JP6971314B2 - 固体電解キャパシタのためのリード線構造 - Google Patents

固体電解キャパシタのためのリード線構造 Download PDF

Info

Publication number
JP6971314B2
JP6971314B2 JP2019524919A JP2019524919A JP6971314B2 JP 6971314 B2 JP6971314 B2 JP 6971314B2 JP 2019524919 A JP2019524919 A JP 2019524919A JP 2019524919 A JP2019524919 A JP 2019524919A JP 6971314 B2 JP6971314 B2 JP 6971314B2
Authority
JP
Japan
Prior art keywords
core
capacitor
solid electrolyte
anode
capacitor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019524919A
Other languages
English (en)
Other versions
JP2019537264A (ja
Inventor
ビルク,ラジスラフ
ホラチェク,イバン
Original Assignee
エイブイエックス コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイブイエックス コーポレイション filed Critical エイブイエックス コーポレイション
Publication of JP2019537264A publication Critical patent/JP2019537264A/ja
Application granted granted Critical
Publication of JP6971314B2 publication Critical patent/JP6971314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/226Oligomers, i.e. up to 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

本出願は、2016年11月15日の出願日を有する米国仮特許出願62/422,081(その全部を参照として本明細書中に包含する)の出願の利益を主張する。
電解キャパシタ(例えばタンタルキャパシタ)は、それらの体積効率、信頼性、及びプロセス適合性のために、回路の設計においてますます使用されるようになっている。例えば、開発されたキャパシタの1つのタイプは、焼結タンタル陽極体、五酸化タンタル誘電体、及び導電性ポリマー固体電解質を含む固体電解キャパシタである。また、通常は、陽極終端に接続するためにキャパシタの前面から陽極リード線が伸長している。キャパシタの形成中においては、導電性ポリマーの一部が陽極リード線の表面上に被覆されるようになることが通常である。この理由のために、リード線上のポリマーと固体電解質との電気的接触を最小にすることを助けるために、絶縁リング(例えばTeflon(登録商標)リング)がしばしばリード線の周囲に配置される。しかしながら、残念なことに、かかる絶縁リングは高価であり、また、高いレベルの湿分(例えば85%の相対湿度)及び/又は高い温度(例えば約85℃)のような特定のタイプの周囲環境下では良好に機能しない。
したがって、改良された固体電解キャパシタに対する必要性が存在する。
本発明の一態様によれば、キャパシタ素子、リード線、陽極終端、及び陰極終端を含む固体電解キャパシタが開示される。本キャパシタ素子は、焼結多孔質陽極体、陽極体の上に配されている誘電体、及び誘電体の上に配されている固体電解質を含む。更に、リード線は陽極体と電気的に接触しており、キャパシタ素子の表面に近接して位置する第1の領域を含む。リード線は表面から外側に伸長しているコアを含み、第1の領域内のコアの少なくとも一部を酸化物層が被覆している。
本発明の一態様によれば、キャパシタを形成する方法が開示される。この方法は、多孔質陽極体を陽極酸化してその上に誘電体層を形成すること、ここで、陽極体から外側に伸長するコアを含むリード線が多孔質陽極体内に埋封されている;誘電体層の上に固体電解質を施すこと、ここでリード線のコアも固体電解質で被覆される;コアの少なくとも一部から固体電解質を除去して露出された領域を形成すること;及び、コアを陽極酸化して、露出された領域においてコア上に酸化物層が形成されるようにすること;を含む。
本発明の他の特徴及び形態を下記においてより詳細に示す。
当業者に向けられた、本発明のベストモードを含む本発明の完全かつ実施可能な開示を、添付の図面を参照しながら本明細書の残りでより詳しく示す。
図1は、本発明にしたがって形成することができるキャパシタの一態様の概要図である。 図2は、リード線から固体電解質を除去する前の、本発明において用いることができるキャパシタ素子の一態様を示し、図2(a)は線2−2に沿ったリード線の断面正面図であり、図2(b)はキャパシタ素子の上面図である。 図3は、リード線から固体電解質を除去した後の図2のキャパシタ素子を示し、図3(a)は線3−3に沿ったリード線の断面正面図であり、図3(b)はキャパシタ素子の上面図である。 図4は、固体電解質を除去し、リード線上に酸化物層を形成した後の図2及び3のキャパシタ素子を示し、図4(a)は線4−4に沿ったリード線の断面正面図であり、図4(b)はキャパシタ素子の上面図である。
本明細書及び図面中で参照記号を繰り返し使用することは、本発明の同じか又は類似する特徴又は構成要素を表すことを意図している。
本議論は代表的な態様のみの説明であり、本発明のより広い形態を限定することは意図しておらず、より広い形態は代表的な構成において具現化されることが当業者によって理解される。
一般的に言うと、本発明は、焼結多孔質陽極体、陽極体の上に配されている誘電体、及び誘電体の上に配されている固体電解質を含むキャパシタ素子を含む固体電解キャパシタに関する。キャパシタ素子の表面から外側に伸長しているコアを含むリード線が陽極体と電気的に接触している。コアは、円形、正方形、長方形、卵形、三角形等、並びに不規則形状のような任意の所望の幾何断面形状を有していてよい。コアはまた、通常はバルブメタル(例えば酸化することができる金属)又はバルブメタル系化合物、例えばタンタル、ニオブ、アルミニウム、ハフニウム、チタン、それらの合金、それらの酸化物、それらの窒化物などから形成される。タンタルが特に好適である。
例えば図1〜4を参照すると、本発明のリード線16の1つの特定の態様がより詳細に示されている。示されているように、リード線16は、キャパシタ素子33の陽極体(図示せず)と電気的に接触しているコア18を含む。コア18は、概してキャパシタ素子33の表面から長手方向(y方向)に伸長する。例えば、図1〜4においては、コア18はキャパシタ素子33の前面36から伸長する。勿論、コア18はまた、キャパシタ素子33の任意の他の表面から、例えば背面38、上面37、第1の側面41、第2の側面43、及び/又は底面39から伸長していてもよい。種々の技術を用いてコア18をキャパシタ素子33に取り付けることができる。例えば、コア18の一端をバルブメタル粉末内に埋封することができ、これを次にリード線の周囲で圧縮及び焼結して陽極体を形成する。或いは、コア18は、単純に、溶接、接着剤等のような技術を用いて陽極体に取り付けることができる。コア18は、例えば図1〜4に示されるように単一の部材から形成することができ、或いは複数の部材によって形成することができることを理解すべきである。単なる例として、第1のリード線部分を図1〜4に示すように陽極体内に埋封し、第2のリード線部分を第1のリード線部分にそれから伸長するように取り付けることができる。かかる態様においては、第2のリード線部分は、キャパシタの製造において用いるための支持ワイヤー(carrier wire)として有効に機能させることができる。
用いる特定の構造にかかわらず、本発明者らは、リード線の特定の特質を選択的に制御することによって、向上した電気特性を有するキャパシタを達成することができることを見出した。即ち、本発明のリード線は、キャパシタ素子の表面に近接して位置する第1の領域を含む。例えば、図4を参照すると、リード線16が、キャパシタ素子33の前面36に近接して(例えばそれに隣接して)位置する第1の領域21を含むものとして示されている。第1の領域21は、リード線16の長手方向に伸長する。第1の領域21は、キャパシタ素子33内に埋封されていないリード線の部分の全長に広がっていてよく、或いはリード線のこの部分の一部のみであってもよいことを理解すべきである。例えば、示されている態様においては、第1の領域21はキャパシタ素子33の前面36から第2の領域29(長手方向にリード線16の端部まで広がる)まで広がる。
リード線の第1の領域内においては、コアの少なくとも一部が酸化物層(通常はコアにおいて用いられるバルブメタルの酸化物である)で被覆される。例えば、タンタルコアを五酸化タンタル(Ta)の層で被覆することができ、一方でニオブコアを五酸化ニオブ(Nb)の層で被覆することができる。例えば、図4に示されるように、第1の領域21は、コア18の少なくとも一部を被覆する酸化物層23を含みうる。酸化物層23の厚さは、通常は約10ナノメートル〜約1,000ナノメートル、幾つかの態様においては約15ナノメートル〜約800ナノメートル、幾つかの態様においては約20ナノメートル〜約600ナノメートル、幾つかの態様においては約30ナノメートル〜約500ナノメートルの範囲である。通常は、コア18の周縁(例えば円周)の約50%以上、幾つかの態様においては約65%以上、幾つかの態様においては約75%以上が酸化物層23によって被覆されることが望ましい。示されている態様においては、酸化物層23は不連続であり、したがって酸化物が有意量で存在しない間隙を画定する。かかる態様においては、固体電解質を形成するために用いられるもの(例えば導電性ポリマー)のような導電性材料19を、コア18上の間隙内に配置することができる。しかしながら、これらの場合においても、酸化物層23は導電性材料19をキャパシタ素子の表面から電気的に絶縁することを助け、これによりリーク電流を減少させることができる。酸化物層23はまた、リード線の陽極終端へ溶接される能力を向上させることを助けることもでき、これにより等価直列抵抗(ESR)を減少させることができる。勿論、酸化物層23はまた、連続的であって、したがってコア18の全周縁を被覆していてもよいことも理解すべきである。
陽極リード線のコア上に酸化物層を形成する方法は変化させることができる。特に好適な態様においては、リード線をまず、固体電解質を形成するのに用いた導電性材料(例えば導電性ポリマー)の全部ではないにしても少なくとも一部を除去する清浄化プロセスにかける。これは、露出したリード線の全長に沿って行うことができ、或いはキャパシタ素子の表面に直ぐ近接している部分のみに沿って行うことができる。導電性材料の除去は種々の技術を用いて行うことができる。例えば一態様においては、「レーザーワイヤー清浄化」として知られる技術を用いて導電性材料を除去することができる。かかる態様においては、コアを、導電性材料を除去するのに望ましい位置でレーザービームと接触させて配置する。一態様においては、レーザーは、レーザー媒体が、ネオジム(Nd)がドープされたアルミニウムイットリウムガーネット(YAG)を含み、励起粒子がネオジムイオンNd3+であるものである。かかるレーザーは、通常は赤外スペクトル内の約1064ナノメートルの波長の光を放出する。レーザーは所望の用途のために好適な任意の直径を有していてよい。幾つかの態様においては、収束領域内のレーザービームは、約0.05mm〜約0.5mm、幾つかの態様においては約0.05mm〜約0.3mm、幾つかの態様においては約0.1mm〜約0.15mmの直径を有する。レーザーはまた、当該技術において周知なように主としてレーザービームを焦点に集光及び収束させる光学ヘッド(例えばレンズ)も含んでいてよい。レーザーはまたビームスプリッターも含んでいてよい。
導電性材料を除去したら、リード線を陽極酸化プロセスにかけて、それから導電性材料が除去されたコアの領域の上に酸化物層を形成する。陽極酸化は、通常は、まずリード線を溶液中に浸漬することなどによって電解質溶液をリード線に施すことによって行う。一般的に、水(例えば脱イオン水)のような溶媒を用いる。イオン伝導性を増大させるために、溶媒中で解離してイオンを形成することができる化合物を用いることができる。かかる化合物の例としては、例えば電解液に関して下記に記載するような酸が挙げられる。例えば、酸(例えばリン酸)が、溶液の約0.01重量%〜約5重量%、幾つかの態様においては約0.02重量%〜約0.8重量%、幾つかの態様においては約0.05重量%〜約0.5重量%を構成することができる。所望の場合には、複数の酸のブレンドを用いることもできる。溶液に電流を流して酸化物層を形成する。化成電圧の値によって酸化物層の厚さを操作する。例えば、電源は、まず、必要な電圧に到達するまで定電流モードに設定することができる。その後、電源を定電位モードに切り替え、所望の誘電体厚さが陽極の表面全体の上に確実に形成されるようにすることができる。勿論、パルス又はステップ定電位法などの他の公知の方法も用いることができる。陽極酸化を行う電圧は、通常は、約4〜約250V、幾つかの態様においては約5〜約200V、幾つかの態様においては約10〜約150Vの範囲である。酸化中は、溶液は昇温温度、例えば約30℃以上、幾つかの態様においては約40℃〜約200℃、幾つかの態様においては約50℃〜約100℃に維持することができる。
再び図2〜3を参照すると、リード線上に酸化物層を形成する1つの方法が概略的に示されている。例えば、図2は、酸化物層を形成する前のリード線16を示す。この状態において、通常は、固体電解質層を形成した従前の工程のためにコア18の少なくとも一部の上に導電性材料19が配置されている。導電性材料19を除去するために、リード線16をレーザーワイヤー清浄化プロセスにかけて、導電性材料19を含まない箇所又は間隙を有する第1の領域21を形成することができる(図3)。上記に示したように、この第1の領域21は、露出されたリード線のキャパシタ素子33に近接して位置する一部のみに沿って広がっていてよく、或いは露出されたリード線の全長に沿って広がっていてもよい。いずれの場合においても、リード線16は、その後に陽極酸化プロセスにかけて、導電性材料19を含まない第1の領域21内のこれらの箇所が酸化物層23で被覆されるようにする(図4)。
ここで、キャパシタ全体の特定の形態の種々の態様をより詳細に記載する。
I.キャパシタ素子:
A.陽極体:
上記に示すように、キャパシタ素子は、焼結多孔質体上に形成された誘電体層を含む陽極を含む。多孔質陽極体は、バルブメタル又はバルブメタル系化合物、例えば、タンタル、ニオブ、アルミニウム、ハフニウム、チタン、それらの合金、それらの酸化物、それらの窒化物などを含む粉末から形成することができる。粉末は、通常は、タンタル塩(例えば、フッ化タンタル酸カリウム(KTaF)、フッ化タンタル酸ナトリウム(NaTaF)、五塩化タンタル(TaCl)等)を還元剤と反応させる還元プロセスから形成される。還元剤は、液体、気体(例えば水素)、又は固体、例えば金属(例えばナトリウム)、金属合金、又は金属塩の形態で提供することができる。例えば一態様においては、タンタル塩(例えばTaCl)を約900℃〜約2,000℃、幾つかの態様においては約1,000℃〜約1,800℃、幾つかの態様においては約1,100℃〜約1,600℃の温度で加熱して蒸気を形成することができ、それを気体還元剤(例えば水素)の存在下で還元することができる。かかる還元反応の更なる詳細は、MaeshimaらのWO−2014/199480に記載されている。還元後、生成物を冷却、粉砕、及び洗浄して粉末を形成することができる。
粉末の比電荷は、通常は、所望の用途に応じて約2,000〜約800,000マイクロファラド・ボルト/グラム(μF・V/g)で変動する。例えば、幾つかの態様においては、約100,000〜約800,000μF・V/g、幾つかの態様においては約120,000〜約700,000μF・V/g、幾つかの態様においては約150,000〜約600,000μF・V/gの比電荷を有する高電荷粉末を用いることができる。他の態様においては、約2,000〜約100,000μF・V/g、幾つかの態様においては約5,000〜約80,000μF・V/g、幾つかの態様においては約10,000〜約70,000μF・V/gの比電荷を有する低電荷粉末を用いることができる。当該技術において公知なように、比電荷は、キャパシタンスに用いた陽極酸化電圧をかけ、次にこの積を陽極酸化電極体の重量で割ることによって求めることができる。
粉末は、一次粒子を含む自由流動性の微細粉末であってよい。粉末の一次粒子は、一般的に、場合によっては粒子を70秒間の超音波振動にかけた後に、例えばBECKMAN COULTER Corporation製のレーザー粒径分布分析装置(例えばLS-230)を用いて求めて、約5〜約500ナノメートル、幾つかの態様においては約10〜約400ナノメートル、幾つかの態様においては約20〜約250ナノメートルのメジアン径(D50)を有する。一次粒子は、通常は三次元の粒子形状(例えば球状又は角状)を有する。かかる粒子は、通常は比較的低い「アスペクト比」、すなわち粒子の平均直径又は幅を平均厚さで割った値(D/T)を有する。例えば、粒子のアスペクト比は、約4以下、幾つかの態様においては約3以下、幾つかの態様においては約1〜約2であってよい。一次粒子に加えて、粉末は、一次粒子の凝集(又は凝塊化)によって形成される二次粒子のような他のタイプの粒子を含んでいてもよい。かかる二次粒子は、約1〜約500マイクロメートル、幾つかの態様においては約10〜約250マイクロメートルのメジアン径(D50)を有していてよい。
粒子の凝集は、粒子を加熱することによるか、及び/又はバインダを用いることによって行うことができる。例えば、凝集は、約0℃〜約40℃、幾つかの態様においては約5℃〜約35℃、幾つかの態様においては約15℃〜約30℃の温度で行うことができる。また好適なバインダとしては、例えば、ポリ(ビニルブチラール);ポリ(酢酸ビニル);ポリ(ビニルアルコール);ポリ(ビニルピロリドン);セルロースポリマー、例えばカルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、及びメチルヒドロキシエチルセルロース;アタクチックポリプロピレン、ポリエチレン;ポリエチレングリコール(例えば、Dow Chemical Co.製のCarbowax);ポリスチレン、ポリ(ブタジエン/スチレン);ポリアミド、ポリイミド、及びポリアクリルアミド、高分子量ポリエーテル;エチレンオキシドとプロピレンオキシドのコポリマー;フルオロポリマー、例えばポリテトラフルオロエチレン、ポリビニリデンフルオリド、及びフルオロオレフィンコポリマー;アクリルポリマー、例えばナトリウムポリアクリレート、ポリ(低級アルキルアクリレート)、ポリ(低級アルキルメタクリレート)、及び低級アルキルアクリレートとメタクリレートのコポリマー;並びに脂肪酸及びワックス、例えばステアリン酸及び他の石鹸脂肪酸、植物性ワックス、マイクロワックス(精製パラフィン)等を挙げることができる。
得られる粉末は、任意の従来の粉末プレス装置を用いて圧縮してペレットを形成することができる。例えば、ダイと1つ又は複数のパンチを含むシングルステーション式圧縮プレス機であるプレス成形機を用いることができる。或いは、ダイと単一の下方パンチのみを用いるアンビルタイプの圧縮プレス成形機を用いることができる。シングルステーション式圧縮プレス成形機は、シングルアクション、ダブルアクション、浮動ダイ、可動式プラテン、対向ラム、スクリュー、インパクト、ホットプレス、圧印加工、又はサイジングのような種々の能力を有するカムプレス、トグル/ナックルプレス、及び偏心/クランクプレスのようないくつかの基本的タイプで入手可能である。所望の場合には、上記に示すように、粉末を本発明のリード線の周囲で圧縮することができる。
バインダは、プレス後にペレットを真空下で一定の温度(例えば約150℃〜約500℃)において数分間加熱することによって除去することができる。或いは、バインダは、ペレットを、Bishopらの米国特許6,197,252に記載されているような水溶液と接触させることによって除去することもできる。その後、ペレットを焼結して多孔質の一体部材を形成する。ペレットは、通常は約700℃〜約1600℃、幾つかの態様においては約800℃〜約1500℃、幾つかの態様においては約900℃〜約1200℃の温度で、約5分〜約100分間、幾つかの態様においては約8分〜約15分間焼結する。これは1以上の工程で行うことができる。所望の場合には、焼結は、酸素原子の陽極への移動を制限する雰囲気中で行うことができる。例えば、焼結は、真空下、不活性ガス下、水素下などの還元雰囲気中で行うことができる。還元雰囲気は、約10トル〜約2000トル、幾つかの態様においては約100トル〜約1000トル、幾つかの態様においては約100トル〜約930トルの圧力であってよい。水素と他の気体(例えばアルゴン又は窒素)の混合物を用いることもできる。
B.誘電体:
陽極体はまた誘電体によって被覆される。誘電体は、焼結した陽極体を陽極酸化して、誘電体層が陽極体の上及び/又はその中に形成されるようにすることによって形成することができる。例えば、タンタル(Ta)陽極を陽極酸化して五酸化タンタル(Ta)にすることができる。通常は、陽極酸化は、まず、陽極を電解液中に浸漬することなどによって溶液を陽極に施すことによって行われる。水(例えば脱イオン水)のような溶媒が一般的に用いられる。イオン伝導度を増大させるために、溶媒中で解離してイオンを形成することができる化合物を用いることができる。かかる化合物の例としては、例えば、電解質に関して下記に記載するような酸が挙げられる。例えば、酸(例えばリン酸)が、陽極酸化溶液の約0.01重量%〜約5重量%、幾つかの態様においては約0.05重量%〜約0.8重量%、幾つかの態様においては約0.1重量%〜約0.5重量%を構成することができる。所望の場合には、複数の酸のブレンドを用いることもできる。
電流を陽極酸化溶液に流して、誘電体層を形成する。化成電圧の値によって誘電体層の厚さが制御される。例えば、電源は、まず、必要な電圧に到達するまで定電流モードに設定することができる。その後、電源を定電位モードに切り替え、所望の誘電体厚さが陽極の表面全体の上に確実に形成されるようにすることができる。勿論、パルス又はステップ定電位法などの他の公知の方法も用いることができる。陽極酸化を行う電圧は、通常は、約4〜約250V、幾つかの態様においては約5〜約200V、幾つかの態様においては約10〜約150Vの範囲である。酸化中は、陽極酸化溶液は昇温温度、例えば約30℃以上、幾つかの態様においては約40℃〜約200℃、幾つかの態様においては約50℃〜約100℃に維持することができる。陽極酸化は周囲温度以下で実施することもできる。得られる誘電体層は陽極の表面上及びその細孔内に形成することができる。
必須ではないが、幾つかの態様においては、誘電体層は、陽極の外表面上に配される第1の部分と陽極の内表面上に配される第2の部分を有するという点において、陽極全体にわたって区別された厚さを有することができる。かかる態様においては、第1の部分は、その厚さが第2の部分の厚さよりも大きくなるように選択的に形成される。しかしながら、誘電体層の厚さは特定の領域内で均一である必要はないことを理解すべきである。外表面に隣接する誘電体層の幾つかの部分は、例えば、実際には内表面における層の幾つかの部分より薄い場合があり、その逆の場合もある。それでもなお、誘電体層は、外表面における層の少なくとも一部が内表面における少なくとも一部よりも大きな厚さを有するように形成することができる。これらの厚さにおける実際の差は特定の用途に応じて変化させることができるが、第2の部分の厚さに対する第1の部分の厚さの比は、通常は約1.2〜約40、幾つかの態様においては約1.5〜約25、幾つかの態様においては約2〜約20である。
区別された厚さを有する誘電体層を形成するためには多段階法が一般的に用いられる。このプロセスの各段階において、焼結した陽極を陽極酸化して誘電体層(例えば五酸化タンタル)を形成する。陽極酸化の第1段階中においては、通常は比較的小さい化成電圧、例えば、約1〜約90ボルト、幾つかの態様においては約2〜約50ボルト、幾つかの態様においては約5〜約20ボルトの範囲の化成電圧を用いて、内部領域に関して所望の誘電体厚さが達成されるのを確実にする。その後、焼結体を次にプロセスの第2段階で陽極酸化して、誘電体の厚さを所望レベルに増加させることができる。これは、一般的には、電解液中において、第1段階中において用いられた電圧より高い電圧、例えば約50〜約350ボルト、幾つかの態様においては約60〜約300ボルト、幾つかの態様においては約70〜約200ボルトの範囲の化成電圧で陽極酸化することにより達成される。第1及び/又は第2段階中においては、電解液は、約15℃〜約95℃、幾つかの態様においては約20℃〜約90℃、幾つかの態様においては約25℃〜約85℃の範囲内の温度に維持することができる。
陽極酸化プロセスの第1及び第2段階中において用いられる電解液は同じでも又は異なっていてもよい。しかしながら、通常は、誘電体層の外側部分においてより大きな厚さを得ることをより良好に促進することを助けるために、異なる溶液を用いることが望ましい。例えば、相当量の酸化物皮膜が陽極の内表面上に形成されないようにするためには、第2段階において用いられる電解液は、第1段階において用いられる電解液よりも低いイオン伝導度を有することが望ましい可能性がある。この点に関し、第1段階中に用いられる電解液には、塩酸、硝酸、硫酸、リン酸、ポリリン酸、ホウ酸、ボロン酸等のような酸性化合物を含ませることができる。かかる電解液は、25℃の温度で求めて、約0.1〜約100mS/cm、幾つかの態様においては約0.2〜約20mS/cm、幾つかの態様においては約1〜約10mS/cmの導電率を有することができる。第2段階中に用いられる電解液は、通常は弱酸の塩を含ませて、ヒドロニウムイオン濃度が、細孔内での電荷通過の結果として細孔内で増大するようにする。イオン輸送又はイオン拡散は、電荷のバランスを取るために必要に応じて、弱酸のアニオンが細孔中に移動するように起こる。その結果、主要導電種(ヒドロニウムイオン)の濃度は、ヒドロニウムイオン、酸アニオン、及び非解離酸の間の平衡が形成される際に減少して、導電不良種が形成される。導電種の濃度の低下は、電解液中での比較的高い電圧降下をもたらし、これにより内部の更なる陽極酸化が妨害され、一方で連続した高導電率の領域における高い化成電圧に対してはより厚い酸化物層が外側に蓄積する。好適な弱酸塩としては、例えば、ホウ酸、ボロン酸、酢酸、シュウ酸、乳酸、アジピン酸などのアンモニウム塩又はアルカリ金属塩(例えばナトリウム、カリウムなど)を挙げることができる。特に好適な塩としては、四ホウ酸ナトリウム及び五ホウ酸アンモニウムが挙げられる。かかる電解液は、通常は、25℃の温度で求めて約0.1〜約20mS/cm、幾つかの態様においては約0.5〜約10mS/cm、幾つかの態様においては約1〜約5mS/cmの導電率を有する。
所望の場合には、所望の誘電体厚さを達成するために、陽極酸化の各段階を1回又は複数回繰り返すことができる。更に、陽極は、第1及び/又は第2段階の後に、電解液を除去するために他の溶媒(例えば水)ですすぐか又は洗浄することもできる。
C.固体電解質:
上記で示したように、固体電解質は誘電体の上に配され、一般にキャパシタのための陰極として機能する。固体電解質には、導電性ポリマー(例えば、ポリピロール、ポリチオフェン、ポリアニリン等)、二酸化マンガンなどのような当該技術において公知の材料を含ませることができる。しかしながら、通常は、固体電解質は外因性導電性(extrinsically conductive)及び/又は固有導電性(intrinsically conductive)のポリマー粒子を含む1以上の層を含む。かかる粒子を用いる1つの利益は、これらによって、従来のin-situ重合プロセス中に生成する、イオン移動のために高電界下で絶縁破壊を引き起こす可能性があるイオン種(例えばFe2+又はFe3+)の存在を最小にすることができることである。而して、導電性ポリマーをin-situ重合によるのではなく予め重合された(pre-polymerized)粒子として施すことによって、得られるキャパシタは比較的高い「絶縁破壊電圧」を示すことができる。所望の場合には、固体電解質は1以上の層から形成することができる。複数の層を用いる場合には、1以上の層にin-situ重合によって形成された導電性ポリマーを含ませることができる。しかしながら、本発明者らは、非常に高い絶縁破壊電圧を達成することが望ましい場合には、固体電解質を主として上記に記載の導電性粒子から形成し、一般にin-situ重合によって形成された導電性ポリマーは含めないことを見出した。用いる層の数に関係なく、得られる固体電解質は、通常は、約1マイクロメートル(μm)〜約200μm、幾つかの態様においては約2μm〜約50μm、幾つかの態様においては約5μm〜約30μmの全厚さを有する。
チオフェンポリマーが、固体電解質において用いるのに特に好適である。例えば、幾つかの態様においては、次式(III):
Figure 0006971314
(式中、
は、線状又は分岐の、C〜C18アルキル基(例えば、メチル、エチル、n−若しくはイソプロピル、n−、イソ−、sec−、又はtert−ブチル、n−ペンチル、1−メチルブチル、2−メチルブチル、3−メチルブチル、1−エチルプロピル、1,1−ジメチルプロピル、1,2−ジメチルプロピル、2,2−ジメチルプロピル、n−ヘキシル、n−ヘプチル、n−オクチル、2−エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ヘキサデシル、n−オクタデシル等);C〜C12シクロアルキル基(例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル等);C〜C14アリール基(例えば、フェニル、ナフチル等);C〜C18アラルキル基(例えば、ベンジル、o−、m−、p−トリル、2,3−、2,4−、2,5−、2,6−、3,4−、3,5−キシリル、メシチル等)であり;
qは、0〜8、幾つかの態様においては0〜2、一態様においては0の整数である)
の繰り返し単位を有する「外因性」導電性チオフェンポリマーを、固体電解質において用いることができる。1つの特定の態様においては、「q」は0であり、ポリマーはポリ(3,4−エチレンジオキシチオフェン)である。かかるポリマーを形成するのに好適なモノマーの1つの商業的に好適な例は、HeraeusからClevios(登録商標)Mの名称で入手できる3,4−エチレンジオキシチオフェンである。
式(III)のポリマーは、一般に、ポリマーに共有結合していない別の対イオンの存在を通常は必要とする点で「外因性」導電性であるとみなされる。対イオンは、導電性ポリマーの電荷を中和するモノマー又はポリマーアニオンであってよい。ポリマーアニオンは、例えばポリマーカルボン酸(例えばポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等);ポリマースルホン酸(例えばポリスチレンスルホン酸(PSS)、ポリビニルスルホン酸等);などのアニオンであってよい。酸はまた、ビニルカルボン酸及びビニルスルホン酸と、アクリル酸エステル及びスチレンのような他の重合性モノマーとのコポリマーのようなコポリマーであってもよい。更に、好適なモノマーアニオンとしては、例えば、C〜C20アルカンスルホン酸(例えばドデカンスルホン酸);脂肪族ペルフルオロスルホン酸(例えばトリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸、又はペルフルオロオクタンスルホン酸);脂肪族C〜C20カルボン酸(例えば2−エチルヘキシルカルボン酸);脂肪族ペルフルオロカルボン酸(例えばトリフルオロ酢酸又はペルフルオロオクタン酸);場合によってC〜C20アルキル基によって置換されている芳香族スルホン酸(例えばベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸);シクロアルカンスルホン酸(例えばカンファースルホン酸、又はテトラフルオロボレート、ヘキサフルオロホスフェート、ペルクロレート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、又はヘキサクロロアンチモネート);などのアニオンが挙げられる。特に好適な対アニオンは、ポリマーカルボン酸又はスルホン酸(例えばポリスチレンスルホン酸(PSS))のようなポリマーアニオンである。かかるポリマーアニオンの分子量は、通常は、約1,000〜約2,000,000、幾つかの態様においては約2,000〜約500,000の範囲である。
また、ポリマーに共有結合しているアニオンによって少なくとも部分的に補償(compensate)されている主鎖上に配置されている正電荷を有する固有導電性ポリマーを用いることもできる。例えば、好適な固有導電性チオフェンポリマーの1つの例は、次式(IV):
Figure 0006971314
(式中、
Rは(CH−O−(CHであり;
aは、0〜10、幾つかの態様においては0〜6、幾つかの態様においては1〜4(例えば1)であり;
bは、1〜18、幾つかの態様においては1〜10、幾つかの態様においては2〜6(例えば、2、3、4、又は5)であり;
Zは、SO 、C(O)O、BF 、CFSO 、SbF 、N(SOCF 、C 、ClO 等のようなアニオンであり;
Xは、水素、アルカリ金属(例えば、リチウム、ナトリウム、ルビジウム、セシウム、又はカリウム)、アンモニウム等のようなカチオンである)
の繰り返し単位を有していてよい。
1つの特定の態様においては、式(IV)におけるZはスルホネートイオンであって、固有導電性ポリマーは次式(V):
Figure 0006971314
(式中、R及びXは上記に規定した通りである)
の繰り返し単位を含む。式(IV)又は(V)において、aは好ましくは1であり、bは好ましくは3又は4である。更に、Xは好ましくはナトリウム又はカリウムである。
所望の場合には、ポリマーは他のタイプの繰り返し単位を含むコポリマーであってよい。かかる態様においては、式(IV)の繰り返し単位は、通常はコポリマー中の繰り返し単位の全量の約50モル%以上、幾つかの態様においては約75モル%〜約99モル%、幾つかの態様においては約85モル%〜約95モル%を構成する。勿論、ポリマーは、100モル%の式(IV)の繰り返し単位を含む点でホモポリマーであってもよい。かかるホモポリマーの具体例としては、ポリ(4−(2,3−ジヒドロチエノ−[3,4−b][1,4]ジオキシン−2−イルメトキシ)−1−ブタンスルホン酸,塩)、及びポリ(4−(2,3−ジヒドロチエノ−[3,4−b][1,4]ジオキシン−2−イルメトキシ)−1−プロパンスルホン酸,塩)が挙げられる。
ポリマーの特定の性質に関係なく、得られる導電性ポリマー粒子は、通常は、約1〜約80ナノメートル、幾つかの態様においては約2〜約70ナノメートル、幾つかの態様においては約3〜約60ナノメートルの平均径(例えば直径)を有する。粒子の直径は、超遠心分離、レーザー回折等のような公知の技術を用いて求めることができる。更に、粒子の形状を変化させることができる。例えば1つの特定の態様においては、粒子は球状の形状である。しかしながら、プレート、ロッド、ディスク、バー、チューブ、不規則形状等のような他の形状も本発明によって意図されることを理解すべきである。
必ずしも必須ではないが、導電性ポリマー粒子は分散液の形態で施すことができる。分散液中の導電性ポリマーの濃度は、分散液の所望の粘度、及び分散液をキャパシタ素子に施す特定の方法に応じて変化させることができる。しかしながら、通常はポリマーは、分散液の約0.1〜約10重量%、幾つかの態様においては約0.4〜5重量%、幾つかの態様においては約0.5〜約4重量%を構成する。分散液にはまた、得られる固体電解質の全体的な特性を向上させるための1以上の成分を含ませることもできる。例えば、分散液にバインダーを含ませて、ポリマー層の接着性を更に高め、また分散液内における粒子の安定性も増加させることができる。バインダーは、ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチレート、ポリアクリル酸エステル、ポリアクリル酸アミド、ポリメタクリル酸エステル、ポリメタクリル酸アミド、ポリアクリロニトリル、スチレン/アクリル酸エステル、酢酸ビニル/アクリル酸エステル及びエチレン/酢酸ビニルコポリマー、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリエーテル、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド、ポリイミド、ポリスルホン、メラミンホルムアルデヒド樹脂、エポキシド樹脂、シリコーン樹脂又はセルロースのような有機的性質のものであってよい。バインダーの接着能力を増大させるために架橋剤を用いることもできる。かかる架橋剤としては、例えば、メラミン化合物、マスクドイソシアネート又は架橋性ポリマー、例えばポリウレタン、ポリアクリレート、又はポリオレフィンを挙げることができ、その後の架橋を含めることができる。また、層を陽極に施す能力を促進させるために、分散剤を用いることもできる。好適な分散剤としては、脂肪族アルコール(例えば、メタノール、エタノール、i−プロパノール、及びブタノール)、脂肪族ケトン(例えば、アセトン及びメチルエチルケトン)、脂肪族カルボン酸エステル(例えば、酢酸エチル及び酢酸ブチル)、芳香族炭化水素(例えば、トルエン及びキシレン)、脂肪族炭化水素(例えば、ヘキサン、ヘプタン、及びシクロヘキサン)、塩素化炭化水素(例えば、ジクロロメタン及びジクロロエタン)、脂肪族ニトリル(例えばアセトニトリル)、脂肪族スルホキシド及びスルホン(例えば、ジメチルスルホキシド及びスルホラン)、脂肪族カルボン酸アミド(例えば、メチルアセトアミド、ジメチルアセトアミド及びジメチルホルムアミド)、脂肪族及び芳香脂肪族エーテル(例えば、ジエチルエーテル及びアニソール)、水、及び任意の上記の溶媒の混合物のような溶媒が挙げられる。特に好適な分散剤は水である。
上述したものに加えて、更に他の成分を分散液中で用いることもできる。例えば、約10ナノメートル〜約100マイクロメートル、幾つかの態様においては約50ナノメートル〜約50マイクロメートル、幾つかの態様においては約100ナノメートル〜約30マイクロメートルの寸法を有する通常のフィラーを用いることができる。かかるフィラーの例としては、炭酸カルシウム、シリケート、シリカ、硫酸カルシウム又はバリウム、水酸化アルミニウム、ガラス繊維又はガラス球、木粉、セルロース粉末、カーボンブラック、導電性ポリマー等が挙げられる。フィラーは、粉末形態で分散液中に導入することができるが、繊維のような他の形態で存在させることもできる。
イオン性又は非イオン性界面活性剤のような表面活性物質を分散液中で用いることもできる。更に、有機官能性シラン又はそれらの加水分解物、例えば、3−グリシドキシプロピルトリアルコキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン又はオクチルトリエトキシシランのような接着剤を用いることができる。分散液にはまた、エーテル基含有化合物(例えばテトラヒドロフラン)、ラクトン基含有化合物(例えば、γ−ブチロラクトン又はγ−バレロラクトン)、アミド又はラクタム基含有化合物(例えば、カプロラクタム、N−メチルカプロラクタム、N,N−ジメチルアセトアミド、N−メチルアセトアミド、N,N−ジメチルホルムアミド(DMF)、N−メチルホルムアミド、N−メチルホルムアニリド、N−メチルピロリドン(NMP)、N−オクチルピロリドン、又はピロリドン)、スルホン及びスルホキシド(例えば、スルホラン(テトラメチレンスルホン)又はジメチルスルホキシド(DMSO))、糖又は糖誘導体(例えば、サッカロース、グルコース、フルクトース、又はラクトース)、糖アルコール(例えば、ソルビトール又はマンニトール)、フラン誘導体(例えば、2−フランカルボン酸又は3−フランカルボン酸)、アルコール(例えば、エチレングリコール、グリセロール、ジ−又はトリエチレングリコール)のような、導電性を増加させる添加剤を含ませることもできる。
分散液は、スピン被覆、含浸、流し込み、滴下適用、注入、噴霧、ドクターブレード塗布、ブラシ塗布、印刷(例えば、インクジェット、スクリーン、又はパッド印刷)、又は浸漬などによる種々の公知の技術を用いて施すことができる。分散液の粘度は、通常は、約0.1〜約100,000mPas(100s−1の剪断速度で測定)、幾つかの態様においては約1〜約10,000mPas、幾つかの態様においては約10〜約1,500mPas、幾つかの態様においては約100〜約1000mPasである。
i.内側層:
固体電解質は、一般に1以上の「内側」導電性ポリマー層から形成される。この文脈における「内側」という用語は、誘電体の上に直接か又は他の層(例えば接着層)を介して配されている1以上の層を指す。1つ又は複数の内側層を用いることができる。例えば、固体電解質は、通常は2〜30、幾つかの態様においては4〜20、幾つかの態様においては約5〜15の内側層(例えば10の層)を含む。1つ又は複数の内側層には、例えば、上記に記載したような固有導電性及び/又は外因性導電性のポリマー粒子を含ませることができる。例えば、かかる粒子は、1つ又は複数の内側層の約50重量%以上、幾つかの態様においては約70重量%以上、幾つかの態様においては約90重量%以上(例えば約100重量%)を構成することができる。別の態様においては、1つ又は複数の内側層にin-situ重合された導電性ポリマーを含ませることができる。かかる態様においては、in-situ重合されたポリマーは、1つ又は複数の内側層の約50重量%以上、幾つかの態様においては約70重量%以上、幾つかの態様においては約90重量%以上(例えば約100重量%)を構成することができる。
ii.外側層:
固体電解質にはまた、1つ又は複数の内側層の上に配されて、異なる材料から形成される1以上の随意的な「外側」導電性ポリマー層を含ませることもできる。例えば、1つ又は複数の外側層に外因性導電性ポリマー粒子を含ませることができる。1つの特定の態様においては、1つ又は複数の外側層は、外因性導電性ポリマー粒子がそれぞれの外側層の約50重量%以上、幾つかの態様においては約70重量%以上、幾つかの態様においては約90重量%以上(例えば100重量%)を構成するという点で、主としてかかる外因性導電性ポリマー粒子から形成される。1つ又は複数の外側層を用いることができる。例えば、固体電解質には、2〜30、幾つかの態様においては4〜20、幾つかの態様においては約5〜15の外側層を含ませることができ、これらのそれぞれは、場合によっては外因性導電性ポリマー粒子の分散液から形成することができる。
D.外側ポリマー被覆:
また、固体電解質の上に外側ポリマー被覆を配することもできる。外側ポリマー被覆は、一般に上記に記載のような予め重合された導電性ポリマー粒子(例えば、外因性導電性ポリマー粒子の分散液)から形成される1以上の層を含む。外側被覆は、キャパシタ体のエッジ領域中に更に浸透して、誘電体に対する接着を増加させて、より機械的に堅牢な部品を与えることができ、これにより等価直列抵抗及びリーク電流を減少させることができる。一般に、陽極体の内部に含浸させるのではなく、エッジの被覆度を向上させることを意図しているので、外側被覆において用いられる粒子は、通常は固体電解質において用いられるものよりも大きな寸法を有する。例えば、固体電解質の任意の分散液において用いられる粒子の平均寸法に対する、外側ポリマー被覆において用いられる粒子の平均寸法の比率は、通常は約1.5〜約30、幾つかの態様においては約2〜約20、幾つかの態様においては約5〜約15である。例えば、外側被覆の分散液中で用いられる粒子は、約80〜約500ナノメートル、幾つかの態様においては約90〜約250ナノメートル、幾つかの態様においては約100〜約200ナノメートルの平均寸法を有していてよい。
所望の場合には、外側ポリマー被覆において架橋剤を用いて、固体電解質に対する接着度を増大させることができる。通常は、架橋剤は外側被覆において用いる分散液を施す前に施す。好適な架橋剤は、例えば、Merkerらの米国特許公開2007/0064376に記載されており、例えば、アミン(例えば、ジアミン、トリアミン、オリゴマーアミン、ポリアミン等);多価金属カチオン、例えば、Mg、Al、Ca、Fe、Cr、Mn、Ba、Ti、Co、Ni、Cu、Ru、Ce、又はZnの塩又は化合物、ホスホニウム化合物、スルホニウム化合物等が挙げられる。特に好適な例としては、例えば、1,4−ジアミノシクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、エチレンジアミン、1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、N,N−ジメチルエチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチル−1,4−ブタンジアミン等、並びにこれらの混合物が挙げられる。
架橋剤は、通常は、そのpHが25℃において求めて1〜10、幾つかの態様においては2〜7、幾つかの態様においては3〜6である溶液又は分散液から施される。酸性化合物を用いて所望のpHレベルの達成を助けることができる。架橋剤のための溶媒又は分散剤の例としては、水、又は有機溶媒、例えばアルコール、ケトン、カルボン酸エステル等が挙げられる。架橋剤は、スピン被覆、含浸、流延、滴下適用、噴霧適用、蒸着、スパッタリング、昇華、ナイフ被覆、塗装又は印刷、例えばインクジェット、スクリーン、又はパッド印刷のような任意の公知のプロセスによってキャパシタ体に施すことができる。施したら、ポリマー分散液を施す前に架橋剤を乾燥することができる。次に、所望の厚さが達成されるまでこのプロセスを繰り返すことができる。例えば、架橋剤及び分散液の層を含む外側ポリマー被覆全体の全厚さは、約1〜約50μm、幾つかの態様においては約2〜約40μm、幾つかの態様においては約5〜約20μmの範囲であってよい。
固体電解質及び任意の随意的な外側被覆を施したら、キャパシタ素子を更なる陽極酸化プロセスにかけることができ、これによって誘電体層を有効に「再形成」することができる。この陽極酸化プロセスは、上記に記載したような方法で行うことができる。この再形成プロセス中において、リード線も陽極酸化して、酸化物層がリード線のコア上に被覆されるようにすることもできる。かかる態様においては、まず、その上に酸化物層を形成することが望ましいコアの箇所から導電性材料(例えば導電性ポリマー)を除去する。これは、例えば上記で議論したレーザーワイヤー清浄化を用いて行うことができる。勿論、酸化物層はまた、所望の場合には誘電体の再形成とは別のプロセス中に形成することもできる。
E.陰極被覆:
キャパシタ素子はまた、固体電解質及び他の随意的な層(例えば外側ポリマー被覆)の上に配される陰極被覆を用いることもできる。用いる場合には、通常は、陰極被覆は随意的な再形成工程の後に固体電解質に施すことが望ましい。
陰極被覆には、樹脂状ポリマーマトリクス内に分散されている多数の導電性金属粒子を含む金属粒子層を含ませることができる。粒子は、通常は層の約50重量%〜約99重量%、幾つかの態様においては約60重量%〜約98重量%、幾つかの態様においては約70重量%〜約95重量%を構成し、一方で樹脂状ポリマーマトリクスは、通常は層の約1重量%〜約50重量%、幾つかの態様においては約2重量%〜約40重量%、幾つかの態様においては約5重量%〜約30重量%を構成する。導電性金属粒子は、銅、ニッケル、銀、ニッケル、亜鉛、スズ、鉛、銅、アルミニウム、モリブデン、チタン、鉄、ジルコニウム、マグネシウム等のような種々の異なる金属、並びにこれらの合金から形成することができる。銀がかかる層において用いるのに特に好適な導電性金属である。金属粒子は、しばしば、約0.01〜約50マイクロメートル、幾つかの態様においては約0.1〜約40マイクロメートル、幾つかの態様においては約1〜約30マイクロメートルの平均サイズのような比較的小さい寸法を有する。通常は1つのみの金属粒子層を用いるが、所望の場合には複数の層を用いることができることを理解すべきである。かかる1つ又は複数の層の合計厚さは、約1μm〜約500μm、幾つかの態様においては約5μm〜約200μm、幾つかの態様においては約10μm〜約100μmの範囲内である。
樹脂状ポリマーマトリクスは、通常は本質的に熱可塑性又は熱硬化性であってよいポリマーを含む。しかしながら、通常は、ポリマーは、銀イオンのエレクトロマイグレーションに対するバリヤとして作用することができ、また陰極被覆における水吸着の程度を最小にするように比較的少量の極性基を含むように選択される。この点に関し、本発明者らは、ポリビニルブチラール、ポリビニルホルマール等のようなビニルアセタールポリマーがこの目的のために特に好適であることを見出した。例えば、ポリビニルブチラールは、ポリビニルアルコールをアルデヒド(例えばブチルアルデヒド)と反応させることによって形成することができる。この反応は通常は完全ではないので、ポリビニルブチラールは一般的に残留ヒドロキシル含量を有する。しかしながら、この含量を最小にすることによって、ポリマーはより低い程度の強極性基を有することができる(これを有していないと高い程度の湿分吸着が引き起こされ、且つ銀イオンの移動が引き起こされる)。例えば、ポリビニルアセタール中の残留ヒドロキシル含量は、約35モル%以下、幾つかの態様においては約30モル%以下、幾つかの態様においては約10モル%〜約25モル%にすることができる。かかるポリマーの1つの商業的に入手できる例は、Sekisui Chemical Co., Ltd.から「BH-S」(ポリビニルブチラール)の名称で入手できる。
陰極被覆を形成するためには、通常は、導電性ペーストをキャパシタに、固体電解質の上に重ねて施す。一般にペースト中で1種類以上の有機溶媒を用いる。一般に、グリコール(例えば、プロピレングリコール、ブチレングリコール、トリエチレングリコール、ヘキシレングリコール、ポリエチレングリコール、エトキシジグリコール、及びジプロピレングリコール);グリコールエーテル(例えば、メチルグリコールエーテル、エチルグリコールエーテル、及びイソプロピルグリコールエーテル);エーテル(例えば、ジエチルエーテル及びテトラヒドロフラン);アルコール(例えば、ベンジルアルコール、メタノール、エタノール、n−プロパノール、イソ−プロパノール、及びブタノール);トリグリセリド;ケトン(例えば、アセトン、メチルエチルケトン、及びメチルイソブチルケトン);エステル(例えば、酢酸エチル、酢酸ブチル、ジエチレングリコールエーテルアセテート、及びメトキシプロピルアセテート);アミド(例えば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルカプリル/カプリン脂肪酸アミド及びN−アルキルピロリドン);ニトリル(例えば、アセトニトリル、プロピオンニトリル、ブチロニトリル、及びベンゾニトリル);スルホキシド又はスルホン(例えば、ジメチルスルホキシド(DMSO)及びスルホラン);等、並びにこれらの混合物のような種々の異なる有機溶媒を用いることができる。1種類又は複数の有機溶媒は、通常は、ペーストの約10重量%〜約70重量%、幾つかの態様においては約20重量%〜約65重量%、幾つかの態様においては約30重量%〜約60重量%を構成する。通常は、金属粒子は、ペーストの約10重量%〜約60重量%、幾つかの態様においては約20重量%〜約45重量%、幾つかの態様においては約25重量%〜約40重量%を構成し、樹脂状ポリマーマトリクスは、ペーストの約0.1重量%〜約20重量%、幾つかの態様においては約0.2重量%〜約10重量%、幾つかの態様においては約0.5重量%〜約8重量%を構成する。
ペーストは比較的低い粘度を有していてよく、これによりそれを容易に取り扱ってキャパシタ素子に施すことが可能になる。粘度は、例えば、Brookfield DV-1粘度計(コーンプレート)などを用いて10rpmの速度及び25℃の温度で運転して測定して、約50〜約3,000センチポアズ、幾つかの態様においては100〜約2,000センチポアズ、幾つかの態様においては約200〜約1,000センチポアズの範囲であってよい。所望の場合には、ペースト中で増粘剤又は他の粘度調整剤を用いて粘度を増加又は減少させることができる。更に、施すペーストの厚さは比較的薄くてもよく、これでもなお所望の特性を達成することができる。例えば、ペーストの厚さは、約0.01〜約50マイクロメートル、幾つかの態様においては約0.5〜約30マイクロメートル、幾つかの態様においては約1〜約25マイクロメートルであってよい。施したら、金属ペーストを場合によっては乾燥して、有機溶媒のような幾つかの成分を除去することができる。例えば、乾燥は、約20℃〜約150℃、幾つかの態様においては約50℃〜約140℃、幾つかの態様においては約80℃〜約130℃の温度で行うことができる。
F.他の成分:
所望の場合には、当該技術において公知の他の層をキャパシタに含ませることもできる。例えば、幾つかの態様においては、炭素層(例えばグラファイト)を固体電解質と銀層との間に配置して、これによって銀層と固体電解質との接触を更に制限することを助けることができる。
更に、幾つかの態様においては、誘電体の上に配され、有機金属化合物を含む接着層を用いることができる。接着層は、誘電体と固体電解質の間に配置することができ、或いは固体電解質の異なる層の間に配置することもできる。これとは関係なく、有機金属化合物は、次の一般式:
Figure 0006971314
(式中、
Mは、ケイ素、チタンなどのような有機金属原子であり;
、R、及びRは、独立して、アルキル(例えば、メチル、エチル、プロピル等)、又はヒドロキシアルキル(例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシプロピル等)であり、R、R、及びRの少なくとも1つはヒドロキシアルキルであり;
nは、0〜8、幾つかの態様においては1〜6、幾つかの態様においては2〜4(例えば3)の整数であり;そして
Xは、グリシジル、グリシジルオキシ、メルカプト、アミノ、ビニル等のような有機又は無機官能基である)
を有していてよい。
幾つかの態様においては、R、R、及びRはヒドロキシアルキル(例えばOCH)であってよい。しかしながら他の態様においては、Rはアルキル(例えばCH)であってよく、R及びRはヒドロキシアルキル(例えばOCH)であってよい。
更に、幾つかの態様においては、Mはケイ素であってよく、有機金属化合物はアルコキシシランのような有機シラン化合物である。好適なアルコキシシランとしては、例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルメチルジエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、グリシドキシメチルトリプロポキシシラン、グリシドキシメチルトリブトキシシラン、β−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリエトキシシラン、β−グリシドキシエチルトリプロポキシシラン、β−グリシドキシエチルトリブトキシシラン、β−グリシドキシエチルトリメトキシシラン、α−グリシドキシエチルトリエトキシシラン、α−グリシドキシエチルトリプロポキシシラン、α−グリシドキシエチルトリブトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリプロポキシシラン、γ−グリシドキシプロピルトリブトキシシラン、β−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピルトリエトキシシラン、β−グリシドキシプロピルトリプロポキシシラン、α−グリシドキシプロピルトリブトキシシラン、α−グリシドキシプロピルトリメトキシシラン、α−グリシドキシプロピルトリエトキシシラン、α−グリシドキシプロピルトリプロポキシシラン、α−グリシドキシプロピルトリブトキシシラン、γ−グリシドキシブチルトリメトキシシラン、δ−グリシドキシブチルトリエトキシシラン、δ−グリシドキシブチルトリプロポキシシラン、δ−グリシドキシブチルトリブトキシシラン、δ−グリシドキシブチルトリメトキシシラン、γ−グリシドキシブチルトリエトキシシラン、γ−グリシドキシブチルトリプロポキシシラン、γ−プロポキシブチルトリブトキシシラン、δ−グリシドキシブチルトリメトキシシラン、δ−グリシドキシブチルトリエトキシシラン、δ−グリシドキシブチルトリプロポキシシラン、α−グリシドキシブチルトリメトキシシラン、α−グリシドキシブチルトリエトキシシラン、α−グリシドキシブチルトリプロポキシシラン、α−グリシドキシブチルトリブトキシシラン、(3,4−エポキシシクロヘキシル)−メチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、(3,4−エポキシシクロヘキシル)メチルトリプロポキシシラン、(3,4−エポキシシクロヘキシル)メチルトリブトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリプロポキシシラン、(3,4−エポキシシクロヘキシル)エチルトリブトキシシラン、(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、(3,4−エポキシシクロヘキシル)プロピルトリエトキシシラン、(3,4−エポキシシクロヘキシル)プロピルトリプロポキシシラン、(3,4−エポキシシクロヘキシル)プロピルトリブトキシシラン(3,4−エポキシシクロヘキシル)ブチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)ブチルトリエトキシシラン、(3,4−エポキシシクロヘキシル)ブチルトリプロポキシシラン、(3,4−エポキシシクロヘキシル)ブチルトリブトキシシランなどを挙げることができる。
接着層をキャパシタ体に施す特定の方法は、所望のように変化させることができる。1つの特定の態様においては、化合物を有機溶媒中に溶解し、スクリーン印刷、浸漬、電気泳動被覆、噴霧等などによって溶液として部品に施す。有機溶媒は変化させることができるが、通常は、メタノール、エタノール等のようなアルコールである。有機金属化合物は、溶液の約0.1重量%〜約10重量%、幾つかの態様においては約0.2重量%〜約8重量%、幾つかの態様においては約0.5重量%〜約5重量%を構成することができる。溶媒はまた、溶液の約90重量%〜約99.9重量%、幾つかの態様においては約92重量%〜約99.8重量%、幾つかの態様においては約95重量%〜約99.5重量%を構成することができる。適用したら、次に部品を乾燥して溶媒をそれから除去して、有機金属化合物を含む接着層を形成することができる。
II.終端:
所望の層が形成されたら、キャパシタに終端を設けることができる。例えば、キャパシタに、リード線が電気的に接続される陽極終端と、キャパシタ素子の陰極が電気的に接続される陰極終端を含ませることができる。導電性金属(例えば、銅、ニッケル、銀、ニッケル、亜鉛、スズ、パラジウム、鉛、銅、アルミニウム、モリブデン、チタン、鉄、ジルコニウム、マグネシウム、及びこれらの合金)のような任意の導電性材料を用いて終端を形成することができる。特に好適な導電性金属としては、例えば、銅、銅合金(例えば、銅−ジルコニウム、銅−マグネシウム、銅−亜鉛、又は銅−鉄)、ニッケル、及びニッケル合金(例えばニッケル−鉄)が挙げられる。終端の厚さは、一般的にキャパシタの厚さを最小にするように選択される。例えば、終端の厚さは、約0.05〜約1ミリメートル、幾つかの態様においては約0.05〜約0.5ミリメートル、及び約0.07〜約0.2ミリメートルの範囲であってよい。一つの代表的な導電性材料は、Wieland(ドイツ)から入手できる銅−鉄合金の金属プレートである。所望の場合には、終端の表面は、当該技術において公知なように、最終部品を回路基板へ実装することができるのを確実にするために、ニッケル、銀、金、スズ等で電気めっきすることができる。一つの特定の態様においては、終端の両方の面をそれぞれニッケル及び銀フラッシュでめっきし、一方で、実装面もスズはんだ層でめっきする。
例えば図1を参照すると、キャパシタ30が、キャパシタ素子33と電気的に接続されている陽極終端62及び陰極終端72を含むものとして示されている。陰極終端72はキャパシタ素子33のいずれの表面とも電気的に接触させてよいが、示されている態様における陰極終端72は、導電性接着剤を介して下面39と電気的に接触している。より具体的には、陰極終端72は、キャパシタ素子33の下面39と電気的に接触していて、それと概して平行である第1の部品73を含む。陰極終端72にはまた、第1の部品73に対して実質的に垂直で、キャパシタ素子33の背面38と電気的に接触している第2の部品74を含ませることもできる。また、陽極終端62は、第2の部品64に対して実質的に垂直に配置されている第1の部品63を含む。第1の部品63は、キャパシタ素子33の下面39と電気的に接触していて、概してそれと平行である。第2の部品64は、陽極リード線16を支持する領域51を含む。図1には示していないが、領域51は、リード線16の表面接触及び機械的安定性を更に増大させるために、「U字形」を有していてよい。
終端は、当該技術において公知の任意の技術を用いてキャパシタ素子に接続することができる。例えば一態様においては、陰極終端72と陽極終端62を画定するリードフレームを与えることができる。キャパシタ素子33をリードフレームに取り付けるためには、まず導電性接着剤を陰極終端72の表面に施すことができる。一態様においては、まず陽極終端62の第2の部品64を、図1において示されている位置まで上方向に屈曲させる。その後、キャパシタ素子33の下面39が接着剤と接触し、陽極リード16が領域51によって受容されるように、陰極終端72上にキャパシタ素子33を配置する。所望の場合には、プラスチックパッド又はテープのような絶縁材料(図示せず)を、キャパシタ素子33の下面39と、陽極終端62の第1の部品63との間に配置して、陽極終端と陰極終端を電気的に絶縁することができる。次に、機械的溶接、レーザー溶接、導電性接着剤等のような当該技術において公知の任意の技術を用いて、リード線16を領域51に電気的に接続する。例えば、上記に記載のように、レーザーを用いて陽極リード線16を陽極終端62に溶接することができる。リード線16を陽極終端62に電気的に接続したら、次に導電性接着剤を硬化させることができる。例えば、ヒートプレスを用いて熱及び圧力を加えて、電解キャパシタ素子33が接着剤によって陰極終端72に適切に接着するのを確実にすることができる。
III.ケーシング材料:
キャパシタ素子は、また、陽極終端及び陰極終端の少なくとも一部が回路基板上にマウントするために露出されるようにケーシング材料で封入することもできる。例えば、図1において示されるように、キャパシタ素子33は、陽極終端62の一部及び陰極終端72の一部が露出されるようにケーシング材料28内に封入する。
幾つかの態様においては、ケーシング材料に、1種類以上の無機酸化物フィラー、及び共反応物(硬化剤)と架橋されている1種類以上のエポキシ樹脂を含む樹脂材料を含むエポキシ組成物を含ませることができる。ケーシング材料の全体的な耐湿性を向上させることを促進するために、無機酸化物フィラーの含量は、組成物の約75重量%以上、幾つかの態様においては約76重量%以上、幾つかの態様においては約77重量%〜約90重量%のような高いレベルに維持する。無機酸化物フィラーの性質は、シリカ、アルミナ、ジルコニア、酸化マグネシウム、鉄酸化物(例えば、黄色オキシ水酸化鉄(iron hydroxide oxide yellow))、チタン酸化物(例えば二酸化チタン)、亜鉛酸化物(例えば、オキシ水酸化ホウ素亜鉛(boron zinc hydroxide oxide))、銅酸化物、ゼオライト、シリケート、クレイ(例えばスメクタイトクレイ)等、及び複合体(例えばアルミナ被覆シリカ粒子)、並びにこれらの混合物のように変化してよい。しかしながら、用いる特定のフィラーにかかわらず、無機酸化物フィラーの全部ではないにしても相当部分は通常はシリカガラスの形態であり、これによって、その高い純度及び比較的単純な化学形態のためにケーシング材料の耐湿性が更に向上すると考えられる。シリカガラスは、例えば、組成物中で用いるフィラーの全重量の約30重量%以上、幾つかの態様においては約35重量%〜約90重量%、幾つかの態様においては約40重量%〜約80重量%、並びに全組成物の約20重量%〜約70重量%、幾つかの態様においては約25重量%〜約65重量%、幾つかの態様においては約30重量%〜約60重量%を構成していてよい。勿論、石英、ヒュームドシリカ、クリストバライト等のような他の形態のシリカを、シリカガラスと組み合わせて用いることもできる。
樹脂材料は、通常は組成物の約0.5重量%〜約25重量%、幾つかの態様においては約1重量%〜約24重量%、幾つかの態様においては約10重量%〜約23重量%を構成する。一般的に言えば、任意の種々の異なるタイプのエポキシ樹脂を本発明において用いることができる。好適なエポキシ樹脂の例としては、例えば、ビスフェノールAタイプのエポキシ樹脂、ビスフェノールFタイプのエポキシ樹脂、フェノールノボラックタイプのエポキシ樹脂、オルトクレゾールノボラックタイプのエポキシ樹脂、臭素化エポキシ樹脂及びビフェニルタイプのエポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、クレゾールノボラックタイプのエポキシ樹脂、ナフタレンタイプのエポキシ樹脂、フェノールアラルキルタイプのエポキシ樹脂、シクロペンタジエンタイプのエポキシ樹脂、複素環式エポキシ樹脂等が挙げられる。しかしながら、所望の程度の耐湿性を与えることを促進するためには、フェノール系ノボラック樹脂のグリシジルエーテルであるエポキシフェノールノボラック(EPN)樹脂を用いることが特に望ましい。これらの樹脂は、例えばフェノール類を酸触媒の存在下で過剰のホルムアルデヒドと反応させてフェノール系ノボラック樹脂を生成させることによって製造することができる。次に、フェノール系ノボラック樹脂を水酸化ナトリウムの存在下でエピクロロヒドリンと反応させることによって、ノボラックエポキシ樹脂を製造する。ノボラックタイプのエポキシ樹脂の具体例としては、フェノール−ノボラックエポキシ樹脂、クレゾール−ノボラックエポキシ樹脂、ナフトール−ノボラックエポキシ樹脂、ナフトール−フェノール共縮合ノボラックエポキシ樹脂、ナフトール−クレゾール共縮合ノボラックエポキシ樹脂、臭素化フェノール−ノボラックエポキシ樹脂等が挙げられる。選択される樹脂のタイプにかかわらず、得られるフェノール系ノボラックエポキシ樹脂は、通常は2より多いオキシラン基を有し、これを用いて高い架橋密度を有する硬化被覆組成物を製造することができ、これは耐湿性を増大させるために特に好適である可能性がある。1つのかかるフェノール系ノボラックエポキシ樹脂は、ポリ[(フェニルグリシジルエーテル)−co−ホルムアルデヒド]である。他の好適な樹脂は、HuntsmanからARALDITEの商品名(例えば、GY289、EPN1183、EP1179、EPN1139、及びEPN1138)で商業的に入手できる。
エポキシ樹脂は、共反応物(硬化剤)と架橋させて組成物の機械的特性を更に向上させ、また上述したようにその全体的な耐湿性も増大させることができる。かかる共反応物の例としては、例えば、ポリアミド、アミドアミン(例えば、アミノベンズアミド、アミノベンズアニリド、及びアミノベンゼンスルホンアミドのような芳香族アミドアミン)、芳香族ジアミン(例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等)、アミノベンゾエート(例えば、トリメチレングリコールジ−p−アミノベンゾエート、及びネオペンチルグリコールジ−p−アミノベンゾエート)、脂肪族アミン(例えば、トリエチレンテトラミン、イソホロンジアミン)、脂環式アミン(例えばイソホロンジアミン)、イミダゾール誘導体、グアニジン類(例えばテトラメチルグアニジン)、カルボン酸無水物(例えばメチルヘキサヒドロフタル酸無水物)、カルボン酸ヒドラジド(例えばアジピン酸ヒドラジド)、フェノール系−ノボラック樹脂(例えば、フェノールノボラック、クレゾールノボラック等)、カルボン酸アミド等、並びにこれらの組合せを挙げることができる。フェノール系−ノボラック樹脂が本発明において用いるために特に好適である可能性がある。
上記した成分とは別に、光開始剤、粘度調整剤、懸濁助剤、顔料、応力低減剤、カップリング剤(例えばシランカップリング剤)、安定剤等のような更に他の添加剤を、ケーシングを形成するのに用いるエポキシ組成物中で用いることもできる。用いる場合には、かかる添加剤は通常は全組成物の約0.1〜約20重量%を構成する。
ケーシング材料をキャパシタ体に施す特定の方法は、所望に応じて変化させることができる。1つの特定の態様においては、キャパシタ素子を金型内に配置し、ケーシング材料をキャパシタ素子に施して、それが金型によって画定される空間を占めて、陽極終端及び陰極終端の少なくとも一部が露出されるようにする。ケーシング材料は、最初は単一又は複数の組成物の形態で提供することができる。例えば、第1の組成物にエポキシ樹脂を含ませることができ、第2の組成物に共反応物を含ませることができる。これにかかわらず、それを施したらケーシング材料を加熱するか又は周囲温度において放置して、エポキシ樹脂が共反応物と架橋するようにして、それによってエポキシ組成物を硬化させてケースの所望の形状に固化させることができる。例えば、組成物を、約15℃〜約150℃、幾つかの態様においては約20℃〜約120℃、幾つかの態様においては約25℃〜約100℃の温度に加熱することができる。
決して必須ではないが、ケーシング材料の全部又は一部を被覆する湿分バリヤ層を用いることもできる。湿分バリヤ層は、一般に、シリコーン、フルオロポリマー等のような疎水性エラストマーから形成される。シリコーンエラストマーが本発明の湿分バリヤ層において用いるために特に好適である。かかるエラストマーは、通常は、次の一般式:
Figure 0006971314
(式中、
xは1より大きい整数であり;
、R、R、R、R、R、R、及びRは、独立して、通常は1〜約20個の炭素原子を含む一価の基、例えばアルキル基(例えば、メチル、エチル、プロピル、ペンチル、オクチル、ウンデシル、オクタデシル等);アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ等);カルボキシアルキル基(例えばアセチル);シクロアルキル基(例えばシクロヘキシル);アルケニル基(例えば、ビニル、アリル、ブテニル、ヘキセニル等);アリール基(例えば、フェニル、トリル、キシリル、ベンジル、2−フェニルエチル等);及びハロゲン化炭化水素基(例えば、3,3,3−トリフルオロプロピル、3−クロロプロピル、ジクロロフェニル等)である)
を有するもののようなポリオルガノシロキサンから誘導される。かかるポリオルガノシロキサンの例としては、例えば、ポリジメチルシロキサン(PDMS)、ポリメチルハイドロジェンシロキサン、ジメチルジフェニルポリシロキサン、ジメチル/メチルフェニルポリシロキサン、ポリメチルフェニルシロキサン、メチルフェニル/ジメチルシロキサン、ビニルジメチル末端ポリジメチルシロキサン、ビニルメチル/ジメチルポリシロキサン、ビニルジメチル末端ビニルメチル/ジメチルポリシロキサン、ジビニルメチル末端ポリジメチルシロキサン、ビニルフェニルメチル末端ポリジメチルシロキサン、ジメチルヒドロ末端ポリジメチルシロキサン、メチルヒドロ/ジメチルポリシロキサン、メチルヒドロ末端メチルオクチルポリシロキサン、メチルヒドロ/フェニルメチルポリシロキサン、フルオロ変性ポリシロキサン等を挙げることができる。エラストマーを形成するために、触媒硬化(例えば白金触媒)、室温加硫、湿分硬化等などによる任意の種々の公知の技術を用いてポリオルガノシロキサンを架橋させることができる。式:Si−OR(式中、Rは、H、アルキル(例えばメチル)、アルケニル、カルボキシアルキル(例えばアセチル)である)を有するアルコキシシランなどのような架橋剤を用いることができる。
疎水性であることに加えて、湿分バリヤ層を形成するために用いる材料は比較的低い弾性率及びある程度の可撓性を有することが一般に望ましく、これによってケーシングの膨張によって引き起こされる熱応力の一部を吸収することを助け、またそれを圧縮力にかけることを可能にすることもできる。材料の可撓性は、約25℃の温度において測定して約5,000キロパスカル(kPa)以下、幾つかの態様においては約1〜約2,000kPa、幾つかの態様においては約2〜約500kPaのような対応する低い弾性率(ヤング率)によって特徴付けることができる。この材料はまた、通常は、圧縮力にかけた際であってもその形状を保持することができるある程度の強度も有する。例えば、この材料は、約25℃の温度において測定して約1〜約5,000kPa、幾つかの態様においては約10〜約2,000kPa、幾つかの態様においては約50〜約1,000kPaの引張り強さを有していてよい。上述の条件を用いると、疎水性エラストマーは、キャパシタが極限条件下で機能する能力を更に向上させることができる。
所望の可撓性及び強度の特性を達成することを促進するために、湿分バリヤ層において非導電性フィラーを用いることができる。用いる場合には、かかる添加剤は、通常は湿分バリヤ層の約0.5重量%〜約30重量%、幾つかの態様においては約1重量%〜約25重量%、幾つかの態様においては約2重量%〜約20重量%を構成する。シリコーンエラストマーは、湿分バリヤ層の約70重量%〜約99.5重量%、幾つかの態様においては約75重量%〜約99重量%、幾つかの態様においては約80重量%〜約98重量%を構成することができる。かかるフィラーの1つの特定の例としては、例えばシリカが挙げられる。シリカの殆どの形態はシラノール基(Si−OH)の存在によって比較的親水性の表面を含むが、場合によってはシリカを表面処理して、その表面が(CH−Si−基(式中、nは1〜3の整数である)を含むようにすることができ、これにより湿分バリヤ層の疎水性が更に増大する。表面処理剤は、例えば、加水分解可能な基を有する有機ケイ素化合物モノマー、又はその部分加水分解物であってよい。かかる化合物の例としては、有機シラザン、上記に記載したシランカップリング剤等を挙げることができる。
その独特の構造のために、得られるキャパシタは種々の有益な特性を示すことができる。実際に、本発明者らは、約40%以上、幾つかの態様においては約45%以上、幾つかの態様においては約50%以上、幾つかの態様においては約70%以上(例えば約85%〜100%)の相対湿度を有する雰囲気と接触して配置した場合のように、高い湿度レベルに曝露した際であっても良好に機能するキャパシタを達成することができることを見出した。相対湿度は、例えばASTM−E337−02、方法A(2007)にしたがって求めることができる。高湿度雰囲気はキャパシタ自体の内部雰囲気の一部であってよく、或いは貯蔵及び/又は使用中にキャパシタが曝露される外部雰囲気であってよい。本キャパシタは、例えば高湿度雰囲気(例えば85%の相対湿度)に曝露した際に、100kHzの動作周波数において測定して約200ミリオーム、幾つかの態様においては約150ミリオーム未満、幾つかの態様においては約0.01〜約125ミリオーム、幾つかの態様においては約0.1〜約100ミリオームのような比較的低い等価直列抵抗(ESR)を示すことができる。本キャパシタは、僅か約50マイクロアンペア(μA)以下、幾つかの態様においては約40μA以下、幾つかの態様においては約20μA以下、幾つかの態様においては約0.1〜約10μAのDCLを示すことができる。本キャパシタはまた、その湿潤キャパシタンスの高いパーセントも示すことができ、これにより雰囲気湿分の存在下において小さなキャパシタンスの損失及び/又は変動しか有しないようにすることが可能である。この性能特性は、等式:
湿潤対乾燥キャパシタンス=(乾燥キャパシタンス/湿潤キャパシタンス)×100
によって求められる「湿潤対乾燥キャパシタンスパーセント(wet-to-dry capacitance percentage)」によって定量される。
本キャパシタは、約50%以上、幾つかの態様においては約60%以上、幾つかの態様においては約70%以上、幾つかの態様においては約80%〜100%の湿潤対乾燥キャパシタンスパーセントを示すことができる。乾燥キャパシタンスは、120Hzの周波数において測定して、約30ナノファラド/平方センチメートル(nF/cm)以上、幾つかの態様においては約100nF/cm以上、幾つかの態様においては約200〜約3,000nF/cm、幾つかの態様においては約400〜約2,000nF/cmであってよい。
特に、ESR、DCL、及びキャパシタンスの値を、更に、高い温度において相当な時間維持することもできる。例えば、これらの値は、50℃〜250℃、幾つかの態様においては70℃〜200℃、幾つかの態様においては80℃〜約150℃(例えば85℃)の範囲の温度及び高い湿度レベルにおいて、約100時間以上、幾つかの態様においては約300時間〜約3,000時間、幾つかの態様においては約400時間〜約2,500時間(例えば、500時間、600時間、700時間、800時間、900時間、1,000時間、1,100時間、1,200時間、又は2,000時間)維持することができる。例えば一態様においては、これらの値は、85℃の温度において1,000時間維持することができる。
また、キャパシタの損失係数(dissipation factor)を比較的低いレベルで維持することもできる。損失係数は、一般的に、キャパシタにおいて発生する損失を指し、通常は理想的なキャパシタ性能のパーセントとして表される。例えば、本発明のキャパシタの損失係数は、通常は、120Hzの周波数において求めて、約1%〜約25%、幾つかの態様においては約3%〜約10%、幾つかの態様においては約5%〜約15%である。本キャパシタはまた、約35ボルト以上、幾つかの態様においては約50ボルト以上、幾つかの態様においては約60ボルト〜約200ボルトの定格電圧のような高電圧用途において用いることができる可能性もある。例えば、本キャパシタは、約2ボルト以上、幾つかの態様においては約5ボルト以上、幾つかの態様においては約10ボルト以上、幾つかの態様においては約10〜約100ボルトのような比較的高い「絶縁破壊電圧」(キャパシタが作動しなくなる電圧)を示すことができる。更に、本キャパシタは、比較的高いサージ電流(これも高電圧用途において通常的である)に耐えることができる可能性もある。ピークサージ電流は、例えば約100アンペア以上、幾つかの態様においては約200アンペア以上、幾つかの態様においては約300アンペア〜約800アンペアであってよい。
本発明は、以下の実施例を参照してより良好に理解することができる。
試験手順:
キャパシタンス:
キャパシタンスは、Kelvinリードを備えたKeithley 3330精密LCZメーターを用い、2.2ボルトのDCバイアス及び0.5ボルトのピーク・ピーク正弦波信号を用いて測定することができる。動作周波数は120Hzであってよく、温度は23℃±2℃であってよい。幾つかの場合においては、「湿潤対乾燥」キャパシタンスを求めることができる。「乾燥キャパシタンス」は、固体電解質、グラファイト、及び銀層を施す前の部品のキャパシタンスを指し、一方で「湿潤キャパシタンス」は、誘電体形成後の部品のキャパシタンスを指し、14%硝酸中において、1mFのタンタル陰極を参照とし、10ボルトのDCバイアス及び0.5ボルトのピーク・ピーク正弦波信号を用いて、30秒の電解液浸漬後に測定される。
等価直列抵抗(ESR):
等価直列抵抗は、Kelvinリードを備えたKeithley 3330精密LCZメーターを用い、2.2ボルトのDCバイアス及び0.5ボルトのピーク・ピーク正弦波信号を用いて測定することができる。動作周波数は100kHzであってよく、温度は23℃±2℃であってよい。
湿度試験:
湿度試験は、85℃の温度、85%の相対湿度、及び定格電圧(例えば16ボルト)において実施することができる(25の部品)。回収された試料において、120、500、及び1,000時間後にキャパシタンス及びESRを記録して、次に0時間における当初の測定値と比較することができる。試験条件後の回収時間は6〜24時間であってよい。
実施例1:
20,000μFV/gのタンタル粉末を用いて陽極試料を形成した。それぞれの陽極試料にタンタル線を埋め込み、1680℃で焼結し、プレスして5.3g/cmの密度にした。得られたペレットは5.10×3.65×1.20mmの寸法を有していた。ペレットを、85℃の温度において8.6mSの導電率を有する水/リン酸電解液中で135.0ボルトに陽極酸化して、誘電体層を形成した。次に、陽極を、プレコート層を用いないで直接、1.1%の固形分含量及び20mPa・sの粘度を有する分散ポリ(3,4−エチレンジオキシチオフェン)(Clevios(登録商標)K、Heraeous)中に浸漬することによって、導電性ポリマー被覆を形成した。被覆したら、部品を125℃で20分間乾燥した。このプロセスを10回繰り返した。その後、部品を、2.0%の固形分含量及び粘度20mPa・sを有する分散ポリ(3,4−エチレンジオキシチオフェン)(Clevios(登録商標)K、Heraeus)中に浸漬した。被覆したら、部品を125℃で20分間乾燥した。このプロセスを3回繰り返した。その後、部品を、2%の固形分含量及び粘度160mPa・sを有する分散ポリ(3,4−エチレンジオキシチオフェン)(Clevios(登録商標)K、Heraeus)中に浸漬した。被覆したら、部品を125℃で20分間乾燥した。このプロセスを8回繰り返した。次に、部品をグラファイト分散液中に浸漬し、乾燥した。最後に、部品を銀分散液中に浸漬し、乾燥した。このようにして10μF/50Vキャパシタの多数の部品(1000)を製造し、シリカ樹脂中に封入した。
実施例2:
本明細書に記載し、図2〜4に示すリード線上の導電性材料(例えば導電性ポリマー)を除去するためにレーザーワイヤー清浄化プロセスを用いる他は、実施例1に記載のようにしてキャパシタを形成した。10μF/50Vキャパシタの多数の部品(4000)を形成し、シリカ樹脂中に封入した。
次に、完成した実施例1〜2のキャパシタの25の部品を電気的性能に関して試験した。定格電圧での85°湿度試験におけるキャパシタンス(CAP)及びESRのメジアンの結果(第1四分位数、メジアン、及び第3四分位数)を、下表1及び2に示す。
Figure 0006971314
Figure 0006971314
本発明のこれら及び他の修正及び変更は、当業者によって、本発明の精神及び範囲から逸脱することなく実施することができる。更に、種々の態様の複数の形態は、全体的又は部分的の両方で交換することができることを理解すべきである。更に、当業者であれば、上記の記載はほんの一例にすぎず、添付の特許請求の範囲において更に記載される発明を限定することは意図しないことを認識するであろう。
本発明は以下の実施態様を含む。
(1)固体電解キャパシタであって、
焼結多孔質陽極体、前記陽極体の上に配されている誘電体、及び前記誘電体の上に配されている固体電解質を含むキャパシタ素子;
前記陽極体と電気的に接触しており、前記キャパシタ素子の表面に近接して位置する第1の領域を含むリード線、ここで、前記リード線は前記表面から外側に伸長するコアを含み、更に前記第1の領域内のコアの少なくとも一部を酸化物層が被覆している;
前記リード線と電気的に接続されている陽極終端;及び
前記固体電解質と電気的に接続されている陰極終端;
を含む上記固体電解キャパシタ。
(2)前記コアがタンタルを含み、前記酸化物層が五酸化タンタルを含む、(1)に記載のキャパシタ。
(3)前記コアが前記キャパシタ素子の前面から長手方向に伸長している、(1)に記載のキャパシタ。
(4)前記コアの端部が前記陽極体内に埋封されている、(1)に記載のキャパシタ。
(5)前記第1の領域が前記キャパシタ素子の前記表面から第2の領域まで長手方向に広がっており、前記第2の領域が前記第1の領域から前記リード線の端部まで長手方向に広がっており、更に前記第1の領域が概して酸化物層を含まない、(1)に記載のキャパシタ。
(6)前記酸化物層の厚さが約10〜約1,000ナノメートルである、(1)に記載のキャパシタ。
(7)前記酸化物層が前記コアの周縁の約50%以上を覆っている、(1)に記載のキャパシタ。
(8)前記酸化物層が不連続であり、1以上の間隙を画定している、(1)に記載のキャパシタ。
(9)前記間隙内に導電性材料が配置されている、(8)に記載のキャパシタ。
(10)前記キャパシタ素子が、前記固体電解質の上に配されている金属粒子層を含む陰極被覆を更に含み、前記金属粒子層が樹脂状ポリマーマトリクス内に分散している多数の導電性金属粒子を含む、(1)に記載のキャパシタ。
(11)前記陽極体がタンタルを含む、(1)に記載のキャパシタ。
(12)前記固体電解質が導電性ポリマーを含む、(1)に記載のキャパシタ。
(13)前記導電性ポリマーが、次式(III):
Figure 0006971314
(式中、
は、線状又は分岐の、C 〜C 18 アルキル基、C 〜C 12 シクロアルキル基,C 〜C 14 アリール基,C 〜C 18 アラルキル基、又はこれらの組合せであり;
qは0〜8の整数である)
の繰り返し単位を有する、(12)に記載のキャパシタ。
(14)前記導電性ポリマーがポリ(3,4−エチレンジオキシチオフェン)である、(12)に記載のキャパシタ。
(15)前記固体電解質がポリマー対イオンも含む、(12)に記載のキャパシタ。
(16)前記固体電解質の上に配されている、予め重合された導電性ポリマー粒子及び架橋剤を含む外側ポリマー被覆を更に含む、(1)に記載のキャパシタ。
(17)前記キャパシタが約40%以上の相対湿度を有する雰囲気と接触する、(1)に記載のキャパシタ。
(18)キャパシタを形成する方法であって、
多孔質陽極体を陽極酸化してその上に誘電体層を形成すること、ここで、前記陽極体から外側に伸長するコアを含むリード線が前記多孔質陽極体内に埋封される;
前記誘電体層の上に固体電解質を施すこと、ここで前記リード線の前記コアも前記固体電解質で被覆される;
前記コアの少なくとも一部から前記固体電解質を除去して露出された領域を形成すること;及び
前記コアを陽極酸化して、前記露出された領域において前記コア上に酸化物層が形成されるようにすること;
を含む上記方法。
(19)レーザーワイヤー清浄化を用いて前記固体電解質を前記コアの少なくとも一部から除去する、(18)に記載の方法。
(20)前記固体電解質が導電性ポリマーを含む、(18)に記載の方法。
(21)前記コアを陽極酸化するプロセスが前記誘電体層を再形成することも含む、(18)に記載の方法。
(22)前記誘電体の上に配されている前記固体電解質に陰極被覆を施すことを更に含む、(18)に記載の方法。
(23)前記コアを陽極酸化した後に前記陰極被覆を施す、(22)に記載の方法。

Claims (22)

  1. 固体電解キャパシタであって、
    焼結多孔質陽極体、前記陽極体の上に配されている誘電体、及び前記誘電体の上に配されている固体電解質を含むキャパシタ素子;
    前記陽極体と電気的に接触しており、前記キャパシタ素子の表面に近接して位置する第1の領域を含むリード線、ここで、前記リード線は前記表面から外側に伸長するコアを含み、更に前記第1の領域内のコアの少なくとも一部を酸化物層が被覆しており、前記酸化物層が不連続であり、1以上の間隙を画定している
    前記リード線と電気的に接続されている陽極終端;及び
    前記固体電解質と電気的に接続されている陰極終端;
    を含む上記固体電解キャパシタ。
  2. 前記コアがタンタルを含み、前記酸化物層が五酸化タンタルを含む、請求項1に記載のキャパシタ。
  3. 前記コアが前記キャパシタ素子の前面から長手方向に伸長している、請求項1に記載のキャパシタ。
  4. 前記コアの端部が前記陽極体内に埋封されている、請求項1に記載のキャパシタ。
  5. 前記第1の領域が前記キャパシタ素子の前記表面から第2の領域まで長手方向に広がっており、前記第2の領域が前記第1の領域から前記リード線の端部まで長手方向に広がっており、更に前記第の領域が概して酸化物層を含まない、請求項1に記載のキャパシタ。
  6. 前記酸化物層の厚さが1〜1,000ナノメートルである、請求項1に記載のキャパシタ。
  7. 前記酸化物層が前記コアの周縁の50%以上を覆っている、請求項1に記載のキャパシタ。
  8. 前記間隙内に導電性材料が配置されており、前記導電性材料が導電性ポリマーである、請求項に記載のキャパシタ。
  9. 前記キャパシタ素子が、前記固体電解質の上に配されている金属粒子層を含む陰極被覆を更に含み、前記金属粒子層が樹脂状ポリマーマトリクス内に分散している多数の導電性金属粒子を含む、請求項1に記載のキャパシタ。
  10. 前記陽極体がタンタルを含む、請求項1に記載のキャパシタ。
  11. 前記固体電解質が導電性ポリマーを含む、請求項1に記載のキャパシタ。
  12. 前記導電性ポリマーが、次式(III):
    Figure 0006971314
    (式中、
    は、線状又は分岐の、C〜C18アルキル基、C〜C12シクロアルキル基,C〜C14アリール基,C〜C18アラルキル基、又はこれらの組合せであり;
    qは0〜8の整数である)
    の繰り返し単位を有する、請求項11に記載のキャパシタ。
  13. 前記導電性ポリマーがポリ(3,4−エチレンジオキシチオフェン)である、請求項11に記載のキャパシタ。
  14. 前記固体電解質がポリマー対イオンも含む、請求項11に記載のキャパシタ。
  15. 前記固体電解質の上に配されている、予め重合された導電性ポリマー粒子及び架橋剤を含む外側ポリマー被覆を更に含む、請求項1に記載のキャパシタ。
  16. 前記キャパシタが40%以上の相対湿度を有する雰囲気と接触する、請求項1に記載のキャパシタ。
  17. キャパシタを形成する方法であって、
    多孔質陽極体を陽極酸化してその上に誘電体層を形成すること、ここで、前記陽極体から外側に伸長するコアを含むリード線が前記多孔質陽極体内に埋封される;
    前記誘電体層の上に固体電解質を施すこと、ここで前記リード線の前記コアも前記固体電解質で被覆される;
    前記コアの少なくとも一部から前記固体電解質を除去して露出された領域を形成すること;及び
    前記コアを陽極酸化して、前記露出された領域において前記コア上に酸化物層が形成されるようにすること;
    を含む上記方法。
  18. レーザーワイヤー清浄化を用いて前記固体電解質を前記コアの少なくとも一部から除去する、請求項17に記載の方法。
  19. 前記固体電解質が導電性ポリマーを含む、請求項17に記載の方法。
  20. 前記コアを陽極酸化するプロセスが前記誘電体層を再形成することも含む、請求項17に記載の方法。
  21. 前記誘電体の上に配されている前記固体電解質に陰極被覆を施すことを更に含む、請求項17に記載の方法。
  22. 前記コアを陽極酸化した後に前記陰極被覆を施す、請求項21に記載の方法。
JP2019524919A 2016-11-15 2017-11-14 固体電解キャパシタのためのリード線構造 Active JP6971314B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662422081P 2016-11-15 2016-11-15
US62/422,081 2016-11-15
PCT/US2017/061431 WO2018093741A1 (en) 2016-11-15 2017-11-14 Lead wire configuration for a solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2019537264A JP2019537264A (ja) 2019-12-19
JP6971314B2 true JP6971314B2 (ja) 2021-11-24

Family

ID=62108666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019524919A Active JP6971314B2 (ja) 2016-11-15 2017-11-14 固体電解キャパシタのためのリード線構造

Country Status (6)

Country Link
US (1) US10504657B2 (ja)
EP (1) EP3542381A4 (ja)
JP (1) JP6971314B2 (ja)
KR (1) KR102397875B1 (ja)
CN (1) CN110073454B (ja)
WO (1) WO2018093741A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10475591B2 (en) * 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
US10643797B2 (en) 2016-11-15 2020-05-05 Avx Corporation Casing material for a solid electrolytic capacitor
US11004615B2 (en) 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
WO2019246505A1 (en) 2018-06-21 2019-12-26 Avx Corporation Solid electrolytic capacitor with stable electrical properties at high temperatures
US11289276B2 (en) * 2018-10-30 2022-03-29 Global Advanced Metals Japan K.K. Porous metal foil and capacitor anodes made therefrom and methods of making same
JP7473566B2 (ja) 2019-05-17 2024-04-23 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 層間剥離抵抗性固体電解キャパシタ
JP7417714B2 (ja) 2019-09-18 2024-01-18 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション バリヤ被覆を含む固体電解キャパシタ
TWI756646B (zh) * 2020-03-16 2022-03-01 鈺邦科技股份有限公司 電容器單元及其製造方法
US11631548B2 (en) * 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11837415B2 (en) 2021-01-15 2023-12-05 KYOCERA AVX Components Corpration Solid electrolytic capacitor

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628103A (en) 1969-04-28 1971-12-14 Mallory & Co Inc P R Cathode for wet electrolyte capacitors
US4206194A (en) * 1975-05-21 1980-06-03 Union Oil Company Of California Reducing the consumption of anthraquinone disulfonate in stretford solutions
US4090288A (en) * 1976-03-15 1978-05-23 Sprague Electric Company Solid electrolyte capacitor with metal loaded resin end caps
US4344107A (en) 1980-04-25 1982-08-10 Sprague Electric Company Solid tantalum capacitor with clean riser
US4571664A (en) * 1984-11-09 1986-02-18 Mepco/Electra, Inc. Solid electrolyte capacitor for surface mounting
US4780796A (en) 1987-01-13 1988-10-25 The Japan Carlit Co., Ltd. Solid electrolytic capacitor
US4945452A (en) 1989-11-30 1990-07-31 Avx Corporation Tantalum capacitor and method of making same
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
JP2765462B2 (ja) 1993-07-27 1998-06-18 日本電気株式会社 固体電解コンデンサおよびその製造方法
JPH07135126A (ja) 1993-11-10 1995-05-23 Nec Corp 固体電解コンデンサ及びその製造方法
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
GB9700566D0 (en) 1997-01-13 1997-03-05 Avx Ltd Binder removal
JP3119604B2 (ja) * 1997-09-01 2000-12-25 富山日本電気株式会社 固体電解コンデンサの製造方法
DE69939262D1 (de) 1998-06-25 2008-09-18 Nichicon Corp Verfahren zur herstellung eines festelektrolytkondensators
JP2000195757A (ja) * 1998-12-25 2000-07-14 Hitachi Aic Inc 固体電解コンデンサおよびその焼結体の製造方法
US6552896B1 (en) * 1999-10-28 2003-04-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
DE10004725A1 (de) 2000-02-03 2001-08-09 Bayer Ag Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren
JP2002094204A (ja) 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd 高周波モジュールとその製造方法
US6693255B2 (en) 2001-03-22 2004-02-17 R. F. Envirotech, Inc. Laser ablation cleaning
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
FR2831656B1 (fr) 2001-10-31 2004-04-30 Technip Cie Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes
JP4328483B2 (ja) 2001-11-26 2009-09-09 Necトーキン株式会社 固体電解コンデンサ及びその製造方法
JP4539948B2 (ja) * 2001-11-29 2010-09-08 ローム株式会社 コンデンサの製造方法
EP1434242B1 (en) * 2002-12-27 2010-11-24 Panasonic Corporation Capacitor and method for producing the same, and circuit board with a built-in capacitor and method for producing the same
US6845004B2 (en) 2003-02-12 2005-01-18 Kemet Electronics Corporation Protecting resin-encapsulated components
JP4383204B2 (ja) 2003-03-31 2009-12-16 三洋電機株式会社 固体電解コンデンサおよびその製造方法
DE502004009915D1 (de) 2003-10-17 2009-10-01 Starck H C Gmbh Elektrolytkondensatoren mit polymerer Aussenschicht
JP4325354B2 (ja) * 2003-10-22 2009-09-02 パナソニック株式会社 固体電解コンデンサの製造方法
US7085127B2 (en) 2004-03-02 2006-08-01 Vishay Sprague, Inc. Surface mount chip capacitor
CN1737072B (zh) 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
DE102005043829A1 (de) 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
US8576542B2 (en) 2005-11-09 2013-11-05 The United States Of America As Represented By The Secretary Of The Army Structural electrochemical capacitor
US20070171596A1 (en) 2006-01-20 2007-07-26 Chacko Antony P Electrode compositions containing carbon nanotubes for solid electrolyte capacitors
JP2007227465A (ja) 2006-02-21 2007-09-06 Rohm Co Ltd 固体電解コンデンサ
JP4879048B2 (ja) 2006-05-31 2012-02-15 三洋電機株式会社 固体電解コンデンサの製造方法
US20090195968A1 (en) 2006-06-27 2009-08-06 Showa Denko K.K. Solid electrolytic capacitor
US20080123251A1 (en) 2006-11-28 2008-05-29 Randall Michael S Capacitor device
US7515396B2 (en) * 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
JP2009170897A (ja) * 2007-12-21 2009-07-30 Sanyo Electric Co Ltd 固体電解コンデンサ
US7929274B2 (en) 2008-04-03 2011-04-19 Kemet Electronics Corporation Capacitor with sacrificial lead wire configuration and improved manufacturing method thereof
US8203827B2 (en) 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
JP5484995B2 (ja) 2009-04-28 2014-05-07 三洋電機株式会社 固体電解コンデンサ及びその製造方法
US8503165B2 (en) 2009-05-21 2013-08-06 Kemet Electronics Corporation Solid electrolytic capacitors with improved reliability
JP5362464B2 (ja) * 2009-07-08 2013-12-11 三洋電機株式会社 固体電解コンデンサ
US10347473B2 (en) 2009-09-24 2019-07-09 The United States Of America, As Represented By The Secretary Of The Navy Synthesis of high-purity bulk copper indium gallium selenide materials
US8125768B2 (en) 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
US8520366B2 (en) 2009-12-22 2013-08-27 Kemet Electronics Corporation Solid electrolytic capacitor and method of manufacture
WO2011119536A1 (en) * 2010-03-22 2011-09-29 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
US9881744B2 (en) 2010-05-26 2018-01-30 Kemet Electronics Corporation Electronic component termination and assembly by means of transient liquid phase sintering metalurgical bonds
US8902565B2 (en) 2010-05-26 2014-12-02 Kemet Electronics Corporation Electronic component termination and assembly by means of transient liquid phase sintering and polymer solder pastes
US9748043B2 (en) 2010-05-26 2017-08-29 Kemet Electronics Corporation Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
US8896986B2 (en) 2010-05-26 2014-11-25 Kemet Electronics Corporation Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
US8749953B2 (en) 2010-06-30 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Electric double layer capacitor, lithium ion capacitor and manufacturing method thereof
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US9779874B2 (en) 2011-07-08 2017-10-03 Kemet Electronics Corporation Sintering of high temperature conductive and resistive pastes onto temperature sensitive and atmospheric sensitive materials
JP6472388B2 (ja) 2013-02-19 2019-02-20 ケメット エレクトロニクス コーポレーション 低esrコンデンサー
US20160104580A1 (en) 2013-06-13 2016-04-14 Ishihara Chemical Co., Ltd. Ta powder, production method therefor, and ta granulated powder
JP5698882B1 (ja) * 2013-06-18 2015-04-08 昭和電工株式会社 コンデンサ陽極体およびその製造方法
US9236192B2 (en) * 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly
US9269499B2 (en) 2013-08-22 2016-02-23 Avx Corporation Thin wire/thick wire lead assembly for electrolytic capacitor
US9236193B2 (en) 2013-10-02 2016-01-12 Avx Corporation Solid electrolytic capacitor for use under high temperature and humidity conditions
JP6223800B2 (ja) * 2013-12-04 2017-11-01 株式会社トーキン 固体電解コンデンサの形成方法
US9293263B2 (en) 2014-01-29 2016-03-22 Kemet Electronics Corporation Solid electrolytic capacitor
JP6585891B2 (ja) * 2014-10-20 2019-10-02 株式会社トーキン 固体電解コンデンサ
DE102014017715A1 (de) * 2014-12-01 2016-06-02 Wabco Europe Bvba Pneumatisch oder elektromechanisch betätigte Scheibenbremse für Nutzfahrzeuge
KR101792382B1 (ko) * 2016-01-04 2017-11-01 삼성전기주식회사 복합 전자부품 및 그 실장기판
US10381165B2 (en) 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US9870869B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor
US9870868B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
US10643797B2 (en) 2016-11-15 2020-05-05 Avx Corporation Casing material for a solid electrolytic capacitor
JP6293318B1 (ja) * 2017-01-20 2018-03-14 株式会社トーキン 固体電解コンデンサ

Also Published As

Publication number Publication date
JP2019537264A (ja) 2019-12-19
EP3542381A1 (en) 2019-09-25
KR102397875B1 (ko) 2022-05-13
US10504657B2 (en) 2019-12-10
CN110073454B (zh) 2022-01-04
KR20190073422A (ko) 2019-06-26
WO2018093741A1 (en) 2018-05-24
CN110073454A (zh) 2019-07-30
US20180137986A1 (en) 2018-05-17
EP3542381A4 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6971314B2 (ja) 固体電解キャパシタのためのリード線構造
JP2022065136A (ja) 固体電解キャパシタアセンブリ
JP7398867B2 (ja) 改良された漏れ電流を有する固体電解キャパシタ
US10867753B2 (en) Solid electrolytic capacitor for use in a humid atmosphere
JP7071354B2 (ja) 固体電解キャパシタ用のケーシング材料
JP7299251B2 (ja) 固体電解キャパシタ
JP2019533304A (ja) 改良されたリーク電流を有する固体電解キャパシタ
US10983011B2 (en) Lifetime determining technique for a solid electrolytic capacitor and system for the same
JP2020526916A (ja) 固体電解キャパシタアセンブリ
KR102617851B1 (ko) 고온에서 전기적 특성이 안정적인 고체 전해질 커패시터
US11270847B1 (en) Solid electrolytic capacitor with improved leakage current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6971314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350