JP5803428B2 - 回転センサ、及び回転角検出装置 - Google Patents

回転センサ、及び回転角検出装置 Download PDF

Info

Publication number
JP5803428B2
JP5803428B2 JP2011183918A JP2011183918A JP5803428B2 JP 5803428 B2 JP5803428 B2 JP 5803428B2 JP 2011183918 A JP2011183918 A JP 2011183918A JP 2011183918 A JP2011183918 A JP 2011183918A JP 5803428 B2 JP5803428 B2 JP 5803428B2
Authority
JP
Japan
Prior art keywords
rotor
angle
resolver
magnetic field
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011183918A
Other languages
English (en)
Other versions
JP2013044678A (ja
Inventor
浩 吉瀬
浩 吉瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011183918A priority Critical patent/JP5803428B2/ja
Priority to US13/328,424 priority patent/US8754638B2/en
Priority to EP11195491.3A priority patent/EP2562516B1/en
Priority to CN201110444999.5A priority patent/CN102954755B/zh
Publication of JP2013044678A publication Critical patent/JP2013044678A/ja
Application granted granted Critical
Publication of JP5803428B2 publication Critical patent/JP5803428B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24461Failure detection by redundancy or plausibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core

Description

本発明は、ロータの回転角に応じた3相の信号を出力する回転センサ、及び同回転センサを用いた回転角検出装置に関する。
従来、車両のパワーステアリング装置では、ステアリングシャフトや電動モータに回転角検出装置が設けられている。図12に、ステアリングシャフトなどの回転軸の回転角を検出する回転角検出装置の一例を示す。
図12に示すように、この回転角検出装置は、回転軸1の回転角に応じた3相の電圧信号Va〜Vcを出力する回転センサとしてのレゾルバ2と、レゾルバ2の出力信号Va〜Vcに基づき回転軸1の回転角を検出する制御部3とを備えている。なおここでは、レゾルバ2の軸倍角が「1倍」に設定されている場合について例示している。
レゾルバ2は、回転軸1と一体となって回転する磁性体からなるロータ20と、励磁コイル22及び第1〜第3のレゾルバコイル23〜25を有してロータ20と所定の間隙を隔てて配置されるステータ21とにより構成されている。第1〜第3のレゾルバコイル23〜25は、ロータ20の回転中心Oを中心としてその周方向(図中の矢印R1で示す方向)に電気角の位相で120°の間隔を隔てて配置されている。レゾルバコイル23〜25は、それぞれの一端同士が電気的に接続されるとともに、それぞれの他端が信号線23a〜25aを介して出力端子Ta〜Tcに電気的にそれぞれ接続されている。また、励磁コイル22は、回転角検出装置に設けられた発振回路4からの交流電圧の供給に基づき交番磁界を生成する。そして、このレゾルバ2では、励磁コイル22にて生成される交番磁界がロータ20を介して第1〜第3のレゾルバコイル23〜25に付与されることで、電磁誘導作用により第1〜第3のレゾルバコイル23〜25にロータ20の回転角(電気角)θeに対して振幅が正弦波状に変化する以下の(a1)〜(a3)に示す電圧が誘起される。なおここでは、発振回路4から励磁コイル22に交流電圧Vr(=E×sin(ωt))が印加されているとしている(但し、「E」は振幅、「ω」は角周波数、「t」は時刻)。また、「K」は変圧比を示す。
(a1)第1のレゾルバコイル23には、電圧Va(=K×E×sin(θe)×sin(ωt))が誘起される。
(a2)第2のレゾルバコイル24には、電圧Vb(=K×E×sin(θe+120°)×sin(ωt))が誘起される。
(a3)第3のレゾルバコイル25には、電圧Vc(=K×E×sin(θe+240°)×sin(ωt))が誘起される。
そして、これら第1〜第3のレゾルバコイル23〜25に誘起される電圧Va〜Vcがレゾルバ2の出力端子Ta〜Tcからそれぞれ出力されて制御部3に取り込まれる。
制御部3は、レゾルバ2の出力信号Va〜Vcからそれらの振幅成分を抽出する信号処理を実行する。これにより、制御部3は、出力信号Vaからその振幅値Sa(=K×E×sin(θe))を取得する。また、出力信号Vbからその振幅値Sb(=K×E×sin(θe+120°))を取得する。さらに、出力信号Vcからその振幅値Sc(=K×E×sin(θe+240°))を取得する。図13は、出力信号振幅値Sa〜Scとロータ20の機械角θとの関係を、それぞれ縦軸及び横軸にとって示したグラフである。なお、図13では、レゾルバ2の軸倍角が「4X」、励磁コイル22に印加される交流電圧Vrのピーク間の電位差Vpp(=2×E)が「4[V]」、変圧比Kが「0.2」に設定されている場合について例示している。そして、制御部3は、図13に例示するように変化する出力信号振幅値Sa〜Scから以下に示す式(1)〜(3)を用いてロータ20の電気角θeを3通りの方法で演算する。ここでは、式(1)〜(3)のそれぞれの式から算出される電気角をθe1〜θe3としている。なお、式(1)〜式(3)は、出力信号振幅値Sa〜Scを正弦値及び余弦値の関係にそれぞれ変換し、それらの逆正接値からロータ20の電気角を演算する式となっている。
θe1=tan−1((√3×Sa)/(−2×Sb−Sa))・・・(1)
θe2=tan−1((√3×Sb)/(−2×Sc−Sb))−120°・・・(2)
θe3=tan−1((√3×Sc)/(−2×Sa−Sc))−240°・・・(3)
なお、図14は、式(1)〜式(3)により演算されるロータ20の電気角θe1〜θe3とロータ20の機械角θとの関係を、それぞれ縦軸及び横軸にとって示したグラフである。正常時、電気角θe1〜θe3は全て同じ値で推移する。制御部3は、このようにしてロータ20の電気角θe1〜θe3、換言すれば回転軸1の電気角を検出する。
ところで、こうした回転角検出装置では、第1〜第3のレゾルバコイル23〜25の配線系に断線や天絡、地絡などの異常が生じると、レゾルバ2の出力信号Va〜Vcが異常値を示すため、ロータ20の電気角θe1〜θe3を適切に検出することができなくなるおそれがある。このため、第1〜第3のレゾルバコイル23〜25の配線系に断線などの異常が生じた場合には、これを的確に検出することが要求される。
そこで、従来の回転角検出装置では、例えば特許文献1に見られるように、上記出力信号振幅値Sa〜Scの二乗和に基づいて異常を検出するようにしている。具体的には、出力信号振幅値Sa〜Scの二乗和Sは以下の式(4)に示すように求められる。
S=Va+Vb+Vc
=(K×Vpp/2)×((sin(θe))+(sin(θe+120°))+(sin(θe+240°)))・・・(4)
ここで、sin(θe)、sin(θe+120°)、及びsin(θe+240°)の間には以下の式(5)の関係が成り立つ。
(sin(θe))+(sin(θe+120°))+(sin(θe+240°))=1.5・・・(5)
したがって、二乗和Sは以下の式(6)に示す固定値となる。
S=1.5×(K×Vpp/2)・・・(6)
このため、例えば励磁コイル22に印加される交流電圧Vrのピーク間の電位差Vppが「4[V]」、変圧比Kが「0.2」にそれぞれ設定されている場合、二乗和Sは「0.24」となる。
なお、式(6)は理想式であり、実際には検出誤差や演算誤差などに起因して二乗和S値にばらつきが生じる。このため、制御部3は、二乗和Sに対して、理論値「0.24」よりも大きい上限閾値と、理論値「0.24」よりも小さい下限閾値とを設定している。そして、二乗和Sが上限閾値以上になった場合、あるいは下限閾値以下になった場合には、レゾルバコイルの配線系に断線などの異常が発生したと判定する。これにより、レゾルバ2の出力信号Va〜Vcの二乗和Sと閾値とを比較するだけで断線などの異常を検出することができるため、異常検出が容易となる。
特開2006−138778号公報
ところで、レゾルバコイル23〜25の配線系に発生する異常としては、上述した断線や地絡などの他、例えばレゾルバコイル23〜25に対応する信号線23a〜25aの短絡がある。そして、信号線23a〜25aが短絡した場合、これを出力信号振幅値Sa〜Scの二乗和Sに基づいて検出することは困難である。以下、その詳細を説明する。はじめに、図12、図15、及び図16を参照して、信号線23a〜25aが短絡したときに制御部3を通じて検出されるロータ20の電気角について説明する。
図12に二点差線で示すように、例えば第1のレゾルバコイル23に対応する信号線23aと第2のレゾルバコイル24に対応する信号線24aとが短絡したとする。この場合、レゾルバ2の出力端子Ta,Tbからそれぞれ出力される信号Va,Vbは、第1及び第2のレゾルバコイル23,24にそれぞれ誘起される電圧の平均値となる。これにより、制御部3により検出される出力信号振幅値Sa,Sbの波形は、先の図13に例示した形から図15に示す形に変化する。このとき、制御部3により上記式(1)〜式(3)を用いて演算されるロータ20の電気角θe1〜θe3は図16に示すようになる。すなわち、演算電気角θe1〜θe3は、「30°」及び「210°」のいずれかの値となって、実際のロータ20の電気角と大きく異なる値となる。図17(a)は、先の図14に例示した正常時の演算電気角θe1から図16に例示した信号線短絡異常時の演算電気角θe1を減算した電気角誤差Δθdと、ロータの機械角θとの関係を、それぞれ縦軸及び横軸にとって示したグラフである。図17(a)に示すように、信号線の短絡異常時に演算されるロータ20の電気角と実際のロータ20の電気角との間には、「−90°」から「90°」の範囲といった大きな誤差が生じることとなる。
一方、出力信号振幅値Sa〜Scが先の図15に示すように推移する場合、それらの二乗和Sは、図17(b)に示すように、ロータ20の機械角θに対して正弦波状に推移する。ここで、二乗和Sの理論値「0.24」に対して、その下限閾値Sminが「0.1176(=0.24×0.7)」に、また上限閾値が「0.4056(=0.24×1.3)」に設定されているとする。なお、図17(b)では、便宜上、上限閾値の図示を割愛する。この場合、制御部3は、図17(c)に示すように、二乗和Sが下限閾値Smin以下の値であるときに異常を検出することができるのに対し、二乗和Sが下限閾値Sminよりも大きい値であるときには異常を検出することができない。そして、制御部3は、二乗和Sが下限閾値Smin以下となるロータ20の回転角範囲A1〜A9においてロータ20の電気角θe1〜θe3を演算すると、これを正常な電気角として検出してしまう。したがって、制御部3により誤検出されるロータ20の電気角と実際のロータ20の電気角との誤差は、図17(d)に示すようになる。そして、例えばパワーステアリング装置において、こうした誤差の大きい電気角に基づいて電動モータの駆動が制御されると、電動モータの挙動が大きく変化するなどの不都合が生じるおそれがある。
なお、このような課題は、レゾルバに限らず、ロータの周方向に離間して配置される3つの磁界変化検出部からロータの回転角に応じた3相の信号が出力される回転センサにおいても共通する課題である。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、信号線の短絡異常をより的確に検出することのできる回転センサ、及び回転角検出装置を提供することにある。
上記課題を解決するために、請求項1に記載の発明は、ロータの周方向に離間して配置される3つの磁界変化検出部と、これらの磁界変化検出部に付与する磁界を生成する磁界生成部とを有して、前記ロータの回転に伴い前記磁界生成部から前記磁界変化検出部に付与される磁界が変化することで前記ロータの回転角に応じて変化する3相の信号を出力する回転センサにおいて、前記3つの磁界変化検出部のうちの互いに隣り合うもの同士が前記ロータの回転中心を中心として同ロータの周方向にずれている角度をそれぞれ第1〜第3の分割角度とするとき、前記3つの磁界変化検出部は、前記第1〜第3の分割角度が全て異なるように配置されてなることを要旨とする。
この発明にあたって、発明者は種々の実験等を通じて次のことを新たに見いだした。すなわち、上記構成によれば、3つの磁界変化検出部に対応する3つの信号線のうちのいずれか2つの信号線が短絡したときに、回転センサの3相の出力信号から演算可能な3つのロータ電気角が互いに異なる値を示しやすくなる。このため、例えば第1〜第3の演算電気角のうちのいずれか2つの差分値を求めるなどすれば、求められた差分値に基づいて信号線の短絡異常をより的確に検出することが可能となる。
そしてこの場合、前記3つの磁界変化検出部は、それらのうちの第1の磁界変化検出部の位置と第2の磁界変化検出部の位置とが前記ロータの電気角の位相でその周方向にずれている角度をθa、前記第1の磁界変化検出部と第3の磁界変化検出部とが前記ロータの電気角の位相でその周方向にずれている角度をθbとするとき、次式
θb=θa×(1/4)
あるいは、次式
θb=θa×(1/4)+180°
あるいは、次式
θb=θa×(3/4)
あるいは、次式
θb=θa×(3/4)+180°を満たすように配置されているといった構成を採用することが有効であり、これにより、信号線の短絡異常をさらに的確に検出することが可能となる。
請求項に記載の発明は、請求項に記載の回転センサにおいて、前記角度θaが120°に設定されるとともに、前記角度θbが270°に設定されていることを要旨とする。
同構成によれば、3つの磁界変化検出部をロータの周方向に分散して配置することができるため、例えば磁気ノイズなどの外乱が磁界変化検出部に及ぼす影響を軽減することができる。したがって、外乱に対する高い耐性を確保することが可能となる。
請求項に記載の発明は、回転センサから出力される3相の信号に基づいてロータの電気角を検出する回転角検出装置において、前記回転センサとして請求項1又は請求項2に記載の回転センサを用いるとともに、前記回転センサから出力される3相の信号から演算可能な3つのロータ電気角を第1〜第3の演算電気角とするとき、これら第1〜第3の演算電気角のうちのいずれか2つの差分値に基づき前記回転センサの異常を検出する制御手段とを備えることを要旨とする。
同構成によれば、差分値を演算するだけで、回転センサの信号線の短絡異常を検出することができるため、制御手段の演算負担を軽減することができるようになる。
本発明にかかる回転センサ、及び回転角検出装置によれば、信号線の短絡異常をより的確に検出することができるようになる。
本発明にかかる回転角検出装置の一実施形態についてその構成を模式的に示すブロック図。 同実施形態の回転角検出装置により演算されるレゾルバ出力信号振幅値とロータの機械角との関係を示すグラフ。 同実施形態の回転角検出装置により演算される3つのロータ電気角とロータの機械角との関係を示すグラフ。 レゾルバの信号線の短絡時に同実施形態の回転角検出装置により演算されるレゾルバ出力信号振幅値とロータの機械角との関係を示すグラフ。 レゾルバの信号線の短絡時に同実施形態の回転角検出装置により演算される3つのロータ電気角とロータの機械角との関係を示すグラフ。 (a)〜(d)は、同実施形態の回転角検出装置の動作例を示すタイミングチャート。 (a)及び(b)は、同実施形態の回転角検出装置についてレゾルバの信号線の短絡異常を検出することのできないレゾルバコイルの配置例を模式的に示す図。 同実施形態の回転角検出装置について誤検出されるロータ電気角及び実際のロータ電気角の誤差と、ロータの機械角との関係を示すグラフ。 (a)及び(b)は、同実施形態の回転角検出装置についてレゾルバの信号線の短絡異常の検出精度を最も高めることのできるレゾルバコイルの配置例を模式的に示す図。 本発明にかかる回転センサを利用した回転角検出装置についてその概略構成を模式的に示すブロック図。 同回転センサから出力される3相の信号とロータの機械角との関係を示すグラフ。 従来の回転角検出装置についてその構成を模式的に示すブロック図。 同従来の回転角検出装置により演算されるレゾルバ出力信号振幅値とロータの機械角との関係を示すグラフ。 同従来の回転角検出装置により演算される3つのロータ電気角とロータの機械角との関係を示すグラフ。 レゾルバの信号線の短絡時に同従来の回転角検出装置により演算されるレゾルバ出力信号振幅値とロータの機械角との関係を示すグラフ。 レゾルバの信号線の短絡時に同従来の回転角検出装置により演算される3つのロータ電気角とロータの機械角との関係を示すグラフ。 (a)〜(d)は、同従来の回転角検出装置の動作例を示すタイミングチャート。
以下、本発明にかかる回転角検出装置の一実施形態について図1〜図9を参照して説明する。なお、本実施形態にかかる回転角検出装置は、例えば車両のステアリングシャフトなどの回転軸の回転角を検出するものである。はじめに、図1を参照して、本実施形態の回転角検出装置の概略構成について説明する。なお、図1に示す回転角検出装置も、回転軸1の回転角を検出するための構成は、先の図12に例示した回転角検出装置と基本的に同様である。すなわち、この回転角検出装置も、回転軸1の回転角に応じてレゾルバ2から出力される3相の出力信号Va〜Vcに基づいてロータ20の回転角を検出する装置であり、その動作も基本的には先の図12を参照して説明した通りである。なおここでも、レゾルバ2の軸倍角が「1X」に設定されている場合について例示している。また、図1において先の図12に示した要素と同一の機能を有する要素には各々同一の符号を付しており、それらの要素についての重複する説明は割愛する。
図1に示すように、レゾルバ2のステータ21には、第1のレゾルバコイル23の位置を基準として、ロータ20の回転中心Oを中心としてその周方向(図中の矢印R1で示す方向)に電気角の位相で「90°」だけずれた位置に第2のレゾルバコイル24が配置されている。また、第1のレゾルバコイル23の位置を基準として、ロータ20の回転中心Oを中心としてその周方向R1に電気角の位相で「210°」だけずれた位置に第3のレゾルバコイル25が配置されている。これにより、第1〜第3のレゾルバコイル23〜25のうちの互いに隣り合うもの同士の位置が電気角の位相でロータ20の周方向R1にずれている角度をそれぞれ第1〜第3の分割角度θ1〜θ3とするとき、第1の分割角度θ1が「90°」、第2の分割角度θ2が「120°」、第3の分割角度θ3が「150°」となっている。このように、第1〜第3のレゾルバコイル23〜25は、第1〜第3の分割角度θ1〜θ3が全て異なるように配置されている。
そして、レゾルバ2では、励磁コイル22において生成される交番磁束がロータ20を介して磁界変化検出部としての第1〜第3のレゾルバコイル23〜25に付与されることで、電磁誘導作用により第1〜第3のレゾルバコイル23〜25にロータ20の電気角θeに応じた以下の(b1)〜(b3)に示す電圧が誘起される。なおここでは、発振回路4から励磁コイル22に交流電圧Vr(=E×sin(ωt))が印加されているとしている(但し、「E」は振幅、「ω」は角周波数、「t」は時刻)。また、「K」は、励磁コイル22と各レゾルバコイル22〜25との間の変圧比を示す。
(b1)第1のレゾルバコイル23には、電圧Va(=K×E×sin(θe)×sin(ωt))が誘起される。
(b2)第2のレゾルバコイル24には、電圧Vb(=K×E×sin(θe+90°)×sin(ωt))が誘起される。
(b3)第3のレゾルバコイル25には、電圧Vc(=K×E×sin(θe+210°)×sin(ωt))が誘起される。
一方、制御部(制御手段)3は、レゾルバ2の出力信号Va〜Vcからそれらの振幅成分を抽出する信号処理を行う。これにより、制御部3は、出力信号Vaからその振幅値Sa(=K×E×sin(θe))を取得する。また、出力信号Vbからその振幅値Sb(=K×E×sin(θe+90°))を取得する。さらに、出力信号Vcからその振幅値Sc(=K×E×sin(θe+210°))を取得する。図2は、出力信号振幅値Sa〜Scとロータ20の機械角θとの関係を、それぞれ縦軸及び横軸にとって示したグラフである。なお、図2では、レゾルバ2の軸倍角が「4X」、励磁コイル22に印加される交流電圧Vrのピーク間の電位差Vpp(=2×E)が「4[V]」、変圧比が「0.2」に設定されている場合について例示している。そして、制御部3は、図2に例示するように推移する出力信号振幅値Sa〜Scから以下に示す式(7)〜(9)を用いてロータ20の電気角θeを3通りの方法で演算する。ここでは、式(7)〜(9)のそれぞれの式から算出される電気角をθe1〜θe3としている。なお、式(7)〜式(9)は、出力信号振幅値Sa〜Scを正弦値及び余弦値の関係にそれぞれ変換し、それらの逆正接値からロータ20の電気角を求める式となっている。
θe1=tan−1(Sa/Sb)・・・(7)
θe2=tan−1((Sb/2+Sc)/(−Sb×√3/2)−90°・・・(8)
θe3=tan−1((−Sa/2)/(Sc+Sa×√3/2)−210°・・・(9)
図3は、式(7)〜式(9)により演算されるロータ20の電気角θe1〜θe3とロータ20の機械角θとの関係を、それぞれ縦軸及び横軸にとって示したグラフである。このように、本実施形態の回転角検出装置でも、先の図12に例示した回転角検出装置と同様に、正常時の演算電気角θe1〜θe3は全て同じ値で推移する。
一方、第1〜第3のレゾルバコイル23〜25を図1に示すように配置することにより、それらに対応する信号線23a〜25aのうちのいずれか2つの信号線が短絡したとき、演算電気角θe1〜θe3が互いに異なる値を示しやすくなることが発明者により確認されている。以下、発明者により確認された内容を図4及び図5を参照して説明する。
図1に二点鎖線で示すように、例えば第1のレゾルバコイル23に対応する信号線23aと第2のレゾルバコイル24に対応する信号線24aとが短絡したとする。この場合、出力信号振幅値Sa,Sbの波形は先の図2に例示した形から図4に示す形へとそれぞれ変化する。このとき、制御部3により上記式(7)〜式(9)に基づき演算される電気角θe1〜θe3は、ロータ20の機械角θに対して図5に示すように推移する。なお、図中の実線は演算電気角θe1、一点鎖線は演算電気角θe2、二点鎖線は演算電気角θe3、破線は演算電気角θe1〜θe3の平均値θeaを示す。同図5と先の図3を比較して明らかなように、信号線23aと信号線24aとが短絡すると、演算電気角θe1〜θe3が互いに異なる値を示すようになる。
そこで、本実施形態では、演算電気角θe1〜θe3のうちのいずれか2つの差分値に基づいてレゾルバ2の信号線の短絡異常を検出することとしている。具体的には、制御部3は、以下の(c1)〜(c3)に示す電気角差分値Δθe1〜Δθe3の絶対値|Δθe1|〜|Δθe3|をそれぞれ演算する。
(c1)演算電気角θe1,θe2の差分値Δθe1(=θe1−θe2)の絶対値|Δθe1|。
(c2)演算電気角θe2,θe3の差分値Δθe2(=θe2−θe3)の絶対値|Δθe2|。
(c3)演算電気角θe3,θe1の差分値Δθe3(=θe3−θe1)の絶対値|Δθe3|。
また、制御部3は、演算された絶対値|Δθe1|〜|Δθe3|のいずれかが予め定められた異常判定閾値θth(>0)よりも大きい場合には、レゾルバ2の信号線の短絡異常が発生していると判定する。
次に、図6を参照して、制御部3によりレゾルバ2の信号線の短絡異常が検出される様子について説明する。なおここでは、異常判定閾値θthが「5°」に設定されている場合について例示している。
例えば、レゾルバ2の信号線の短絡異常により演算電気角θe1〜θe3が先の図5に示すように推移するようになったとする。このとき、制御部3により演算される電気角差分値Δθe1〜Δθe3は、ロータ20の機械角θに対して図6(a)に示すように推移する。なお、図中の実線は電気角差分値Δθe1、一点鎖線は電気角差分値Δθe2、二点鎖線は電気角差分値Δθe3を示す。制御部3は、電気角差分値Δθe1〜Δθe3のいずれかが「5°」よりも大きいとき、あるいは電気角差分値Δθe1〜Δθe3のいずれかが「−5°」よりも小さいときにレゾルバ2の信号線の短絡異常を検出する。これにより、図6(b)に示すように、ロータ20の回転角θが角度範囲B1〜B9であるときにレゾルバ2の信号線の短絡異常が検出されるため、制御部3による異常検出がより的確に行われるようになる。
また、図6(c)は、先の図3に示した正常時の演算電気角θe1から先の図5に例示した異常時の演算電気角θe1〜θe3の平均値θeaを減算することにより求められる電気角誤差Δθdの推移を示したものである。ここで、制御部3は、ロータ20の回転角が角度範囲B1〜B9であるときにはレゾルバ2の信号線の短絡異常を検出することができるため、実際に誤差を含む電気角が誤検出されるのは、ロータ20の回転角θが、角度範囲B1〜B9以外であるとき、すなわち図中の角度範囲C1〜C8であるときとなる。したがって、制御部3によって誤検出されるロータ20の電気角と実際のロータ20の電気角との誤差は、図6(d)に示すようになる。この図6(d)と先の図17(d)とを比較して明らかなように、本実施形態にかかる回転角検出装置によれば、制御部3により誤検出されるロータ20の電気角と実際の電気角との誤差を小さくすることができる。これは、回転角検出装置を通じて検出されるロータ20の電気角に基づいて電動モータの駆動を制御する装置、例えば車両のパワーステアリング装置などにおいて有効となる。すなわち、仮にレゾルバ2に信号線の短絡異常が発生したとしても、回転角検出装置を通じて誤検出されるロータ20の電気角の誤差が小さいため、電動モータの挙動が大きく変化するような状況を未然に回避することができる。
なお、例えば第2のレゾルバコイル24に対応する信号線24aと第3のレゾルバコイル25に対応する信号線25aとが短絡した場合や、第3のレゾルバコイル25に対応する信号線25aと第1のレゾルバコイル23に対応する信号線23aとが短絡した場合にも、同様に制御部3により異常を検出することが可能であることは言うまでもない。
一方、発明者によるシミュレーション解析によれば、3つのレゾルバコイルの分割角度を調整することで、制御部3の異常検出能力が向上することが確認されている。以下、図7〜図9を参照して、その詳細を説明する。なお、図7及び図8では、第1のレゾルバコイル(第1の磁界変化検出部)50の位置と第2のレゾルバコイル(第2の磁界変化検出部)51の位置とがロータの回転中心Oを中心としてその周方向R1に電気角の位相でずれている角度をθaで示している。また、第1のレゾルバコイル(第1の磁界変化検出部)50の位置と第3のレゾルバコイル(第3の磁界変化検出部)52の位置とがロータの回転中心Oを中心としてその周方向R1に電気角の位相でずれている角度をθbで示している。
図7(a)に示すように、例えば第2のレゾルバコイル51のずれ角度θaが「120°」に設定されるとともに、第3のレゾルバコイル52のずれ角度θbが「240°」に設定されているとする。この場合、第1〜第3のレゾルバコイル50〜52が先の図12に例示したレゾルバ2と同様に配置されることとなるため、第1のレゾルバコイル50に対応する信号線50aと第2のレゾルバコイル51に対応する信号線51aとが短絡したときに制御部3により演算されるロータ20の電気角θe1〜θe3は、先の図16に示すようになる。すなわち、演算電気角θe1〜θe3が全て同じ値となる。このため、それらのうちのいずれか2つの差分をとることにより求められる電気角差分値Δθe1〜Δθe3が常に「0」となる。このため、上述した電気角差分値Δθe1〜Δθe3の絶対値|Δθe1|〜|Δθe3|と異常判定閾値θthとを比較するといった方法では異常を検出することができない。
なお、信号線50a,51aが短絡したときに演算電気角θe1〜θe3が全て同一の値となる他の例としては、例えば以下の(d1)〜(d3)の場合がある。
(d1)図7(a)に示すように第2のレゾルバコイル51のずれ角度θaが「120°」に設定されている場合において、図中に二点鎖線で示すように、第3のレゾルバコイル52のずれ角度θbが「60°」に設定されている場合。
(d2)図7(b)に示すように、第2のレゾルバコイル51のずれ角度θaが「90°」に設定されていて且つ、第3のレゾルバコイル52のずれ角度θbが「225°」に設定されている場合。
(d3)図7(b)に示すように第2のレゾルバコイル51のずれ角度θaが「90°」に設定されている場合において、図中に二点鎖線で示すように、第3のレゾルバコイル52のずれ角度θbが「45°」に設定されている場合。
そして、これらのシミュレーション解析を含め、発明者により行われたシミュレーション解析によれば、第2及び第3のレゾルバコイル51,52のずれ角度θa,θbが以下の式(10)あるいは式(11)を満たすとき、演算電気角θe1〜θe3が全て同一の値となるため、制御部3により異常を検出することができないことが確認されている。
θb=θa/2・・・(10)
θb=θa/2+180°・・・(11)
一方、発明者によるシミュレーション解析によれば、図7(b)に示すように第2のレゾルバコイル51のずれ角度θaが「90°」に設定されている場合、第3のレゾルバコイル52のずれ角度θbを「225°」から徐々に大きくすると、制御部3による異常検出態様が図8に示すように変化することが確認されている。図8は、先の図6(d)に対応する図として、制御部3により誤検出されるロータ電気角及び実際のロータ電気角の誤差と、ロータ20の機械角θとの関係を、それぞれ縦軸及び横軸にとって示したグラフである。図8に示すように、電気角が誤検出されるロータ20の角度範囲は、第3のレゾルバコイル52のずれ角度θbが「225°」から大きくなるほど狭くなり、第3のレゾルバコイル52のずれ角度θbが「247.5°」となったときに最も狭くなる。また、電気角が誤検出されるロータ20の角度範囲は、第3のレゾルバコイル52のずれ角度θbが「247.5°」から大きくなると再び広がる。したがって、第3のレゾルバコイル52のずれ角度θbが「247.5°」に設定されているとき、電気角が誤検出されるロータ20の角度範囲が最も狭くなる、換言すれば回転角検出装置の異常検出能力が最も高まることがわかる。そして、これらのシミュレーション解析を含め、発明者により行われたシミュレーション解析によれば、第2及び第3のレゾルバコイル51,52のずれ角度θa,θbが以下の式(12)〜式(15)のいずれかを満たすとき、回転角検出装置の異常検出能力が最も高まることが確認されている。
θb=θa×(1/4)・・・(12)
θb=θa×(1/4)+180°・・・(13)
θb=θa×(3/4)・・・(14)
θb=θa×(3/4)+180°・・・(15)
具体的には、図9(a)に示すように、第2のレゾルバコイル51のずれ角度θaが「120°」に設定されている場合には、第3のレゾルバコイル52のずれ角度θbを「90°」あるいは「270°」に設定すれば、回転角検出装置の異常検出能力を最も高めることができる。またこの場合、図示は割愛しているが、第3のレゾルバコイル52のずれ角度θbを「30°」あるいは「210°」に設定することにより、同様に回転角検出装置の異常検出能力を最も高めることができる。一方、図9(b)に示すように、第2のレゾルバコイル51のずれ角度θbが「90°」に設定されている場合には、第3のレゾルバコイル52のずれ角度θbを例えば「67.5°」あるいは「247.5°」に設定すれば、回転角検出装置の異常検出能力を最も高めることができる。またこの場合、図示は割愛しているが、第3のレゾルバコイル52のずれ角度θbを「22.5°」あるいは「202.5°」に設定することにより、同様に回転角検出装置の異常検出能力を最も高めることができる。なお、先の図1に例示したレゾルバ2は、図9(a)において第1のレゾルバコイル50の位置に第2のレゾルバコイル24を、第2のレゾルバコイル51の位置に第3のレゾルバコイル25を、第3のレゾルバコイル52の位置に第1のレゾルバコイル23をそれぞれ配置したものである。すなわち、先の図1に例示した回転角検出装置でも異常検出能力が最も高められている。
ところで、図9(a)に示すように、第2のレゾルバコイル51のずれ角度θbを「120°」に、また第3のレゾルバコイル52のずれ角度θbを「270°」に設定することとすれば、3つのレゾルバコイル50〜52をロータ20の周方向R1に分散して配置することができる。これにより、例えば磁気ノイズなどの外乱が第1〜第3のレゾルバコイル50〜52に及ぼす影響を軽減することができるため、レゾルバ2の外乱に対する耐性を高めることができる。
以上説明したように、本実施形態にかかるレゾルバ及び回転角検出装置によれば、以下のような効果が得られるようになる。
(1)図1に示すように、第1〜第3のレゾルバコイル23〜25の分割角度θ1〜θ3を「90°」、「120°」、「150°」にそれぞれ設定することとした。換言すれば、図9(a)に示すように、第1のレゾルバコイル50の位置と第2のレゾルバコイル51の位置とがロータ20の周方向R1にずれている角度θaを「120°」に設定して且つ、第1のレゾルバコイル50の位置と第3のレゾルバコイル52の位置とがロータ20の周方向R1にずれている角度θbを「270°」に設定することとした。これにより、信号線23a〜25aのうちのいずれか2つの信号線が短絡したときに、その異常をより的確に検出することができるようになる。また、例えば磁気ノイズなどの外乱が第1〜第3のレゾルバコイル23〜25に及ぼす影響を軽減することができるため、レゾルバ2の外乱に対する耐性を高めることができるようになる。
(2)上記式(7)〜(9)により演算されるロータ20の電気角θe1〜θe3のうちのいずれか2つの差分をとることにより求められる電気角差分値Δθe1〜Δθe3に基づいてレゾルバ2の信号線の短絡異常を検出することとした。これにより、差分値を演算するだけでレゾルバ2の信号線の短絡異常を検出することができるため、制御部3の演算負担を軽減することができるようになる。
なお、上記実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記実施形態では、演算電気角θe1〜θe3のうちのいずれか2つの差分をとることにより求められる電気角差分値Δθe1〜Δθe3に基づいてレゾルバ2の信号線の短絡異常を検出することとした。これに代えて、例えば演算電気角θe1〜θe3の平均値θeaと、演算電気角θe1〜θe3との差分値に基づいてレゾルバ2の信号線の短絡異常を検出することも可能である。要は、演算電気角θe1〜θe3が先の図5に示すように変化していることを検知したときに異常を検出するものであればよい。
・上記実施形態では、第1〜第3のレゾルバコイル23〜25の分割角度θ1〜θ3を「90°」、「120°」、「150°」にそれぞれ設定することとしたが、これらの分割角度θ1〜θ3は、全てが異なる値であれば、適宜変更可能である。但し、回転角検出装置の異常検出能力を高めるためには、上記式(12)〜式(15)を満たすように3つのレゾルバコイルを配置することが望ましい。
・本発明は、ホール素子や磁気抵抗素子などの磁気検出部を利用してロータの回転を検出する回転センサにも適用可能である。図10に、こうした回転センサの一例を示す。図10に示すように、この回転センサ6は、永久磁石からなるロータ60と、ロータ60の周方向R1に離間して配置される3つの磁気検出部61〜63とを備えている。なおここでは、ロータ60が磁界生成部となっている。そして、ロータ60の回転に伴ってロータ60から磁気検出部61〜63に付与される磁界が変化すると、磁気検出部61〜63からロータの回転角(電気角)θに対して正弦波状に変化する信号がそれぞれ出力される。また、磁気検出部61〜63の出力は、信号線61a〜63a及び端子Ta〜Tcを介して制御部3に取り込まれる。こうした回転センサ6では、磁気検出部61〜63の分割角度θ1〜θ3を上記実施形態と同様に「90°」、「120°」、「150°」にそれぞれ設定すれば、回転センサ6の出力信号Vd〜Veを図11に示すように推移させることができる。すなわち、回転センサ6の出力信号Vd〜Veを、ロータ60の機械角θに対して先の図2に例示した出力信号振幅値Sa〜Scと同様の態様で推移させることができる。これにより、制御部3では、上記実施形態に準じた異常検出方法を用いることにより、出力信号Vd〜Veから回転センサ6の信号線の短絡異常を検出することができる。要は、本発明にかかる回転センサは、レゾルバコイルやホール素子、磁気抵抗素子などを含む適宜の磁界変化検出部を利用してロータの回転を検出する回転センサに適用することができる。
・上記実施形態では、レゾルバ2の軸倍角を「1X」や「4X」に設定する場合について例示したが、レゾルバ2の軸倍角に限定があるわけではない。
・本発明にかかる回転角検出装置は、車両のステアリングシャフトの回転角を検出する装置に限らず、適宜の回転軸の回転角を検出する装置に適用することが可能である。
<付記>
次に、上記実施形態及びその変形例から把握できる技術的思想について追記する。
(イ)ロータの周方向に離間して配置される3つのレゾルバコイルと、同3つのレゾルバコイルに電圧を誘起させるべく通電に基づき磁界を生成する励磁コイルとを有して、前記ロータの回転に伴い前記励磁コイルから前記3つのレゾルバコイルに付与される磁界が変化したときに前記3つのレゾルバコイルに誘起される電圧が変化することにより、前記ロータの回転角に対して振幅が正弦波状に変化する3相の信号を出力するレゾルバにおいて、前記3つのレゾルバコイルのうちの互いに隣り合うもの同士の位置が前記ロータの回転中心を中心として同ロータの周方向にずれている角度をそれぞれ第1〜第3の分割角度とするとき、前記3つのレゾルバコイルは、前記第1〜第3の分割角度が全て異なるように配置されてなることを特徴とするレゾルバ。同構成によれば、3つのレゾルバコイルに対応する3つの信号線のうちのいずれか2つの信号線が短絡したときに、レゾルバの3相の出力信号から演算可能な3つのロータ電気角が互いに異なる値を示しやすくなる。このため、例えば第1〜第3の演算電気角のうちのいずれか2つの差分値を求めるなどすれば、求められた差分値に基づいて信号線の短絡異常をより的確に検出することが可能となる。
(ロ)ロータの周方向に離間して配置される3つの磁気検出部と、これら3つの磁気検出部に付与する磁界を生成する磁界生成部とを有して、前記ロータの回転に伴い前記磁界生成部から前記3つの磁気検出部に付与される磁界が変化することで前記ロータの回転角に対して正弦波状に変化する3相の信号を出力する回転センサにおいて、前記3つの磁気検出部のうちの互いに隣り合うもの同士の位置が前記ロータの回転中心を中心として同ロータの周方向にずれている角度をそれぞれ第1〜第3の分割角度とするとき、前記3つの磁気検出部は、前記第1〜第3の分割角度が全て異なるように配置されてなることを特徴とする回転センサ。同構成によれば、3つの磁気検出部に対応する3つの信号線のうちのいずれか2つの信号線が短絡したときに、回転センサの3相の出力信号から演算可能な3つのロータ電気角が互いに異なる値を示しやすくなる。このため、例えば第1〜第3の演算電気角のうちのいずれか2つの差分値を求めるなどすれば、求められた差分値に基づいて信号線の短絡異常をより的確に検出することが可能となる。
Ta〜Tc…出力端子、1…回転軸、2…レゾルバ、3…制御部、4…発振回路、6…回転センサ、20,60…ロータ、21…ステータ、22…励磁コイル、22〜25,50〜52…レゾルバコイル、23a〜25a,50a,51a,61a〜63a…信号線、61〜63…磁気検出部。

Claims (3)

  1. ロータの周方向に離間して配置される3つの磁界変化検出部と、これらの磁界変化検出部に付与する磁界を生成する磁界生成部とを有して、前記ロータの回転に伴い前記磁界生成部から前記磁界変化検出部に付与される磁界が変化することで前記ロータの回転角に応じて変化する3相の信号を出力する回転センサにおいて、
    前記3つの磁界変化検出部のうちの互いに隣り合うもの同士が前記ロータの回転中心を中心として同ロータの周方向にずれている角度をそれぞれ第1〜第3の分割角度とするとき、前記3つの磁界変化検出部は、前記第1〜第3の分割角度が全て異なるように配置され
    前記3つの磁界変化検出部は、それらのうちの第1の磁界変化検出部の位置と第2の磁界変化検出部の位置とが前記ロータの電気角の位相で前記周方向にずれている角度をθa、前記第1の磁界変化検出部の位置と第3の磁界変化検出部の位置とが前記ロータの電気角の位相で前記周方向にずれている角度をθbとするとき、次式
    θb=θa×(1/4)
    あるいは、次式
    θb=θa×(1/4)+180°
    あるいは、次式
    θb=θa×(3/4)
    あるいは、次式
    θb=θa×(3/4)+180°
    を満たすように配置されてなる
    ことを特徴とする回転センサ。
  2. 前記角度θaが120°に設定されるとともに、前記角度θbが270°に設定されている
    請求項に記載の回転センサ。
  3. 回転センサから出力される3相の信号に基づいてロータの電気角を検出する回転角検出装置において、
    前記回転センサとして請求項1又は請求項2に記載の回転センサを用いるとともに、
    前記回転センサから出力される3相の信号から演算可能な3つのロータ電気角を第1〜第3の演算電気角とするとき、これら第1〜第3の演算電気角のうちのいずれか2つの差分値に基づき前記回転センサの異常を検出する制御手段と
    を備えることを特徴とする回転角検出装置。
JP2011183918A 2011-08-25 2011-08-25 回転センサ、及び回転角検出装置 Expired - Fee Related JP5803428B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011183918A JP5803428B2 (ja) 2011-08-25 2011-08-25 回転センサ、及び回転角検出装置
US13/328,424 US8754638B2 (en) 2011-08-25 2011-12-16 Rotation sensor and rotational angle detection apparatus
EP11195491.3A EP2562516B1 (en) 2011-08-25 2011-12-23 Rotation sensor and rotational angle detection apparatus
CN201110444999.5A CN102954755B (zh) 2011-08-25 2011-12-27 旋转传感器和旋转角度检测设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183918A JP5803428B2 (ja) 2011-08-25 2011-08-25 回転センサ、及び回転角検出装置

Publications (2)

Publication Number Publication Date
JP2013044678A JP2013044678A (ja) 2013-03-04
JP5803428B2 true JP5803428B2 (ja) 2015-11-04

Family

ID=45440302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183918A Expired - Fee Related JP5803428B2 (ja) 2011-08-25 2011-08-25 回転センサ、及び回転角検出装置

Country Status (4)

Country Link
US (1) US8754638B2 (ja)
EP (1) EP2562516B1 (ja)
JP (1) JP5803428B2 (ja)
CN (1) CN102954755B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942613B2 (ja) * 2012-06-05 2016-06-29 株式会社ジェイテクト センサ装置
US8754434B1 (en) * 2013-01-28 2014-06-17 Corning Incorporated Flexible hermetic thin film with light extraction layer
CN104995486B (zh) * 2013-02-26 2017-08-11 斯凯孚公司 角度传感器、轴承单元、电机、控制系统及误差检验系统
JP6147658B2 (ja) * 2013-12-18 2017-06-14 三菱重工工作機械株式会社 電磁誘導式位置検出器及び検出方法
US10151605B2 (en) * 2014-11-06 2018-12-11 Mitsubishi Electric Corporation Rotation angle detection device and rotation angle detection method
DE102014225580A1 (de) * 2014-12-11 2016-06-16 Robert Bosch Gmbh Verfahren und Verfahren zum Betreiben eines Resolvers, Resolvereinrichtung
CN104697425B (zh) * 2015-03-20 2017-07-28 沈阳理岩控制技术有限公司 一种检测转子位置信息的方法、装置和传感器
DE102015211214A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Verfahren und Schaltung zum Erkennen eines Kurzschlusses einer Resolver-Erregerleitung nach Masse oder zur Betriebsspannung
DE102015211259A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Vorrichtung und Verfahren zum Plausibilisieren von Signalen eines Drehwinkelgebers
DE102015211216A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Verfahren und Schaltung zum Erkennen eines Kurzschlusses der Sinus- oder Kosinus-Empfängerspule eines Resolvers
JP6498580B2 (ja) * 2015-09-30 2019-04-10 日本航空電子工業株式会社 ブラシレスレゾルバ及び回転角度検出装置
JP6675260B2 (ja) * 2016-04-27 2020-04-01 東京エレクトロン株式会社 変圧器、プラズマ処理装置、及び、プラズマ処理方法
US10884037B2 (en) * 2016-09-12 2021-01-05 Texas Instruments Incorporated Angular resolver imbalance detection
EP3312567B1 (en) * 2016-10-18 2019-12-04 ams AG Rotary sensor arrangement and method for determining a failure status of such arrangement
JP6530797B2 (ja) 2017-09-26 2019-06-12 ファナック株式会社 回転角度検出装置
JP7067968B2 (ja) * 2018-03-12 2022-05-16 ルネサスエレクトロニクス株式会社 回転角度センサシステムおよび半導体装置
TWI662784B (zh) * 2018-06-25 2019-06-11 建準電機工業股份有限公司 用於三相馬達之轉向控制系統

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1684051A1 (en) 2003-11-04 2006-07-26 NSK Ltd. Controller for electric power-steering apparatus
JP2005315764A (ja) 2004-04-30 2005-11-10 Denso Corp 回転角速度検出装置
JP2006138778A (ja) 2004-11-15 2006-06-01 Nsk Ltd 角度検出装置
JP4797721B2 (ja) * 2005-10-20 2011-10-19 株式会社デンソー 回転角度検出装置
JP2010048760A (ja) * 2008-08-25 2010-03-04 Jtekt Corp レゾルバの異常検出装置および電気式動力舵取装置
JP5287635B2 (ja) * 2009-09-24 2013-09-11 株式会社ジェイテクト 回転角センサ、モータ、回転角検出装置、及び電動パワーステアリング装置
US8729887B2 (en) * 2009-11-09 2014-05-20 Aisan Kogyo Kabushiki Kaisha Rotation angle sensor

Also Published As

Publication number Publication date
JP2013044678A (ja) 2013-03-04
CN102954755A (zh) 2013-03-06
CN102954755B (zh) 2016-08-24
US20130049741A1 (en) 2013-02-28
EP2562516A1 (en) 2013-02-27
EP2562516B1 (en) 2014-04-02
US8754638B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP5803428B2 (ja) 回転センサ、及び回転角検出装置
JP6550793B2 (ja) 温度検出装置及び回転角検出装置
US8742715B2 (en) System and method for providing control of an electric motor using inductive rotary sensor
US9431939B2 (en) Electric motor or generator
JP4916556B2 (ja) 回転角度検出装置、回転電機装置および電動パワーステアリング装置
CN109073411B (zh) 用于旋转电机的角度检测器的故障判定装置及故障判定方法
CN109075734A (zh) 旋转电机控制装置的故障判定装置及故障判定方法
JP6319538B1 (ja) 回転角度検出器及びトルクセンサ
JPWO2013172315A1 (ja) 位置検出装置
CN107024232B (zh) 转角传感器
JP6710994B2 (ja) 回転角検出装置
JP2013044679A (ja) レゾルバ、回転センサ、及び回転角検出装置
JP4991992B2 (ja) レゾルバ
US20190162560A1 (en) Brushless DC Motor and Method for Providing an Angle Signal
JP2018040660A (ja) 位相変調方式の冗長系2相出力型レゾルバ及びその信号出力方法
KR102307713B1 (ko) Bldc 전동기 동작 오류 검출 시스템 및 방법
JP6349934B2 (ja) 位置検出装置及びサーボモータ
JP4438386B2 (ja) トルク検出装置
US20230160724A1 (en) Arrangement and method for position detection with error detection with a position encoder
KR20160022923A (ko) 전기 모터의 부정확한 각도 위치를 검출하는 방법
JP2010048774A (ja) 位置センサ
JP2014185900A (ja) モータ装置
JP2018169327A (ja) 位相検出装置
JP2004163186A (ja) 回転検出器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees