JP6959602B2 - 角度レゾルバ不均衡検出 - Google Patents

角度レゾルバ不均衡検出 Download PDF

Info

Publication number
JP6959602B2
JP6959602B2 JP2019513900A JP2019513900A JP6959602B2 JP 6959602 B2 JP6959602 B2 JP 6959602B2 JP 2019513900 A JP2019513900 A JP 2019513900A JP 2019513900 A JP2019513900 A JP 2019513900A JP 6959602 B2 JP6959602 B2 JP 6959602B2
Authority
JP
Japan
Prior art keywords
output
circuit
signal
coupled
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019513900A
Other languages
English (en)
Other versions
JP2019533143A (ja
JP2019533143A5 (ja
Inventor
チェラムス シャンムガナンド
リー クンイン
ナヴァニーサクリシュナン イースワラン スリ
Original Assignee
テキサス インスツルメンツ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テキサス インスツルメンツ インコーポレイテッド filed Critical テキサス インスツルメンツ インコーポレイテッド
Publication of JP2019533143A publication Critical patent/JP2019533143A/ja
Publication of JP2019533143A5 publication Critical patent/JP2019533143A5/ja
Application granted granted Critical
Publication of JP6959602B2 publication Critical patent/JP6959602B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • G01D5/208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils using polyphase currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24461Failure detection by redundancy or plausibility

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

コンピュータ(プロセッサを含む)がモータやロボット等の物理デバイスの動きを制御するために用いられることが増えている。コンピュータは、センサから受信する位置(速度を含む)情報に応答して、そのような物理デバイスの動きを制御する。センサからの情報は、しばしば、1つ又は複数の電気信号として搬送される。しかしながら、センサは、しばしば、電気的ノイズの多い環境(ガソリンエンジン室等)に置かれ、そこでは、スイッチやコイル等の部品が大量の電磁干渉を引き起こし、それが、搬送される電気信号の品質及び分解能を典型的に劣化させる。劣化した電気信号は、制御される物理デバイスの制御される属性(モータ速度及び角変位等)の速度及び/又は精度を制限し、それは通常、コンピュータが物理デバイスを制御し得る程度を制限する。
角度レゾルバ不均衡検出を実施するための検知システム及び方法の説明される例において、角度レゾルバ診断システムが、劣化したレゾルバ出力信号を検出するための不均衡検出器を含む。不均衡検出器は、第1及び第2の電力平均化回路、及び比較器回路を含む。第1の電力平均化回路は、レゾルバセンサ出力信号に応答して、第1の時間ウィンドウに亘って第1の平均電力信号を生成するための第1の積分器を含む。第2の電力平均化回路は、レゾルバセンサ出力信号に応答して、第2の時間ウィンドウに亘って第2の平均電力信号を生成するための第2の積分器を含み、第2の時間ウィンドウは第1の時間ウィンドウより短い。比較器回路は、第1の平均電力信号と第2の平均電力信号とを比較し、第1の平均電力信号と第2の平均電力信号とが選択された電圧閾値分異なるとき、フォールト信号を生成する。
例示の実施形態に従った例示の電子デバイスを示す。
レゾルバセンサの概略図である。
エキサイタ基準信号、及びレゾルバセンサから受信した第1及び第2の出力信号の波形図300である。
デジタルフィードバックループトラッキングレゾルバのアーキテクチャのハイレベル図である。
例示の実施形態に従ったレゾルバセンサから受信した理想的な第1及び第2の出力信号の波形図500である。
例示の実施形態に従ったレゾルバセンサから受信した理想的な第1及び第2の出力信号の一層細かな詳細の波形図600である。
例示の実施形態に従ったレゾルバセンサから受信した理想的な第1及び第2の出力信号の更に一層細かい詳細の波形図700である。
例示の実施形態に従った、異なる時間にレゾルバセンサから受信した理想的な第1及び第2の出力信号の細かい詳細の波形図800である。
例示の実施形態に従ったレゾルバセンサから受信した不均衡な第1及び第2の出力信号の波形図900である。
例示の実施形態に従ったレゾルバセンサから受信した不均衡な第1及び第2の出力信号の一層細かい詳細の波形図1000である。
例示の実施形態に従ったレゾルバセンサから受信した複数の不均衡な第1及び第2の出力信号の波形図1100である。
例示の実施形態に従ったレゾルバセンサから受信した不均衡な第1及び第2の出力信号の細かい詳細の波形図1200である。
例示の実施形態に従った、静電モータのレゾルバセンサから受信した不均衡な第1及び第2の出力信号の波形図1300である。
例示の実施形態に従った、静電モータのレゾルバセンサから受信した後続の不均衡な第1及び第2の出力信号の波形図1400である。
例示の実施形態に従ったレゾルバセンサ出力信号電力平均化回路1500の概略図である。
例示の実施形態に従ったレゾルバセンサ出力信号電力不均衡検出器1600の概略図である。
二乗セルの概略図である。
本明細書において、システムは、更に別のシステムのサブシステムであり得る。また、本明細書において、「〜に結合する」又は「〜と結合する」という用語は、間接的又は直接的な電気接続を説明する。従って、第1のデバイスが第2のデバイスに結合する場合、その接続は、直接的電気接続を介してなされてもよく、又は、他のデバイス及び接続を介する間接的電気接続を介してなされてもよい。また、本明細書において、用語「部分」は、全体の部分、又は全体の部分よりも小さい部分を意味し得る。
図1は、例示の実施形態に従った例示のコンピューティングデバイス100を示す。例えば、コンピューティングデバイス100は、コンピュータ、電子制御「ボックス」又はモジュール、ロボット機器(固定又は可動を含む)、自動車、又はコンピュータが物理デバイスを制御するその他のタイプのシステム等の、電子システム129であるか又は電子システム129に組み込まれる。
幾つかの実施形態において、コンピューティングデバイス100は、メガセル又はシステムオンチップ(SoC)を含み、メガセル又はSoCは、CPU112(中央処理ユニット)等の制御ロジック構成要素、ストレージ114(例えば、ランダムアクセスメモリ(RAM))、及び電源110を含む。例えば、CPU112は、CISC(複合命令セットコンピュータ)型CPU、RISC(縮小命令セットコンピュータ)型CPU、MCU(マイクロコントローラユニット)型、又はデジタル信号プロセッサ(DSP)であり得る。CPU112は、離散ロジック構成要素によって提供される機能性を含み、及び/又はCPU112によって実行されるとき、CPU112を特殊用途装置に変形させる特定用途命令(例えば、ソフトウェア又はファームウェア)を実行するように配置される。ハードウェアとソフトウェアとの間の「区分(division)」の概念的な線は、コスト、電力消散、信頼性、及び販売時期(タイムツーマーケット)を含む種々のトレードオフに応じて、(例えば、選択的に)変化する設計選択である。従って、コンピューティングシステム100の1つ又は複数のCPU112を制御するために用いられる任意のソフトウェアの機能性は、(例えば、設計及び製造に充分な時間及びリソースが与えられるとき)、全体がハードウェアとして具現化される。
ストレージ114(これは、オンプロセッサキャッシュ、オフプロセッサキャッシュ、RAM、フラッシュメモリ、データレジスタ、フリップフロップ、及びディスクストレージなどのメモリであり得る)は、CPU112によって実行されるとき、コンピューティングデバイス100を角度レゾルバ不均衡検出等の目的とする機能を行うために適切な特殊用途装置に変形させる1つ又は複数のソフトウェアアプリケーション130(例えば、埋め込みアプリケーション)をストアする。
CPU112は、ストレージ114から頻繁にアクセスされる(例えば、ストレージ114に書き込まれる及び/又はストレージ114から読み出される)情報をストアするメモリ及びロジックを含む。コンピューティングデバイス100は、しばしば、UI(ユーザインタフェース)116を用いてユーザによって制御され、UI 116は、ソフトウェアアプリケーション130の実行の間、ユーザに出力を提供し、ユーザから入力を受け取る。出力はディスプレイ118を用いて提供され、ディスプレイ118はアナンシエータ(表示灯、スピーカー、及びバイブレータ等)及びコントローラを含む。入力は、(音声又は画像認識を用いる等の)オーディオ及び/又はビデオ入力、及び電気的及び/又は機械的デバイス(キーパッド、スイッチ、近接検出器、ジャイロ、加速度計、及びレゾルバ等)を用いて受け取られる。
CPU112は、I/O(入力−出力)ポート128に結合され、I/Oポート128は、ネットワーク化されたデバイス131から入力を受け取る(及びネットワーク化されたデバイス131に出力を提供する)ように構成されるインタフェースを提供する。ネットワーク化されたデバイス131は、コンピューティングデバイス100とのポイント・ツー・ポイント通信及び/又はネットワーク化された通信を行うことができる任意のデバイス(コンピューティングデバイス100と電子的にペアにされる「ブルートゥース」ユニットを含む)を含み得る。コンピューティングデバイス100は、有形、非一時的媒体(フラッシュメモリ等)、及び/又は、有線又はワイヤレス媒体を含む、周辺機器及び/又はコンピューティングデバイスに任意で結合される。これら及びその他の入力及び出力装置は、ワイヤレス又は有線接続を用いる外部デバイスによって、コンピューティングデバイス100に選択的に結合される。ストレージ114は、例えばネットワーク化されたデバイス131等によって、アクセス可能である。CPU112、ストレージ114、及び電源110は、外部電源(図示されない)に結合され得るか、或いはローカル電源(バッテリ、ソーラー電池、オルタネータ、誘導電界、燃料電池、及びキャパシタ等)に結合され得る。
コンピューティングシステム100は、レゾルバセンサ140から、電気信号(これは、例えば、情報を運ぶ)を受信及び評価するように配置されるレゾルバ138を含む。上述したように、レゾルバセンサ140は、シャフトの回転の角度を示すための、(少なくとも)第1及び第2のレゾルバセンサ出力信号を生成及び出力するように配置される。第1及び第2のレゾルバセンサ出力信号は、回転するシャフト(モータのシャフト等)の角変位又は速度に対応する等の変調された信号である。変調された信号は、理想的には、選択されたピーク電圧を有し、一定の位相角度、オフセットされる。位相角度は、2つの二次コイルベースのレゾルバベースのシステムにおいて、理想的には約90度であり、3つの二次コイルベースのレゾルバベースのシステムにおいて、理想的には約120度である。本明細書において、本明細書及びモータ及び電磁気学の原理に従って、単一位相及びその他の多相システムが可能である。
これ以降に説明するように、選択される位相角度が、レゾルバセンサ二次コイルの数、及びレゾルバセンサ二次コイル間の位相角度差によって決定される。選択された位相角度は、通常、レゾルバセンサ位相コイルの数によって決定され、そのため、レゾルバセンサ140から受信した変調信号から、エキサイタ基準信号の周波数が実質的に除去される(例えば、分離される))ように幾何学上の原理が適用され得る。実質的な除去は、変調信号を約70パーセント低減することを含み、それは45度の位相角度エラーに対応し、その結果、電力不均衡を検出するために、2位相システムにおいて約45度又はそれ以上の位相角度が用いられ得る。しかしながら、(レゾルバセンサ140から受信した変調信号に応答して生成される)平均電力信号内のエキサイタ基準信号(例えば、振動)の残りの存在(例えば、リップル)を補償するために、(図16に関連してこれ以降に説明するように)充分に高い閾値レベルが用いられる。
レゾルバ138は、モータシャフトの角度及び/又は速度を判定するために、レゾルバセンサ140から受信した変調信号を評価する。レゾルバ138はまた、受信した変調信号が均衡している(例えば、電気ノイズ及び/又は巻線欠陥による影響を受けていない)か否かを判定するための診断回路要素を含む。例えば、シャフト(これは、例えば、エキサイタ基準信号を誘導的に送信するためのコイルを含む)の回転の角度が分解(例えば、判定)され得るように、受信した変調信号は、選択されたピーク電圧に従ったピーク電圧を有し、且つ/又は、一定の位相角度分離れているとき、受信した変調信号は均衡している。
受信した変調信号が均衡していないとき、シャフトの回転の角度を分解する際にエラーが生じ得る。誤った情報に応答して制御信号を生成する可能性を最小化するのを促進するために(及び、例えば、レゾルバ信号処理の速度及び分解能を増大させるために)、レゾルバ138は、受信した変調信号が均衡していないことを示すフォールト信号を生成するように配される。フォールト信号は、プロセッサが、受信した変調信号の特別なハンドリング(無視することを含む)を提供するためのアクションを取り得るように、通常、CPU112等のプロセッサに結合される。
或る実施形態において、レゾルバ138は、サイン/コサイン変調信号Vin1及びVin2(ここで、Vin1=V1×cos(θ)sin(ωt)及びVin2=V2×sin(θ)sin(ωt))を受信する。本明細書の説明に従うと、変調信号Vin1及びVin2は、約15kHzより小さい周波数に限定されてないが、変調信号は、変調周波数の説明した分離に起因して、通常、約15kHzより小さい。レゾルバ138は、Vin1及びVin2の分解角度θを、モータ角度及び/又は速度を表すデジタルワード(例えば、10ビットワード又は12ビットワード)に分解及び変換する(例えば、その結果シャフトの速度及び/又は瞬間位置が搬送され得る)ように配される。この実施形態において、Vin1及びVin2の2つの入力(例えば、包絡線の)ピーク電圧は、理想的には同じであるべきである。入力Vin1信号とVin2信号との間のいかなる偏差及び/又は不均衡(例えば、オフセット、オフセットドリフト、歪み、グリッチ、及びノイズに対するそれぞれの許容範囲を超えるもの)も、角度θを分解する際にエラーを引き起こすと考えられ、従って、(例えば、エラー信号を介して)障害として報告される。
しかしながら、Vin1信号及びVin2信号の各々のピーク及び谷電圧は、異なる時間に起こり、モータ速度及び位置に依存するので、Vin1信号とVin2信号との間のピーク及び/又は谷電圧を比較することは必ずしも簡単ではない。第1の例において、(それぞれ、Vin1及びVin2の)公称入力信号振幅V1及びV2、及び、オフセットドリフト、歪み、及びノイズは全て、通常のレゾルバセンサ動作に従って、項sin(ωt)によって振幅変調される。レゾルバモータのシャフトが非常にゆっくり回転しているとき又は停止しているときでも、障害が生成される得る。シャフトが(例えば、0度等の角度θで)停止すると、一方のチャネル(例えば、Vin1)がフルスケール(例えば、ピーク電圧)であり、他方のチャネル(例えば、Vin2)がゼロであり、その結果、従来の解決策(ピーク検出器等)はしばしば、任意の波形偏差及び/又は偏りを効果的に検出することに失敗していた。これに対して、説明されるレゾルバ138は、シャフトが相対的にゆっくり回っているとき又は回っていない(例えば、停止している)とき、エラー(例えば、入力信号振幅V1及びV2における電力不均衡)を適切に検出及び報告するように配される。
第2の例において、レゾルバセンサ140から受信したVin1及びVin2信号は、ノイズがある、壊れている、及び/又は歪みがある(総称して「劣化している」)ことがあり得る。レゾルバセンサ140は、通常、レゾルバ138の外の(例えば、離れた)位置に置かれ、その結果、レゾルバ138(のシールドされた集積回路等)に接続される前に、Vin1及びVin2信号が電磁干渉(EMI)を受けるので、Vin1及びVin2信号は、レゾルバ138によって受信される前に劣化し得る。
EMI誘導劣化のため、受信したVin1及びVin2信号は、しばしば、適切に信号調整(例えば、ゲイン及び/又は減衰を調節)され、フィルタリングされる。しかしながら、EMIは、比較のために用いられる基準信号も劣化し得、その結果、受信したVin1及びVin2信号に対して誘導された劣化が補正され得る(例えば、その結果、EMIに起因し、比較のために容易に利用可能な実質的に理想的な基準信号はない)。また、顧客(例えば、配備後のシステムのユーザ)が入力信号レベルをより良い動的範囲に対して適応的に調整し得るが、これは、通常、実質的に理想的な基準信号を生成する複雑性を更に増大し得る。
説明したレゾルバ138は、EMI誘導ノイズ劣化、信号ゲイン、受信したセンサ信号のコサイン及びサイン信号間の任意の振幅不均衡とは関係なく、受信したsin(ωt)又はcos(ωt)変調センサ信号の角度レゾルバ不均衡検出及び障害報告を実施するように配される。
図2はレゾルバセンサの概略図である。レゾルバセンサ200は、レゾルバセンサ140等のレゾルバセンサであり、通常、モータ210と統合される。レゾルバセンサ200は、エキサイタ基準(入力)端子R1及びR2、サイン(出力)端子S2及びS4、及びコサイン(出力)端子S1及びS3を含む。概して、レゾルバセンサ200は、(例えば、端子R1及びR2を介する)エキサイタ基準信号に応答して、(例えば、S2及びS4を介して)第1の出力信号を、及び(例えば、S1及びS3を介して)第2の出力信号を生成するように配される。生成された第1及び第2の出力信号は、モータ210のモータシャフト220の回転(位置及び/又は速度を含む)を判定するための回転情報を搬送するためのアナログ出力信号である。
レゾルバセンサ200は角度位置センサであり、通常、厳しく険しい環境で用いられる。完全な電気自動車(EV)又は産業ロボットは、回転及び/又は角度モーションを実施する様々な制御システムに対して、通常、1つ又は複数のレゾルバセンサ200を用いる。デジタル信号処理を用いる実施形態において、レゾルバ・ツー・デジタルコンバータ(RDC)インタフェースが、レゾルバセンサ200によって出力されたアナログ出力信号を処理し、アナログ出力信号の回転情報をデジタルフォーマットに変換する。デジタルフォーマット化された回転情報は、例えば、EVにおけるエンジン制御ユニット(ECU)に、又は、通常処理に対してモータシャフト220の角度位置及び/又は速度の判定が必要とされる或る産業ロボット制御システムにおけるその他のマイクロコントローラ/マイクロプロセッサ等に、通信される。
通常、レゾルバセンサ200は、モータ210のモータシャフト220上に機械的に固定され、モータシャフト220に対して相対的角度位置及び絶対的角度位置の両方が継続的に判定される。図示されるように、レゾルバセンサ200は、端子R1及びR2を介してエキサイタサイン波によって駆動される1つの回転子巻線(例えば、コイル230)を有する回転自動トランスとして具現化されている。回転子巻線230は、モータシャフト220の周りに配され、従って、それは、モータ210が動く(例えば、「スピンする」)と回転する。レゾルバセンサ200はまた、90度離れて機械的に配置される(3相レゾルバセンサに対して120度等、他の位相角度配置も可能である)2つの二次巻線(コイル240及び250)を含む。二次コイル240及び250は、それぞれ、サイン(S2及びS4)及びコサイン(S1及びS3)端子に結合される。一次コイルに印加されるエキサイタ信号は、2つの固定子巻線にAC結合される(例えば、誘導結合される)。回転子がスピンする(例えば、回転する)と、回転子位置角度(θ)は、固定子巻線に関して変化する。例えば、回転子及び固定子巻線は、約30パーセントの規模の巻数比を有する。結果の振幅変調信号は、図3(これ以降に説明する)に示されるが、通常のレゾルバセンサ200出力信号である。レゾルバセンサ200出力信号は、正常に「ゲインされ」(例えば、選択的に増幅され)、復調され、モータシャフト220に関連する正確な角度及び速度情報を抽出するために後処理される。
図3は、エキサイタ基準信号、及びレゾルバセンサ200から受信した第1及び第2の出力信号の波形図300である。エキサイタ基準信号330は、レゾルバによって生成されレゾルバセンサ200に印加されるダブルエンド(例えば、差動)信号である。エキサイタ基準信号330は、レゾルバ138の波形生成回路要素によって生成され、レゾルバセンサ200のR1及びR2端子を横切って印加される。エキサイタ基準信号330は、式sin(2π×fc×t)+αに従った波形を有する。ここで、fcは励磁周波数であり、αはコモンモード振幅(これは定数である)であり、tは時間である。
第1の(例えば、コサイン)出力信号310は、(回転子)コイル230から第2の(固定子)コイル250へのエキサイタ基準信号330の誘導結合に応答して、レゾルバセンサによって生成されるダブルエンド信号である。生成された第1の出力信号310は、レゾルバセンサ200のS1及びS3端子を横切って結合される。レゾルバセンサ200は、式sin(2π×P×N/60×t)に従った第1の正弦包絡線312を有する第1の(例えば、コサイン)出力信号310を生成する。ここでPは、レゾルバセンサ200の極の数を示し、Nはrpm(毎分回転数)を示し、tは時間である。
第2の(例えば、サイン)出力信号320は、(回転子)コイル230から第1の(固定子)コイル240へのエキサイタ基準信号330の誘導結合に応答して、レゾルバセンサよって生成されるダブルエンド信号である。生成された第2の出力信号320は、レゾルバセンサ200のS2及びS4端子を横切って結合される。レゾルバセンサ200は、式sin(2π×P×N/60×t)に従った第2の正弦包絡線322を有する第2の(例えば、サイン)出力信号320を生成する。ここで、Pはレゾルバセンサ200の極の数を示し、Nはrpm(毎分回転数)を示し、tは時間である。例えば、モータ回転の角度(θ)は、瞬間値によって除算された第1の正弦包絡線322を第2の正弦包絡線312によって除算した結果の逆正接関数を評価することによって判定され得る。
図4は、デジタルフィードバックループトラッキングレゾルバのアーキテクチャのハイレベル図である。デジタルフィードバックループトラッキングレゾルバ400は、アナログフロントエンド410(これは、差動入力バッファ420及び422、乗算器430及び432、及び差動比較器440を含む)、デジタルブロック(これは、復調器450、「タイプII」制御ループ460(例えば、原点に1つ、「ゼロ」に1つの、2つの「極」を有し、ここで、ゼロは2つの極の間に位置する。このような補償ネットワークは、90度の位相ブーストも提供しつつ、周波数に関するゲインのプロファイルをシェーピングするのを助ける))、及びメモリサイン/コサインルックアップテーブル470、及びデジタルツーアナログコンバータ(DAC)480及び482を含む。
アナログフロントエンド410は、(例えば、差動入力バッファ420及び422介して)サイン及びコサイン差動入力信号を、それぞれ下記式(1)及び(2)によって得られる、それぞれの「シングルエンド」信号に変換するように配される。
Sine(S2−S4)=sin(θ)×sin(ω×t) (1)
Cosine(S1−S3)=cos(θ)×sin(ω×t) (2)
ここで、θはモータシャフト角度であり、ωはR1−R2において印加される励磁周波数である。
式(1)及び式(2)の振幅変調されたレゾルバ出力信号は、デジタルフィードバックループトラッキングレゾルバ400に入力として供給される。デジタルフィードバックループトラッキングレゾルバ400ループの1つの目的は、モータシャフトの角度(θ)及び速度を計算することである。図3によって示されるように、位置情報は入力サイン及びコサイン信号の包絡線を介して搬送される。搬送された角度を計算するために、サインθはフィードバック信号(DAC480からのコサインΦ)で乗じられ、ここで、ファイ(Φ)は、メモリにストアされたルックアップテーブルから得られる推定角度である。同様に、コサインθは、フィードバック信号(DAC482からのサインΦ)で乗じられる。従って、乗算器430及び320は、三角関数(sinA×CosB−SinB Cos A)を生成するために用いられ、それは、下記の三角恒等式により、Sin(A−B)と同等である。
a−b=K×sin(θ)×sin(ω×t)×cos(Φ)−K×cos(θ)×sin(ω×t)×sin(Φ) (3)
=K×sin(ω×t)×(sin(θ)×cos(ω)−cos(θ)×sin(Φ)) (4)
=K×sin(ω×t)×sin(θ−Φ) (5)
ここで、Φは、モータシャフト220の角度の近似であり、Kは定数である。
差動比較器440の出力は、デジタルであり、搬送波sin(ω×t)を除去するために復調器450によって復調される。搬送波sin(ω×t)情報を決定するために、復調器450は、エキサイタ基準信号に応答してエラー信号VΦERRを生成する。エラー信号VΦERRは、エラー信号VΦERRを、角度及び速度を示すための出力信号に変換するために、タイプII(デジタルトラッキング)制御ループ460に印加される。
ΦERR=K×sin(ω×t)×(θ−Φ) (6)
デジタルフィードバックループトラッキングレゾルバアーキテクチャに用いられる制御ループ構成の負のフィードバックは、VΦΕRR信号を実質的にゼロに近い値にまで継続的に低減させることに役立つ。相対的に小さい(θ−Φ)の値の場合、VΦΕRRの値はゼロに近い。sin(A−B)
Figure 0006959602
0のとき、A
Figure 0006959602
Bである。従って、デジタルフィードバックループは、推定角度(Φ)がシャフト220の角度(θ)に等しくなるように、エラーをゼロに近く保つことによって、継続的に自己補正する。従って、デジタル制御ループがトラッキングしているとき、下記式となる。
θ=Φ (7)
上記式から、推定された近似角度が回転子シャフト角度に実質的に等しいことが判定され(例えば、推論され)得る。
図5は、例示の実施形態に従ったレゾルバセンサから受信した理想的な第1及び第2の出力信号の波形図500である。波形図500は、理想的なレゾルバセンサから受信した理想的な第1の(コサイン)出力信号510、理想的なレゾルバセンサから受信した理想的な第2の(サイン)出力信号520、理想的なレゾルバセンサに印加される理想的なエキサイタ基準信号530、第1の(例えば、より長いウィンドウ)電圧RMS(二乗平均平方根)出力540、第2の(例えば、より短いウィンドウ)電圧RMS出力542、及びフォールト信号550(例えば、第1及び第2のRMS出力電圧が逸脱するときを示すためのもの)を含む。例えば、フォールト信号550は、説明したレゾルバ138によって生成され、また、図16に関連してこれ以降に説明される。
理想的な第1の(コサイン)出力信号510の電圧ピーク・ツー・ピーク(Vpk−pk)502、及び理想的な第2の(サイン)出力信号520のVpk−pk504は、理想的であり、そのような各信号のそれぞれのピーク・ツー・ピーク電圧が異なる時間(例えば、位相オフセット及びモータ回転速度)に生じるとしても、同一である。例えば、第1の(コサイン)出力信号510のそれぞれのピーク・ツー・ピーク電圧が、位相角度が0°、180°、360°等に近いときに生じ、第2の(サイン)出力信号520のピーク・ツー・ピーク電圧が、位相角度が90°、270°等に近いときに生じる。ピーク・ツー・ピーク電圧は、通常、モータシャフトの瞬間方位及び速度に従って生じるので、ピーク・ツー・ピーク電圧は、通常、選択された位相角度の(正確にその上ではなく)近くで生じる。
理想的な第1の(コサイン)出力信号510及び理想的な第2の(サイン)出力信号520は、両方とも理想的であるので、第1の(例えば、より長いウィンドウ)電圧RMS(二乗平均平方根)出力540及び第2の(例えば、より短いウィンドウ)電圧RMS出力542もまた理想的である。例えば、第1の(例えば、より長いウィンドウ)電圧RMS出力540及び第2の(例えば、より短いウィンドウ)電圧RMS出力542は両方とも理想的な電圧ピーク・ツー・ピークのRMSである。第1の(例えば、より長いウィンドウ)電圧RMS出力540及び第2の(例えば、より短いウィンドウ)電圧RMS出力542は同一である(及び従って、重ねて図示されている)ので、(例えば、第1及び第2のRMS出力電圧が逸脱するときを示すための)フォールト信号は、アサートされない値(ロジックゼロ)に保持される。
図6は、例示の実施形態に従ったレゾルバセンサから受信した理想的な第1及び第2の出力信号の一層細かい詳細の波形図600である。波形図600は、理想的な第1の(コサイン)出力信号610、理想的な第2の(サイン)出力信号620、理想的なエキサイタ基準信号630、第1の(例えば、より長いウィンドウ)電圧RMS出力640、第2の(例えば、より短いウィンドウ)電圧RMS出力642、及びフォールト信号650を含む。
一層細かい詳細で(例えば、拡大して)示されるように、理想的な第1の(コサイン)出力信号610及び理想的な第2の(サイン)出力信号620のそれぞれ個々の(例えば、サイン波)振動が、概して、認識され得る。図示された時間に亘って、理想的な第1の(コサイン)出力信号610のピーク・ツー・ピーク電圧は、時間100mS付近で(例えば、コサイン位相角度が0°に近いとき)最大値に近づく。同様にして(例えば、オフセット90°に従って、サイン関数とコサイン関数との間、それ自体で、でオフセットする)、第2の(サイン)出力信号620のピーク・ツー・ピーク電圧は、時間100mS付近で(例えば、サイン位相角度が0°に近いとき)最小値(例えば、ゼロ)に近づく。
図7は、例示の実施形態に従ったレゾルバセンサから受信した理想的な第1及び第2の出力信号の更なる詳細の波形図700である。波形図700は、理想的な第1の(コサイン)出力信号710、理想的な第2の(サイン)出力信号720、理想的なエキサイタ基準信号730、第1の(例えば、より長いウィンドウ)電圧RMS出力740、第2の(例えば、より短いウィンドウ)電圧RMS出力742、及びフォールト信号750を含む。
更に詳細に図示されるように、理想的な第1の(コサイン)出力信号710及び理想的な第2の(サイン)出力信号720の各々の個々の(例えば、サイン波)振動が、概して、識別可能である。図示された時間に亘って、理想的な第1の(コサイン)出力信号710のピーク・ツー・ピーク電圧は、時間100mS付近で(例えば、コサイン位相角度が0°に近いとき)最大値に近づく。同様に、第2の(サイン)出力信号720のピーク・ツー・ピーク電圧は、時間100mS付近で最小値(例えば、ゼロ)に近づく(例えば、時間100mS付近で概して平坦な外観を有する)。
図8は、例示の実施形態に従った、異なる時間にレゾルバセンサから受信した理想的な第1及び第2の出力信号の細かい詳細の波形図800である。波形図800は、理想的な第1の(コサイン)出力信号810、理想的な第2の(サイン)出力信号820、理想的なエキサイタ基準信号830、第1の(例えば、より長いウィンドウ)電圧RMS出力840、第2の(例えば、より短いウィンドウ)電圧RMS出力842、及びフォールト信号850を含む。
詳細に図示されるように、理想的な第1の(コサイン)出力信号810及び理想的な第2の(サイン)出力信号820の各々の個々の(例えば、正弦波)振動が、概して、識別可能である。図示された時間期間に亘って、理想的な第1の(コサイン)出力信号810のピーク・ツー・ピーク電圧は、時間124.8mS付近で(例えば、位相角度が90°に近づくとき)最小値(例えば、ゼロ)に近づく。サイン/コサイン関係に従って、第2の(サイン)出力信号820のピーク・ツー・ピーク電圧は、時間124.8mS付近で(例えば、位相角度が90°に近づくとき)最大値に近づく。
図7及び図8の波形によって示されるように、理想的な第1の(コサイン)出力信号及び理想的な第2の(サイン)出力信号の最大ピークは、異なるインターバルで生じる。そのようなインターバルの間隔は、説明されるレゾルバによって監視されるモータの回転速度に依存する。
図9は、例示の実施形態に従ったレゾルバセンサから受信した不均衡な第1及び第2の出力信号の波形図900である。波形図900は、(例えば、劣化した)第1の(コサイン)出力信号910、第2の(サイン)出力信号920、エキサイタ基準信号930、第1の(例えば、より長いウィンドウ)電圧RMS出力940、第2の(例えば、より短いウィンドウ)電圧RMS出力942、及びフォールト信号950を含む。
図示されるように、第1の(コサイン)出力信号910は、例えば、155mSの時間付近でレゾルバセンサにノイズが導入される等の結果、非理想的である。ノイズは、モータ自体(これは、多くの一般的な電気車両において、10〜40アンペア程度の電流を消費し得る)及び/又は制御回路要素(例えば、モータコイルの起動巻線(motive winding)を選択的に供電するためのもの)に起因し得る。通常、サイン信号及びコサイン信号の両方に等しくノイズが導入される限り、レゾルバシステム138のコモンモード排除(例えば、これは差動信号に固有である)が、レゾルバシステムに対するノイズの影響を低減する。ノイズがサイン信号又はコサイン信号に不均衡に影響を与えるとき、従来のレゾルバシステムは、(例えば、特定の応用例の不均衡性及び許容差の程度に応じて)実質的に不正確な角度判定を行い得る。
また、第1の(コサイン)出力信号910は、例えば、レゾルバセンサから受信した出力信号を生成するレゾルバセンサにおける欠陥等の結果、非理想的であり得る。レゾルバセンサは通常、複数の極及び/又は巻線を含む。個々の巻きの絶縁に近接する部分が損なわれるとき、近接する損なわれた絶縁を有する個々の巻きが、(例えば、直接的又は間接的に)短絡し得る。短絡した巻きが巻線内に生じると、短絡した巻きは、その巻線に、レゾルバセンサの出力信号の振幅にディップを起こさせる。振幅におけるディップ902は(例えば、Vpk−pk904に対して)、従来のレゾルバシステムの角度精度を低減し、レゾルバフィードバックループの安定性(例えば、「ロック」)が損なわれる恐れがある(特定の応用例の許容差等に依存する)。
例えば、レゾルバセンサにおけるノイズ、又は障害のある巻線、又は他の機械的不完全性の影響の不均衡性は、信号の1つのみで振幅を低下させる結果となり、不均衡を引き起こし、これは、潜在的に、誤ったシャフト角度読み取り及び/又は不安定なフィードバック制御ループとなり得る。説明したレゾルバ138において、不均衡は、第1の(例えば、より長いウィンドウ)電圧RMS出力940と第2の(例えば、より短いウィンドウ)電圧RMS出力942との比較及び閾値化の関数として検出される(例えば、これ以降に説明される比較器1662及び1664を参照)。第1の(例えば、より長いウィンドウ)電圧RMS出力940と第2の(例えば、より短いウィンドウ)電圧RMS出力942との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を超えるとき(例えば、これ以降に説明するプログラマブル分圧器1654及び1658を参照)、レゾルバは、時間155mS付近で、フォールト信号950をアサートする。
図10は、例示の実施形態に従ったレゾルバセンサから受信した不均衡な第1及び第2の出力信号の一層細かい詳細の波形図1000である。波形図1000は、(例えば、劣化した)第1の(コサイン)出力信号1010、第2の(サイン)出力信号1020、エキサイタ基準信号1030、第1の(例えば、より長いウィンドウ)電圧RMS出力1040、第2の(例えば、より短いウィンドウ)電圧RMS出力1042、及びフォールト信号1050を含む。
例えば、時間155mS付近で、ノイズ及び/又は巻線障害が、第1の(例えば、コサイン)電圧出力信号1010の瞬間的ピーク・ツー・ピーク電圧のドロップ1002を引き起こす。説明されるレゾルバ138は、より長いウィンドウ(例えば、より短いウィンドウより20倍長い)に亘って、第1の(例えば、コサイン)電圧出力信号1010及び第2の(例えば、サイン)電圧出力信号を統合することに応答して、第1の(例えば、より長いウィンドウ)電圧RMS出力1040を生成する。同様に、説明されるレゾルバ138は、より短いウィンドウ(例えば、より短いウィンドウより20倍短い)に亘って、第1の(例えば、コサイン)電圧出力信号1010及び第2の(例えば、サイン)電圧出力信号1020を統合することに応答して、第2の(例えば、より短いウィンドウ)電圧RMS出力1042を生成する。
従って、第2の(例えば、より短いウィンドウ)電圧RMS出力1042の値は、第1の(例えば、コサイン)電圧出力信号1010のピーク・ツー・ピーク電圧のドロップ1002に応答して、(RMS出力1040よりさらに速く)下降する。第2の(例えば、より短いウィンドウ)電圧RMS出力1040の低下した値は、時間155付近で識別可能であり、そこでは、第2の(例えば、より短いウィンドウ)電圧RMS出力1042の(例えば、電力)値が、第1の(例えば、より長いウィンドウ)電圧RMS出力1040の対応する値から逸れる(例えば、それより小さくなる)。第1の(例えば、より長いウィンドウ)電圧RMS出力1040と第2の(例えば、より短いウィンドウ)電圧RMS出力1042との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を超えるとき、レゾルバ138は、時間155mS付近でフォールト信号1050をアサートする(例えば、1004)。
時間155mSの後、モータシャフトの回転(及び/又は、例えばノイズの中断)は、第1の(例えば、コサイン)電圧出力信号1010の瞬間的ピーク・ツー・ピーク電圧を、通常の(例えば、エラーのない)値まで(例えば、徐々に)上昇させる。第1の(例えば、より長いウィンドウ)電圧RMS出力1040と第2の(例えば、より短いウィンドウ)電圧RMS出力1042との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を下まわって下降するとき、レゾルバ138は、時間161mS付近でフォールト信号1050をデアサートする。
図11は、例示の実施形態に従ったレゾルバセンサから受信した複数の不均衡な第1及び第2の出力信号の波形図1100である。波形図1100は、(劣化した)第1の(コサイン)出力信号1110、第2の(サイン)出力信号1120、エキサイタ基準信号1130、第1の(例えば、より長いウィンドウ)電圧RMS出力1140、第2の(例えば、より短いウィンドウ)電圧RMS出力1142、及びフォールト信号1150を含む。
例えば、時間192mS付近で、ノイズ及び/又は巻線障害が、第1の(例えば、コサイン)電圧出力信号1110の瞬間的ピーク・ツー・ピーク電圧においてドロップ1102を引き起こす。説明されるレゾルバ138は、より長いウィンドウ(例えば、より短いウィンドウより20倍長い)に亘って、第1の(例えば、コサイン)電圧出力信号1110及び第2の(例えば、サイン)電圧出力信号を統合することに応答して、第1の(例えば、より長いウィンドウ)電圧RMS出力1140を生成する。同様に、説明されるレゾルバ138は、より短いウィンドウ(例えば、より短いウィンドウより20倍短い)に亘って、第1の(例えば、コサイン)電圧出力信号1110及び第2の(例えば、サイン)電圧出力信号1120を統合することに応答して、第2の(例えば、より短いウィンドウ)電圧RMS出力1142を生成する。
従って、第2の(例えば、より短いウィンドウ)電圧RMS出力1142の値は、第1の(例えば、コサイン)電圧出力信号1110のピーク・ツー・ピーク電圧におけるドロップ1102に応答して、(RMS出力1140より迅速に)下降する。第2の(例えば、より短いウィンドウ)電圧RMS出力1140の低下した値は、時間192mS付近で識別可能であり、そこで、第2の(例えば、より短いウィンドウ)電圧RMS出力1142の(例えば、電力)値は、第1の(例えば、より長いウィンドウ)電圧RMS出力1140の対応する値から逸れる(例えば、それより小さくなる)。第1の(例えば、より長いウィンドウ)電圧RMS出力1140と第2の(例えば、より短いウィンドウ)電圧RMS出力1142との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を下回って下降するとき、レゾルバ138は、時間197mS付近で.フォールト信号1150をデアサートする。
付加的な不均衡が、説明したレゾルバ138によって、検出され、(例えば、時間155mSに開始する不均衡と)同様に扱われる。例えば、障害不均衡が、時間192mS、204mS、及び211mS付近で検出され、そこでは、そのような各時間に対して、フォールト信号1150がそれぞれアサートされ(例えば、1104)、時間197mS、209mS、及び214mS付近(各不均衡が、閾値許容差範囲内のレベルまで低減されるところ)でフォールト信号1150がそれぞれデアサートされる。
図12は、例示の実施形態に従ったレゾルバセンサから受信した不均衡な第1及び第2の出力信号の細かい詳細の波形図1200である。波形図1200は、(非理想的な)第1の(コサイン)出力信号1210、第2の(サイン)出力信号1220、エキサイタ基準信号1230、第1の(例えば、より長いウィンドウ)電圧RMS出力1240、第2の(例えば、より短いウィンドウ)電圧RMS出力1242、及びフォールト信号1250を含む。
時間192mS付近で、回転依存の障害(例えば、シャフト角度に機能的に依存する巻線又はノイズ誘導障害)が、第1の(例えば、コサイン)電圧出力信号1210の瞬間的ピーク・ツー・ピーク電圧においてドロップを引き起こす。説明したレゾルバ138は、より長いウィンドウ(例えば、より短いウィンドウより20倍長い)に亘って、第1の(例えば、コサイン)電圧出力信号1210及び第2の(例えば、サイン)電圧出力信号を統合することに応答して、第1の(例えば、より長いウィンドウ)電圧RMS出力1240を生成する。同様に、説明したレゾルバ138は、より短いウィンドウ(例えば、より短いウィンドウより20倍短い)に亘って、第1の(例えば、コサイン)電圧出力信号1210及び第2の(例えば、サイン)電圧出力信号1220を統合することに応答して、第2の(例えば、より短いウィンドウ)電圧RMS出力1242を生成する。
従って、第2の(例えば、より短いウィンドウ)電圧RMS出力1240の値は、第1の(例えば、コサイン)電圧出力信号1210のピーク・ツー・ピーク電圧におけるドロップ1202に応答して下降する。第1の(例えば、より長いウィンドウ)電圧RMS出力1240と第2の(例えば、より短いウィンドウ)電圧RMS出力1242との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を超えるとき、レゾルバ138は、時間192mS付近でフォールト信号1250をアサートする(例えば、1204)。第1の(例えば、より長いウィンドウ)電圧RMS出力1240と、より短いウィンドウ(例えば、サイン)電圧RMS出力1242との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を下回って下降するとき、レゾルバ138は、時間197mS付近でフォールト信号1250をデアサートする。
図13は、例示の実施形態に従った、静電モータのレゾルバセンサから受信した不均衡な第1及び第2の出力信号の波形図1300である。波形図1300は、(例えば、劣化した)第1の(コサイン)出力信号1310、第2の(サイン)出力信号1320、エキサイタ基準信号1330、第1の(例えば、より長いウィンドウ)電圧RMS出力1340、第2の(例えば、より短いウィンドウ)電圧RMS出力1342、及びフォールト信号1350を含む。
時間329mS付近で、非回転依存の障害(シャフト角度が静止しているときに生じる巻線誘導障害又はノイズ誘導障害等)が、第1の(例えば、コサイン)電圧出力信号1310の電圧の上昇を引き起こす。従って、第2の(例えば、より短いウィンドウ)電圧RMS出力1340の値は、第1の(例えば、コサイン)電圧出力信号1310の電圧の上昇に応答して、上昇する。第1の(例えば、より長いウィンドウ)電圧RMS出力1340と第2の(例えば、より短いウィンドウ)電圧RMS出力1342との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を超えるとき、レゾルバ138は、時間330mS付近でフォールト信号1350をアサートする(例えば、1302)。第1の(例えば、より長いウィンドウ)電圧RMS出力1340と第2の(例えば、より短いウィンドウ)電圧RMS出力1342との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を下回って下降するとき、レゾルバ138は、時間335mS付近でフォールト信号1350をデアサートする。
図14は、例示の実施形態に従った、静電モータのレゾルバセンサから受信した連続する不均衡な第1及び第2の出力信号の波形図1400である。波形図1400は、(劣化した)第1の(コサイン)出力信号1410、第2の(サイン)出力信号1420、エキサイタ基準信号1430、第1の(例えば、より長いウィンドウ)電圧RMS出力1440、第2の(例えば、より短いウィンドウ)電圧RMS出力1442、及びフォールト信号140を含む。
時間396mSの付近で、非回転依存の障害(シャフト角度が静止しているときに生じる巻線誘導障害又はノイズ誘導障害等)が、第1の(例えば、コサイン)電圧出力信号1410の電圧において上昇を引き起こす。従って、第2の(例えば、より短いウィンドウ)電圧RMS出力1440の値は、第1の(例えば、コサイン)電圧出力信号1410の電圧の上昇に応答して上昇する。第1の(例えば、より長いウィンドウ)電圧RMS出力1440と第2の(例えば、より短いウィンドウ)電圧RMS出力1442との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を超えるとき、レゾルバ14は、時間396mS付近でフォールト信号1450をアサートする(例えば、1402)。第1の(例えば、より長いウィンドウ)電圧RMS出力1440と第2の(例えば、より短いウィンドウ)電圧RMS出力1442との間の差(例えば、その大きさ)が、プログラム可能に選択された閾値を下回って下降するとき、レゾルバ148は、時間401mS付近でフォールト信号1450をデアサートする。
図15は、例示の実施形態に従ったレゾルバセンサ出力信号電力平均化回路1500の概略図である。レゾルバセンサ出力信号電力平均化回路1500は、「二乗」(例えば、数学指数二乗関数を実施する際に等)セル1510、1520、及び1530、電流加算器1540、及び積分器(例えば、キャパシタ)C15を含む。概して、レゾルバ信号出力信号電力平均化回路1500は、レゾルバセンサ出力信号電力の平均値を示すための平均電力信号を生成するように配され、平均は、C15の値に応答して決定される時間ウィンドウに応答して決定される。レゾルバセンサ出力信号は、第1の(例えば、コサイン)出力信号Vin1及び第2の(例えば、サイン)出力信号Vin2等の信号である。
二乗セル1510は、第1の二乗された平均(電力)を表すために第1の電流が生成されるように、コモンモード信号VCOMに関して、第1の(例えば、コサイン)出力信号Vin1の平均を二乗するように配される。二乗セル1520は、第2の二乗された平均(電力)を表すために第2の電流が生成されるように、コモンモード信号VCOMに関して、第2の(例えば、サイン)出力信号Vin2の平均を二乗するように配される。二乗セル1530は、第3の二乗された平均(電力)を表すために第3の電流が生成されるように、平均電力信号V及びコモンモード信号VCOMの平均を二乗するように配される。
生成された(例えば、第1、第2、及び第3)の電流の各々は、合算電流1546を生成するために、電流加算器1540によって合算され(例えば、加算又は減算され)、合算電流1546は、平均化キャパシタC(例えば、積分器C15)によってつくられた電圧に従って、平均電力信号Vを生成する。従って、平均電力信号Vは、フィードバックループを確立し(例えば、フィードバックループの一部であり)、そこで、二乗セル1510及び1520によって加算された電流が、二乗セル1530によって減算された電流によって、(例えば、安定な固定された定常状態動作条件において)オフセットされる。平均化キャパシタCの充電又は放電プロセスは、下記式によって説明され得る。
Figure 0006959602
ここで、kは定数であり、tは、t0(開始時間)とT(t0後の経過時間)との間の特定の時間である。
フィードバックループが、平均電力信号Vが実質的に一定(例えば、直流)である定常状態動作条件を達成した後、式(9)の積分項はゼロに等しく設定される。例えば、定常状態動作条件の間、Vが充電又は放電を停止し(定常状態条件)、第1の2つの二乗セル電流の合算が、等しく、第3のセル電流に対して反対であるので、式(9)の積分項はゼロに等しく設定される。
Figure 0006959602
従って、
Figure 0006959602
ここで、式(12)は、三角恒等式cosθ+sinθ=1に従って式(11)から得られ、その結果、第1の(例えば、コサイン)及び第2の(例えば、サイン)出力信号のサイン/コサインの影響が、式(13)のべき項(power term)VRMSから分離される。
従って、平均化キャパシタC上にストアされた電荷によってつくられた電圧V(t)は、変調信号Vin1=Vcos(θ)sin(ωt)及びVin2=Vsin(θ)sin(ωt)の総電力のRMS測定である。上述したように、sin(ωt)の影響は、二乗の合計の計算(squared-sum calculation)によって分離される(その結果、上述したように、励磁信号の振動への参照とは関係なく、Vin1及びVin2信号においてエラーが検出され得る)。また、式(13)のべき項VRMSは、式(9)の係数k/Cとは独立している。しかしながら、係数k/Cは、べき項VRMSが決定される時間ウィンドウ(例えば、セトリング時間)を決定する。従って、(図16を参照してこれ以降に説明するような)より短い及びより長い時間ウィンドウを用いて平均電力計算を生成するために、各々異なる値の積分器C15を含む、2つの個別の(例えば、任意選択で共有される幾つかの構成要素を備える)レゾルバセンサ出力信号電力平均化回路1500を説明する。
式(8)〜式(13)において、RMS測定は、V1=V2=Vを仮定することによって得られる。Vin1及びVin2信号の一方又は両方が、オフセットドリフト、歪み、巻線障害、「グリッチ」、及び結合されたノイズのいずれかによって劣化したとき、VRMSは影響を受け(例えば、変化させられ)、VRMSにおける、選択された閾値を超えるような変化が、図16を参照してこれ以降に説明するレゾルバ出力信号電力不均衡検出器によって検出され得る。
代替的な実施形態において、二乗セル1530は、省かれ得、及び任意選択のスイッチS15で置換され得る。スイッチS15は、(例えば、レゾルバセンサ出力信号電力平均化回路1500のプログラム可能な構成要素を制御するプロセッサによってアサートされる信号「放電」に応答して)、積分器C15を既知の電圧に(例えば、定常状態動作条件の間)選択的に設定するように配される。例えば、Vin1及びVin2電流の二乗の合計が、RMS電力を決定するために用いられ、積分キャパシタの上で決定される期間に亘って平均されるので、2つの電流の単なる合算は、平均化キャパシタC15を事実上飽和させる傾向がある。平均化キャパシタC15のそのような飽和を避けるために、1530等の二乗セルが、合算ノードにおける電流を減算するように配され得、及び/又は、電流が、平均化キャパシタC15を放電させるために、スイッチS15を選択的に用いて減算され得る。従って、平均化キャパシタC15のハイサイドにおいてつくられた電圧は制御され、その結果、つくられた電圧は、通常、これ以降に説明する比較器1662及び1664の動作電圧範囲内である。
本明細書に説明されるように、第1及び第2のレゾルバセンサ出力信号の間の電力不均衡を検出するために、平均電力信号が生成される。第1及び第2のレゾルバセンサ出力信号は、通常、エキサイタ基準信号を誘導結合することに応答して、レゾルバセンサによって生成され、その結果、第1のレゾルバセンサ信号は、第2のレゾルバセンサ信号に関連する第2の物理的方位とは異なる第1の物理的方位に関連する。
第1のレゾルバセンサ出力信号と第2のレゾルバセンサ出力信号との間に電力不均衡(例えば、これは、電気的ノイズ又は巻線欠陥等の、障害により生じる過渡状態によって起こされ得る)が存在するとき、電力不均衡が検出され、フォールト信号が生成される。フォールト信号は、第1及び第2のレゾルバセンサ出力信号から導出された位置(及び/又は回転速度)情報が劣化していることを警告する等、制御回路要素に「警告する」ために用いられ、その結果、保護的対策(そうでないと取られてしまう制御回路要素によるアクションを阻止することを含む)が取られ得る。
図16は、例示の実施形態に従ったレゾルバセンサ出力信号電力不均衡検出器1600の概略図である。レゾルバセンサ出力信号電力不均衡検出器1600は、レゾルバ出力信号電力平均化回路1602及び1604、プログラマブル分圧器1654及び1658、比較器1662及び1664、及びフォールト信号生成器1670を含む。
概して、レゾルバ出力信号電力平均化回路1602及び1604は、各々が、第1及び第2のレゾルバセンサ出力信号に応答して、平均電力信号を生成するように配される。生成された平均電力信号の各々は、異なる時間期間(例えば、ウィンドウ)を用いて平均化され、その結果、第1及び第2のレゾルバセンサ出力信号の1つに課せられる過渡(ノイズ又は巻線欠陥に起因する過渡の開始等)信号が、生成される平均電力信号に不均一に影響を与える。不均衡な第1及び第2のレゾルバセンサ出力信号は、異なる積分比及び/又はレゾルバ出力信号電力平均化回路1602及び1604の異なる時間ウィンドウに起因して、生成される平均電力信号に不均一に影響を与える。
第1及び第2の時間ウィンドウの持続時間は、過渡事象によって引き起こされた不均衡が、第1の平均電力信号を第2の平均電力信号と比較することによって検出可能であるような持続時間を有するように選択される。第1の平均電力信号はレゾルバ出力信号電力平均化回路1602によって生成され、第2の平均電力信号はレゾルバ出力信号電力平均化回路1604によって生成される。従って、(例えば、異なって影響を受けた)平均電力信号を比較することは、電力不均衡によって引き起こされるエラー状態を(例えば、選択された閾値内で)判定し、エラー状態表示に応答して、フォールト信号が生成される。
比較器1662及び1664、プログラマブル分圧器1654及び1658、及び(相対的に極めて小さい)ORゲート(例えば、フォールト信号生成器1670)もアナログデバイスである(或いはアナログデバイスを用いて実装されている)と考えられる場合、レゾルバセンサ出力信号電力不均衡検出器1600は、アナログドメインにおいて、事実上完全に動作する。例えば、アナログドメインにおいて実質的に動作することは、従来のデジタルソリューション及びデジタル信号処理に関連するコストを除去する。説明したレゾルバセンサ出力信号電力不均衡検出器1600は、比較的コンパクトにレイアウトされ得る。例えば、二乗セル1700(これは、1610、1620、1630、1612、1622、及び1632等の二乗セルの部分を表す)を、図17(例えば、図16を鑑みて)を参照してこれ以降に説明する。二乗セル1700はアナログ構成要素を含み、こういったアナログ構成要素は、コンパクトにレイアウトされ得、また、そのような複製された二乗セルが各々PVT(プロセス、電圧、及び温度)変化に関して実質的に同様に機能するように、細密に複製され得る。
レゾルバ出力信号(より長期の)電力平均化回路1602は、二乗セル1610、1620、及び1630、電流加算器1640、及び積分器(例えば、キャパシタ)C16aを含む。第1の二乗セル1610は、(例えば、レゾルバセンサ第1出力信号の電力を示すための)レゾルバセンサ第1出力電力信号を生成するための回路である。第2の二乗セル1620は、(例えば、レゾルバセンサ第2出力信号の電力を示すための)レゾルバセンサ第2出力電力信号を生成するための回路である。第3の二乗セル1630は、レゾルバセンサ出力信号電力の第1の(例えば、より長期の)平均値を生成し、レゾルバセンサ第1出力電力信号を電流加算器1640に結合するための、第3の二乗回路のための任意選択的回路である。電流加算器1640は、レゾルバセンサの第1及び第2出力電力信号(及び存在する場合は、二乗されたレゾルバセンサ第1出力電力信号)を合算し、合算したものを、積分器C16aに結合するための回路である。概して、レゾルバ出力信号電力平均化回路1602は、レゾルバ出力信号電力の平均値を示すための第1の平均電力信号を生成するように配され、平均は、積分器C16aの値に応答して決定される第1の時間ウィンドウに応答して決定される。
レゾルバ出力信号(より短期の)電力平均化回路1604は、二乗セル1612、1622、及び1632、電流加算器1642、及び積分器(例えば、キャパシタ)C16bを含む。第1の二乗セル1612は、レゾルバセンサ第1出力電力信号(例えば、レゾルバセンサ第1出力信号の電力を示すためのもの)を生成するための回路である。第2の二乗セル1622は、レゾルバセンサ第2出力電力信号(例えば、レゾルバセンサ第2出力信号の電力を示すためのもの)を生成するための回路である。第3の二乗セル1632は、レゾルバセンサ出力信号電力の第2の(例えば、ほぼ瞬間的期間の)平均値を生成し、レゾルバ出力信号電力の第2の平均値を電流加算器1642に結合するための第3の二乗回路の任意選択的回路である。電流加算器1642は、レゾルバセンサの第1及び第2出力電力信号を合算し、合算したものを積分器C16bに結合するための回路である。概して、レゾルバ出力信号電力平均化回路1604は、レゾルバ出力信号電力の第2の平均値を示すための第2の平均電力信号を生成するように配され、第2の平均値は、第2の積分器の値に応答して決定される第2の時間ウィンドウに応答して決定される。第2の時間ウィンドウは、(例えば、それぞれの積分器C16の積分比によって決定される時間期間を有する)時間ウィンドウが、レゾルバ出力信号電力平均化回路1602とレゾルバ出力信号電力平均化回路1604との間で異なるように、第1の時間ウィンドウより短くなるように選択される。
二乗セル1610は、二乗セル1612と同じ入力信号に結合され、二乗セル1620は、二乗セル1622と同じ入力信号に結合される。共有二乗セルの実施形態において、同じ入力を有する二乗セルは共有され得る(及び、例えば、出力に電流ミラーが適用され得、その結果、出力電流は1640及び1642等の別個の加算器によって合算され得る)。二乗セル1630及び1632は、(これ以降に説明するような)共通入力を共有せず、通常、(実装されるとき)別個の二乗セルとしてレイアウトされる。
従って、レゾルバセンサ出力信号電力不均衡検出器1600は、4つの二乗セルのみを備えてレイアウトされ得る。例えば、レゾルバ出力信号電力平均化回路1602の第1の二乗セルとレゾルバ出力信号電力平均化回路1604の第1の二乗セルが、共通入力の第1のセット(例えば、第1のレゾルバセンサ出力信号及びフィードバック信号)に応答して別個の出力信号を生成するために、基準電流ミラーを共有する。同様に、レゾルバ出力信号電力平均化回路1602の第2の二乗セルとレゾルバ出力信号電力平均化回路1604の第2の二乗セルが、共通入力の第2のセットに応答して別個の出力信号を生成するために、基準電流ミラーを共有する。
レゾルバ出力信号電力平均化回路1602及び1604の動作は、概して、これ以降に説明するレゾルバ出力信号電力平均化回路1500の動作に類似する。しかしながら、(信号電力平均化回路1602の)平均化キャパシタC16aは、(信号電力平均化回路1604の)平均化キャパシタC16bとは異なる値である。キャパシタC16aとキャパシタC16bとの間のサイズの差は、ノードVC1及びVC2に対して異なる比で電圧を展開させ、その結果、(図15に関して上述したように)二乗セル1630及び1632によって異なる電流がつくられる。従って、二乗セル1630によって電流加算器1640に供給される電流の量は、二乗セル1632によって電流加算器1642に供給される電流の量とは異なる。
例えば、C16aのキャパシタンスが、C16bのキャパシタンスより(例えば、一層)大きい(例えば、20倍大きい)場合、ノードVC1の平均化時間(例えば、RMS測定ウィンドウ)は、ノードVC2の平均化時間より、比例して大きい。従って、ノードVC2の電圧は、より短期の(例えば、比較的瞬間的な)RMS測定ウィンドウに亘って測定された入力信号電力に関連し、より長期のRMS測定ウィンドウに亘って測定された入力信号電力に関連する。通常、相対的に短い時間期間内(例えば、約2又はそれ以上の振動より小さい期間内、及び/又は、より長期のRMS測定ウィンドウの約1/2より小さい期間内)に位相不均衡が検出され得るように、充分短くなるように、より短期のRMS測定ウィンドウが選択される。より短期のRMS測定ウィンドウは、より短いウィンドウが、EMI、ノイズ、巻線障害、及び類似の原因(例えば、集合的に「ノイズ」)によって引き起こされる、測定された電力における妨害を除外するように、選択されるEMI/ノイズ期間よりも(例えば、僅かに)短くなるように選択される。従って、より短期のRMS測定ウィンドウの長さは、選択されるノイズ期間に応答して決定される。選択されたノイズ期間は、1つ又は複数のシステムにおいてノイズを演繹的に測定及び/又は観察することによって、及び、ノイズを引き起こす多くの(及び大部分又は全ての)事象が、より短いウィンドウでは検出されない(が、より長期のRMS測定ウィンドウを用いると、検出可能である)ような値を選択することによって、選択され得る。
入力信号の1つが突然壊れると、ほぼ瞬間的電力RMS値VC2は、より長期の平均対応値VC1が応答するより速く応答し、そのため、差が、選択された(例えば、プログラム可能な)電圧閾値を超えるとき、障害がトリガされる。選択された電圧閾値は、第1及び第2のプログラマブル分圧器(1654及び1658)における選択されたスイッチを閉にする(例えば、レゾルバセンサ出力信号電力不均衡検出器1600のプログラム可能構成要素を制御するプロセッサのソフトウェア制御下で起動される)ことに従って、(例えば、バンドギャップ回路)電流源によって供給及びシンクされる電流の量に従って、及び抵抗器ネットワークセオリーに従って、均一化するように選択される(例えば、プログラムされる)。
例えば、プログラマブル分圧器1654及び1658の個々の抵抗器の各々は、異なる(及び、例えば、予期される)モータ応用例に対する異なる感度レベル(例えば、配備の後)を提供するために、(例えば、設計時に)プログラム可能レベルを提供するように選択される。プログラム可能レベルは、Ib×R×Nに従って選択され得、Ibはバンドギャップ基準に応答して生成される電流であり、Rは、選択されたスイッチング構成Nに従って、及び選択されたスイッチング構成により選択される抵抗器の値に従って選択される抵抗である。値Nは、16進値であり得、各ビットは、個々の抵抗器を選択された抵抗器ネットワーク構成に選択的に結合するためのスイッチの状態を選択する。
フォールト信号生成器1670は、比較器1662及び1664(総称して「比較器回路」)の閾値化及び比較に応答して、フォールト信号出力をトグル(例えば、アサート及びデアサート)するように配される。比較器回路は、第1の平均電力信号と第2の平均電力信号とを比較し、第1の平均電力信号と第2の平均電力信号とが閾値電圧分異なるとき(フォールト信号生成器1670を介して)フォールト信号を生成するように配される。
例えば、比較器1662は、瞬間的(例えば、より短期の)平均電力が、より長期の電力平均電力より、プログラムされた電圧閾値分大きいとき、高をトグルする(例えば、ロジック1に設定される)。また、例えば、比較器1664は、瞬間的(例えば、より短期の)平均電力が、より長期の電力平均電力より、プログラムされた電圧閾値分小さいとき、高をトグルする(例えば、ロジック1に設定される)。フォールト信号生成器1670は、比較器1662及び1664のいずれかが高にトグルされるときフォールト信号出力をアサートするように、及び比較器1662及び1664の両方が高にトグルされるときフォールト信号出力をデアサートするように配される。
別の実施形態において、電圧閾値は、閾値(例えば、閾値の一部)が固定され、比較器に「デザインイン」されるように、比較器内の(例えば、ヒステリシス)オフセットとして具現化され得る。従って、プログラマブル分圧器1654及び1658は、省かれ得るか、又は、電圧閾値に対してデザインインされたオフセットを有する比較器回路に結合され得る。
図17は二乗セルの概略図である。二乗セル1700は、米国特許番号7,791,400に説明されるような二乗セルである。二乗セル1700は、分圧器1710及びアンプ1720、「ヘッド」電流ミラー1730、及び「テール」電流ミラー1740を含む。
動作において、分圧器1710は、入力電圧(例えば、Vin1)を、アンプ1720の入力トランジスタMN1をバイアスするために適切な電圧にスケーリングするように配される。アンプ1720は、スケーリングされた入力電圧の二乗に従った大きさを有する電流を出力するように配される。例えば、トランジスタMN1は、二乗計算を実施し、MN1からノードN1へのいかなる電流注入もノードN1の電圧を上昇させ、そのため、N1における電圧上昇がノードN2においてトランジスタMN0によって増幅され、それが、(テール電流ミラー1740の)トランジスタMN2のゲート電圧を上昇させ、そのため、トランジスタMN2が、ノードN1に注入された電流をシンクさせるように配される。「テール」電流ミラー1740は、付加的なミラー化された出力トランジスタと共に配置され得、そのため、「二乗された」電流の複数の複製出力が提供される(例えば、ここで、各ミラー化された出力は、図16を参照して上述した平均化キャパシタC16a及びC16bの1つの充電及び放電を別個に制御するためである)。
種々の実施形態において、レゾルバセンサ140から受信した2より多くの変調信号が、本明細書の説明に従って、不均衡検出のため監視され得る。例えば、90度以外の位相角度オフセットを有する(例えば、レゾルバセンサ140から受信した)変調信号を分離するために種々の幾何学的(及び三角関数的)原理が用いられる。従って、N=2、3、4...であって、位相ラグが信号間で等しく(例えば、120°)及び/又は均一(例えば、60°)に分配される、任意のN個の多位相の例について、θの影響(例えば、正弦波エキサイタ基準刺激)は、二乗された合算演算に従って相殺され得る。
3相レゾルバの実施形態において、各々が隣接コイルから120度の位相オフセットを有する3つの電気位相に従って動作するように3相レゾルバが配置される。3相レゾルバ二次コイルは、エキサイタ基準信号に応答して電磁場を生成する。シャフトの長手軸に関して、隣接コイルから(例えば、120度)離れて、3つの固定子コイルが配される。レゾルバ出力信号の各々は、v1=V1×sin(θ)、v2=V2×sin(θ+120°)、及びv3=V3×sin(0+240°)に従って関連する。
従って、
Figure 0006959602
である。
式(14)に示されるように、第1、第2、及び第3のレゾルバ出力信号のサイン効果は、べき項から分離される。式(14)によって示されるエネルギーは、式(13)のべき項VRMSより50パーセント大きい。3相レゾルバの実施形態において、付加的な二乗セルがインスタンス化される(図面には示されない)。従って、V1、V2、及びV3の各々に対して3つの二乗セルが提供され、上述したように、2つのVc1及びVc2二乗セルが提供される。しかしながら、付加的な電力は、(通常)、より長期の第1の電力平均化回路及びより短期の第2の電力平均化回路の両方に印加され、そのため、Vc(t)項が異なる比で(例えば、異なる時間ウィンドウを用いて)積分される。比較に基づいてフォールト信号が生成されるので、均衡している状態では、付加的な電力が両方の電力平均化回路に等しく印加されるので、障害が検出されない。
第1、第2、及び第3のレゾルバ出力信号が(上述した120度ではなく)60度離れている実施形態において、組合わされた電力出力も、三角恒等式に起因して部分的に式(14)に従う。従って、エキサイタ信号サイン関数は、任意の適切な三角関数を用いて電力出力信号から分離され得る(分離された電力出力信号は、角度レゾルバの出力信号における不均衡を判定するために、アナログドメインにおいて用いられ得る)。
3相レゾルバの実施形態において、固定子コイルの各々が、(例えば、差動)レゾルバ出力信号を出力する。3つのレゾルバ出力信号の各々が、電圧の二乗を表す電流が生成されるように、第1の(より長期の)電力平均化回路に結合される。同様に、3つのレゾルバ出力信号の各々が、電圧の二乗を表す電流が生成されるように、第2の(より短期の)電力平均化回路に結合される(上述のように、電流ミラーが用いられ得、入力の同じセットから異なる出力が生成される)。比較器回路が、第1の平均電力信号と第2の平均電力信号とを比較するように配置され、第1の平均電力信号と第2の平均電力信号とが電圧閾値分異なるときフォールト信号を生成する。
特許請求の範囲内で、説明した実施形態における変更が可能であり、他の実施形態が可能である。

Claims (15)

  1. 検出回路であって、
    第1のセンサ入力と第1の平均出力とを有する第1の平均化回路であって、前記第1の平均出力に結合されて第1の静電容量を有する第1のキャパシタを含む、前記第1の平均化回路と
    前記第1のセンサ入力に結合される第2のセンサ入力と第2の平均出力とを有する第2の平均化回路であって、前記第2の平均出力に接続されて前記第1の静電容量と異なる第2の静電容量を有する第2のキャパシタを含む、前記第2の平均化回路と
    前記第1の平均出力に結合される第1の入力と、前記第2の平均出力に結合される第2の入力と、障害信号出力とを有する比較器回路であって
    前記第1の平均出力に結合される入力と、第1の閾値出力と、第2の閾値出力とを有する閾値回路と
    前記第閾値出力に結合される一方の入力と、前記第の平均出力に結合される他方の入力と第1の比較器出力有する第1の比較器と
    前記第閾値出力に結合される一方の入力と、前記第2の平均出力に結合される他方の入力と、第2の比較器出力とを有する第2の比較器
    前記第1の比較器出力に結合される一方の入力前記第2の比較器出力に結合される他方の入力と、前記障害信号出力とを有する論理ゲートと、
    を含む、前記比較器回路と、
    を含む検出回路。
  2. 請求項に記載の検出回路であって、
    前記閾値回路、前記第1の平均出力に結合される入力と、前記第1の閾値出力と、前記第2の閾値出力とを有するプログラム可能な電圧分圧器を含む検出回路。
  3. 請求項1に記載の検出回路であって、
    前記第1の平均化回路が、
    前記第1のセンサ入力の1つに結合される入力と、第1の2乗出力とを有する第1の2乗回路と、
    前記第1のセンサ入力の別の1つに結合される入力と、第2の2乗出力とを有する第2の2乗回路と、
    前記第1の2乗出力と前記第2の2乗出力とに結合される入力と、前記第1のキャパシタに結合される出力とを有する第1の加算回路と、
    を有し、
    前記第2の平均化回路が、
    前記第2のセンサ入力の1つに結合される入力と、第の2乗出力とを有する第3の2乗回路と、
    前記第2のセンサ入力の別の1つに結合される入力と、第4の2乗出力とを有する第4の2乗回路と、
    前記第3の2乗出力と前記第4の2乗出とに結合される入力と、前記第2のキャパシタに結合される出力とを有する第2の加算回路と、
    を含む、検出回路。
  4. 請求項に記載の検出回路であって、
    前記第1の平均化回路が、前記第1のキャパシタに結合される入力と、前記第1の加算回路の入力に結合され出力とを有する乗回路を更に含む、検出回路。
  5. 請求項に記載の検出回路であって、
    前記第2の平均化回路が、前記第2のキャパシタに結合される入力と、前記第加算回路の入力に結合され出力とを有する乗回路を更に含む、検出回路。
  6. 請求項に記載の検出回路であって、
    前記第1の平均化回路第2の平均化回路前記比較器回路アナログ回路である、検出回路。
  7. 検出回路であって、
    回転可能なシャフトに結合されるように適応され、第1及び第2のセンサ出力信号を提供するセンサ
    前記第1及び第2のセンサ出力に結合される第1のセンサ入力と、第1の平均出力とを有する第1平均化回路であって
    前記第1のセンサ入力に結合されてそれぞれ第1及び第2の2乗出力を有する第1及び第2の2乗回路と、
    前記第1及び第2の2乗出力に結合される入力と、第1の加算出力とを有する第1の加算回路と、
    第1の静電容量を有し、前記第1の加算出力と前記第1の平均出力とに結合される第1のキャパシタと、
    を含む、前記の平均化回路
    前記第1及び第2のセンサ出力に結合される第2のセンサ入力と、第2の平均出力とを有する第2の平均化回路であって
    前記第2のセンサ入力に結合されてそれぞれ第3及び第4の2乗出力を有する第回路と
    前記3及び第42乗出力に結合される入力と、第2の加算出力とを有する第2の加算回路
    前記第1の静電容量と異なる第2の静電容量を有し、前記第2の加算出力と前記第2の平均出力とに結合される第2のキャパシタと
    を含む、前記第2の平均化回路と
    前記第1の加算出力と前記第2の加算出力と閾値入力に結合される入力と、障害出力とを有する比較器回路
    を含む、検出回路
  8. 請求項7に記載の検出回路であって、
    前記比較器回路が、
    前記第1の加算出力に結合される入力と、第1の閾値出力と、第2の閾値出力とを有する閾値回路と、
    前記第1の閾値出力に結合される一方の入力と、前記第2の平均出力に結合される他方の入力と、第1の比較器出力とを有する第1の比較器と、
    前記第2の閾値出力に結合される一方の入力と、前記第2の平均出力に結合される他方の入力と、第2の比較器出力とを有する第2の比較器と、
    前記第1の比較器出力に結合される一方の入力と、前記第2の比較器出力に結合される他方の入力と、前記障害出力に結合される出力とを有する論理ゲートと、
    を含む、検出回路。
  9. 請求項8に記載の検出回路であって、
    前記閾値回路が、
    前記第1の加算出力に結合される第1のセットの抵抗器とスイッチであって、前記第1の閾値出力を有する、前記第1のセットの抵抗器とスイッチと、
    前記第2の加算出力に結合される第2のセットの抵抗器とスイッチであって、前記第2の閾値出力を有する、前記第2のセットの抵抗器とスイッチと、
    を含む、検出回路。
  10. 請求項9に記載の検出回路であって、
    前記第1及び第2のセットのスイッチに結合されるプロセッサを更に含む、検出回路。
  11. 請求項に記載の検出回路であって、
    前記第1の平均化回路前記第2の平均化回路前記比較器回路アナログ回路である、検出回路。
  12. プロセスであって、
    第1の静電容量を有する第1のキャパシタを用いて第1の時間ウィンドウに亘って第1及び第2のセンサ入力を平均化することによって第1の回路において第1の平均信号を生成すること
    前記第1の静電容量と異なる第2の静電容量を有する第2のキャパシタを用いて前記第1の時間ウィンドウより長い第2の時間ウィンドウに亘って前記第1及び第2のセンサ入力を平均化することによって第2の回路において第2の平均信号を生成すること
    前記第の平均信号を第1の閾値電圧と比較して前記第の平均信号を第2の閾値電圧と比較すること
    前記第の平均信号が、前記第1の閾値電圧よりも大きく、前記第2の閾値電圧よりも小さいときに、障害信号を生成すること
    を含む、プロセス
  13. 請求項12に記載のプロセスであって、
    抵抗器とスイッチとを用いて前記第1の閾値電圧を設定することと、
    抵抗器とスイッチとを用いて前記第2の閾値電圧を設定することと、
    を更に含む、プロセス。
  14. 請求項13に記載のプロセスであって、
    プロセッサからの制御に応答して前記スイッチを開閉することを更に含む、プロセス。
  15. 請求項12に記載のプロセスであって、
    前記第1の平均信号を生成することと、前記第2の平均信号を生成することと、前記比較することと、前記障害信号を生成することとが、アナログ回路のみを用いて行われる、プロセス。
JP2019513900A 2016-09-12 2017-09-12 角度レゾルバ不均衡検出 Active JP6959602B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/263,114 US10884037B2 (en) 2016-09-12 2016-09-12 Angular resolver imbalance detection
US15/263,114 2016-09-12
PCT/US2017/051184 WO2018049403A1 (en) 2016-09-12 2017-09-12 Angular resolver imbalance detection

Publications (3)

Publication Number Publication Date
JP2019533143A JP2019533143A (ja) 2019-11-14
JP2019533143A5 JP2019533143A5 (ja) 2020-10-22
JP6959602B2 true JP6959602B2 (ja) 2021-11-02

Family

ID=61560244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513900A Active JP6959602B2 (ja) 2016-09-12 2017-09-12 角度レゾルバ不均衡検出

Country Status (6)

Country Link
US (1) US10884037B2 (ja)
EP (1) EP3509803B1 (ja)
JP (1) JP6959602B2 (ja)
KR (1) KR102510876B1 (ja)
CN (1) CN109789554B (ja)
WO (1) WO2018049403A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199177B (zh) * 2017-02-02 2021-11-16 索尤若驱动有限及两合公司 用于监控位置变化传感器的轨迹信号的方法和装置
KR102299826B1 (ko) * 2019-07-02 2021-09-08 현대모비스 주식회사 레졸버 센서의 유효피크를 취득하기 위한 방법 및 이를 위한 장치
KR102142628B1 (ko) * 2019-07-30 2020-09-14 현대오트론 주식회사 레졸버 센서의 구동신호를 구현하기 위한 방법 및 이를 위한 장치
US11611323B2 (en) 2019-10-02 2023-03-21 Texas Instruments Incorporated Automatic gain control circuit
KR102338269B1 (ko) * 2019-12-16 2021-12-13 주식회사 현대케피코 레졸버 여자 신호 출력의 딜레이를 보상하기 위한 딜레이 계산 장치 및 딜레이 보상 장치
US11313702B2 (en) * 2020-07-30 2022-04-26 Microchip Technology Inc. System and method for monitoring analog front-end (AFE) circuitry of an inductive position sensor
TWI749837B (zh) * 2020-10-29 2021-12-11 友達光電股份有限公司 數位訊號切割方法
KR102415786B1 (ko) * 2020-12-09 2022-07-04 현대모비스 주식회사 신호 처리 장치 및 방법, 레졸버 반도체
EP4063795A1 (de) * 2021-03-24 2022-09-28 Siemens Aktiengesellschaft Sensorsystem zur messung der variabilität der elektrischen spannung einer energieversorgung
DE112021007398T5 (de) 2021-03-25 2024-01-04 Microchip Technology Incorporated Erfassungsspule zur induktiven Drehpositionsmessung und zugehörige Vorrichtungen, Systeme und Verfahren
WO2023151783A1 (en) * 2022-02-09 2023-08-17 Abb Schweiz Ag Monitoring a resolver
WO2023151784A1 (en) * 2022-02-09 2023-08-17 Abb Schweiz Ag Operating a resolver
CN115575862B (zh) * 2022-09-29 2023-06-09 北京航空航天大学 一种电动汽车旋转变压器系统的电磁敏感性测试装置及方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028504A (en) * 1958-04-15 1962-04-03 Richard N Close Feedback amplifier type detector circuit
US4355305A (en) 1980-04-24 1982-10-19 The Bendix Corporation Resolver processor with error detection
US4740778A (en) * 1987-06-15 1988-04-26 Caterpillar Industrial Inc. Apparatus for detecting a failed resolver
US5064274A (en) * 1987-08-26 1991-11-12 Siegel-Robert, Inc. Automatic automobile rear view mirror assembly
RU2044274C1 (ru) 1992-05-27 1995-09-20 Производственное объединение "Корпус" Стенд для контроля прецизионного гироскопического датчика угловой скорости
JP3331753B2 (ja) * 1994-07-12 2002-10-07 アイシン・エィ・ダブリュ株式会社 ロータ位置検出手段の異常検出装置及び異常検出方法並びにモータ制御装置
US6205009B1 (en) 1999-07-22 2001-03-20 General Electric Company Method and apparatus for detecting faults in a resolver
US7138794B1 (en) * 2000-03-10 2006-11-21 General Electric Company Detection of faults in linear and rotary voltage transducers
US7382295B2 (en) * 2003-11-04 2008-06-03 Nsk Ltd. Control unit for electric power steering apparatus
JP4543781B2 (ja) * 2004-06-25 2010-09-15 トヨタ自動車株式会社 電源装置
JP2006138778A (ja) 2004-11-15 2006-06-01 Nsk Ltd 角度検出装置
JP5011808B2 (ja) * 2006-04-27 2012-08-29 株式会社ジェイテクト 回転位置測定器
JP5011824B2 (ja) * 2006-05-31 2012-08-29 株式会社ジェイテクト 異常判定装置
US7855562B2 (en) * 2007-11-19 2010-12-21 Freescale Semiconductor, Inc. Dual sensor system having fault detection capability
JP5045407B2 (ja) * 2007-12-07 2012-10-10 株式会社ジェイテクト レゾルバの異常検出装置および電気式動力舵取装置
JP5895442B2 (ja) * 2010-12-01 2016-03-30 株式会社デンソー 角度検出装置の異常判断装置
JP5803428B2 (ja) * 2011-08-25 2015-11-04 株式会社ジェイテクト 回転センサ、及び回転角検出装置
JP5961566B2 (ja) * 2012-03-13 2016-08-02 Kyb株式会社 トルクセンサの異常診断装置及び異常診断方法
JP5802588B2 (ja) 2012-03-23 2015-10-28 株式会社東芝 角度検出装置およびモータ駆動制御装置
JP5880967B2 (ja) * 2012-09-28 2016-03-09 株式会社デンソー 交流電動機の制御装置
JP5556931B1 (ja) * 2013-05-15 2014-07-23 日本精工株式会社 角度検出装置、モータ及び搬送装置
CN103256946B (zh) * 2013-05-23 2015-04-22 合肥工业大学 可故障在线检测和容错控制的旋转变压器数字转换器
CN103253304B (zh) * 2013-06-04 2016-01-20 安徽安凯汽车股份有限公司 一种电动汽车的旋转变压器式转向角度传感器的检测方法
KR101500143B1 (ko) * 2013-09-16 2015-03-18 현대자동차주식회사 레졸버 고장 검출 인터페이스 회로 및 이를 이용한 고장 검출 방법
DE102014211235A1 (de) 2014-06-12 2015-12-31 Robert Bosch Gmbh Vorrichtung zum Betreiben eines Resolvers, Resolvereinrichtung und Verfahren zum Betreiben einer Resolvereinrichtung
KR101619593B1 (ko) * 2014-07-08 2016-05-10 현대자동차주식회사 레졸버 고장판단 방법
KR102052871B1 (ko) * 2014-10-20 2019-12-06 현대자동차주식회사 레졸버 출력신호 간 단락고장 진단 방법 및 장치

Also Published As

Publication number Publication date
JP2019533143A (ja) 2019-11-14
EP3509803B1 (en) 2023-06-28
KR102510876B1 (ko) 2023-03-17
KR20190084940A (ko) 2019-07-17
CN109789554B (zh) 2023-03-28
US10884037B2 (en) 2021-01-05
WO2018049403A1 (en) 2018-03-15
EP3509803A1 (en) 2019-07-17
US20180073895A1 (en) 2018-03-15
CN109789554A (zh) 2019-05-21
EP3509803A4 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6959602B2 (ja) 角度レゾルバ不均衡検出
KR101500143B1 (ko) 레졸버 고장 검출 인터페이스 회로 및 이를 이용한 고장 검출 방법
KR20160066752A (ko) 레졸버 고장 진단 방법
JP5423762B2 (ja) 信号検出装置の絶縁不良診断装置
US10274510B2 (en) Cancellation of noise due to capacitance mismatch in MEMS sensors
CN102422127A (zh) 诊断用于确定多相旋转电机的转子的角位置的传感器的功能故障的方法和设备
US20070251332A1 (en) Rotational position measuring device
CN110943670A (zh) 一种电机转子位置获取方法及系统
EP2674725B1 (en) Rotation angle detecting device
US8274414B2 (en) Signal amplitude adjustment to improve resolver-to-digital converter performance
KR101338707B1 (ko) 여자 신호 발생 장치 및 레졸버 검출 장치
KR101012740B1 (ko) 레졸버 디지털 변환장치 및 이를 이용한 위치 측정 장치
US11566919B2 (en) Resolver excitation using threshold band of voltages
Moon et al. Classification and compensation of amplitude imbalance and imperfect quadrature in resolver signals
KR20150115415A (ko) 전동기의 고장진단 방법
US11881806B2 (en) Resolver converter and motor control device
JPH09222433A (ja) 直流ブラシ付きモータの回転数検出装置
CN110031651B (zh) 一种判断转子转动方向的装置
Emadaleslami et al. CNN-Based Location Detection of Static Eccentricity in 5-X Resolver
JP6638494B2 (ja) 短絡検出回路
Deepak et al. A new approach for synchro shaft position measurement using pulse width modulation
JP2019129663A (ja) 推定装置および推定方法
TWI485398B (zh) 阻抗檢測電路及阻抗頻譜量測系統
CN117013991A (zh) 一种用于滤除旋变正余弦信号高频抖动分量的方法及系统
Deepak et al. A linear approach for synchro-to-DC converter using pulse width modulation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R150 Certificate of patent or registration of utility model

Ref document number: 6959602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150