JP6973922B2 - Wafer processing method - Google Patents

Wafer processing method Download PDF

Info

Publication number
JP6973922B2
JP6973922B2 JP2017173192A JP2017173192A JP6973922B2 JP 6973922 B2 JP6973922 B2 JP 6973922B2 JP 2017173192 A JP2017173192 A JP 2017173192A JP 2017173192 A JP2017173192 A JP 2017173192A JP 6973922 B2 JP6973922 B2 JP 6973922B2
Authority
JP
Japan
Prior art keywords
wafer
cutting groove
sealing material
alignment
encapsulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017173192A
Other languages
Japanese (ja)
Other versions
JP2019050265A (en
Inventor
克彦 鈴木
祐人 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2017173192A priority Critical patent/JP6973922B2/en
Priority to KR1020180104537A priority patent/KR102581128B1/en
Priority to TW107131226A priority patent/TWI766090B/en
Priority to CN201811035751.1A priority patent/CN109473350B/en
Priority to DE102018215253.5A priority patent/DE102018215253A1/en
Priority to SG10201807755TA priority patent/SG10201807755TA/en
Publication of JP2019050265A publication Critical patent/JP2019050265A/en
Application granted granted Critical
Publication of JP6973922B2 publication Critical patent/JP6973922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dicing (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、ウェーハを加工して5Sモールドパッケージを形成するウェーハの加工方法に関する。 The present invention relates to a method for processing a wafer to form a 5S mold package by processing the wafer.

LSIやNAND型フラッシュメモリ等の各種デバイスの小型化及び高密度実装化を実現する構造として、例えばデバイスチップをチップサイズでパッケージ化したチップサイズパッケージ(CSP)が実用に供され、携帯電話やスマートフォン等に広く使用されている。更に、近年はこのCSPの中で、チップの表面のみならず全側面を封止材で封止したCSP、所謂5Sモールドパッケージが開発され実用化されている。 As a structure that realizes miniaturization and high-density mounting of various devices such as LSI and NAND flash memory, for example, a chip size package (CSP) in which a device chip is packaged in a chip size is put into practical use, and a mobile phone or a smartphone is used. It is widely used for such purposes. Further, in recent years, in this CSP, a CSP in which not only the surface of the chip but also all the side surfaces are sealed with a sealing material, a so-called 5S mold package, has been developed and put into practical use.

従来の5Sモールドパッケージは、以下の工程によって製作されている。
(1)半導体ウェーハ(以下、ウェーハと略称することがある)の表面にデバイス(回路)及びバンプと呼ばれる外部接続端子を形成する。
(2)ウェーハの表面側から分割予定ラインに沿ってウェーハを切削し、デバイスチップの仕上がり厚さに相当する深さの切削溝を形成する。
(3)ウェーハの表面をカーボンブラック入りの封止材で封止する。
(4)ウェーハの裏面側をデバイスチップの仕上がり厚さまで研削して切削溝中の封止材を露出させる。
(5)ウェーハの表面はカーボンブラック入りの封止材で封止されているため、ウェーハ表面の外周部分の封止材を除去してターゲットパターン等のアライメントマークを露出させ、このアライメントマークに基づいて切削すべき分割予定ラインを検出するアライメントを実施する。
(6)アライメントに基づいて、ウェーハの表面側から分割予定ラインに沿ってウェーハを切削して、表面及び全側面が封止材で封止された5Sモールドパッケージに分割する。
The conventional 5S mold package is manufactured by the following process.
(1) External connection terminals called devices (circuits) and bumps are formed on the surface of a semiconductor wafer (hereinafter, may be abbreviated as a wafer).
(2) The wafer is cut from the surface side of the wafer along the planned division line to form a cutting groove having a depth corresponding to the finished thickness of the device chip.
(3) The surface of the wafer is sealed with a sealing material containing carbon black.
(4) The back surface side of the wafer is ground to the finished thickness of the device chip to expose the sealing material in the cutting groove.
(5) Since the surface of the wafer is sealed with a sealing material containing carbon black, the sealing material on the outer peripheral portion of the wafer surface is removed to expose the alignment mark such as the target pattern, and the alignment mark is used as the basis. Alignment is performed to detect the planned division line to be cut.
(6) Based on the alignment, the wafer is cut from the surface side of the wafer along the planned division line, and the wafer is divided into 5S mold packages whose surface and all side surfaces are sealed with a sealing material.

上述したように、ウェーハの表面はカーボンブラックを含む封止材で封止されているため、ウェーハ表面に形成されているデバイス等は肉眼では全く見ることはできない。この問題を解決してアライメントを可能とするため、上記(5)で記載したように、ウェーハ表面の封止材の外周部分を除去してターゲットパターン等のアライメントマークを露出させ、このアライメントマークに基づいて切削すべき分割予定ラインを検出してアライメントを実行する技術を本出願人は開発した(特開2013−074021号公報及び特開2016−015438号公報参照)。 As described above, since the surface of the wafer is sealed with a sealing material containing carbon black, the devices and the like formed on the surface of the wafer cannot be seen with the naked eye at all. In order to solve this problem and enable alignment, as described in (5) above, the outer peripheral portion of the encapsulant on the wafer surface is removed to expose the alignment mark such as the target pattern, and this alignment mark is used. Based on this, the applicant has developed a technique for detecting a planned division line to be cut and performing alignment (see JP2013-074021A and JP2016-015438).

特開2013−074021号公報Japanese Unexamined Patent Publication No. 2013-074021 特開2016−015438号公報Japanese Unexamined Patent Publication No. 2016-015438

しかし、上記公開公報に記載されたアライメント方法では、ダイシング用の切削ブレードに替えてエッジトリミング用の幅の広い切削ブレードをスピンドルに装着してウェーハの外周部分の封止材を除去する工程が必要であり、切削ブレードの交換及びエッジトリミングにより外周部分の封止材を除去する手間が掛かり、生産性が悪いという問題がある。 However, the alignment method described in the above-mentioned publication requires a step of mounting a wide cutting blade for edge trimming on the spindle instead of the cutting blade for dicing and removing the encapsulant on the outer peripheral portion of the wafer. Therefore, there is a problem that it takes time and effort to remove the sealing material of the outer peripheral portion by replacing the cutting blade and trimming the edge, resulting in poor productivity.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、ウェーハ表面に被覆されたカーボンブラックを含む封止材を通してアライメント工程を実施可能なウェーハの加工方法を提供することである。 The present invention has been made in view of these points, and an object of the present invention is to provide a method for processing a wafer in which an alignment step can be carried out through a sealing material containing carbon black coated on the wafer surface. That is.

本発明によると、交差して形成された複数の分割予定ラインによって区画された表面の各領域にそれぞれ複数のバンプを有するデバイスが形成されたウェーハの加工方法であって、該ウェーハの表面側から該分割予定ラインに沿って切削ブレードによってデバイスチップの仕上がり厚さに相当する深さの切削溝を形成する切削溝形成工程と、該切削溝形成工程を実施した後、該切削溝を含む該ウェーハの表面を封止材で封止する封止工程と、該封止工程を実施した後、該ウェーハの表面側から可視光撮像手段によって該封止材を透過してアライメントマークを検出し、該アライメントマークに基づいてレーザー加工すべき該分割予定ラインを検出するアライメント工程と、該アライメント工程を実施した後、該封止材に対して透過性を有する波長のレーザービームの集光点を該切削溝中の該封止材の内部に位置付けて、該ウェーハの表面側から該分割予定ラインに沿ってレーザービームを照射して、該切削溝中の該封止材の内部に改質層を形成する改質層形成工程と、該改質層形成工程を実施した後、該ウェーハの裏面側から該デバイスチップの仕上がり厚さまで該ウェーハを研削して該切削溝中の該封止材を露出させる研削工程と、該研削工程を実施した後、該切削溝中の該封止材に外力を付与して該改質層を分割起点として該封止材によって表面及び4側面が囲繞された個々のデバイスチップに分割する分割工程と、を備え、該アライメント工程は、該可視光撮像手段によって撮像する領域に斜光手段によって斜めから光を照射しながら実施し、該封止材は、カーボンブラックを含み、該カーボンブラックの含有率は、0.1質量%以上0.2質量%以下であることを特徴とするウェーハの加工方法が提供される。なお、好ましくは、該アライメント工程では、該可視光撮像手段の垂直照明と該斜光手段からの該光とを、該可視光撮像手段によって撮像する領域に照射する。 According to the present invention, there is a method for processing a wafer in which a device having a plurality of bumps is formed in each region of a surface partitioned by a plurality of planned division lines formed at an intersection, from the surface side of the wafer. After performing the cutting groove forming step of forming a cutting groove having a depth corresponding to the finished thickness of the device chip by the cutting blade along the planned division line and the cutting groove forming step, the wafer including the cutting groove is performed. After performing the sealing step of sealing the surface of the laser with a sealing material and the sealing step, the alignment mark is detected by passing through the sealing material from the surface side of the wafer by a visible light imaging means. An alignment step of detecting the planned division line to be laser-processed based on the alignment mark, and after performing the alignment step, the condensing point of the laser beam having a wavelength transparent to the encapsulant is cut. Positioned inside the encapsulant in the groove, a laser beam is irradiated from the surface side of the wafer along the planned division line to form a modified layer inside the encapsulant in the cutting groove. After performing the modified layer forming step and the modified layer forming step, the wafer is ground from the back surface side of the wafer to the finished thickness of the device chip to expose the sealing material in the cutting groove. After performing the grinding step and the grinding step, an external force is applied to the sealing material in the cutting groove, and the surface and four side surfaces are surrounded by the sealing material with the modified layer as a division starting point. The alignment step comprises a division step of dividing into device chips, and the alignment step is carried out while irradiating the region to be imaged by the visible light imaging means with light obliquely by the oblique light means, and the encapsulant contains carbon black. Provided is a method for processing a wafer , wherein the content of the carbon black is 0.1% by mass or more and 0.2% by mass or less. It should be noted that preferably, in the alignment step, the vertical illumination of the visible light imaging means and the light from the oblique light means are applied to the region to be imaged by the visible light imaging means.

本発明のウェーハの加工方法によると、斜光手段で斜めから光を照射しながら可視光撮像手段によって封止材を透過してウェーハに形成されたアライメントマークを検出し、アライメントマークに基づいてアライメントを実施できるようにしたので、従来のようにウェーハの表面の外周部分の封止材を除去することなく簡単にアライメント工程を実施することができる。 According to the wafer processing method of the present invention, the alignment mark formed on the wafer is detected by the visible light imaging means while irradiating light from an oblique angle with the oblique light means, and the alignment is performed based on the alignment mark. Since it can be carried out, the alignment step can be easily carried out without removing the encapsulant on the outer peripheral portion of the surface of the wafer as in the conventional case.

よって、封止材に対して透過性を有する波長のレーザービームを切削溝中の封止材の内部に位置付けて、ウェーハの表面側からレーザービームを照射して、封止材の内部に改質層を形成することができ、その後ウェーハの裏面側からデバイスチップの仕上がり厚さまでウェーハを研削して切削溝中の封止材を露出させ、該封止材に外力を付与することにより該改質層を分割起点としてウェーハを該封止材によって表面及び4側面が囲繞された個々のデバイスチップに分割することができる。 Therefore, a laser beam having a wavelength that is transparent to the encapsulant is positioned inside the encapsulant in the cutting groove, and the laser beam is irradiated from the surface side of the wafer to modify the inside of the encapsulant. A layer can be formed, and then the wafer is ground from the back surface side of the wafer to the finished thickness of the device chip to expose the encapsulant in the cutting groove, and the encapsulant is modified by applying an external force to the encapsulant. With the layer as the starting point, the wafer can be divided into individual device chips whose surface and four sides are surrounded by the encapsulant.

半導体ウェーハの斜視図である。It is a perspective view of a semiconductor wafer. 切削溝形成工程を示す斜視図である。It is a perspective view which shows the cutting groove forming process. 封止工程を示す斜視図である。It is a perspective view which shows the sealing process. アライメント工程を示す断面図である。It is sectional drawing which shows the alignment process. 図5(A)は改質層形成工程を示す断面図、図5(B)は改質層形成工程実施後のウェーハの一部拡大断面図である。FIG. 5A is a cross-sectional view showing a modified layer forming step, and FIG. 5B is a partially enlarged cross-sectional view of the wafer after the modified layer forming step is carried out. 研削工程を示す断面図である。It is sectional drawing which shows the grinding process. 分割装置の斜視図である。It is a perspective view of the dividing device. 分割ステップを示す断面図である。It is sectional drawing which shows the division step. 分割ステップ実施後のウェーハの一部拡大断面図である。It is a partially enlarged sectional view of the wafer after the division step.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1を参照すると、本発明の加工方法で加工するのに適した半導体ウェーハ(以下、単にウェーハと略称することがある)11の表面側斜視図が示されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, a front perspective view of a semiconductor wafer (hereinafter, may be simply abbreviated as a wafer) 11 suitable for processing by the processing method of the present invention is shown.

半導体ウェーハ11の表面11aにおいては、複数の分割予定ライン(ストリート)13が格子状に形成されており、直交する分割予定ライン13によって区画された各領域にはIC、LSI等のデバイス15が形成されている。 On the surface 11a of the semiconductor wafer 11, a plurality of scheduled division lines (streets) 13 are formed in a grid pattern, and devices 15 such as ICs and LSIs are formed in each region partitioned by the orthogonal scheduled division lines 13. Has been done.

各デバイス15の表面には複数の電極バンプ(以下、単にバンプと略称することがある)17を有しており、ウェーハ11はそれぞれ複数のバンプ17を備えた複数のデバイス15が形成されたデバイス領域19と、デバイス領域19を囲繞する外周余剰領域21とをその表面に備えている。 The surface of each device 15 has a plurality of electrode bumps (hereinafter, may be simply abbreviated as bumps) 17, and the wafer 11 is a device in which a plurality of devices 15 having the plurality of bumps 17 are formed. A region 19 and an outer peripheral surplus region 21 surrounding the device region 19 are provided on the surface thereof.

本発明実施形態のウェーハの加工方法では、まず、第1の工程として、ウェーハ11の表面側から分割予定ライン13に沿って切削ブレードによってデバイスチップの仕上がり厚さに相当する深さの切削溝を形成する切削溝形成工程を実施する。この切削溝形成工程を図2を参照して説明する。 In the wafer processing method of the present invention, first, as a first step, a cutting groove having a depth corresponding to the finished thickness of the device chip is formed from the surface side of the wafer 11 along the planned division line 13 by a cutting blade. The cutting groove forming step to be formed is carried out. This cutting groove forming process will be described with reference to FIG.

切削ユニット10は、スピンドル12の先端部に着脱可能に装着された切削ブレード14と、可視光撮像手段(可視光撮像ユニット)18を有するアライメントユニット16とを備えている。撮像ユニット18は、可視光で撮像する顕微鏡及びカメラを有している。 The cutting unit 10 includes a cutting blade 14 detachably attached to the tip of the spindle 12 and an alignment unit 16 having a visible light imaging means (visible light imaging unit) 18. The image pickup unit 18 has a microscope and a camera that capture images with visible light.

切削溝形成工程を実施する前に、まず撮像ユニット18でウェーハ11の表面を可視光で撮像し、各デバイス15に形成されているターゲットパターン等のアライメントマークを検出し、このアライメントマークに基づいて切削すべき分割予定ライン13を検出するアライメントを実施する。 Before carrying out the cutting groove forming step, the surface of the wafer 11 is first imaged with visible light by the image pickup unit 18, an alignment mark such as a target pattern formed on each device 15 is detected, and based on this alignment mark. Alignment is performed to detect the planned division line 13 to be cut.

アライメント実施後、矢印R1方向に高速回転する切削ブレード14をウェーハ11の表面11a側から分割予定ライン13に沿ってデバイスチップの仕上がり厚さに相当する深さに切り込ませ、ウェーハ11を吸引保持した図示しないチャックテーブルを矢印X1方向に加工送りすることにより、分割予定ライン13に沿って切削溝23を形成する切削溝形成工程を実施する。 After the alignment is performed, the cutting blade 14 rotating at high speed in the arrow R1 direction is cut from the surface 11a side of the wafer 11 along the planned division line 13 to a depth corresponding to the finished thickness of the device chip, and the wafer 11 is sucked and held. The cutting groove forming step of forming the cutting groove 23 along the scheduled division line 13 is carried out by machining and feeding the chuck table (not shown) in the direction of the arrow X1.

この切削溝形成工程を、切削ユニット10を分割予定ライン13のピッチずつ加工送り方向X1と直交する方向に割り出し送りしながら、第1の方向に伸長する分割予定ライン13に沿って次々と実施する。 This cutting groove forming step is carried out one after another along the scheduled division line 13 extending in the first direction while indexing and feeding the cutting unit 10 in the direction orthogonal to the machining feed direction X1 by the pitch of the scheduled division line 13. ..

次いで、図示しないチャックテーブルを90°回転した後、第1の方向に直交する第2の方向に伸長する分割予定ライン13に沿って同様な切削溝形成工程を次々と実施する。 Next, after rotating the chuck table (not shown) by 90 °, the same cutting groove forming step is carried out one after another along the planned division line 13 extending in the second direction orthogonal to the first direction.

切削溝形成工程を実施した後、図3に示すように、ウェーハ11の表面11aに封止材20を塗布して、切削溝23を含むウェーハ11の表面11aを封止材で封止する封止工程を実施する。封止材20は流動性があるため、封止工程を実施すると、切削溝23中に封止材20が充填される。 After performing the cutting groove forming step, as shown in FIG. 3, the sealing material 20 is applied to the surface 11a of the wafer 11 and the surface 11a of the wafer 11 including the cutting groove 23 is sealed with the sealing material. Carry out a stopping process. Since the sealing material 20 has fluidity, when the sealing step is performed, the sealing material 20 is filled in the cutting groove 23.

封止材20としては、質量%でエポキシ樹脂又はエポキシ樹脂+フェノール樹脂10.3%、シリカフィラー85.3%、カーボンブラック0.1〜0.2%、その他の成分4.2〜4.3%を含む組成とした。その他の成分としては、例えば、金属水酸化物、三酸化アンチモン、二酸化ケイ素等を含む。 The encapsulant 20 includes epoxy resin or epoxy resin + phenol resin 10.3%, silica filler 85.3%, carbon black 0.1 to 0.2%, and other components 4.2-4 by mass%. The composition contained 3%. Other components include, for example, metal hydroxides, antimony trioxide, silicon dioxide and the like.

このような組成の封止材20でウェーハ11の表面11aを被覆してウェーハ11の表面11aを封止すると、封止材20中にごく少量含まれているカーボンブラックにより封止材20が黒色となるため、封止材20を通してウェーハ11の表面11aを見ることは通常困難である。 When the surface 11a of the wafer 11 is covered with the sealing material 20 having such a composition and the surface 11a of the wafer 11 is sealed, the sealing material 20 becomes black due to the carbon black contained in the sealing material 20 in a very small amount. Therefore, it is usually difficult to see the surface 11a of the wafer 11 through the sealing material 20.

ここで、封止材20中にカーボンブラックを混入させるのは、主にデバイス15の静電破壊を防止するためであり、現在のところカーボンブラックを含有しない封止材は市販されていない。 Here, the reason why carbon black is mixed in the sealing material 20 is mainly to prevent electrostatic breakdown of the device 15, and at present, a sealing material that does not contain carbon black is not commercially available.

封止材20の塗布方法は特に限定されないが、バンプ17の高さまで封止材20を塗布するのが望ましく、次いでエッチングにより封止材20をエッチングして、バンプ17の頭出しをする。 The method of applying the encapsulant 20 is not particularly limited, but it is desirable to apply the encapsulant 20 to the height of the bump 17, and then the encapsulant 20 is etched by etching to cue the bump 17.

封止工程を実施した後、ウェーハ11の表面11a側から可視光撮像手段によって封止材20を通してウェーハ11の表面11aを撮像し、ウェーハ11の表面11aに形成されている少なくとも2つのターゲットパターン等のアライメントマークを検出し、これらのアライメントマークに基づいてレーザー加工すべき分割予定ライン13を検出するアライメント工程を実施する。 After performing the sealing step, the surface 11a of the wafer 11 is imaged from the surface 11a side of the wafer 11 through the sealing material 20 by the visible light imaging means, and at least two target patterns formed on the surface 11a of the wafer 11 or the like. An alignment step of detecting the alignment marks of the above and detecting the scheduled division line 13 to be laser-machined based on these alignment marks is performed.

このアライメント工程について、図4を参照して詳細に説明する。アライメント工程を実施する前に、ウェーハ11の裏面11b側を外周部が環状フレームFに装着されたダイシングテープTに貼着する。 This alignment process will be described in detail with reference to FIG. Before performing the alignment step, the back surface 11b side of the wafer 11 is attached to the dicing tape T whose outer peripheral portion is attached to the annular frame F.

アライメント工程では、図4に示すように、ダイシングテープTを介してレーザー加工装置のチャックテーブル40でウェーハ11を吸引保持し、ウェーハ11の表面11aを封止している封止材20を上方に露出させる。そして、クランプ42で環状フレームFをクランプして固定する。 In the alignment step, as shown in FIG. 4, the wafer 11 is sucked and held by the chuck table 40 of the laser processing apparatus via the dicing tape T, and the sealing material 20 sealing the surface 11a of the wafer 11 is moved upward. Expose. Then, the annular frame F is clamped and fixed by the clamp 42.

アライメント工程では、切削装置の可視光撮像ユニット18と同様なレーザー加工装置の可視光撮像ユニット18AのCCD等の撮像素子でウェーハ11の表面11aを撮像する。しかし、封止材20中にはシリカフィラー、カーボンブラック等の成分が含まれており、更に封止材20の表面には凹凸があるため、可視光撮像ユニット18Aの垂直照明では封止材20を透過してウェーハ11の表面11aを撮像しても、撮像画像がピンボケとなってしまい、ターゲットパターン等のアライメントマークを検出するのが困難である。 In the alignment step, the surface 11a of the wafer 11 is imaged by an image pickup element such as a CCD of the visible light image pickup unit 18A of the laser processing device similar to the visible light image pickup unit 18 of the cutting device. However, since the sealing material 20 contains components such as silica filler and carbon black, and the surface of the sealing material 20 has irregularities, the sealing material 20 is used for vertical illumination of the visible light imaging unit 18A. Even if the surface 11a of the wafer 11 is imaged through the image, the captured image becomes out of focus, and it is difficult to detect the alignment mark such as the target pattern.

そこで、本実施形態のアライメント工程では、可視光撮像ユニット18Aの垂直照明に加えて斜光手段31から撮像領域に斜めから光を照射し、撮像画像のピンボケを改善し、アライメントマークの検出を可能としている。 Therefore, in the alignment step of the present embodiment, in addition to the vertical illumination of the visible light imaging unit 18A, the oblique light means 31 irradiates the imaging region with light from an angle to improve the out-of-focus of the captured image and enable the detection of the alignment mark. There is.

斜光手段31から照射する光は白色光が好ましく、ウェーハ11の表面11aに対する入射角は30°〜60°の範囲内が好ましい。好ましくは、可視光撮像ユニット18Aは、露光時間等を調整できるエキスポージャーを備えている。 The light emitted from the oblique light means 31 is preferably white light, and the incident angle with respect to the surface 11a of the wafer 11 is preferably in the range of 30 ° to 60 °. Preferably, the visible light imaging unit 18A is provided with an exposure that can adjust the exposure time and the like.

次いで、これらのアライメントマークを結んだ直線が加工送り方向と平行となるようにチャックテーブル40をθ回転し、更にアライメントマークと分割予定ライン13の中心との距離だけ図2に示す切削ユニット10を加工送り方向X1と直交する方向に移動することにより、切削すべき分割予定ライン13を検出する。 Next, the chuck table 40 is rotated by θ so that the straight line connecting these alignment marks is parallel to the machining feed direction, and the cutting unit 10 shown in FIG. 2 is further rotated by the distance between the alignment mark and the center of the scheduled division line 13. By moving in a direction orthogonal to the machining feed direction X1, the planned division line 13 to be cut is detected.

アライメント工程を実施した後、図5(A)に示したように、ウェーハ11の表面11a側から分割予定ライン13に沿ってレーザー加工装置のレーザーヘッド(集光器)46から封止材20に対して透過性を有する波長(例えば1064nm)のレーザービームLBをその集光点を切削溝23中の封止材20の内部に位置付けて照射し、チャックテーブル40を矢印X1方向に加工送りすることにより、切削溝23中の封止材20の内部に図5(B)に示すような改質層25を形成する改質層形成工程を実施する。 After performing the alignment step, as shown in FIG. 5A, from the surface 11a side of the wafer 11 to the sealing material 20 from the laser head (concentrator) 46 of the laser processing device along the scheduled division line 13. On the other hand, a laser beam LB having a transmissive wavelength (for example, 1064 nm) is irradiated with the condensing point positioned inside the sealing material 20 in the cutting groove 23, and the chuck table 40 is machined and fed in the direction of arrow X1. A modified layer forming step of forming the modified layer 25 as shown in FIG. 5B is carried out inside the sealing material 20 in the cutting groove 23.

この改質層形成工程を、第1の方向に伸長する分割予定ライン13に沿って次々と実施した後、チャックテーブル40を90°回転し、第1の方向に直交する第2の方向に伸長する分割予定ライン13に沿って次々と実施する。 After performing this modified layer forming step one after another along the planned division line 13 extending in the first direction, the chuck table 40 is rotated by 90 ° and extended in the second direction orthogonal to the first direction. It is carried out one after another along the planned division line 13.

改質層形成工程を実施した後、ウェーハ11の裏面11b側からデバイスチップの仕上がり厚さまでウェーハ11を研削して、切削溝23中の封止材20を露出させる研削工程を実施する。 After performing the modified layer forming step, the wafer 11 is ground from the back surface 11b side of the wafer 11 to the finished thickness of the device chip to expose the sealing material 20 in the cutting groove 23.

この研削工程を図6を参照して説明する。ウェーハ11の表面11aに表面保護テープ等の保護部材22を貼着し、研削装置のチャックテーブル24で保護部材22を介してウェーハ11を吸引保持する。 This grinding process will be described with reference to FIG. A protective member 22 such as a surface protective tape is attached to the surface 11a of the wafer 11, and the wafer 11 is sucked and held by the chuck table 24 of the grinding apparatus via the protective member 22.

研削ユニット26は、スピンドルハウジング28中に回転可能に収容され図示しないモーターにより回転駆動されるスピンドル30と、スピンドル30の先端に固定されたホイールマウント32と、ホイールマウント32に着脱可能に装着された研削ホイール34とを含んでいる。研削ホイール34は、環状のホイール基台36と、ホイール基台36の下端外周に固着された複数の研削砥石38とから構成される。 The grinding unit 26 is detachably attached to a spindle 30, which is rotatably housed in the spindle housing 28 and is rotationally driven by a motor (not shown), a wheel mount 32 fixed to the tip of the spindle 30, and a wheel mount 32. Includes a grinding wheel 34. The grinding wheel 34 is composed of an annular wheel base 36 and a plurality of grinding wheels 38 fixed to the outer periphery of the lower end of the wheel base 36.

研削工程では、チャックテーブル24を矢印aで示す方向に例えば300rpmで回転しつつ、研削ホイール34を矢印bで示す方向に例えば6000rpmで回転させると共に、図示しない研削ユニット送り機構を駆動して研削ホイール34の研削砥石38をウェーハ11の裏面11bに接触させる。 In the grinding step, the chuck table 24 is rotated in the direction indicated by the arrow a at, for example, 300 rpm, the grinding wheel 34 is rotated in the direction indicated by the arrow b at, for example, 6000 rpm, and a grinding unit feed mechanism (not shown) is driven to drive the grinding wheel. The grinding wheel 38 of 34 is brought into contact with the back surface 11b of the wafer 11.

そして、研削ホイール34を所定の研削送り速度で下方に所定量研削送りしながらウェー11の裏面11bを研削する。接触式又は非接触式の厚み測定ゲージでウェーハ11の厚さを測定しながら、ウェーハ11を所定の厚さ、例えば100μmに研削して、切削溝23中に埋設された封止材20を露出させる。 Then, the back surface 11b of the way 11 is ground while the grinding wheel 34 is grounded downward by a predetermined amount at a predetermined grinding feed rate. While measuring the thickness of the wafer 11 with a contact-type or non-contact-type thickness measuring gauge, the wafer 11 is ground to a predetermined thickness, for example, 100 μm, and the sealing material 20 embedded in the cutting groove 23 is exposed. Let me.

研削工程実施後、図7に示す分割装置50を使用してウェーハ11に外力を付与し、ウェーハ11を個々のデバイスチップ27へと分割する分割ステップを実施する。図7に示す分割装置50は、環状フレームFを保持するフレーム保持手段52と、フレーム保持手段52に保持された環状フレームFに装着されたダイシングテープTを拡張するテープ拡張手段54を具備している。 After performing the grinding process, an external force is applied to the wafer 11 using the dividing device 50 shown in FIG. 7, and a dividing step of dividing the wafer 11 into individual device chips 27 is performed. The dividing device 50 shown in FIG. 7 includes a frame holding means 52 for holding the annular frame F and a tape expanding means 54 for expanding the dicing tape T attached to the annular frame F held by the frame holding means 52. There is.

フレーム保持手段52は、環状のフレーム保持部材56と、フレーム保持部材56の外周に配設された固定手段としての複数のクランプ58から構成される。フレーム保持部材56の上面は環状フレームFを載置する載置面56aを形成しており、この載置面56a上に環状フレームFが載置される。 The frame holding means 52 is composed of an annular frame holding member 56 and a plurality of clamps 58 as fixing means arranged on the outer periphery of the frame holding member 56. The upper surface of the frame holding member 56 forms a mounting surface 56a on which the annular frame F is mounted, and the annular frame F is mounted on the mounting surface 56a.

そして、載置面56a上に載置された環状フレームFは、クランプ58によってフレーム保持手段56に固定される。このように構成されたフレーム保持手段52はテープ拡張手段54によって上下方向に移動可能に支持されている。 Then, the annular frame F mounted on the mounting surface 56a is fixed to the frame holding means 56 by the clamp 58. The frame holding means 52 configured in this way is supported by the tape expanding means 54 so as to be movable in the vertical direction.

テープ拡張手段54は、環状のフレーム保持部材56の内側に配設された拡張ドラム60を具備している。拡張ドラム60の上端は蓋62で閉鎖されている。この拡張ドラム60は、環状フレームFの内径より小さく、環状フレームFに装着されたダイシングテープTに貼着されるウェーハ11の外径より大きい内径を有している。 The tape expanding means 54 includes an expansion drum 60 disposed inside the annular frame holding member 56. The upper end of the expansion drum 60 is closed by a lid 62. The expansion drum 60 has an inner diameter smaller than the inner diameter of the annular frame F and larger than the outer diameter of the wafer 11 attached to the dicing tape T attached to the annular frame F.

拡張ドラム60はその下端に一体的に形成された支持フランジ64を有している。テープ拡張手段54は更に、環状のフレーム保持部材56を上下方向に移動する駆動手段66を具備している。この駆動手段66は支持フランジ64上に配設された複数のエアシリンダ68から構成されており、そのピストンロッド70はフレーム保持部材56の下面に連結されている。 The expansion drum 60 has a support flange 64 integrally formed at the lower end thereof. The tape expanding means 54 further includes a driving means 66 for moving the annular frame holding member 56 in the vertical direction. The drive means 66 is composed of a plurality of air cylinders 68 arranged on the support flange 64, and the piston rod 70 thereof is connected to the lower surface of the frame holding member 56.

複数のエアシリンダ68から構成される駆動手段66は、環状のフレーム保持部材56を、その載置面56aが拡張ドラム60の上端である蓋62の表面と略同一高さとなる基準位置と、拡張ドラム60の上端より所定量下方の拡張位置との間で上下方向に移動する。 The drive means 66 composed of a plurality of air cylinders 68 extends the annular frame holding member 56 to a reference position where the mounting surface 56a thereof is substantially the same height as the surface of the lid 62 which is the upper end of the expansion drum 60. It moves up and down with the expansion position below the upper end of the drum 60 by a predetermined amount.

以上のように構成された分割装置50を用いて実施するウェーハ11の分割工程について図8を参照して説明する。図8(A)に示すように、ウェーハ11をダイシングテープTを介して支持した環状フレームFを、フレーム保持部材56の載置面56a上に載置し、クランプ58によってフレーム保持部材56に固定する。この時、フレーム保持部材56はその載置面56aが拡張ドラム60の上端と略同一高さとなる基準位置に位置付けられる。 The dividing process of the wafer 11 carried out by using the dividing device 50 configured as described above will be described with reference to FIG. As shown in FIG. 8A, the annular frame F in which the wafer 11 is supported via the dicing tape T is placed on the mounting surface 56a of the frame holding member 56 and fixed to the frame holding member 56 by the clamp 58. do. At this time, the frame holding member 56 is positioned at a reference position where the mounting surface 56a thereof is substantially at the same height as the upper end of the expansion drum 60.

次いで、エアシリンダ68を駆動してフレーム保持部材56を図8(B)に示す拡張位置に下降する。これにより、フレーム保持部材56の載置面56a上に固定されている環状フレームFを下降するため、環状フレームFに装着されたダイシングテープTは拡張ドラム60の上端縁に当接して主に半径方向に拡張される。 Next, the air cylinder 68 is driven to lower the frame holding member 56 to the extended position shown in FIG. 8 (B). As a result, the annular frame F fixed on the mounting surface 56a of the frame holding member 56 is lowered, so that the dicing tape T attached to the annular frame F abuts on the upper end edge of the expansion drum 60 and mainly has a radius. Expanded in the direction.

その結果、ダイシングテープTに貼着されているウェーハ11には放射状に引っ張り力が作用する。このようにウェーハ11に放射状に引っ張り力が作用すると、分割予定ライン13に沿って切削溝23中の封止材20中に形成された改質層25が分割起点となってウェーハ11が改質層25に沿って図9の拡大図に示すように割断され、封止材20によって表面及び4側面が囲繞された個々のデバイスチップ27に分割される。 As a result, a tensile force acts radially on the wafer 11 attached to the dicing tape T. When the tensile force acts radially on the wafer 11 in this way, the reforming layer 25 formed in the sealing material 20 in the cutting groove 23 along the scheduled division line 13 serves as the division starting point, and the wafer 11 is modified. It is divided along the layer 25 as shown in the enlarged view of FIG. 9, and is divided into individual device chips 27 whose surface and four side surfaces are surrounded by the encapsulant 20.

10 切削ユニット
11 半導体ウェーハ
13 分割予定ライン
14 切削ブレード
15 デバイス
16 アライメントユニット
17 電極バンプ
18,18A 撮像ユニット
20 封止材
23 切削溝
25 改質層
26 研削ユニット
27 デバイスチップ
31 斜光手段
34 研削ホイール
38 研削砥石
46 レーザーヘッド(集光器)
50 分割装置
10 Cutting unit 11 Semiconductor wafer 13 Scheduled division line 14 Cutting blade 15 Device 16 Alignment unit 17 Electrode bump 18, 18A Imaging unit 20 Encapsulant 23 Cutting groove 25 Modified layer 26 Grinding unit 27 Device chip 31 Oblique means 34 Grinding wheel 38 Grinding Grinding Stone 46 Laser Head (Condenser)
50 split device

Claims (2)

交差して形成された複数の分割予定ラインによって区画された表面の各領域にそれぞれ複数のバンプを有するデバイスが形成されたウェーハの加工方法であって、
該ウェーハの表面側から該分割予定ラインに沿って切削ブレードによってデバイスチップの仕上がり厚さに相当する深さの切削溝を形成する切削溝形成工程と、
該切削溝形成工程を実施した後、該切削溝を含む該ウェーハの表面を封止材で封止する封止工程と、
該封止工程を実施した後、該ウェーハの表面側から可視光撮像手段によって該封止材を透過してアライメントマークを検出し、該アライメントマークに基づいてレーザー加工すべき該分割予定ラインを検出するアライメント工程と、
該アライメント工程を実施した後、該封止材に対して透過性を有する波長のレーザービームの集光点を該切削溝中の該封止材の内部に位置付けて、該ウェーハの表面側から該分割予定ラインに沿ってレーザービームを照射して、該切削溝中の該封止材の内部に改質層を形成する改質層形成工程と、
該改質層形成工程を実施した後、該ウェーハの裏面側から該デバイスチップの仕上がり厚さまで該ウェーハを研削して該切削溝中の該封止材を露出させる研削工程と、
該研削工程を実施した後、該切削溝中の該封止材に外力を付与して該改質層を分割起点として該封止材によって表面及び4側面が囲繞された個々のデバイスチップに分割する分割工程と、を備え、
該アライメント工程は、該可視光撮像手段によって撮像する領域に斜光手段によって斜めから光を照射しながら実施し、
該封止材は、カーボンブラックを含み、
該カーボンブラックの含有率は、0.1質量%以上0.2質量%以下であることを特徴とするウェーハの加工方法。
A method for processing a wafer in which a device having a plurality of bumps is formed in each region of a surface partitioned by a plurality of scheduled division lines formed at an intersection.
A cutting groove forming step of forming a cutting groove having a depth corresponding to the finished thickness of the device chip by a cutting blade from the surface side of the wafer along the planned division line.
After performing the cutting groove forming step, a sealing step of sealing the surface of the wafer including the cutting groove with a sealing material, and a sealing step.
After performing the encapsulation step, the alignment mark is detected by passing through the encapsulant from the surface side of the wafer by the visible light imaging means, and the planned division line to be laser-processed is detected based on the alignment mark. Alignment process and
After performing the alignment step, a condensing point of a laser beam having a wavelength transparent to the encapsulant is positioned inside the encapsulant in the cutting groove, and the wafer is viewed from the surface side of the wafer. A modified layer forming step of irradiating a laser beam along a planned division line to form a modified layer inside the sealing material in the cutting groove.
After performing the modified layer forming step, a grinding step of grinding the wafer from the back surface side of the wafer to the finished thickness of the device chip to expose the sealing material in the cutting groove, and a grinding step.
After performing the grinding step, an external force is applied to the sealing material in the cutting groove to divide the modified layer into individual device chips whose surface and four side surfaces are surrounded by the sealing material as a starting point for division. With a splitting process,
The alignment step is performed while irradiating the area to be imaged by the visible light imaging means with light obliquely by the oblique light means .
The encapsulant contains carbon black and
A method for processing a wafer, wherein the content of the carbon black is 0.1% by mass or more and 0.2% by mass or less.
該アライメント工程では、該可視光撮像手段の垂直照明と該斜光手段からの該光とを、該可視光撮像手段によって撮像する領域に照射することを特徴とする請求項1記載のウェーハの加工方法。The wafer processing method according to claim 1, wherein in the alignment step, the vertical illumination of the visible light imaging means and the light from the oblique light means are applied to a region to be imaged by the visible light imaging means. ..
JP2017173192A 2017-09-08 2017-09-08 Wafer processing method Active JP6973922B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017173192A JP6973922B2 (en) 2017-09-08 2017-09-08 Wafer processing method
KR1020180104537A KR102581128B1 (en) 2017-09-08 2018-09-03 Method for processing wafer
TW107131226A TWI766090B (en) 2017-09-08 2018-09-06 Wafer processing method
CN201811035751.1A CN109473350B (en) 2017-09-08 2018-09-06 Wafer processing method
DE102018215253.5A DE102018215253A1 (en) 2017-09-08 2018-09-07 PROCESSING METHOD FOR A WAFER
SG10201807755TA SG10201807755TA (en) 2017-09-08 2018-09-07 Wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173192A JP6973922B2 (en) 2017-09-08 2017-09-08 Wafer processing method

Publications (2)

Publication Number Publication Date
JP2019050265A JP2019050265A (en) 2019-03-28
JP6973922B2 true JP6973922B2 (en) 2021-12-01

Family

ID=65441538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173192A Active JP6973922B2 (en) 2017-09-08 2017-09-08 Wafer processing method

Country Status (6)

Country Link
JP (1) JP6973922B2 (en)
KR (1) KR102581128B1 (en)
CN (1) CN109473350B (en)
DE (1) DE102018215253A1 (en)
SG (1) SG10201807755TA (en)
TW (1) TWI766090B (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR244801A0 (en) * 2001-01-10 2001-02-01 Silverbrook Research Pty Ltd A method and apparatus (WSM01)
JP2003165893A (en) * 2001-11-30 2003-06-10 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2003321594A (en) * 2002-04-26 2003-11-14 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2007190596A (en) * 2006-01-20 2007-08-02 Seiko Epson Corp Method for manufacturing base body, flexible circuit substrate, electrooptical device and electronic equipment
JP5948034B2 (en) 2011-09-27 2016-07-06 株式会社ディスコ Alignment method
TW201329145A (en) * 2011-11-28 2013-07-16 Nitto Denko Corp Under-fill material and method for producing semiconductor device
JP2014003274A (en) * 2012-05-25 2014-01-09 Nitto Denko Corp Method for manufacturing semiconductor device and underfill material
JP6272301B2 (en) * 2013-03-27 2018-01-31 浜松ホトニクス株式会社 Laser processing apparatus and laser processing method
JP2015023078A (en) * 2013-07-17 2015-02-02 株式会社ディスコ Method of processing wafer
JP6066854B2 (en) * 2013-07-30 2017-01-25 株式会社ディスコ Wafer processing method
JP2016015438A (en) 2014-07-03 2016-01-28 株式会社ディスコ Alignment method
JP2016082195A (en) * 2014-10-22 2016-05-16 Towa株式会社 Cutting device and cutting method
JP2016166120A (en) * 2015-03-06 2016-09-15 三星ダイヤモンド工業株式会社 Processing method of laminated substrate, and processing device of laminated substrate by laser beam
JP2016225371A (en) * 2015-05-27 2016-12-28 株式会社ディスコ Wafer dividing method
JP2017103405A (en) * 2015-12-04 2017-06-08 株式会社ディスコ Wafer processing method
JP2017108089A (en) * 2015-12-04 2017-06-15 株式会社東京精密 Laser processing apparatus and laser processing method
JP2017107984A (en) * 2015-12-09 2017-06-15 株式会社ディスコ Wafer processing method
JP6608694B2 (en) * 2015-12-25 2019-11-20 株式会社ディスコ Wafer processing method

Also Published As

Publication number Publication date
TW201913776A (en) 2019-04-01
JP2019050265A (en) 2019-03-28
KR20190028312A (en) 2019-03-18
KR102581128B1 (en) 2023-09-20
TWI766090B (en) 2022-06-01
CN109473350A (en) 2019-03-15
SG10201807755TA (en) 2019-04-29
CN109473350B (en) 2023-10-10
DE102018215253A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
CN109473396B (en) Wafer processing method
JP6918418B2 (en) Wafer processing method
JP7009027B2 (en) Wafer processing method
JP7013085B2 (en) Wafer processing method
JP7058904B2 (en) Wafer processing method
JP6973922B2 (en) Wafer processing method
JP6976651B2 (en) Wafer processing method
JP6918419B2 (en) Wafer processing method
KR102627958B1 (en) Processing method of wafer
JP7007052B2 (en) Wafer processing method
JP7013084B2 (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6973922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150