A JP 2018535586 A JP2018535586 A JP 2018535586A JP 7005501 B2 JP7005501 B2 JP 7005501B2
Authority
JP
Japan
Prior art keywords
time code
storage unit
signal
phase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018535586A
Other languages
English (en)
Other versions
JPWO2018037902A1 (ja
Inventor
忠行 田浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of JPWO2018037902A1 publication Critical patent/JPWO2018037902A1/ja
Application granted granted Critical
Publication of JP7005501B2 publication Critical patent/JP7005501B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018592Coupling arrangements; Interface arrangements using field effect transistors only with a bidirectional operation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
    • H03K3/356147Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit using pass gates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/2481Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)
  • Manipulation Of Pulses (AREA)

Description

本開示は、固体撮像装置およびその駆動方法、並びに電子機器に関し、特に、比較器の判定速度を向上させ、高速に動作させることができるようにした固体撮像装置およびその駆動方法、並びに電子機器に関する。
固体撮像装置の信号読み出し方式で、例えば、画素内などの限られた面積内でAD変換を行う場合、もっとも面積効率が良い方式は、比較器とその後段のデジタル回路で構成される積分型(スロープ型)のAD変換方式である。
積分型のAD変換方式を用いて、限られた面積内でAD変換を実現しようとする技術として、非特許文献1が提案されている。例えば、非特許文献1の方式では、後段のデジタル回路を1つのDRAM回路として、複数回スロープ信号を比較器に入力する回路構成とされている。たとえば8bitのAD変換であれば、同じスロープ信号が8回繰り返し比較器に入力される。そして、比較器の出力が反転した時点の0または1のコードをDRAM回路に記憶する動作が8回繰り返され、全面の比較が終了した時点で、外部に読み出される。
D. Yang, B. Fowler, and A. El Gamal, "A Nyquist rate pixel levelADC for CMOS image sensors," in Proc. IEEE 1998 Custom Integrated Circuits Conf., Santa Clara, CA, May 1998, pp. 237-240.
画素内にAD変換器を配置する場合には、画素列ごとにAD変換器を配置するカラム並列などのように比較的面積の自由度がある場合と異なり、回路の収容面積に限りがあるため、要求を十分に満たす比較器を作製することが難しい。例えば、比較の判定速度が遅くなることがある。
本開示は、このような状況に鑑みてなされたものであり、比較器の判定速度を向上させ、高速に動作させることができるようにするものである。
本開示の第1の側面の固体撮像装置は、第1の電源電圧で動作し、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力する差動入力回路と、前記第1の電源電圧よりも低い第2の電源電圧で動作し、前記差動入力回路からの出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化する正帰還回路と、前記差動入力回路の前記出力信号を、前記第2の電源電圧に対応する信号に変換する電圧変換回路と、前記比較結果信号が反転したときの時刻コードを記憶するデータ記憶部とを有するAD変換器と、前記時刻コードを転送するシフトレジスタを有する複数の時刻コード転送部とを備え、前記複数の時刻コード転送部は、前記データ記憶部へ書き込むための前記時刻コードを転送する書き込み時刻コード転送部と、前記データ記憶部から読み出された前記時刻コードを転送する読み出し時刻コード転送部を含む
本開示の第2の側面の固体撮像装置の駆動方法は、第1の電源電圧で動作する差動入力回路と、前記第1の電源電圧よりも低い第2の電源電圧で動作する正帰還回路と、電圧変換回路とを有する比較器と、データ記憶部とを備えるAD変換器と、シフトレジスタを有する複数の時刻コード転送部とを備え、前記複数の時刻コード転送部は、前記データ記憶部へ書き込むための時刻コードを転送する書き込み時刻コード転送部と、前記データ記憶部から読み出された前記時刻コードを転送する読み出し時刻コード転送部を含む固体撮像装置の前記差動入力回路が、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力し、前記電圧変換回路が、前記差動入力回路の出力信号を、前記第2の電源電圧に対応する信号に変換し、前記正帰還回路が、前記電圧変換回路により変換された前記差動入力回路の出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化し、前記書き込み時刻コード転送部が、前記データ記憶部へ書き込むための前記時刻コードを転送し、前記データ記憶部が、前記比較結果信号が反転したときの前記時刻コードを記憶し、前記読み出し時刻コード転送部が、前記データ記憶部から読み出された前記時刻コードを転送する
本開示の第3の側面の電子機器は、第1の電源電圧で動作し、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力する差動入力回路と、前記第1の電源電圧よりも低い第2の電源電圧で動作し、前記差動入力回路からの出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化する正帰還回路と、前記差動入力回路の前記出力信号を、前記第2の電源電圧に対応する信号に変換する電圧変換回路と、前記比較結果信号が反転したときの時刻コードを記憶するデータ記憶部とを有するAD変換器と、前記時刻コードを転送するシフトレジスタを有する複数の時刻コード転送部とを備える固体撮像装置を備え、前記複数の時刻コード転送部は、前記データ記憶部へ書き込むための前記時刻コードを転送する書き込み時刻コード転送部と、前記データ記憶部から読み出された前記時刻コードを転送する読み出し時刻コード転送部を含む
本開示の第1乃至第3の側面においては、画素信号の電圧が参照信号の電圧よりも高いときに信号が差動入力回路から出力され、前記差動入力回路の出力信号が、電圧変換回路により前記第2の電源電圧に対応する信号に変換され、前記電圧変換回路により変換された前記差動入力回路の出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度が正帰還回路によって高速化され、データ記憶部へ書き込むための時刻コードが転送され、前記比較結果信号が反転したときの前記時刻コードが前記データ記憶部に記憶され、前記データ記憶部から読み出された前記時刻コードが転送される
固体撮像装置及び電子機器は、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
本開示の第1乃至第3の側面によれば、比較器の判定速度を向上させ、高速に動作させることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本開示に係る固体撮像装置の概略構成を示す図である。 画素の詳細構成例を示すブロック図である。 比較回路の詳細構成例を示すブロック図である。 比較回路の動作中の各信号の遷移を表す図である。 画素回路の詳細構成について説明する図である。 画素の動作について説明するタイミングチャートである。 画素共有の場合の比較回路の構成例を示す回路図である。 時刻コード転送部とデータ記憶部の第1構成例を示す回路図である。 シフトレジスタのD-F/Fの第1構成例を示す図である。 シフトレジスタのD-F/Fの第2構成例を示す図である。 双方向バッファ回路の第1構成例を示す図である。 双方向バッファ回路の第2構成例を示す図である。 シフトレジスタが有するD-F/Fの個数について説明する図である。 シフトレジスタを構成する4個のD-F/Fのデータ出力の流れを説明するタイミングチャートである。 時刻コード転送部とデータ記憶部の第2構成例を示す回路図である。 時刻コード転送部とデータ記憶部の第3構成例を示す回路図である。 第3構成例における画素の動作を説明するタイミングチャートである。 時刻コード転送部とデータ記憶部の第4構成例を示す回路図である。 時刻コード転送部とデータ記憶部の第5構成例を示す回路図である。 図19の書き込みビット記憶部と読み出しビット記憶部の詳細構成例を示す回路図である。 第1乃至第5構成例の特徴について説明する図である。 時刻コード転送部とデータ記憶部の第6構成例を示す回路図である。 図22の書き込みビット記憶部と読み出しビット記憶部の詳細構成例を示す回路図である。 図22の書き込みビット記憶部と読み出しビット記憶部のトランジスタ配置例を示す図である。 第5構成と第6構成の違いについて説明する図である。 第6構成のその他の駆動を説明する図である。 P相時刻コード転送部とD相コード転送部のデータ転送を説明する図である。 時刻コード転送部とデータ記憶部の第7構成例を示す回路図である。 2枚の半導体基板を積層することで固体撮像装置を構成する概念図である。 2枚の半導体基板で固体撮像装置を構成する場合の回路構成例を示す図である。 3枚の半導体基板を積層することで固体撮像装置を構成する概念図である。 3枚の半導体基板で固体撮像装置を構成する場合の回路構成例を示す図である。 本開示に係る電子機器としての撮像装置の構成例を示すブロック図である。
以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.固体撮像装置の概略構成例
2.画素の詳細構成例
3.比較回路の構成例
4.画素共有の場合の構成例
5.データ記憶部と時刻コード転送部の第1構成例
6.データ記憶部と時刻コード転送部の第2構成例
7.データ記憶部と時刻コード転送部の第3構成例
8.データ記憶部と時刻コード転送部の第4構成例
9.データ記憶部と時刻コード転送部の第5構成例
10.データ記憶部と時刻コード転送部の第6構成例
11.データ記憶部と時刻コード転送部の第7構成例
12.複数基板構成1
13.複数基板構成2
14.電子機器への適用例
<1.固体撮像装置の概略構成例>
図1は、本開示に係る固体撮像装置の概略構成を示している。
図1の固体撮像装置1は、半導体として例えばシリコン(Si)を用いた半導体基板11に、画素21が2次元アレイ状に配列された画素アレイ部22を有する。画素アレイ部22には、時刻コード発生部26で生成された時刻コードを各画素21に転送する時刻コード転送部23も設けられている。そして、半導体基板11上の画素アレイ部22の周辺には、画素駆動回路24、DAC(D/A Converter)25、時刻コード発生部26、垂直駆動回路27、出力部28、及びタイミング生成回路29が形成されている。
2次元アレイ状に配列された画素21のそれぞれには、図2を参照して後述するように、画素回路41とADC42が設けられており、画素21は、画素内の受光素子(例えば、フォトダイオード)で受光した光量に応じた電荷信号を生成し、デジタルの画素信号SIGに変換して出力する。
画素駆動回路24は、画素21内の画素回路41(図2)を駆動する。DAC25は、時間経過に応じてレベル(電圧)が単調減少するスロープ信号である参照信号(基準電圧信号)REFを生成し、各画素21に供給する。時刻コード発生部26は、各画素21が、アナログの画素信号SIGをデジタルの信号に変換(AD変換)する際に使用される時刻コードを生成し、対応する時刻コード転送部23に供給する。時刻コード発生部26は、画素アレイ部22に対して複数個設けられており、画素アレイ部22内には、時刻コード発生部26に対応する数だけ、時刻コード転送部23が設けられている。即ち、時刻コード発生部26と、そこで生成された時刻コードを転送する時刻コード転送部23は、1対1に対応する。
垂直駆動回路27は、画素21内で生成されたデジタルの画素信号SIGを、タイミング生成回路29から供給されるタイミング信号に基づいて、所定の順番で出力部28に出力させる制御を行う。画素21から出力されたデジタルの画素信号SIGは、出力部28から固体撮像装置1の外部へ出力される。出力部28は、黒レベルを補正する黒レベル補正処理やCDS(Correlated Double Sampling;相関2重サンプリング)処理など、所定のデジタル信号処理を必要に応じて行い、その後、外部へ出力する。
タイミング生成回路29は、各種のタイミング信号を生成するタイミングジェネレータなどによって構成され、生成した各種のタイミング信号を、画素駆動回路24、DAC25、垂直駆動回路27等に供給する。
固体撮像装置1は、以上のように構成されている。なお、図1では、上述したように、固体撮像装置1を構成する全ての回路が、1つの半導体基板11上に形成されるように説明したが、後述するように、固体撮像装置1を構成する回路を複数枚の半導体基板11に分けて配置する構成とすることもできる。
<2.画素の詳細構成例>
図2は、画素21の詳細構成例を示すブロック図である。
画素21は、画素回路41とADC(AD変換器)42で構成されている。
画素回路41は、受光した光量に応じた電荷信号をアナログの画素信号SIGとしてADC42に出力する。ADC42は、画素回路41から供給されたアナログの画素信号SIGをデジタル信号に変換する。
ADC42は、比較回路51とデータ記憶部52で構成される。
比較回路51は、DAC25から供給される参照信号REFと画素信号SIGを比較し、比較結果を表す比較結果信号として、出力信号VCOを出力する。比較回路51は、参照信号REFと画素信号SIGが同一(の電圧)になったとき、出力信号VCOを反転させる。
比較回路51は、差動入力回路61、電圧変換回路62、及び正帰還回路(PFB:positive feedback)63により構成されるが、詳細は図3を参照して後述する。
データ記憶部52には、比較回路51から出力信号VCOが入力される他、垂直駆動回路27から、画素信号の書き込み動作であることを表すWR信号(以下では、書き込み制御信号WRともいう)、画素信号の読み出し動作であることを表すRD信号(以下では、読み出し制御信号RDともいう)、及び、画素信号の読み出し動作中における画素21の読み出しタイミングを制御するWORD信号が、垂直駆動回路27から供給される。また、時刻コード転送部23を介して、時刻コード発生部26で生成された時刻コードも供給される。
データ記憶部52は、WR信号及びRD信号に基づいて、時刻コードの書き込み動作と読み出し動作を制御するラッチ制御回路71と、時刻コードを記憶するラッチ記憶部72で構成される。
ラッチ制御回路71は、時刻コードの書き込み動作においては、比較回路51からHi(High)の出力信号VCOが入力されている間、時刻コード転送部23から供給される、単位時間ごとに更新される時刻コードをラッチ記憶部72に記憶させる。そして、参照信号REFと画素信号SIGが同一(の電圧)になり、比較回路51から供給される出力信号VCOがLo(Low)に反転されたとき、供給される時刻コードの書き込み(更新)を中止し、最後にラッチ記憶部72に記憶された時刻コードをラッチ記憶部72に保持させる。ラッチ記憶部72に記憶された時刻コードは、画素信号SIGと参照信号REFが等しくなった時刻を表しており、画素信号SIGがその時刻の基準電圧であったことを示すデータ、即ち、デジタル化された光量値を表す。
参照信号REFの掃引が終了し、画素アレイ部22内の全ての画素21のラッチ記憶部72に時刻コードが記憶された後、画素21の動作が、書き込み動作から読み出し動作に変更される。
ラッチ制御回路71は、時刻コードの読み出し動作においては、読み出しタイミングを制御するWORD信号に基づいて、画素21が自分の読み出しタイミングとなったときに、ラッチ記憶部72に記憶されている時刻コード(デジタルの画素信号SIG)を、時刻コード転送部23に出力する。時刻コード転送部23は、供給された時刻コードを、列方向(垂直方向)に順次転送し、出力部28に供給する。
以下では、時刻コードの書き込み動作においてラッチ記憶部72に書き込まれる時刻コードと区別するため、時刻コードの読み出し動作においてラッチ記憶部72から読み出される出力信号VCOが反転したときの反転時刻コードである、画素信号SIGがその時刻の基準電圧であったことを示すデジタル化された画素データを、AD変換画素データとも称する。
<3.比較回路の構成例>
図3は、比較回路51を構成する差動入力回路61、電圧変換回路62、及び正帰還回路63の詳細構成を示す回路図である。
差動入力回路61は、画素21内の画素回路41から出力された画素信号SIGと、DAC25から出力された参照信号REFとを比較し、画素信号SIGが参照信号REFよりも高いときに所定の信号(電流)を出力する。
差動入力回路61は、差動対となるトランジスタ81及び82、カレントミラーを構成するトランジスタ83及び84、入力バイアス電流Vbに応じた電流IBを供給する定電流源としてのトランジスタ85、並びに、差動入力回路61の出力信号HVOを出力するトランジスタ86により構成されている。
トランジスタ81、82、及び85は、NMOS(Negative Channel MOS)トランジスタで構成され、トランジスタ83、84、及び86は、PMOS(Positive Channel MOS)トランジスタで構成される。
差動対となるトランジスタ81及び82のうち、トランジスタ81のゲートには、DAC25から出力された参照信号REFが入力され、トランジスタ82のゲートには、画素21内の画素回路41から出力された画素信号SIGが入力される。トランジスタ81と82のソースは、トランジスタ85のドレインと接続され、トランジスタ85のソースは、所定の電圧VSS(VSS<VDD2<VDD1)に接続されている。
トランジスタ81のドレインは、カレントミラー回路を構成するトランジスタ83及び84のゲート及びトランジスタ83のドレインと接続され、トランジスタ82のドレインは、トランジスタ84のドレイン及びトランジスタ86のゲートと接続されている。トランジスタ83、84、及び86のソースは、第1電源電圧VDD1に接続されている。
電圧変換回路62は、例えば、NMOS型のトランジスタ91で構成される。トランジスタ91のドレインは、差動入力回路61のトランジスタ86のドレインと接続され、トランジスタ91のソースは、正帰還回路63内の所定の接続点に接続され、トランジスタ86のゲートは、バイアス電圧VBIASに接続されている。
差動入力回路61を構成するトランジスタ81乃至86は、第1電源電圧VDD1までの高電圧で動作する回路であり、正帰還回路63は、第1電源電圧VDD1よりも低い第2電源電圧VDD2で動作する回路である。電圧変換回路62は、差動入力回路61から入力される出力信号HVOを、正帰還回路63が動作可能な低電圧の信号(変換信号)LVIに変換して、正帰還回路63に供給する。
バイアス電圧VBIASは、定電圧で動作する正帰還回路63の各トランジスタ101乃至105を破壊しない電圧に変換する電圧であれば良い。例えば、バイアス電圧VBIASは、正帰還回路63の第2電源電圧VDD2と同じ電圧(VBIAS=VDD2)とすることができる。
正帰還回路63は、差動入力回路61からの出力信号HVOが第2電源電圧VDD2に対応する信号に変換された変換信号LVIに基づいて、画素信号SIGが参照信号REFよりも高いときに反転する比較結果信号を出力する。また、正帰還回路63は、比較結果信号として出力する出力信号VCOが反転するときの遷移速度を高速化する。
正帰還回路63は、5つのトランジスタ101乃至105で構成される。ここで、トランジスタ101、102、及び104は、PMOSトランジスタで構成され、トランジスタ103及び105は、NMOSトランジスタで構成される。
電圧変換回路62の出力端であるトランジスタ91のソースは、トランジスタ102及び103のドレインと、トランジスタ104及び105のゲートに接続されている。トランジスタ101及び104のソースは、第2電源電圧VDD2に接続され、トランジスタ101のドレインは、トランジスタ102のソースと接続され、トランジスタ102のゲートは、正帰還回路63の出力端でもあるトランジスタ104及び105のドレインと接続されている。トランジスタ103及び105のソースは、所定の電圧VSSに接続されている。トランジスタ101と103のゲートには、初期化信号INIが供給される。
トランジスタ104と105はインバータ回路を構成し、それらのドレインどうしの接続点は、比較回路51が出力信号VCOを出力する出力端となっている。
以上のように構成される比較回路51の動作について説明する。図4は、比較回路51の動作中の各信号の遷移を表す。なお、図4において“G86”はトランジスタ86のゲート電位を表している。
まず、参照信号REFが、全ての画素21の画素信号SIGよりも高い電圧に設定されるとともに、初期化信号INIがHiにされて、比較回路51が初期化される。
より具体的には、トランジスタ81のゲートには参照信号REFが、トランジスタ82のゲートには画素信号SIGが印加される。参照信号REFの電圧が、画素信号SIGの電圧よりも高い電圧の時は電流源となるトランジスタ85が出力した電流のほとんどがトランジスタ81を経由してダイオード接続されたトランジスタ83に流れる。トランジスタ83と共通のゲートを持つトランジスタ84のチャネル抵抗は十分低くなりトランジスタ86のゲートをほぼ第1電源電圧VDD1レベルに保ち、トランジスタ86は遮断される。したがって、電圧変換回路62のトランジスタ91が導通していたとしても、充電回路としての正帰還回路63が変換信号LVIを充電することは無い。一方、初期化信号INIとしてHiの信号が供給されていることから、トランジスタ103は導通し、正帰還回路63は変換信号LVIを放電する。また、トランジスタ101は遮断するので、正帰還回路63がトランジスタ102を介して変換信号LVIを充電することもない。その結果、変換信号LVIは、所定の電圧VSSレベルまで放電され、正帰還回路63は、インバータを構成するトランジスタ104と105によってHiの出力信号VCOを出力し、比較回路51が初期化される。
初期化の後、初期化信号INIがLoにされて、参照信号REFの掃引が開始される。
参照信号REFが画素信号SIGよりも高い電圧の期間では、トランジスタ86はオフとなるため遮断され、出力信号VCOはHiの信号となるので、トランジスタ102もオフとなり遮断される。トランジスタ103も、初期化信号INIはLoとなっているため遮断される。変換信号LVIは、高インピーダンス状態のまま所定の電圧VSSを保ち、Hiの出力信号VCOが出力される。
参照信号REFが画素信号SIGよりも低くなると、電流源のトランジスタ85の出力電流はトランジスタ81を流れなくなり、トランジスタ83と84のゲート電位は上昇して、トランジスタ84のチャネル抵抗は高くなる。そこに、トランジスタ82を介して流れ込む電流が、電圧降下を起こしてトランジスタ86のゲート電位を下げ、トランジスタ91が導通する。トランジスタ86から出力された出力信号HVOは、電圧変換回路62のトランジスタ91によって変換信号LVIに変換され、正帰還回路63に供給される。充電回路としての正帰還回路63は、変換信号LVIを充電し、電位を低電圧VSSから第2電源電圧VDD2へ近づけてゆく。
そして、変換信号LVIの電圧が、トランジスタ104と105で構成されるインバータの閾値電圧を超えると、出力信号VCOはLoとなり、トランジスタ102が導通する。トランジスタ101も、Loの初期化信号INIが印加されているため導通しており、正帰還回路63は、トランジスタ101と102を介して、変換信号LVIを急速に充電し、電位を第2電源電圧VDD2まで一気に持ち上げる。
電圧変換回路62のトランジスタ91は、ゲートにバイアス電圧VBIASが印加されているので、変換信号LVIの電圧が、バイアス電圧VBIASからトランジスタ閾値下がった電圧値に到達すれば遮断する。トランジスタ86が導通したままだとしても、それ以上に変換信号LVIを充電することは無く、電圧変換回路62は、電圧クランプ回路としても機能する。
トランジスタ102の導通による変換信号LVIの充電は、そもそもが変換信号LVIがインバータ閾値まで上昇してきたことを発端とし、その動きを加速する正帰還動作である。差動入力回路61の電流源であるトランジスタ85は、固体撮像装置1で並列同時に動作する回路数が膨大であることから1回路あたりの電流がきわめて僅かな電流に設定される。さらに、参照信号REFは、時刻コードが切り替わる単位時間に変化する電圧がAD変換のLSBステップとなるために極めて緩慢に掃引される。従って、トランジスタ86のゲート電位の変化も緩慢であり、それによって駆動されるトランジスタ86の出力電流の変化も緩慢である。しかし、その出力電流で充電される変換信号LVIに、後段から正帰還をかけることで、出力信号VCOは十分急速に遷移することができる。望ましくは、出力信号VCOの遷移時間は、時刻コードの単位時間の数分の1であり、典型例としては1ns以下である。本開示の比較回路51は、電流源のトランジスタ85に、例えば0.1uAの僅かな電流を設定しただけで、この出力遷移時間を達成することができる。
<画素回路の詳細構成例>
図5を参照して、画素回路41の詳細構成について説明する。
図5は、図3に示した比較回路51に、画素回路41の詳細を追加して示した回路図である。
画素回路41は、光電変換素子としてのフォトダイオード(PD)121、排出トランジスタ122、転送トランジスタ123、リセットトランジスタ124、及び、FD(浮遊拡散層)125で構成されている。
排出トランジスタ122は、露光期間を調整する場合に使用される。具体的には、露光期間を任意のタイミングで開始したいときに排出トランジスタ122をオンさせると、それまでの間にフォトダイオード121に蓄積されていた電荷が排出されるので、排出トランジスタ122がオフされた以降から、露光期間が開始されることになる。
転送トランジスタ123は、フォトダイオード121で生成された電荷をFD125に転送する。リセットトランジスタ124は、FD125に保持されている電荷をリセットする。FD125は、差動入力回路61のトランジスタ82のゲートに接続されている。これにより、差動入力回路61のトランジスタ82は、画素回路41の増幅トランジスタとしても機能する。
リセットトランジスタ124のソースは、差動入力回路61のトランジスタ82のゲート、及び、FD125に接続されており、リセットトランジスタ124のドレインは、トランジスタ82のドレインと接続されている。したがって、FD125の電荷をリセットするための固定のリセット電圧がない。これは、差動入力回路61の回路状態を制御することで、FD125をリセットするリセット電圧を、参照信号REFを用いて任意に設定可能であるためである。
<画素部タイミングチャート>
図6のタイミングチャートを参照して、図5に示した画素21の動作について説明する。
初めに、時刻t1において、参照信号REFが、それまでのスタンバイ電圧Vstbから、FD125の電荷をリセットするリセット電圧Vrstに設定され、リセットトランジスタ124がオンされることにより、FD125の電荷がリセットされる。また、時刻t1では、正帰還回路63のトランジスタ101と103のゲートに供給される初期化信号INIがHiに設定され、正帰還回路63が初期状態に設定される。
時刻t2において、参照信号REFが所定の電圧Vuまで持ち上げられ、参照信号REFと画素信号SIGの比較(参照信号REFの掃引)が開始される。この時点では、参照信号REFが画素信号SIGよりも大きいため出力信号VCOはHiとなっている。
参照信号REFと画素信号SIGが同一となったと判定された時刻t3において、出力信号VCOが反転(Lowに遷移)される。出力信号VCOが反転されると、上述したように正帰還回路63によって出力信号VCOの反転が高速化される。また、データ記憶部52では、出力信号VCOが反転した時点の時刻データ(Nビットの時刻コードDATA[1]乃至DATA[N])がラッチ記憶される。
信号書き込み期間が終了し、かつ、信号読み出し期間の開始時刻である時刻t4において、比較回路51のトランジスタ81のゲートに供給する参照信号REFの電圧が、トランジスタ81がオフするレベル(スタンバイ電圧Vstb)まで引き下げられる。これにより、信号読み出し期間中の比較回路51の消費電流が抑制される。
時刻t5において、読み出しタイミングを制御するWORD信号がHiとなり、ラッチ記憶されたNビットの時刻コードDATA[1]乃至DATA[N]が、データ記憶部52のラッチ制御回路71から出力される。ここで取得される時刻コードは、CDS(Correlated Double Sampling;相関2重サンプリング)処理する際のリセットレベルのP相データとなる。
時刻t6において、参照信号REFが所定の電圧Vuまで持ち上げられるともに、トランジスタ101と103のゲートに供給される初期化信号INIがHiに設定され、正帰還回路63が再び初期状態に設定される。
時刻t7において、Hiの転送信号TXにより画素回路41の転送トランジスタ123がオンされ、フォトダイオード121で生成された電荷がFD125に転送される。
初期化信号INIがLowに戻された後、参照信号REFと画素信号SIGの比較(参照信号REFの掃引)が開始される。この時点では、参照信号REFが画素信号SIGよりも大きいため出力信号VCOはHiとなっている。
そして、参照信号REFと画素信号SIGが同一となったと判定された時刻t8において、出力信号VCOが反転(Lowに遷移)される。出力信号VCOが反転されると、正帰還回路63によって出力信号VCOの反転が高速化される。また、データ記憶部52には、出力信号VCOが反転した時点の時刻データ(Nビットの時刻コードDATA[1]乃至DATA[N])がラッチ記憶される。
信号書き込み期間が終了し、かつ、信号読み出し期間の開始時刻である時刻t9において、比較回路51のトランジスタ81のゲートに供給する参照信号REFの電圧が、トランジスタ81がオフするレベル(スタンバイ電圧Vstb)まで引き下げられる。これにより、信号読み出し期間中の比較回路51の消費電流が抑制される。
時刻t10において、読み出しタイミングを制御するWORD信号がHiとなり、ラッチ記憶されたNビットの時刻コードDATA[1]乃至DATA[N]が、データ記憶部52のラッチ制御回路71から出力される。ここで取得される時刻コードは、CDS処理する際の信号レベルのD相データとなる。時刻t11は、上述した時刻t1と同じ状態であり、次の1V(1垂直走査期間)の駆動となる。
以上の画素21の駆動によれば、最初に、リセットレベルのP相データが取得された後、読み出され、次に、信号レベルのD相データが取得されて、読み出される。
以上の動作により、固体撮像装置1の画素アレイ部22の各画素21は、全画素同時にリセットし、かつ、全画素同時に露光するグローバルシャッタ動作が可能である。全画素が同時に露光及び読み出しを行うことが出来るので、通常、画素内に設けられる、電荷が読み出されるまでの間、電荷を保持する保持部が不要である。また、画素21の構成では、カラム並列読み出し型の固体撮像装置で必要であった、画素信号SIGを出力する画素を選択するための選択トランジスタ等も不要である。
図6を参照して説明した画素21の駆動では、排出トランジスタ122が常にオフに制御されていた。しかし、図6において破線で示されるように、所望の時刻で、排出信号OFGをHiに設定して排出トランジスタ122を一旦オンさせた後、オフさせることにより、任意の露光期間を設定することも可能である。
<4.画素共有の場合の構成例>
これまでに説明した比較回路51は、1つの画素21内に1つのADC42が配置される構成とされていたが、複数の画素21で、1つのADC42を共有する構成とすることもできる。
図7は、複数の画素21で1つのADC42を共有する画素共有の場合の比較回路51の構成例を示す回路図である。
図7では、画素21A、画素21B、画素21C、及び画素21Dの4つの画素21で1つのADC42を共有する場合の比較回路51の構成例が示されている。
図7において、比較回路51を構成する差動入力回路61、電圧変換回路62、及び正帰還回路63の構成は、図3に示した構成と同様である。
図7では、4つの画素21A乃至21Dに、それぞれ、画素回路41A乃至41Dが設けられ、画素回路41A乃至41Dには、フォトダイオード121q、排出トランジスタ122q、及び、転送トランジスタ123qが個別に設けられている。一方、リセットトランジスタ174とFD175は、4つの画素21A乃至21Dで共有されている。
<5.データ記憶部と時刻コード転送部の第1構成例>
次に、時刻コードの書き込み制御と読み出し制御について説明する。
図8は、時刻コード転送部23とデータ記憶部52の第1構成例を示す回路図である。
時刻コード転送部23は、Nビットの時刻コードDATA[1]乃至DATA[N]に対応するN個のシフトレジスタ341-1乃至341-Nと、クロック供給回路342とで構成されている。N個のシフトレジスタ341-1乃至341-Nそれぞれは、複数のD-F/F(D-フリップフロップ)351からなる。クロック供給回路342は、シフトレジスタ341の各D-F/F351のクロック入力に、クロック信号CLKを供給する。
データ記憶部52のラッチ制御回路71は、ラッチ制御部241とN個の双方向バッファ回路371-1乃至371-Nで構成されている。
データ記憶部52のラッチ記憶部72は、N個のビット記憶部242-1乃至242-Nで構成されている。
N個の双方向バッファ回路371-1乃至371-Nは、時刻コード転送部23のN個のシフトレジスタ341-1乃至341-Nに1対1に対応して設けられている。双方向バッファ回路371は、対応するシフトレジスタ341内の1つのD-F/F351と接続されている。
双方向バッファ回路371-n(0<n<N+1)のバッファ回路381には、時刻コードの書き込み動作においてHiとなる書き込み制御信号WRが供給され、インバータ回路382には、時刻コードの読み出し動作においてHiとなる読み出し制御信号RDが供給される。双方向バッファ回路371-nは、書き込み制御信号WRと読み出し制御信号RDに基づいて、ビット記憶部242-nに対する時刻コードの書き込み動作と読み出し動作を切り替える。
ラッチ制御部241は、直列接続された2個のインバータ281及び282と、直列接続されたNOR回路283及びインバータ284で構成されている。
データ記憶部52のビット記憶部242-nは、トランスファゲート261とラッチ記憶部262とで構成されている。
トランスファゲート261は、NMOSトランジスタとPMOSトランジスタの2個のトランジスタ291及び292で構成されている。
ラッチ記憶部262は、トランジスタ301乃至306からなるスタティック型のラッチ回路で構成されている。トランジスタ301、302、及び305は、PMOSトランジスタで構成され、トランジスタ303、304、及び306は、NMOSトランジスタで構成されている。
比較回路51からの出力である出力信号VCOは、インバータ281とNOR回路283に入力され、NOR回路283のもう一方の入力には、WORD信号が供給される。インバータ281の出力は、インバータ282とラッチ記憶部262のトランジスタ303のゲートに供給され、インバータ282の出力は、ラッチ記憶部262のトランジスタ302のゲートに供給される。また、NOR回路283の出力は、インバータ284とトランスファゲート261のトランジスタ292のゲートに供給され、インバータ284の出力は、トランスファゲート261のトランジスタ291のゲートに供給される。
時刻コードの書き込み動作においては、WORD信号が全画素でLoとなり、トランスファゲート261は、出力信号VCOがHiのとき導通し、Loのとき遮断する。ラッチ記憶部262のフィードバック(入力Qに対する出力xQ)は、出力信号VCOがHiのとき遮断し、Loのとき導通する。したがって、ラッチ記憶部262は、出力信号VCOがHiのとき、nビット目の時刻コードの書き込み状態(トランスペアレント)となり、出力信号VCOがLoのとき、双方向バッファ回路371-nを経由して、書き込まれた時刻コードの保持状態(ラッチ状態)となる。
時刻コードの読み出し動作においては、読み出し対象の画素21のラッチ制御部241のみにWORD信号が供給される。出力信号VCOはLoとなっているので、トランスファゲート261は、HiのWORD信号が入力されたときのみ導通し、ラッチ記憶部262に保持された時刻コードが、双方向バッファ回路371-nを経由して、時刻コード転送部23に出力される。
参照信号REFの掃引が行われるAD変換期間中には、時刻コード転送部23のN個のシフトレジスタ341は、時刻コード発生部26から供給された時刻コードを、時刻コードの単位時間をクロック周期とするシフトクロックで転送する。
時刻コードの書き込み動作においては、Hiの書き込み制御信号WRとLoの読み出し制御信号RDが双方向バッファ回路371に供給されており、双方向バッファ回路371は、シフトレジスタ341の所定のD-F/F351から供給された時刻コードを、トランスファゲート261を介してビット記憶部242に供給する。ビット記憶部242は、供給された時刻コードを記憶する。
次の時刻コードの読み出し動作においては、Loの書き込み制御信号WRとHiの読み出し制御信号RDが双方向バッファ回路371に供給されており、ビット記憶部242に記憶されている時刻コードが、双方向バッファ回路371を介して時刻コード転送部23のシフトレジスタ341の所定のD-F/F351に供給される。シフトレジスタ341は、各段のD-F/F351に供給された時刻データを順送りに出力部28まで転送し、出力する。
より具体的には、シフトレジスタ341の各D-F/F351には、クロック入力に供給されるクロック信号CLKがHiまたはLoのいずれか一方でハイインピーダンス状態(以下、Hi-Z状態と記述する。)にできる構成が採用される。例えば、図9及び図10で後述するD-F/F351の構成では、D-F/F351は、クロック信号CLKがLoであるとき、Hi-Z状態となる。
シフトレジスタ341の各D-F/F351がHi-Z状態とされている期間に、双方向バッファ回路371にHiの読み出し制御信号RDが供給されるとともに、WORD信号がHiとなり、ビット記憶部242に記憶されている時刻コードが、双方向バッファ回路371を介して時刻コード転送部23のシフトレジスタ341の所定のD-F/F351に供給される。
読み出し制御信号RDがLoに戻された後、シフトレジスタ341の各D-F/F351にシフトクロックが供給され、シフトレジスタ341は、各段のD-F/F351に供給された時刻データを出力部28まで順次転送し、出力する。
<D-F/Fの構成例>
図9は、シフトレジスタ341のD-F/F351の第1構成例を示している。
図9において、各トランジスタや信号線の近傍に括弧()付で記したon、off等の文字は、Loのクロック信号CLKがクロック入力に入力されたときの各トランジスタや信号線の電位状態を示している。
図9に示されるように、Loのクロック信号CLKがD-F/F351に入力された場合には、D-F/F351がHi-Z状態となる。
図10は、シフトレジスタ341のD-F/F351の第2構成例を示している。
D-F/F351は、相補クロック信号CLKとxCLKを用いるクロックドインバータと、連続動作インバータのそれぞれを2個有し、入力側から、クロックドインバータ、連続動作インバータ、クロックドインバータ、連続動作インバータの順で接続したフリップフロップである。図10のD-F/F351は、クロック信号CLKがLo,反転クロック信号xCLKがHiのとき、Hi-Z状態となる。
<双方向バッファ回路の構成例>
図11は、双方向バッファ回路371の第1構成例を示している。
図11に示される双方向バッファ回路371は、バッファ回路381とインバータ回路382で構成される。
バッファ回路381は、インバータ401、NAND回路402、NOR回路403、PMOS型のトランジスタ404、及びNMOS型のトランジスタ405で構成される。
バッファ回路381では、書き込み制御信号WRがHiのとき、NAND回路402とNOR回路403の出力はともに、時刻コード転送部23のD-F/F351から供給された時刻コードを反転したものとなる。バッファ回路381の出力は、さらにそれを反転したものとなるので、結果、D-F/F351から供給された時刻コードと同値となる。書き込み制御信号WRがLoのとき、NAND回路402の出力はHi、NOR回路403の出力はLoとなり、バッファ回路381の出力はHi-Z状態となる。
一方、インバータ回路382は、2個のPMOS型のトランジスタ411及び412、2個のNMOS型のトランジスタ413及び414、並びに、インバータ415からなるクロックドインバータで構成される。
インバータ回路382では、読み出し制御信号RDがHiのとき、クロックドインバータはアクティブになり、インバータ回路382は、ビット記憶部242から供給された時刻コードを反転して出力する。読み出し制御信号RDがLoのとき、クロックドインバータはイナート(非アクティブ)になり、インバータ回路382の出力はHi-Z状態となる。
図12は、双方向バッファ回路371の第2構成例を示している。
図12に示される双方向バッファ回路371は、図11に示したバッファ回路381及びインバータ回路382に加えて、インバータ回路382の前段にインバータ421が設けられている。
図11の双方向バッファ回路371の第1構成例では、上述したように、時刻コード転送部23のD-F/F351から供給された時刻コードをビット記憶部242に書き込むときは、D-F/F351から供給された時刻コードと同値となるので極性が反転せず、ビット記憶部242に記憶された時刻コードを読み出すときは極性が反転する。したがって、読み出された時刻コード(AD変換画素データ)は、供給された時刻コードの反転データとなる。
そこで、図12に示される双方向バッファ回路371の第2構成例では、インバータ回路382の前段にインバータ421を設けることにより、ビット記憶部242から読み出された時刻コードが、供給された時刻コードと同じ極性で出力されるように構成されている。
図12では、時刻コードを読み出す方向についても、インバータ回路382の前段にインバータ421を設けることにより、入力信号と同じ極性の信号を出力するバッファ回路の構成が採用された。このバッファ回路の構成は、時刻コードを書き込む方向のバッファ回路381の構成として採用することもできる。また逆に、時刻コードを書き込む方向のバッファ回路381の前にインバータを設けた構成を、時刻コードを読み出す方向のインバータ回路382として用いることも可能である。あるいは、バッファ回路381及びインバータ回路382の構成として、それ以外の構成を採用してもよい。
<D-F/Fの個数の説明>
次に、図13を参照して、図8に示した時刻コード転送部23の各シフトレジスタ341が有するD-F/F351の個数について説明する。
上述した説明では、時刻コード転送部23が、Nビットの時刻コードDATA[1]乃至DATA[N]に対応するN個のシフトレジスタ341-1乃至341-Nを有し、各シフトレジスタ341(シフトレジスタ341-n)は、複数のD-F/F351を有するとして説明した。
画素アレイ部22が、例えば、図13に示されるように、8行×12列(垂直方向×水平方向)からなる、全部で96個の画素21で構成されているとする。そして、画素アレイ部22全体を垂直方向については4分割、水平方向については3分割することで、画素アレイ部22が12個のクラスタUに分割される。
以上のように画素アレイ部22が複数のクラスタUに分割されるとき、水平方向の位置が同じ4個のクラスタU、換言すれば、列方向(垂直方向)に並ぶクラスタU群に対して、1個の時刻コード発生部26と1個の時刻コード転送部23が配置される。
そして、時刻コード発生部26それぞれに対応して設けられた時刻コード転送部23において、時刻コード転送部23内のシフトレジスタ341は、列方向に並ぶクラスタUの数に対応する数のD-F/F351で構成される。
従って、図13に示されるように、列方向が4個のクラスタUに分割される場合には、時刻コード転送部23内のシフトレジスタ341は、4個のD-F/F351で構成される。
なお、以下では、説明の便宜上、列方向に並ぶ4個のクラスタUを、図13に示されるように、時刻コード発生部26に近い側から、クラスタUi、クラスタUii、クラスタUiii、クラスタUivと区別する。また、1個のクラスタU内の8個の画素21を、図13のクラスタUi内に付された「A乃至H」に対応して、画素21A乃至画素21Hと記述して区別する場合がある。
図14は、時刻コード転送部23内のシフトレジスタ341を構成する4個のD-F/F351のデータ出力の流れを説明するタイミングチャートである。
上述したように、列方向に並ぶ4個のクラスタUi乃至ivそれぞれにおいて、画素21AのWORD信号(WORD_A)がHiとされ、かつ、双方向バッファ回路371に供給される読み出し制御信号RDが一時的にHiとされることで、4個のクラスタUi乃至ivそれぞれの画素21AのAD変換画素データが出力される。
より具体的には、クラスタUiの画素21AのAD変換画素データD1Aが、時刻コード転送部23内のクラスタUiに接続されたD-F/F351に供給され、出力される。クラスタUiiの画素21AのAD変換画素データD2Aが、時刻コード転送部23内のクラスタUiiに接続されたD-F/F351に供給され、出力される。クラスタUiiiの画素21AのAD変換画素データD3Aが、時刻コード転送部23内のクラスタUiiiに接続されたD-F/F351に供給され、出力される。クラスタUivの画素21AのAD変換画素データD4Aが、時刻コード転送部23内のクラスタUivに接続されたD-F/F351に供給され、出力される。クラスタUivに接続されたD-F/F351の出力先は、出力部28となる。
その後、時刻コード転送部23内の各D-F/F351のクロック入力に、3パルスのシフトクロックが供給され、クラスタUiの画素21AのAD変換画素データD1A、クラスタUiiの画素21AのAD変換画素データD2A、クラスタUiiiの画素21AのAD変換画素データD3A、及び、クラスタUivの画素21AのAD変換画素データD4Aが、シフトレジスタ341を構成する4個のD-F/F351で順次転送されていく。その結果、出力部28には、クラスタUivに接続されたD-F/F351から、クラスタUivの画素21AのAD変換画素データD4A、クラスタUiiiの画素21AのAD変換画素データD3A、クラスタUiiの画素21AのAD変換画素データD2A、クラスタUiの画素21AのAD変換画素データD1A、の順で、画素21AのAD変換画素データが入力される。
次に、列方向に並ぶ4個のクラスタUi乃至ivそれぞれにおいて、画素21BのWORD信号(WORD_B)がHiとされ、かつ、双方向バッファ回路371に供給される読み出し制御信号RDが一時的にHiとされることで、4個のクラスタUi乃至ivそれぞれの画素21BのAD変換画素データが、時刻コード転送部23に出力される。そして、時刻コード転送部23のシフトレジスタ341が、4個のクラスタUi乃至ivそれぞれの画素21BのAD変換画素データを、出力部28に転送する。
4個のクラスタUi乃至ivそれぞれの画素21CのAD変換画素データ、及び、4個のクラスタUi乃至ivそれぞれの画素21DのAD変換画素データについても、同様に、クラスタU内の各画素21から時刻コード転送部23へ、時刻コード転送部23から出力部28へ転送される。
図14は、1つのクラスタUが4個の画素21A乃至画素21Dで構成される例であるが、1つのクラスタUが8個の画素21A乃至画素21Hである場合も同様であり、また、クラスタUが任意のK個の画素でも同様に構成できる。なお、図14では、WORD信号とRD信号のHi期間がオーバーラップしているが、必ずしもオーバーラップさせなくてもよい。
<6.データ記憶部と時刻コード転送部の第2構成例>
図15は、時刻コード転送部23とデータ記憶部52の第2構成を示す回路図である。
固体撮像装置1は、リセットレベルの画素信号SIGをAD変換してP相データとして取得し、その後、信号レベルの画素信号SIGをAD変換してD相データとして取得し、P相データとD相データの差分を映像信号として出力するCDS処理を行う。
図15に示されるデータ記憶部52の第2構成を、図8に示したデータ記憶部52の第1構成と比較すると、図8のラッチ制御部241に代えて、P相データ用のP相ラッチ制御部241Pと、D相データ用のD相ラッチ制御部241Dの2つが設けられている。
また、図8のビット記憶部242-1乃至242-Nに代えて、P相データ用のP相ビット記憶部242P-1乃至242P-Nと、D相データ用のD相ビット記憶部242D-1乃至242D-Nの2つが設けられている。P相ビット記憶部242P-1乃至242P-NとD相ビット記憶部242D-1乃至242D-Nの詳細構成は、図8のビット記憶部242-1乃至242-Nと同一である。
また、データ記憶部52には、2個のAND回路561P及び561Dが、新しく設けられている。AND回路561P及び561Dの2入力の一方には、比較回路51から出力される出力信号VCOが入力される。AND回路561Pの2入力の他方には、P相データのAD変換期間中にHiとなるP相選択信号P_OPが入力され、AND回路561Dの2入力の一方には、D相データのAD変換期間中にHiとなるD相選択信号D_OPが入力される。
図8に示したデータ記憶部52の第1構成では、取得したP相データの転送が完了してから、D相データの取得を開始する必要がある。換言すれば、D相データの取得は、P相データの転送完了を待つ必要がある。
図15に示されるデータ記憶部52の第2構成では、最初のP相データのAD変換期間においては、HiのP相選択信号P_OPとLoのD相選択信号D_OPがデータ記憶部52に供給され、P相ビット記憶部242P-1乃至242P-NにP相データが記憶される。
次のD相データのAD変換期間においては、LoのP相選択信号P_OPとHiのD相選択信号D_OPがデータ記憶部52に供給され、D相ビット記憶部242D-1乃至242D-NにD相データが記憶される。その後、P相データとD相データが、順番に、時刻コード転送部23へ出力される。
これにより、図15に示されるデータ記憶部52の第2構成によれば、P相データ取得とD相データ取得の時間的間隔を短縮して、CDS処理のオフセットおよび雑音相殺効果を高めることができる。また、P相データとD相データを、順番に、時刻コード転送部23へ出力することで、出力部28にP相データを一時記憶するメモリ部が不要になる。
なお、図15の時刻コード転送部23の構成は、図8の時刻コード転送部23と同じである。
<7.データ記憶部と時刻コード転送部の第3構成例>
図16は、時刻コード転送部23とデータ記憶部52の第3構成を示す回路図である。
図16に示される時刻コード転送部23の第3構成を、図15に示した時刻コード転送部23の第2構成と比較すると、図16の第3構成では、P相データ用とD相データ用に分けて、図15の第2構成の時刻コード転送部23と同じ構成が2つ設けられている。
即ち、第3構成の時刻コード転送部23は、P相データ用のP相時刻コード転送部601Pと、D相データ用のD相時刻コード転送部601Dとを備える。P相時刻コード転送部601Pは、N個のシフトレジスタ341P-1乃至341P-Nと、クロック供給回路342Pとで構成されている。D相時刻コード転送部601Dは、N個のシフトレジスタ341D-1乃至341D-Nと、クロック供給回路342Dとで構成されている。
データ記憶部52の構成については、N個の双方向バッファ回路371-1乃至371-Nが、P相データ用のP相時刻コード転送部601Pと、D相データ用のD相時刻コード転送部601Dとに対応するように2つ設けられている。
即ち、第3構成のデータ記憶部52は、P相データ用のP相時刻コード転送部601Pに対応するN個の双方向バッファ回路371P-1乃至371P-Nと、D相データ用のD相時刻コード転送部601Dに対応するN個の双方向バッファ回路371D-1乃至371D-Nとを備える。P相データ用の双方向バッファ回路371P-1乃至371P-Nは、P相ビット記憶部242P-1乃至242P-Nと接続され、D相データ用の双方向バッファ回路371D-1乃至371D-Nは、D相ビット記憶部242D-1乃至242D-Nと接続されている。
P相時刻コード転送部601Pは、P相データとしての時刻コードの書き込み及び読み出しの転送に用いられ、D相時刻コード転送部601Dは、D相データとしての時刻コードの書き込み及び読み出しの転送に用いられる。
上記以外の構成は、図15に示した第2構成と同様である。
<画素部タイミングチャート>
図17は、図16の第3構成における画素21の動作を説明するタイミングチャートである。
初めに、時刻t31において、参照信号REFが、それまでのスタンバイ電圧Vstbから、FD125の電荷をリセットするリセット電圧Vrstに設定され、リセットトランジスタ124がオンされることにより、FD125の電荷がリセットされる。また、時刻t1では、正帰還回路63のトランジスタ101と103のゲートに供給される初期化信号INIがHiに設定され、正帰還回路63が初期状態に設定される。
時刻t32において、参照信号REFが所定の電圧Vuまで持ち上げられ、参照信号REFと画素信号SIGの比較(参照信号REFの掃引)が開始される。この時点では、参照信号REFが画素信号SIGよりも大きいため出力信号P_VCOはHiとなっている。
参照信号REFと画素信号SIGが同一となったと判定された時刻t33において、出力信号P_VCOが反転(Lowに遷移)される。出力信号P_VCOが反転されると、正帰還回路63によって出力信号P_VCOの反転が高速化される。また、データ記憶部52のP相ビット記憶部242P-1乃至242P-Nでは、出力信号P_VCOが反転した時点の時刻データ(Nビットの時刻コードP_DATA[1]乃至P_DATA[N])が記憶される。
P相データの書き込み期間が終了し、時刻t34において、比較回路51のトランジスタ81のゲートに供給する参照信号REFの電圧が、トランジスタ81がオフするレベル(スタンバイ電圧Vstb)まで引き下げられる。
時刻t35において、参照信号REFが所定の電圧Vuまで持ち上げられるともに、トランジスタ101と103のゲートに供給される初期化信号INIがHiに設定され、正帰還回路63が再び初期状態に設定される。この時点では、参照信号REFが画素信号SIGよりも大きいため出力信号D_VCOはHiとなっている。
時刻t36において、Hiの転送信号TXにより画素回路41の転送トランジスタ123がオンされ、フォトダイオード121で生成された電荷がFD125に転送される。
時刻t37において、P相データの読み出しタイミングを制御するP_WORD信号がHiとなり、Nビットの時刻コードP_DATA[1]乃至P_DATA[N]が、データ記憶部52のP相ビット記憶部242P-1乃至242P-Nから出力される。ここで取得される時刻コードP_DATA[1]乃至P_DATA[N]は、CDS処理する際のリセットレベルのP相データとなる。
そして、参照信号REFと画素信号SIGが同一となったと判定された時刻t38において、出力信号D_VCOが反転(Lowに遷移)される。出力信号D_VCOが反転されると、正帰還回路63によって出力信号D_VCOの反転が高速化される。また、データ記憶部52のD相ビット記憶部242D-1乃至242D-Nには、出力信号D_VCOが反転した時点の時刻データ(Nビットの時刻コードD_DATA[1]乃至D_DATA[N])が記憶される。
D相データの書き込み期間が終了した時刻t39において、比較回路51のトランジスタ81のゲートに供給する参照信号REFの電圧が、トランジスタ81がオフするレベル(スタンバイ電圧Vstb)まで引き下げられる。
時刻t40から、次の1V(1垂直走査期間)の駆動となるが、その後の時刻t41において、D相データの読み出しタイミングを制御するD_WORD信号がHiとなり、Nビットの時刻コードD_DATA[1]乃至D_DATA[N]が、データ記憶部52のD相ビット記憶部242D-1乃至242D-Nから出力される。ここで取得されるNビットの時刻コードD_DATA[1]乃至D_DATA[N]は、CDS処理する際の信号レベルのD相データとなる。
以上の第3構成における画素21の駆動によれば、時刻t35から開始されるD相データの書き込み期間中に、P相データの読み出しが並行して実行され、時刻t40から開始されるP相データの書き込み期間中に、D相データの読み出しが並行して実行される。
そのため、例えば、全画素のP相データの読み出しの完了を待つことなく、D相データの書き込みを開始することができるので、図17の時刻t34から時刻t35の期間が、図6の時刻t4から時刻t6の期間と比較して短縮されている。したがって、より高速な撮像を行うことができる。
<8.データ記憶部と時刻コード転送部の第4構成例>
図18は、時刻コード転送部23とデータ記憶部52の第4構成を示す回路図である。
図18に示される時刻コード転送部23の第4構成を、図15に示した時刻コード転送部23の第2構成と比較すると、図18の第4構成では、時刻コード書き込み用と時刻コード読み出し用に分けて、図15の第2構成の時刻コード転送部23と同じ構成が2つ設けられている。
即ち、第4構成の時刻コード転送部23は、時刻コード書き込み用の書き込み時刻コード転送部602Aと、時刻コード読み出し用の読み出し時刻コード転送部602Bとを備える。書き込み時刻コード転送部602Aは、N個のシフトレジスタ341A-1乃至341A-Nと、クロック供給回路342Aとで構成されている。読み出し時刻コード転送部602Bは、N個のシフトレジスタ341B-1乃至341B-Nと、クロック供給回路342Bとで構成されている。
データ記憶部52の構成については、図16に示した第3構成と同様に、P相データ用のN個の双方向バッファ回路371P-1乃至371P-Nと、D相データ用のN個の双方向バッファ回路371D-1乃至371D-Nが設けられている。ただし、図18の第4構成では、双方向バッファ回路371P-1乃至371P-Nと双方向バッファ回路371D-1乃至371D-Nの接続先が、図16に示した第3構成とは異なる。
具体的には、図16に示した第3構成では、P相データ用のN個の双方向バッファ回路371P-1乃至371P-Nのバッファ回路381とインバータ回路382の両方が、時刻コード転送部23内の1つの時刻コード転送部(P相時刻コード転送部601P)に接続されていた。
これに対して、図18の第4構成では、P相データ用のN個の双方向バッファ回路371P-1乃至371P-Nのバッファ回路381は、時刻コード転送部23内の一方の時刻コード転送部(書き込み時刻コード転送部602A)に接続され、インバータ回路382は、他方の時刻コード転送部(読み出し時刻コード転送部602B)に接続されている。
D相データ用の双方向バッファ回路371D-1乃至371D-Nについても同様である。即ち、図16に示した第3構成では、D相データ用の双方向バッファ回路371D-1乃至371D-Nのバッファ回路381とインバータ回路382の両方が、時刻コード転送部23内の1つの時刻コード転送部(D相時刻コード転送部601D)に接続されていた。
これに対して、図18の第4構成では、D相データ用のN個の双方向バッファ回路371D-1乃至371D-Nのバッファ回路381は、時刻コード転送部23内の一方の時刻コード転送部(書き込み時刻コード転送部602A)に接続され、インバータ回路382は、他方の時刻コード転送部(読み出し時刻コード転送部602B)に接続されている。
書き込み時刻コード転送部602Aは、P相データ及びD相データの時刻コードの書き込みの転送に用いられ、読み出し時刻コード転送部602Bは、P相データ及びD相データの時刻コードの読み出しの転送に用いられる。
上記以外の構成は、図15に示した第2構成と同様である。
以上の第4構成における画素21の駆動は、図17を参照して説明した第3構成の駆動と同様である。従って、D相データの書き込み期間中に、P相データの読み出しを並行して実行し、P相データの書き込み期間中に、D相データの読み出しを並行して実行することができる。
そのため、例えば、全画素のP相データの読み出しの完了を待つことなく、D相データの書き込みを開始することができるので、より高速な撮像を行うことができる。
<9.データ記憶部と時刻コード転送部の第5構成例>
図19は、時刻コード転送部23とデータ記憶部52の第5構成を示す回路図である。
図19の第5構成における時刻コード転送部23の構成は、図18に示した第4構成と同様である。すなわち、第5構成の時刻コード転送部23は、時刻コード書き込み用の書き込み時刻コード転送部602Aと、時刻コード読み出し用の読み出し時刻コード転送部602Bとを備える。
一方、データ記憶部52の構成を、図19の第5構成と図18の第4構成とで比較すると、図18の第4構成では、P相データとD相データに分けて、ラッチ制御部とビット記憶部が設けられていた。
これに対して、図19の第5構成では、時刻コード書き込みと時刻コード読み出しに分けて、ビット記憶部が設けられている。
具体的には、図19のデータ記憶部52は、書き込み制御部611Aおよび読み出し制御部611Bと、N個の書き込みビット記憶部612A-1乃至612A-NおよびN個の読み出しビット記憶部612B-1乃至612B-Nとを備える。
書き込み制御部611Aは、比較回路51からの出力である出力信号VCOに基づいて、書き込み時刻コード転送部602Aから供給される時刻コードを、書き込みビット記憶部612A-1乃至612A-Nに記憶させる。
書き込み制御部611Aは、直列接続された2個のインバータ621A及び622Aと、N個の時刻コード入力回路623A-1乃至623A-Nとで構成される。
2個のインバータ621A及び622Aは、比較回路51からの出力である出力信号VCOと、その反転信号を、書き込みビット記憶部612Aに供給する。2個のインバータ621A及び622Aは、上述した第1乃至第4構成のインバータ281及び282と同様の機能を果たす。
N個の時刻コード入力回路623A-1乃至623A-Nは、それぞれ、上述した第1乃至第4構成の双方向バッファ回路371-1乃至371-Nの時刻コード書き込み側と同じバッファ回路381で構成される。バッファ回路381は、書き込み時刻コード転送部602Aの所定のD-F/F351と接続されており、Hiの書き込み制御信号WRが供給されている間、D-F/F351から供給された時刻コードを、書き込みビット記憶部612Aに供給する。
書き込みビット記憶部612A-1乃至612A-Nは、それぞれ、読み出しビット記憶部612B-1乃至612B-Nと接続されており、記憶している時刻コードを、所定のタイミングで、読み出しビット記憶部612B-1乃至612B-Nに転送する。
読み出しビット記憶部612B-1乃至612B-Nは、入力されるクロック信号CLKおよびxCLKに基づく所定のタイミングで、書き込みビット記憶部612A-1乃至612A-Nから時刻コードを取得し、記憶する。
読み出し制御部611Bは、読み出しタイミングを制御するWORD信号に基づいて、読み出しビット記憶部612B-1乃至612B-Nに記憶されているAD変換画素データとしての時刻コードを読み出し、読み出し時刻コード転送部602Bへ出力する。
読み出し制御部611Bは、直列接続された2個のインバータ621B及び622Bと、N個の時刻コード出力回路623B-1乃至623B-Nとで構成される。2個のインバータ621B及び622Bは、読み出しタイミングを制御するWORD信号と、その反転信号を、読み出しビット記憶部612B-1乃至612B-Nに供給する。
N個の時刻コード出力回路623B-1乃至623B-Nは、それぞれ、上述した第1乃至第4構成の双方向バッファ回路371-1乃至371-Nの時刻コード読み出し側と同じインバータ回路382で構成される。インバータ回路382は、読み出し時刻コード転送部602Bの所定のD-F/F351と接続されており、Hiとなる読み出し制御信号RDが供給されている間、読み出しビット記憶部612B-1乃至612B-Nに記憶されている時刻コード(AD変換画素データ)を、読み出し時刻コード転送部602BのD-F/F351に供給する。
図20を参照して、書き込みビット記憶部612A-nと読み出しビット記憶部612B-nの詳細構成について説明する。
図20のAは、書き込みビット記憶部612A-nと読み出しビット記憶部612B-nの回路図の例である。
書き込みビット記憶部612A-nは、図8のビット記憶部242-nと同様に、トランスファゲート631と、ラッチ記憶部632とで構成されている。
トランスファゲート631は、NMOSトランジスタN1とPMOSトランジスタP1で構成されている。ラッチ記憶部632は、NMOSトランジスタN2乃至N4とPMOSトランジスタP2乃至P4とからなるスタティック型のラッチ回路で構成されている。各トランジスタの接続と入力信号は、図8のビット記憶部242-nと同様である。
時刻コードの書き込み動作においては、トランスファゲート631は、出力信号VCO(図20の入力L)がHiのとき導通し、Loのとき遮断する。ラッチ記憶部632のフィードバック(入力QWに対する出力xQW)は、出力信号VCOがHiのとき遮断し、Loのとき導通する。したがって、ラッチ記憶部632は、出力信号VCOがHiのとき、nビット目の時刻コードの書き込み状態(トランスペアレント)となり、出力信号VCOがLoのとき、時刻コード入力回路623A-n(図19)を経由して書き込まれた時刻コードの保持状態(ラッチ状態)となる。
読み出しビット記憶部612B-nは、トランスファゲート641、ラッチ記憶部642、および、トランスファゲート643で構成されている。
トランスファゲート641は、NMOSトランジスタN5とPMOSトランジスタP5で構成されている。
ラッチ記憶部642は、NMOSトランジスタN6乃至N8とPMOSトランジスタP6乃至P8とからなるスタティック型のラッチ回路で構成されている。
トランスファゲート643は、NMOSトランジスタN9とPMOSトランジスタP9で構成されている。
書き込みビット記憶部612A-nから読み出しビット記憶部612B-nへの時刻コード転送のタイミングを制御するクロック信号CLKは、トランスファゲート641のNMOSトランジスタN5のゲートと、ラッチ記憶部642のPMOSトランジスタP6のゲートに供給される。クロック信号CLKの反転信号xCLKは、トランスファゲート641のPMOSトランジスタP5のゲートと、ラッチ記憶部642のNMOSトランジスタN6のゲートに供給される。
読み出しビット記憶部612B-nでは、入力されるクロック信号CLKがHiのとき、トランスファゲート641が導通し、書き込みビット記憶部612A-nのラッチ記憶部632に記憶されている時刻コードが、ラッチ記憶部642に転送され、保持される。
読み出しタイミングを制御するWORD信号(図20の入力T)は、トランスファゲート643のNMOSトランジスタN9のゲートに供給され、PMOSトランジスタP9のゲートには、WORD信号の反転信号が供給される。
トランスファゲート643は、HiのWORD信号が入力されたときのみ導通し、ラッチ記憶部642に保持された時刻コードが、時刻コード出力回路623B-n(図19)を経由して読み出し時刻コード転送部602Bに出力される。
図20のBは、書き込みビット記憶部612A-nと読み出しビット記憶部612B-nのトランジスタ配置例を示している。
図20のBに示されるように、書き込みビット記憶部612A-nと読み出しビット記憶部612B-nは、PMOSトランジスタP1乃至P9を1列に並べ、その隣にNMOSトランジスタN1乃至N9を1列に並べるように配置して形成することができる。書き込み時刻コードW_DATAと読み出し時刻コードR_DATAを伝送する配線は、隣接する他のクラスタUと共有することができる。
次に、図21を参照して、上述した時刻コード転送部23とデータ記憶部52の第1乃至第5構成の特徴について説明する。
図21は、上述した第1乃至第5構成における所定の画素のP相データとD相データの書き込み及び読み出しの時刻コード転送動作を横軸方向を時間軸として示した図である。
図21のAは、時刻コード転送部23とデータ記憶部52の第1及び第2構成(図8、図15)の時刻コード転送動作を示している。
図21のBは、時刻コード転送部23とデータ記憶部52の第3構成(図16)の時刻コード転送動作を示している。
図21のCは、時刻コード転送部23とデータ記憶部52の第4構成(図18)の時刻コード転送動作を示している。
図21のDは、時刻コード転送部23とデータ記憶部52の第5構成(図19)の時刻コード転送動作を示している。
図21において、かっこ内の数字が異なる時刻データ(P相データまたはD相データ)は、異なる画素の時刻データを表している。P相データの書き込み時間は、D相データの書き込み時間よりも短い。また、読み出し時間に関しては、P相データとD相データは同等か、または、システムによってP相データとD相データのどちらかが短くなる場合がある。なお、図21のA乃至Dにおいて、太線の破線は、1つのシフトレジスタ341で構成された1つの時刻コード転送パスを示している。
時刻コード転送部23とデータ記憶部52の第1及び第2構成では、時刻コード転送部23は、1つの時刻コード転送パスしかないため、図21のAに示されるように、P相データの書き込み、P相データの読み出し、D相データの書き込み、D相データの読み出し、が直列的に実行される。換言すれば、前段の書き込み動作または読み出し動作が終了するまでは、次の書き込み動作または読み出し動作を実行することができない。
第1及び第2構成において、1画素のP相データの書き込みからD相データの読み出しが終了するまでにかかる時間は、図21のAに示されるT1時間である。
これに対して、第3構成の場合には、図21のBに示されるように、P相データとD相データを、別々の時刻コード転送パスで転送することができるため、P相データの書き込みの終了後、P相データの読み出し完了を待たずに、すぐにD相データの書き込みを開始することができる。
1画素のP相データの書き込みからD相データの読み出しが終了するまでにかかる時間は、図21のBに示されるT2時間であり、第1及び第2構成の場合のT1時間よりも短い。したがって、第3構成によれば、第1及び第2構成と比較して、より高速な撮像を行うことができる。
また、P相データ取得とD相データ取得の時間的間隔が短縮されるので、CDS処理時の雑音相殺効果を高めることができる。
第4構成の場合も、第3構成と同様に、図21のCに示されるように、P相データとD相データを、別々の時刻コード転送パスで転送することができるため、P相データの書き込みの終了後、P相データの読み出し完了を待たずに、すぐにD相データの書き込みを開始することができる。
1画素のP相データの書き込みからD相データの読み出しが終了するまでにかかる時間は、T1時間よりも短いT2時間となるので、より高速な撮像を行うことができる。
また、P相データ取得とD相データ取得の時間的間隔が短縮されるので、CDS処理時の雑音相殺効果を高めることができる。
第3構成と第4構成との違いは、第3構成では、1つの時刻コード転送パスを用いて転送される時刻コードが、P相データとD相データに分けられるのに対して、第4構成では、書き込みと読み出しとに分けられる。そのため、P相データを書き込む際の時刻コードと、D相データを書き込む際の時刻コードが、同一の時刻コード転送パスを通過する。
CDS処理においては、P相データを書き込む際の時刻コードと、D相データを書き込む際の時刻コードの相関関係が高いことが要求される。
時刻コード転送パスは、比較的長距離となるため、寄生CRやトランジスタのバラツキによって、時刻コードの到達時間にバラツキが生じる場合がある。第3構成では、このバラツキが無視できるように回路サイズやレイアウトを工夫する必要がある。
これに対して、第4構成では、P相データを書き込む際の時刻コードと、D相データを書き込む際の時刻コードが同一の時刻コード転送パスを通過するため、時刻コード転送パスの違いによる時刻コードの到達時間のバラツキを心配する必要が無い。
従って、第4構成によれば、第3構成よりも、P相データを書き込む際の時刻コードと、D相データを書き込む際の時刻コードの相関関係を高くすることができる。
第5構成の場合、2つの時刻コード転送パスの動作は、図21のDに示されるように、第4構成と同様である。書き込みビット記憶部612Aから読み出しビット記憶部612Bへ時刻コードを転送することによって、時刻コード転送パスが変更される。
第5構成では、図19から明らかなように、比較回路51からの出力信号VCOを伝送するパスも共通化されるため、第4構成よりもさらに、P相データを書き込む際の時刻コードと、D相データを書き込む際の時刻コードの相関関係を高くすることができる。
また、データ記憶部52の内部を、時刻コード書き込み用と時刻コード読み出し用に分けることで、回路構成も簡単になり、素子数の削減が可能となり、回路面積を縮小させることができる。
<10.データ記憶部と時刻コード転送部の第6構成例>
図22は、時刻コード転送部23とデータ記憶部52の第6構成を示す回路図である。
図22の第6構成は、図19に示した第5構成のデータ記憶部52の読み出しビット記憶部612B-1乃至612B-N及び読み出し制御部611Bを、P相データ用とD相データ用に分離して設けた構成とされている。
即ち、図22の第6構成では、図19の第5構成のデータ記憶部52の読み出しビット記憶部612B-1乃至612B-Nと読み出し制御部611Bに代えて、P相データ用のP相ビット記憶部612BP-1乃至612BP-NとP相読み出し制御部611BP、および、D相データ用のD相ビット記憶部612BD-1乃至612BD-NとD相読み出し制御部611BDが設けられている。
また、時刻コード転送部23も、図19に示した第5構成の時刻コード読み出し用の読み出し時刻コード転送部602Bが、P相データ用のP相時刻コード転送部602BPとD相データ用のD相時刻コード転送部602BDに置き換えられている。これにより、時刻コード転送部23は、書き込み時刻コード転送部602Aと合せて、3つの時刻コード転送パスを有している。図22では、紙面の制約上、時刻コード転送部23を左右に分離して示してある。
図22のその他の構成は、図19の第5構成と同様である。
図23は、図22の書き込みビット記憶部612A-nとP相ビット記憶部612BP-n及びD相ビット記憶部612BD-nの詳細構成例を示している。
書き込みビット記憶部612A-nは、図20で示した構成と同一であるので、その説明は省略する。
P相ビット記憶部612BP-n及びD相ビット記憶部612BD-nは、図20で示した読み出しビット記憶部612B-nと同一の構成をP相データ用とD相データ用にそれぞれ設けた構成とされている。
具体的には、D相ビット記憶部612BD-nは、図20で示した読み出しビット記憶部612B-nと同一のPMOSトランジスタP5乃至P9とNMOSトランジスタN5乃至N9とを備え、D相データ用のトランスファゲート641、ラッチ記憶部642、および、トランスファゲート643である、トランスファゲート641D、ラッチ記憶部642D、および、トランスファゲート643Dで構成されている。
P相ビット記憶部612BP-nは、図20で示した読み出しビット記憶部612B-nのPMOSトランジスタP5乃至P9とNMOSトランジスタN5乃至N9に対応するPMOSトランジスタP10乃至P14とNMOSトランジスタN10乃至N14とを備え、P相データ用のトランスファゲート641、ラッチ記憶部642、および、トランスファゲート643である、トランスファゲート641P、ラッチ記憶部642P、および、トランスファゲート643Pで構成されている。
P相ビット記憶部612BP-n及びD相ビット記憶部612BD-nの動作は、図20で示した読み出しビット記憶部612B-nの動作がP相データ用とD相データ用とで別々に実行される点を除いて同一である。
図24は、図23の書き込みビット記憶部612A-nとP相ビット記憶部612BP-n及びD相ビット記憶部612BD-nのトランジスタ配置例を示している。
図24において、破線で囲まれた1つの領域が、1つの書き込みビット記憶部612A-nと1つのP相ビット記憶部612BP-n及びD相ビット記憶部612BD-nに対応する。したがって、図24では、2つの書き込みビット記憶部612A-nと2つのP相ビット記憶部612BP-n及びD相ビット記憶部612BD-nが隣り合うように配置されている。書き込み時刻コードW_DATAと読み出し時刻コードP_DATA及びD_DATAを伝送する配線は、隣接する他のクラスタUと共有することができる。
図25を参照して、時刻コード転送部23とデータ記憶部52の第5構成と第6構成の違いについて説明する。
図25のAは、図21のDと同じ、第5構成における時刻コード転送動作を再び示した図である。
図25のBは、第6構成における時刻コード転送動作を示した図である。
例えば、P相データの書き込み(2)が終了した時点で、すぐに他方の時刻コード転送パスへ時刻コードを転送して、P相データの読み出し動作を開始させたいが、第5構成の場合、図25のAに示されるように、D相データの読み出し(1)の動作が終了するまで時刻コードの転送を待つ必要がある。
これに対して、第6構成の場合、図25のBに示されるように、P相データを読み出す時刻コード転送パスと、D相データを読み出す時刻コード転送パスが異なるので、例えば、D相データの読み出し(1)の動作に関係なく、P相データの書き込み(2)が終了した時点で、P相データの時刻コード転送パスへすぐに時刻コードを転送して、読み出し動作を開始させることができる。その結果、D相データの時刻コードの読み出し動作とP相データの時刻コードの読み出し動作は、一部の期間で重複する。
これにより、1画素のP相データの書き込みからD相データの読み出しが終了するまでにかかる時間はT2時間であるが、一部の期間で重複して動作するため、1枚の画像としての撮像時間は短くなる。よって、第6構成によれば、第5構成よりもさらに高速な撮像を行うことができる。
また、第6構成では、図26に示されるような動作も可能である。
図25のBでは、P相読み出し制御部611BPは、例えば、P相データの書き込み(1)の終了後、下段のP相データの時刻コード転送パスへ転送して、P相データの読み出し(1)を即座に開始した。
これに対して、図26では、P相読み出し制御部611BPは、例えば、P相データの書き込み(1)が終了しても、P相ビット記憶部612BP-1乃至612BP-Nで、D相データの読み出し(1)が開始されるまで待機する。そして、P相読み出し制御部611BPは、D相データの読み出し(1)が開始されるタイミングに合わせて、P相データの読み出し(1)を開始する。このように、P相読み出し制御部611BPは、同一画素のP相データとD相データが並列に転送されるように読み出しタイミングを制御する。
図25のBの駆動では、CDS処理を行うためにP相データを一時記憶するフレームメモリが出力部28に必要となる。一方、図26の駆動では、同一画素のP相データとD相データが同時に転送されるので、そのままCDS処理を行うことができ、P相データを一時記憶するフレームメモリが不要になる。
ただし、図26のように駆動した場合には、P相時刻コード転送部602BP(時刻コード転送パス)を経由したP相データの転送と、D相時刻コード転送部602BD(時刻コード転送パス)を経由したD相データの転送が同じタイミング(ほぼ同じタイミング)で実行されるため、動作電流が増加して、電源電圧の低下を招くおそれがある。
そこで、時刻コード転送部23は、図27に示されるようにP相データの転送とD相データの転送を実行することができる。
図27の上側半分は、P相時刻コード転送部602BP(時刻コード転送パス)を経由したP相データの転送のタイミングを示し、図27の下側半分は、D相時刻コード転送部602BD(時刻コード転送パス)を経由したD相データの転送のタイミングを示している。
P相時刻コード転送部602BPとD相時刻コード転送部602BDそれぞれのデータ転送の流れは、図14と同様であるので、説明は省略する。列方向に並ぶクラスタUの個数や1個のクラスタU内の画素数などの条件も図14と同様とする。
時刻コード転送部23は、P相時刻コード転送部602BPのシフトクロックと、D相時刻コード転送部602BDのシフトクロックとを相補的に実行させる。より具体的には、P相読み出し制御部611BPは、D相時刻コード転送部602BDがシフトクロックによるD相データの転送動作を行っている最中に、読み出し制御信号P_RDに基づくP相時刻コード転送部602BPのD-F/F351へのP相データの時刻コード(AD変換画素データ)の格納を行う。また、D相読み出し制御部611BDは、P相時刻コード転送部602BPがシフトクロックによるP相データの転送動作を行っている最中に、読み出し制御信号D_RDに基づくD相時刻コード転送部602BDのD-F/F351へのD相データの時刻コード(AD変換画素データ)の格納を行う。
このようにP相データの転送とD相データの転送を相補的に実行することで、P相時刻コード転送部602BPとD相時刻コード転送部602BDが時間差をもって動作するので、動作電流の増加を抑制することができる。
なお、このような相補的な時刻コード転送動作は、上述した第1乃至第5構成の複数の時刻コード転送部23で実行してもよい。例えば、図19に示した第5構成を採用した固体撮像装置1において、画素アレイ部22内の隣り合う時刻コード転送部23の読み出し時刻コード転送部602Bどうしが、シフトクロックを相補的に実行させることができる。
<11.データ記憶部と時刻コード転送部の第7構成例>
図28は、時刻コード転送部23とデータ記憶部52の第7構成を示す回路図である。
図28の第7構成は、データ記憶部52に関しては図22の第6構成と共通するが、時刻コード転送部23の構成が第6構成と異なる。
図22の第6構成の時刻コード転送部23は、書き込み時刻コード転送部602A、P相時刻コード転送部602BP、及び、D相時刻コード転送部602BDにより構成されていたが、図28の第7構成の時刻コード転送部23は、書き込み時刻コード転送部602Aと、読み出し時刻コード転送部602BXにより構成されている。
言い換えれば、第6構成のP相時刻コード転送部602BPとD相時刻コード転送部602BDが、読み出し時刻コード転送部602BXに一元化されている。読み出し時刻コード転送部602BXは、N個のシフトレジスタ341BX-1乃至341BX-Nと、クロック供給回路342BXとで構成されている。
ただし、読み出し時刻コード転送部602BXは、第6構成のP相読み出し制御部611BPやD相読み出し制御部611BDと比較すると、各シフトレジスタ341BX内のD-F/F351の個数が異なる。
具体的には、読み出し時刻コード転送部602BXのシフトレジスタ341BXのD-F/F351の個数は、第6構成のP相読み出し制御部611BPやD相読み出し制御部611BDのシフトレジスタ341BのD-F/F351の個数の2倍である。そして、同一画素のP相データとD相データが交互に転送されるように、P相読み出し制御部611BPとD相読み出し制御部611BDが、シフトレジスタ341BXのD-F/F351と接続されている。換言すれば、P相読み出し制御部611BPの時刻コード出力回路623Bと接続されているD-F/F351の隣りのD-F/F351に、D相読み出し制御部611BDの時刻コード出力回路623Bが接続されている。
このような第7構成によれば、読み出し時刻コード転送部602BXによってP相データとD相データが交互に転送されるので、出力部28において、そのままCDS処理を行うことができ、P相データを一時記憶するフレームメモリが不要になる。
また、回路面積の観点において、図22の第6構成のように、P相データ用のP相時刻コード転送部602BPとD相データ用のD相時刻コード転送部602BDを配置することが難しい場合には、第7構成が有利となる。
<12.複数基板構成1>
これまでの説明では、固体撮像装置1が、1枚の半導体基板11上に形成されるものとして説明したが、複数枚の半導体基板11に回路を作り分けることで、固体撮像装置1を構成してもよい。
図29は、上側基板11Aと下側基板11Cの2枚の半導体基板11を積層することで固体撮像装置1を構成する概念図を示している。
上側基板11Aには、フォトダイオード121を含む画素回路41が少なくとも形成されている。下側基板11Cには、時刻コードを記憶するデータ記憶部52と時刻コード転送部23が少なくとも形成されている。上側基板11Aと下側基板11Cは、例えば、Cu-Cuなどの金属結合などにより接合される。
図30は、上側基板11Aと下側基板11Cのそれぞれに形成される回路構成例を示している。
上側基板11Aには、画素回路41と、ADC42のうちの差動入力回路61のトランジスタ81、82、及び85の回路が形成されている。下側基板11Cには、トランジスタ81、82、及び85を除くADC42の回路と時刻コード転送部23が形成されている。
<13.複数基板構成2>
図29及び図30は、固体撮像装置1を2枚の半導体基板11で構成した例であるが、3枚の半導体基板11で構成することもできる。
図31は、上側基板11A、中間基板11B、及び、下側基板11Cの3枚の半導体基板11を積層することで、固体撮像装置1を構成する概念図を示している。
上側基板11Aには、フォトダイオード121を含む画素回路41と、比較回路51の少なくとも一部の回路が形成されている。下側基板11Cには、時刻コードを記憶するデータ記憶部52と時刻コード転送部23が少なくとも形成されている。中間基板11Bには、上側基板11Aに配置されない比較回路51の残りの回路が形成されている。上側基板11Aと中間基板11B、及び、中間基板11Bと下側基板11Cは、例えば、Cu-Cuなどの金属結合などにより接合される。
図32は、固体撮像装置1を3枚の半導体基板11で形成する場合の各半導体基板11の回路配置例を示している。
図32の例では、上側基板11Aに配置した回路は、図30に示した上側基板11Aの回路と同じであり、比較回路51の残りの回路が中間基板11Bに配置され、データ記憶部52と時刻コード転送部23が下側基板11Cに配置されている。
<14.電子機器への適用例>
本開示は、固体撮像装置への適用に限られるものではない。即ち、本開示は、デジタルスチルカメラやビデオカメラ等の撮像装置や、撮像機能を有する携帯端末装置や、画像読取部に固体撮像装置を用いる複写機など、画像取込部(光電変換部)に固体撮像装置を用いる電子機器全般に対して適用可能である。固体撮像装置は、ワンチップとして形成された形態であってもよいし、撮像部と信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。
図33は、本開示に係る電子機器としての、撮像装置の構成例を示すブロック図である。
図33の撮像装置800は、レンズ群などからなる光学部801、図1の固体撮像装置1の構成が採用される固体撮像装置(撮像デバイス)802、およびカメラ信号処理回路であるDSP(Digital Signal Processor)回路803を備える。また、撮像装置800は、フレームメモリ804、表示部805、記録部806、操作部807、および電源部808も備える。DSP回路803、フレームメモリ804、表示部805、記録部806、操作部807および電源部808は、バスライン809を介して相互に接続されている。
光学部801は、被写体からの入射光(像光)を取り込んで固体撮像装置802の撮像面上に結像する。固体撮像装置802は、光学部801によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。この固体撮像装置802として、図1の固体撮像装置1、即ち、画素信号をAD変換する際の判定速度を向上させつつ、消費電力を低減させた比較回路51や、高速動作を実現した時刻コード転送部23を有する固体撮像装置を用いることができる。
表示部805は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、固体撮像装置802で撮像された動画または静止画を表示する。記録部806は、固体撮像装置802で撮像された動画または静止画を、ハードディスクや半導体メモリ等の記録媒体に記録する。
操作部807は、ユーザによる操作の下に、撮像装置800が持つ様々な機能について操作指令を発する。電源部808は、DSP回路803、フレームメモリ804、表示部805、記録部806および操作部807の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
上述したように、固体撮像装置802として、上述したいずれかの構成を採用した固体撮像装置1を用いることで、AD変換の判定速度を高速化させ、高速に動作させることができる。従って、ビデオカメラやデジタルスチルカメラ、さらには携帯電話機等のモバイル機器向けカメラモジュールなどの撮像装置800においても、撮影の高速化と低消費電力を実現することができる。
上述した説明では、比較回路51及びADC42は、固体撮像装置1に組み込まれた部品として説明したが、それぞれ単独で流通する製品(比較器、AD変換器)とすることができる。
また、本開示は、固体撮像装置に限らず、他の半導体集積回路を有する半導体装置全般に対して適用可能である。
本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
上述した各実施の形態の回路構成は、電子を電荷とする回路構成として説明したが、本開示は、正孔を電荷とする回路構成とすることもできる。また、上述した各回路構成において、トランジスタの極性(NMOSトランジスタとPMOSトランジスタ)を入れ替えた回路構成でも実現可能である。その場合、トランジスタに入力される制御信号は、HiとLowが反対の信号となる。
上述した各実施の形態では、参照信号REFが時間経過に応じてレベル(電圧)が単調減少するスロープ信号であるとして説明したが、参照信号REFは、時間経過に応じてレベル(電圧)が単調増加するスロープ信号とすることもできる。
上述した各実施の形態では、ADC42が共有される場合、4つの画素21でADC42が共有される例について説明したが、共有される画素21の個数は4個に限らず、その他の個数(例えば、8個)とすることができる。
その他、上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することができる。上述した実施の形態では説明していない他の実施の形態どうしを適宜組み合わせた形態も可能である。
図1では、時刻コード発生部26が、図面内の上側、出力部28が図面内の下側に配置されているが、例えば、水平方向で隣り合うクラスタUどうしが、時刻コードの転送方向が上下逆となるように、時刻コード発生部26と出力部28の配置を交互に配置してもよい。例えば、クラスタUの水平方向の位置がDAC25側から数えて奇数番目のクラスタUについては、時刻コード発生部26を上側、出力部28を下側に配置して、時刻コードが上から下方向に転送されるようにし、偶数番目のクラスタUについては、時刻コード発生部26を下側、出力部28を上側に配置して、時刻コードが下から上方向に転送されるようにする。これにより、時刻コード発生部26や出力部28の回路集中を抑制することができる。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
なお、本開示は以下のような構成も取ることができる。
(1)
第1の電源電圧で動作し、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力する差動入力回路と、
前記第1の電源電圧よりも低い第2の電源電圧で動作し、前記差動入力回路からの出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化する正帰還回路と、
前記差動入力回路の前記出力信号を、前記第2の電源電圧に対応する信号に変換する電圧変換回路と、
前記比較結果信号が反転したときの時刻コードを記憶するデータ記憶部と
を有するAD変換器と、
前記時刻コードを転送するシフトレジスタを有する複数の時刻コード転送部と
を備える固体撮像装置。
(2)
前記複数の時刻コード転送部は、前記データ記憶部へ書き込むための前記時刻コードを転送する書き込み時刻コード転送部と、前記データ記憶部から読み出された前記時刻コードを転送する読み出し時刻コード転送部を含む
前記(1)に記載の固体撮像装置。
(3)
前記複数の時刻コード転送部は、複数の前記読み出し時刻コード転送部を含む
前記(2)に記載の固体撮像装置。
(4)
複数の前記読み出し時刻コード転送部は、前記データ記憶部から読み出されたP相データ用の前記時刻コードを転送するP相時刻コード転送部と、前記データ記憶部から読み出されたD相データ用の前記時刻コードを転送するD相時刻コード転送部を含む
前記(3)に記載の固体撮像装置。
(5)
前記データ記憶部は、P相データ用の前記時刻コードを記憶するP相データ記憶部と、D相データ用の前記時刻コードを記憶するD相データ記憶部とを有し、
前記P相時刻コード転送部は、前記P相データ記憶部に書き込まれたP相データ用の前記時刻コードを転送し、
前記D相時刻コード転送部は、前記D相データ記憶部に書き込まれたD相データ用の前記時刻コードを転送する
前記(4)に記載の固体撮像装置。
(6)
前記P相時刻コード転送部は、前記D相時刻コード転送部によるD相データ用の前記時刻コードの転送と同じタイミングで、前記P相データ記憶部に書き込まれたP相データ用の前記時刻コードを転送する
前記(5)に記載の固体撮像装置。
(7)
前記P相時刻コード転送部は、前記シフトレジスタのシフトクロックを、前記D相時刻コード転送部のシフトクロックと相補的に実行する
前記(5)に記載の固体撮像装置。
(8)
前記読み出し時刻コード転送部は、P相データ用の前記時刻コードと、D相データ用の前記時刻コードを交互に転送する
前記(2)に記載の固体撮像装置。
(9)
前記複数の時刻コード転送部は、P相データ用の前記時刻コードを転送するP相時刻コード転送部と、D相データ用の前記時刻コードを転送するD相時刻コード転送部である
前記(1)に記載の固体撮像装置。
(10)
前記データ記憶部は、前記書き込み時刻コード転送部から供給された前記時刻コードを記憶する書き込みデータ記憶部と、前記読出し時刻コード転送部へ供給する前記時刻コードを記憶する読み出しデータ記憶部とを有する
前記(2)乃至(6)のいずれかに記載の固体撮像装置。
(11)
前記データ記憶部は、前記書き込み時刻コード転送部から供給された前記時刻コードを記憶する書き込みデータ記憶部、P相データ用の前記時刻コードを記憶するP相データ記憶部、および、D相データ用の前記時刻コードを記憶するD相データ記憶部を有する
前記(2)乃至(6)のいずれかに記載の固体撮像装置。
(12)
前記データ記憶部は、P相データ用の前記時刻コードを記憶するP相データ記憶部と、D相データ用の前記時刻コードを記憶するD相データ記憶部とを有する
前記(1)に記載の固体撮像装置。
(13)
前記データ記憶部に対する前記時刻コードの書き込み動作と読み出し動作を切り替える双方向バッファをさらに備える
前記(12)に記載の固体撮像装置。
(14)
前記シフトレジスタは、入力されるクロック信号が所定の値であるときにハイインピーダンス状態となる複数のD-F/Fを有する
前記(1)乃至(13)のいずれかに記載の固体撮像装置。
(15)
前記AD変換器は、複数の画素で共有されている
前記(1)乃至(14)のいずれかに記載の固体撮像装置。
(16)
前記AD変換器は、画素ごとに配置される
前記(1)乃至(14)のいずれかに記載の固体撮像装置。
(17)
複数の半導体基板で構成されている
前記(1)乃至(16)のいずれかに記載の固体撮像装置。
(18)
第1の電源電圧で動作する差動入力回路と、前記第1の電源電圧よりも低い第2の電源電圧で動作する正帰還回路と、電圧変換回路とを有する比較器と、データ記憶部とを備えるAD変換器と、シフトレジスタを有する複数の時刻コード転送部とを備える固体撮像装置の
前記差動入力回路が、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力し、
前記電圧変換回路が、前記差動入力回路の出力信号を、前記第2の電源電圧に対応する信号に変換し、
前記正帰還回路が、前記電圧変換回路により変換された前記差動入力回路の出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化し、
前記データ記憶部が、前記比較結果信号が反転したときの時刻コードを記憶し、
前記複数の時刻コード転送部のそれぞれが、前記時刻コードを転送する
固体撮像装置の駆動方法。
(19)
第1の電源電圧で動作し、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力する差動入力回路と、
前記第1の電源電圧よりも低い第2の電源電圧で動作し、前記差動入力回路からの出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化する正帰還回路と、
前記差動入力回路の前記出力信号を、前記第2の電源電圧に対応する信号に変換する電圧変換回路と、
前記比較結果信号が反転したときの時刻コードを記憶するデータ記憶部と
を有するAD変換器と、
前記時刻コードを転送するシフトレジスタを有する複数の時刻コード転送部と
を備える固体撮像装置
を備える電子機器。
1 固体撮像装置, 21 画素, 22 画素アレイ部, 23 時刻コード転送部, 26 時刻コード発生部, 28 出力部, 41 画素回路, 42 ADC, 51 比較回路, 52 データ記憶部, 61 差動入力回路, 62 電圧変換回路, 63 正帰還回路, 71 ラッチ制御回路, 72 ラッチ記憶部, 81乃至86,91 トランジスタ, 101乃至105 トランジスタ, 242P-1乃至242P-N P相ビット記憶部, 242D-1乃至242D-N D相ビット記憶部, 341 シフトレジスタ, 342 クロック供給回路, 351 D-F/F, 371 双方向バッファ回路, 601P P相時刻コード転送部, 601D D相時刻コード転送部, 602A 書き込み時刻コード転送部, 602B 読み出し時刻コード転送部, 602BP P相時刻コード転送部, 602BD D相時刻コード転送部, 612A-1乃至612A-N 書き込みビット記憶部, 612B-1乃至612B-N 読み出しビット記憶部, 612BP-1乃至612BP-N P相ビット記憶部, 612BD-1乃至612BD-N D相ビット記憶部, 800 撮像装置, 802 固体撮像装置

Claims (15)

  1. 第1の電源電圧で動作し、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力する差動入力回路と、
    前記第1の電源電圧よりも低い第2の電源電圧で動作し、前記差動入力回路からの出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化する正帰還回路と、
    前記差動入力回路の前記出力信号を、前記第2の電源電圧に対応する信号に変換する電圧変換回路と、
    前記比較結果信号が反転したときの時刻コードを記憶するデータ記憶部と
    を有するAD変換器と、
    前記時刻コードを転送するシフトレジスタを有する複数の時刻コード転送部と
    を備え、
    前記複数の時刻コード転送部は、前記データ記憶部へ書き込むための前記時刻コードを転送する書き込み時刻コード転送部と、前記データ記憶部から読み出された前記時刻コードを転送する読み出し時刻コード転送部を含む
    固体撮像装置。
  2. 前記複数の時刻コード転送部は、複数の前記読み出し時刻コード転送部を含む
    請求項に記載の固体撮像装置。
  3. 複数の前記読み出し時刻コード転送部は、前記データ記憶部から読み出されたP相データ用の前記時刻コードを転送するP相時刻コード転送部と、前記データ記憶部から読み出されたD相データ用の前記時刻コードを転送するD相時刻コード転送部を含む
    請求項に記載の固体撮像装置。
  4. 前記データ記憶部は、P相データ用の前記時刻コードを記憶するP相データ記憶部と、D相データ用の前記時刻コードを記憶するD相データ記憶部とを有し、
    前記P相時刻コード転送部は、前記P相データ記憶部に書き込まれたP相データ用の前記時刻コードを転送し、
    前記D相時刻コード転送部は、前記D相データ記憶部に書き込まれたD相データ用の前記時刻コードを転送する
    請求項に記載の固体撮像装置。
  5. 前記P相時刻コード転送部は、前記D相時刻コード転送部によるD相データ用の前記時刻コードの転送と同じタイミングで、前記P相データ記憶部に書き込まれたP相データ用の前記時刻コードを転送する
    請求項に記載の固体撮像装置。
  6. 前記P相時刻コード転送部は、前記シフトレジスタのシフトクロックを、前記D相時刻コード転送部のシフトクロックと相補的に実行する
    請求項に記載の固体撮像装置。
  7. 前記読み出し時刻コード転送部は、P相データ用の前記時刻コードと、D相データ用の前記時刻コードを交互に転送する
    請求項に記載の固体撮像装置。
  8. 前記データ記憶部は、前記書き込み時刻コード転送部から供給された前記時刻コードを記憶する書き込みデータ記憶部と、前記読み出し時刻コード転送部へ供給する前記時刻コードを記憶する読み出しデータ記憶部とを有する
    請求項に記載の固体撮像装置。
  9. 前記データ記憶部は、前記書き込み時刻コード転送部から供給された前記時刻コードを記憶する書き込みデータ記憶部、P相データ用の前記時刻コードを記憶するP相データ記憶部、および、D相データ用の前記時刻コードを記憶するD相データ記憶部を有する
    請求項に記載の固体撮像装置。
  10. 前記シフトレジスタは、入力されるクロック信号が所定の値であるときにハイインピーダンス状態となる複数のD-F/Fを有する
    請求項1に記載の固体撮像装置。
  11. 前記AD変換器は、複数の画素で共有されている
    請求項1に記載の固体撮像装置。
  12. 前記AD変換器は、画素ごとに配置される
    請求項1に記載の固体撮像装置。
  13. 複数の半導体基板で構成されている
    請求項1に記載の固体撮像装置。
  14. 第1の電源電圧で動作する差動入力回路と、前記第1の電源電圧よりも低い第2の電源電圧で動作する正帰還回路と、電圧変換回路とを有する比較器と、データ記憶部とを備えるAD変換器と、シフトレジスタを有する複数の時刻コード転送部とを備え、前記複数の時刻コード転送部は、前記データ記憶部へ書き込むための時刻コードを転送する書き込み時刻コード転送部と、前記データ記憶部から読み出された前記時刻コードを転送する読み出し時刻コード転送部を含む固体撮像装置の
    前記差動入力回路が、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力し、
    前記電圧変換回路が、前記差動入力回路の出力信号を、前記第2の電源電圧に対応する信号に変換し、
    前記正帰還回路が、前記電圧変換回路により変換された前記差動入力回路の出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化し、
    前記書き込み時刻コード転送部が、前記データ記憶部へ書き込むための前記時刻コードを転送し、
    前記データ記憶部が、前記比較結果信号が反転したときの前記時刻コードを記憶し、
    前記読み出し時刻コード転送部が、前記データ記憶部から読み出された前記時刻コードを転送する
    固体撮像装置の駆動方法。
  15. 第1の電源電圧で動作し、画素信号の電圧が参照信号の電圧よりも高いときに信号を出力する差動入力回路と、
    前記第1の電源電圧よりも低い第2の電源電圧で動作し、前記差動入力回路からの出力信号に基づいて、前記画素信号と前記参照信号の電圧の比較結果を表す比較結果信号が反転するときの遷移速度を高速化する正帰還回路と、
    前記差動入力回路の前記出力信号を、前記第2の電源電圧に対応する信号に変換する電圧変換回路と、
    前記比較結果信号が反転したときの時刻コードを記憶するデータ記憶部と
    を有するAD変換器と、
    前記時刻コードを転送するシフトレジスタを有する複数の時刻コード転送部と
    を備え、
    前記複数の時刻コード転送部は、前記データ記憶部へ書き込むための前記時刻コードを転送する書き込み時刻コード転送部と、前記データ記憶部から読み出された前記時刻コードを転送する読み出し時刻コード転送部を含む
    固体撮像装置
    を備える電子機器。
JP2018535586A 2016-08-22 2017-08-08 固体撮像装置およびその駆動方法、並びに電子機器 Active JP7005501B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016161893 2016-08-22
JP2016161893 2016-08-22
PCT/JP2017/028674 WO2018037902A1 (ja) 2016-08-22 2017-08-08 固体撮像装置およびその駆動方法、並びに電子機器

Publications (2)

Publication Number Publication Date
JPWO2018037902A1 JPWO2018037902A1 (ja) 2019-06-20
JP7005501B2 true JP7005501B2 (ja) 2022-01-21

Family

ID=61245829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018535586A Active JP7005501B2 (ja) 2016-08-22 2017-08-08 固体撮像装置およびその駆動方法、並びに電子機器

Country Status (6)

Country Link
US (1) US10887540B2 (ja)
EP (1) EP3503536B1 (ja)
JP (1) JP7005501B2 (ja)
KR (1) KR102351736B1 (ja)
CN (2) CN109565559B (ja)
WO (1) WO2018037902A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102532563B1 (ko) * 2018-03-28 2023-05-17 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작방법
JP2021176206A (ja) * 2018-07-18 2021-11-04 ソニーセミコンダクタソリューションズ株式会社 固体電子回路、撮像素子および撮像素子の制御方法、並びに電子機器
JP2020048066A (ja) * 2018-09-19 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、及び、固体撮像素子の制御方法
WO2020075380A1 (ja) * 2018-10-12 2020-04-16 ソニーセミコンダクタソリューションズ株式会社 記憶回路および撮像装置
KR20200098802A (ko) * 2019-02-12 2020-08-21 삼성전자주식회사 디지털 픽셀을 포함하는 이미지 센서
JP2020129774A (ja) * 2019-02-12 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US11843892B2 (en) 2019-03-07 2023-12-12 Sony Semiconductor Solutions Corporation Imaging device
KR20210046102A (ko) 2019-10-17 2021-04-28 삼성전자주식회사 이미지 센서
KR20210073131A (ko) * 2019-12-10 2021-06-18 삼성전자주식회사 비교기 및 이를 포함하는 이미지 센서
CN115136588A (zh) * 2020-03-31 2022-09-30 索尼半导体解决方案公司 摄像装置和电子设备
JP2022034709A (ja) * 2020-08-19 2022-03-04 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および、撮像装置
WO2023223742A1 (ja) * 2022-05-17 2023-11-23 ソニーセミコンダクタソリューションズ株式会社 光検出素子、タイミング発生器及びad変換器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109937A (ja) 2008-10-31 2010-05-13 Tokyo Institute Of Technology 比較器及びアナログデジタル変換器
JP2015139081A (ja) 2014-01-22 2015-07-30 ソニー株式会社 イメージセンサ、駆動方法、及び、電子機器
WO2016009832A1 (ja) 2014-07-14 2016-01-21 ソニー株式会社 比較器、ad変換器、固体撮像装置、電子機器、および比較器の制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608169B2 (ja) * 2002-04-30 2005-01-05 日本テキサス・インスツルメンツ株式会社 半導体メモリ装置
US6806744B1 (en) * 2003-10-03 2004-10-19 National Semiconductor Corporation High speed low voltage differential to rail-to-rail single ended converter
US7015844B1 (en) * 2004-08-30 2006-03-21 Micron Technology, Inc. Minimized SAR-type column-wide ADC for image sensors
WO2010064338A1 (ja) 2008-12-02 2010-06-10 パナソニック株式会社 比較器およびa/d変換器
JP4945618B2 (ja) * 2009-09-18 2012-06-06 株式会社東芝 A/dコンバータ
JP5801665B2 (ja) * 2011-09-15 2015-10-28 キヤノン株式会社 固体撮像装置、a/d変換器およびその制御方法
JP2013168880A (ja) * 2012-02-16 2013-08-29 Sony Corp 比較器、ad変換器、固体撮像装置、カメラシステム、および電子機器
TWI659652B (zh) * 2013-08-05 2019-05-11 新力股份有限公司 攝像裝置、電子機器
TWI631854B (zh) * 2013-08-05 2018-08-01 日商新力股份有限公司 Conversion device, imaging device, electronic device, conversion method
TWI502989B (zh) * 2013-09-18 2015-10-01 Silicon Optronics Inc 影像感測器及其調整方法
JP6384546B2 (ja) * 2014-07-15 2018-09-05 ソニー株式会社 固体撮像装置および電子機器
CN111432146B (zh) * 2015-02-23 2022-10-18 索尼公司 成像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109937A (ja) 2008-10-31 2010-05-13 Tokyo Institute Of Technology 比較器及びアナログデジタル変換器
JP2015139081A (ja) 2014-01-22 2015-07-30 ソニー株式会社 イメージセンサ、駆動方法、及び、電子機器
WO2016009832A1 (ja) 2014-07-14 2016-01-21 ソニー株式会社 比較器、ad変換器、固体撮像装置、電子機器、および比較器の制御方法

Also Published As

Publication number Publication date
WO2018037902A1 (ja) 2018-03-01
CN109565559A (zh) 2019-04-02
KR20190038799A (ko) 2019-04-09
JPWO2018037902A1 (ja) 2019-06-20
EP3503536A1 (en) 2019-06-26
KR102351736B1 (ko) 2022-01-17
US10887540B2 (en) 2021-01-05
EP3503536B1 (en) 2021-02-24
EP3503536A4 (en) 2019-09-04
CN113194273A (zh) 2021-07-30
US20190208151A1 (en) 2019-07-04
CN109565559B (zh) 2021-07-20
CN113194273B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
JP7005501B2 (ja) 固体撮像装置およびその駆動方法、並びに電子機器
JP6760258B2 (ja) 比較器、ad変換器、固体撮像装置、電子機器、比較器の制御方法、およびデータ転送回路
JP6760064B2 (ja) 比較器、ad変換器、固体撮像装置、電子機器、および比較器の制御方法
US9237285B2 (en) Solid-state image pickup device and camera system
CN1870729B (zh) 固态成像装置、其驱动方法、和成像设备
JP6874007B2 (ja) 比較器、ad変換器、固体撮像装置、電子機器、および、比較器の制御方法
JP6448340B2 (ja) 固体撮像装置、撮像システム及び固体撮像装置の駆動方法
US9930283B2 (en) Solid state image sensor and electronic apparatus
JP6406977B2 (ja) 光電変換装置、撮像システム
JP4978795B2 (ja) 固体撮像装置、駆動制御方法、および撮像装置
KR102644352B1 (ko) 비교 장치, 아날로그 디지털 변환 장치, 고체 촬상 소자 및 촬상 장치
JP4661212B2 (ja) 物理情報取得方法および物理情報取得装置並びに半導体装置
JP5177198B2 (ja) 物理情報取得方法および物理情報取得装置
JP2012222763A (ja) 固体撮像装置およびその駆動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150