JP6710994B2 - 回転角検出装置 - Google Patents

回転角検出装置 Download PDF

Info

Publication number
JP6710994B2
JP6710994B2 JP2016021850A JP2016021850A JP6710994B2 JP 6710994 B2 JP6710994 B2 JP 6710994B2 JP 2016021850 A JP2016021850 A JP 2016021850A JP 2016021850 A JP2016021850 A JP 2016021850A JP 6710994 B2 JP6710994 B2 JP 6710994B2
Authority
JP
Japan
Prior art keywords
rotation angle
value
angle
motor
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021850A
Other languages
English (en)
Other versions
JP2017143603A (ja
Inventor
悟 三鴨
悟 三鴨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2016021850A priority Critical patent/JP6710994B2/ja
Publication of JP2017143603A publication Critical patent/JP2017143603A/ja
Application granted granted Critical
Publication of JP6710994B2 publication Critical patent/JP6710994B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、回転角検出装置に関する。
従来、たとえば特許文献1に記載されるように、モータの回転角(磁極位置)を検出する回転角検出装置として、磁気感応素子を利用したものが知られている。磁気感応素子は、ロータに設けられた磁石の回転に伴う磁界の変化に応じた電気信号を生成する。回転角検出装置の演算部は、磁気感応素子により生成される電気信号に基づきロータの回転角を検出する。当該検出される回転角に応じてステータコイルに対する給電が制御される。
ここで、磁気感応素子が内蔵されるモータの場合、磁気感応素子がステータコイルに供給される電流に起因して発生する外乱磁束の影響を受けることが懸念される。磁気感応素子に外乱磁界が印加される場合、たとえば磁気感応素子により生成される電気信号の位相が理想的な電気信号の位相に対してずれることにより、磁気感応素子を通じて検出されるロータの回転角と実際の回転角との間に誤差が生じるおそれがある。
そこで、特許文献1の回転角検出装置では、磁気感応素子により生成される電気信号に基づき演算されるロータの回転角を、当該回転角の演算時にステータコイルに供給される電流の大きさと当該電流の位相とに応じて、所定の補正量の分だけ補正している。この補正量は、外乱磁界の影響を受けて、真の回転角に対してずれる分の回転量に相当する。当該補正を通じて、より正しい回転角が演算される。
磁気感応素子を通じて検出されるロータの回転角に対する補正量は、ステータコイルに供給される電流の影響を実験的に設定したマップデータに基づき求められる。回転角検出装置の演算部は、ステータコイルに供給される電流の大きさおよび当該電流の位相に基づき、当該マップデータを参照して補正量を決定し、当該決定される補正量の分だけ磁気感応素子を通じて検出される回転角を補正する。
特開2002−34278号公報
特許文献1の装置は、具体的には、磁気感応素子としてたとえばホールICを採用し、3つのホールICの出力レベル(H,L)の変化、および各出力レベルの組み合わせに基づき、60°ごとに回転角を検出する。このため、当該装置では、各ホールICの出力レベルの組み合わせの切り替わりのタイミング(位相)のずれが特に問題となる。このタイミングのずれを補正するために、当該装置には前述したマップデータが持たせられている。
しかし、特許文献1の回転角の補正方法は、あくまでも同文献に記載される回転角の検出方法を前提としている。このため、特許文献1の補正方法は、回転角の検出方法が異なる他のタイプの装置に適用することが困難である。当該他のタイプの装置には、磁気感応素子としてMRセンサ(Magneto Resistive Sensor)を採用した装置が存在するところ、当該装置においても外乱磁束に起因する回転角の演算精度の低下を抑制することが望まれている。
本発明の目的は、モータの回転角をより適切に検出することができる回転角検出装置を提供することにある。
上記目的を達成し得る回転角検出装置は、コイルが巻回されたステータと、前記ステータの内部に設けられたロータと、前記ロータに貫通した状態で固定された出力軸とを有するモータの回転角検出装置であって、前記出力軸の端部に固定された磁石と、前記出力軸の軸方向において前記磁石に対向して設けられて前記磁石の回転に伴う磁界の変化に応じた電気信号を生成する磁気センサと、前記磁気センサにより生成される電気信号に基づき前記出力軸の回転角をモータの回転角として演算し当該回転角に応じて前記コイルへの給電を制御する制御回路と、前記磁気センサおよび前記制御回路が設けられるとともに前記出力軸の軸方向に沿って延在するバスバーを介して前記コイルに接続されている基板と、を備えている。前記制御回路は、前記バスバーを介した前記コイルへの給電に伴い前記バスバーまたは前記コイルから発生する外乱磁束に起因する誤差角度を前記回転角に対する補正角度として演算し、当該補正角度を使用して前記回転角を補正する。
この構成によれば、誤差角度を含む補正前の回転角が補正角度を使用して補正されるため、より正確な回転角が得られる。
上記の回転角検出装置において、前記制御回路は、前記誤差角度が前記モータの回転角の関数として正弦波で表記することができることを利用して前記補正角度を演算することが好ましい。この場合、前記補正角度を「θr」、前記モータの回転角を「θ」、前記誤差角度の主成分次数を「N」、次数Nにおける誤差振幅を「A」、次数Nにおける前記モータの回転角に対する位相ずれ量を「ε」とするとき、前記制御回路は、次式(1)に基づき前記補正角度を演算する。
θr=A1・sin(N1・θ+ε1)+…+An・sin(Nn・θ+εn) …(1)
この構成によれば、式(1)を使用することにより、より簡単に補正角度を演算することができる。ちなみに、式(1)の右辺の項数は考慮する周波数成分の個数に応じて決まる。
上記の回転角検出装置において、前記位相ずれ量は、前記モータの構造に起因して決まる第1の位相ずれ量と、前記コイルへ供給される電流の大きさに起因する第2の位相ずれ量とを含めてもよい。この場合、前記制御回路は、前記コイルへ供給される電流の大きさが反映される指標値が、前記第2の位相ずれ量の演算精度を確保する観点に基づき設定される指標値しきい値よりも小さいとき、前記補正角度を零とすることが好ましい。
第2の位相ずれ量は、ステータのコイルへ供給される電流の大きさに起因するものである。このため、コイルへ供給される電流の大きさが小さくなるほど第2の位相ずれ量の演算精度、ひいては補正角度の演算精度が低下する。このことを前提として、上記の構成によれば、コイルへ供給される電流の大きさが、たとえば第2の位相ずれ量の演算精度が確保できない程度に小さくなるとき、補正角度が零とされる。このため、精度が確保されていない補正角度を使用して回転角を補正することを回避したい場合に好適である。
ちなみに、上記の回転角検出装置において、前記指標値は、前記コイルへ供給される電流の大きさに基づき演算される前記誤差振幅であってもよい。誤差振幅はコイルへ供給される電流の大きさに基づき演算されるものである。このため、誤差振幅の値にはコイルへ供給される電流の大きさが反映される。
また、上記の回転角検出装置において、前記制御回路は、前記モータの回転角を使用して前記コイルに供給される相電流の値をd/q座標系におけるd軸電流値およびq軸電流値に変換し、これらd軸電流値およびq軸電流値をそれぞれの目標値に追従させるべく電流フィードバックを実行するものであるとき、前記指標値は、前記d軸電流値を二乗した値と前記q軸電流値を二乗した値との合算値であってもよい。当該合算値にもコイルへ供給される電流の大きさが反映される。
上記の回転角検出装置において、前記制御回路は、補正前の前記回転角に基づき前記モータの角速度を演算し、当該角速度の絶対値が角速度しきい値未満であるとき、前記補正角度を零としてもよい。
モータの角速度が遅くなるほど、NV(NV:Noise and Vibration)性能に対する角度誤差の影響が問題にならなくなる。このため、上記の構成によるように、モータの角速度が「0」を基準とする正負の一定範囲の値であるとき、モータの回転角の補正が行われない構成を採用することが可能である。
上記の回転角検出装置において、前記制御回路は、前記角速度の絶対値が角速度しきい値以上であるとき、前記角速度の正負の符号に基づく前記モータの回転方向を加味して前記補正角度を演算することが好ましい。
誤差角度はモータの回転方向に依存することがある。上記の構成によれば、モータの回転方向が加味されるため、当該回転方向に応じたより適切な補正角度が演算される。
本発明の回転角検出装置によれば、モータの回転角をより適切に検出することができる。
第1の実施の形態にかかる回転角センサが搭載されたモータ装置の断面図。 第1の実施の形態にかかる回転角センサの構成を示す斜視図。 第1の実施の形態にかかる制御装置の機能的な構成を示す制御ブロック図。 第1の実施の形態にかかるモータ装置の構造に起因する位相ずれを示す波形図。 第1の実施の形態にかかるモータ電流に起因する位相ずれを示すグラフ。 第1の実施の形態における回転角の補正処理手順を示すフローチャート。 第2の実施の形態における補正角度の演算手順を示すフローチャート。 第3の実施の形態における誤差振幅の演算手順を示すフローチャート。 第4の実施の形態における誤差振幅の演算手順を示すフローチャート。 第4の実施の形態における誤差振幅の演算方法を概念的に説明するための線図。 第5の実施の形態における誤差振幅の演算手順を示すフローチャート。 他の実施の形態にかかる誤差振幅の演算方法を説明するためのグラフ。 他の実施の形態にかかる誤差振幅の演算方法を説明するためのグラフ。
<第1の実施の形態>
以下、回転角検出装置をモータ装置に具体化した第1の実施の形態を説明する。
図1に示すように、モータ装置10はモータ20、回転角センサ30および制御回路40を有している。
モータ20は、三相ブラシレスモータである。モータ20は、円筒状のハウジング21、ステータ22、出力軸23およびロータ24を有している。ステータ22は円筒状のステータコア22aおよびステータコア22aに設けられたステータコイル22bを有している。ステータコア22aはハウジング21の内周面に対して嵌められた状態で固定されている。出力軸23は2つの軸受23a,23bを介してハウジング21に対して回転可能に支持されている。出力軸23の2つの端部はそれぞれハウジング21を貫通している。ロータ24はステータ22の内部に設けられている。ロータ24は出力軸23の外周面に固定された円柱状のロータコア24aおよびロータコア24aの表面に固定された円筒状の永久磁石24bを有している。永久磁石24bは、その円周方向に沿って極性の異なる複数の磁極(N極,S極)が交互に着磁された多極磁石である。本例では、正極および負極を1組としたとき、永久磁石24bは5組の磁極(合計10極)を有している。
回転角センサ30および制御回路40は、ハウジング21の端部(図1中の上端部)に取り付けられた有蓋円筒状のカバー25の内部、正確にはカバー25の内底面に固定された基板26に設けられている。基板26は出力軸23の軸線に対して直交する姿勢でカバー25に固定されている。基板26は、出力軸23の2つの端部のうちのカバー25の内部に位置する第1の端部(図1中の上端部)に対向している。出力軸23の第2の端部は、たとえば減速機を介して適宜の機械的負荷に連結される。
回転角センサ30は、円柱状のバイアス磁石31および磁気センサ32を有している。磁気センサ32としては、たとえばMRセンサ(磁気抵抗効果センサ)が採用される。バイアス磁石31は出力軸23の第1の端部に固定されている。磁気センサ32は基板26に設けられている。磁気センサ32は出力軸23の軸線に沿う方向においてバイアス磁石31と対向している。磁気センサ32はロータ24の回転角に応じた電気信号を生成する。
制御回路40は、インバータ(駆動回路)41およびMPU(microprocessing unit)42を備えている。
インバータ41は、バスバー27を介して3相(U,V,W)の各相のステータコイル22bに接続されている。インバータ41は、直列に接続された2つの電界効果型トランジスタ(FET)などのスイッチング素子を基本単位(アーム)として、三相の各相に対応する3つのアームが並列接続されてなる。インバータ41の各スイッチング素子が、MPU42により生成されるスイッチング指令に基づいてスイッチングすることにより、バッテリなどの直流電源から供給される直流電流が3相の交流電流に変換される。当該交流電力はバスバー27を介して3相各相のステータコイル22bに供給される。なお、バスバー27は出力軸23の軸方向に沿って延在している。
MPU42は、外部から供給される目標トルクに対応する電流指令値を演算し、当該電流指令値、モータ20に供給される実際の電流値、および回転角センサ30を通じて検出されるロータ24の回転角に基づき、実際の電流値が電流指令値に追従するように電流のフィードバック制御を行う。MPU42は、電流指令値と実際の電流値との偏差を求め、当該偏差を無くすようにインバータ41に対するスイッチング指令を生成する。スイッチング指令は、インバータ41の各スイッチング素子のオンデューティを規定する。インバータ41を通じてスイッチング指令に応じた電流がモータ20に供給されることにより、モータ20は目標トルクに応じた回転力を発生する。
つぎに、回転角センサについて詳細に説明する。
図2に示すように、バイアス磁石31は、その半径方向にN極およびS極が着磁された2極磁石である。バイアス磁石31によって磁気センサ32にはN極からS極へ向かう実線の矢印33で示される方向の磁界が付与される。たとえば出力軸23が図2中の位置から矢印34で示される方向へ向けて回転角θだけ回転したとき、バイアス磁石31も矢印34で示される方向へ向けて回転角θだけ回転する。これにより、磁気センサ32に付与されるバイアス磁界の向きが実線の矢印33で示される方向から軸線Oを中心として回転角θだけ回転した一点鎖線の矢印35で示される方向に変化する。このように、磁気センサ32に付与される磁界の方向は出力軸23の回転角θに応じて変化する。
磁気センサ32は、バイアス磁石31から付与されるバイアス磁界の向きに応じて4つの電気信号を生成する。詳述すると、磁気センサ32は、4つの磁気抵抗素子がブリッジ状に接続されてなる2組のブリッジ回路を有している。第1のブリッジ回路の2つの中点電位は、それぞれ第1の電気信号および第2の電気信号としてMPU42に取り込まれる。第2のブリッジ回路の2つの中点電位は、それぞれ第3の電気信号および第4の電気信号としてMPU42に取り込まれる。バイアス磁石31が回転して各磁気抵抗素子に付与されるバイアス磁界の向きが変化するとき、当該変化に応じて各磁気抵抗素子の抵抗値が変化する。各磁気抵抗素子の抵抗値が変化することにより、第1〜第4の電気信号がそれぞれ変化する。すなわち、第1〜第4の電気信号S1〜S4は、それぞれロータ24の回転角θに応じて変化する。
本例では、各磁気抵抗素子の配置(基準方向)を適宜に調整することなどにより、4つの電気信号は、つぎのように変化する信号となる。すなわち、第1の電気信号は、ロータ24の回転角θに対して正弦波状に変化するsin信号である。第2の電気信号は、第1の電気信号に対して180°だけ位相がずれた−sin信号である。第3の電気信号は、第1の電気信号に対して90°だけ位相が遅れたcos信号となる。第4の電気信号は、第3の電気信号に対して180ーだけ位相がずれた−cos信号となる。MPU42は、磁気センサ32により生成される4つの電気信号を取り込み、これら取り込まれるに電気信号に基づきロータ24の回転角θを演算する。
つぎに、MPU42の機能的な構成を説明する。
図3に示すように、MPU42は、回転角度演算部51、3相/2相変換部52、電流指令値演算部53、フィードバック制御部(F/B制御部)54、2相/3相変換部55、PWM変換部56、および補正角度演算部57を有している。
回転角度演算部51は、回転角センサ30により生成される4つの電気信号に基づきロータ24の回転角θを演算する。回転角度演算部51は、回転角センサ30により生成される第1の電気信号S1、第2の電気信号S2、第3の電気信号S3および第4の電気信号S4を、それぞれ所定のサンプリング周期で取り込む。回転角度演算部51は、たとえば第1の電気信号S1(sin信号)と第2の電気信号S2(−sin信号)との差分、および第3の電気信号S3(cos信号)と第4の電気信号S4(−cos信号)との差分をそれぞれ演算し、これら2つの差分値に基づき逆正接値(arctan)を演算することによりロータ24の回転角θを検出する。
なお、回転角度演算部51は、第1の電気信号S1および第3の電気信号S3に基づき逆正接値を演算したり、第2の電気信号S2および第4の電気信号S4に基づき逆正接値を演算したりすることにより、ロータ24の回転角θを検出してもよい。
3相/2相変換部52は、インバータ41とモータ20との間の給電経路に設けられた電流センサ43を介して、3相各相のステータコイル22bに供給される実際の電流値Iu,Iv,Iwを検出する。3相/2相変換部52は、ロータ24の回転角θを使用して3相の電流値Iu,Iv,Iwを2相のベクトル成分、すなわちd/q座標系におけるd軸電流値Idおよびq軸電流値Iqに変換する。d/q座標系はモータ20の回転角θに従う回転座標であって、d軸電流値Idおよびq軸電流値Iqはd/q座標系におけるモータ20へ供給される実際の電流値である。
電流指令値演算部53は、外部から与えられる目標トルクTに基づきd軸電流指令値Idおよびq軸電流指令値Iqを演算する。d軸電流指令値Idおよびq軸電流指令値Iqは、d/q座標系におけるモータ20へ供給する電流の目標値に対応する。
フィードバック制御部54は、電流指令値演算部53により生成されるd軸電流指令値Idおよびq軸電流指令値Iq、ならびに3相/2相変換部52により生成されるd軸電流値Idおよびq軸電流値Iqをそれぞれ取り込む。フィードバック制御部54は、d軸電流指令値Idからd軸電流値Idを減算することによりd軸電流偏差を求めるとともに、q軸電流指令値Iqからq軸電流値Iqを減算することによりq軸電流偏差を求める。フィードバック制御部54は、d軸電流値Idをd軸電流指令値Idに追従させるべくd軸電流偏差に基づく電流フィードバック制御を実行することによりd軸電圧指令値Vdを生成する。また、フィードバック制御部54は、q軸電流値Iqをq軸電流指令値Iqに追従させるべくq軸電流偏差に基づく電流フィードバック制御を実行することによりq軸電圧指令値Vqを生成する。
2相/3相変換部55は、フィードバック制御部54により生成されるd軸電圧指令値Vdおよびq軸電圧指令値Vqを取り込む。2相/3相変換部55は、ロータ24の回転角θを使用してd軸電圧指令値Vd及びq軸電圧指令値Vqを3相座標系における3相各相の電圧指令値Vu,Vv,Vwに変換する。
PWM変換部56は、2相/3相変換部55により生成される3相各相の電圧指令値Vu,Vv,Vwを取り込む。PWM変換部56は、3相各相の電圧指令値Vu,Vv,Vwに対応する3相各相のデューティ指令値を生成し、これら生成されるデューティ指令値に基づきインバータ41の各スイッチング素子に対するスイッチング指令Scを生成する。スイッチング指令Scに応じてインバータ41がスイッチングすることにより、モータ20に目標トルクTを発生させるために必要とされる3相の交流電流がモータ20(正確には、3相各相のモータコイル22b)に供給される。これら3相の交流電流は時間の経過とともに正弦波状に変化する。
<外乱磁束の影響について>
ここで、本例のモータ装置10では回転角センサ30として磁気センサ32を利用しているため、つぎのようなことが懸念される。すなわち、バスバー27を介してステータコイル22bへ電流が供給されるとき、バスバー27およびステータコイル22bの周囲には漏れ磁束が発生するところ、この漏れ磁束の影響が磁気センサ32に及ぶおそれがある。
図1に矢印で示されるように、たとえばバイアス磁石31から発生する理想的な磁束φ1以外にもバスバー27あるいはステータコイル22bから発生する磁束φ2が外乱磁束として磁気センサ32に印加されることが考えられる。また、バスバー27あるいはステータコイル22bから発生する磁束φ2がバイアス磁石31から発生する磁束φ1に干渉することによってバイアス磁石31の磁界が歪められることも考えられる。この場合、磁気センサ32を通じて検出されるロータ24の回転角と実際の回転角との間に誤差が生じることが懸念される。
図2に示すように、たとえば出力軸23が図中の位置から矢印34で示される方向へ向けて回転角θだけ回転したとき、本来であれば磁気センサ32に付与されるバイアス磁界の向きは実線の矢印33で示される方向から軸線Oを中心として回転角θだけ回転した一点鎖線の矢印35で示される方向に変化する。しかし、磁気センサ32あるいはバイアス磁石31からの理想的な磁束φ1が、バスバー27などからの磁束φ2の影響を受ける場合、磁気センサ32に付与されるバイアス磁界の向きは矢印35で示される本来の方向ではなく、たとえば二点鎖線の矢印36で示される方向となることが想定される。この矢印36で示される方向は、図2に実線の矢印33で示される方向から回転角θよりも大きな回転角θ1だけ回転した方向になることもあるし、回転角θよりも小さな回転角θ2だけ回転した方向になることもある。このため、磁気センサ32は本来の回転角θではなく、回転角θ1または回転角θ2に応じた電気信号を生成する。MPU42は回転角θ1または回転角θ2に応じた電気信号に基づき誤ったロータ24の回転角θ1または回転角θ2を演算する。誤って演算される回転角θ1,θ2は実際の回転角θに対して、次式(A),(B)で表される角度誤差δ1,δ2を含む。ただし、ここでは各回転角θ,θ1,θ2は正の値である。
δ1=θ1−θ …(A)
δ2=θ−θ2 …(B)
これら角度誤差δ1を含む回転角θ1、または角度誤差δ2を含む回転角θ2に基づきモータ20の制御が実行されるとき、コギングの増大、ひいてはNV(NV:Noise and Vibration)性能の低下にもつながりかねない。
<外乱磁束の影響を抑制するための構成>
そこで本例では、バスバー27などから発生する磁束φ2が外乱磁束として回転角センサ30に及ぼす影響を抑制するために、MPU42につぎのような構成を設けている。
図3に示すように、MPU42は補正角度演算部57および減算器58を有している。
補正角度演算部57は、3相/2相変換部52により生成されるd軸電流値Idおよびq軸電流値Iq、ならびに回転角度演算部51により演算される回転角θをそれぞれ取り込み、これら取り込まれるd軸電流値Idおよびq軸電流値Iq、ならびに回転角θに基づき補正角度θrを演算する。補正角度θrは、外乱磁束の影響を受けて発生する角度誤差δ1または角度誤差δ2に相当する角度である。
ここで、出力軸23の回転に伴い、磁気センサ32において生成される電気信号は正弦波状に変化する。本例では、出力軸23が1回転する間に、磁気センサ32では1周期分の電気信号(S1〜S4)が生成される。すなわち、出力軸23の回転角(機械角)に対する電気信号の電気角の比である軸倍角は1倍角(1X)である。軸倍角は、バイアス磁石31の磁極数により決まる。磁極数の1/2が軸倍角に相当する。
また、各相のステータコイル22bには、出力軸23の1回転あたりロータ24の永久磁石24bの極対数個(周期)の正弦波の電圧が印加される。このため、各相のステータコイル22bには、出力軸23の1回転あたりロータ24の永久磁石24bの極対数個(周期)の正弦波の電流が流れる。したがって、各相のステータコイル22bに電流が供給されるとき、出力軸23の1回転あたりロータ24の永久磁石24bの極対数個(周期)の外乱磁束が発生する。そして、3相の正弦波交流が供給されることによって各相のステータコイル22bに発生する磁界成分を合成した磁界は電流の1周期に対して1回転する回転磁界となることから、外乱磁束も電流の1周期に対して1回転する。すなわち、外乱磁束は、出力軸23の1回転に対して、ロータ24の永久磁石24bの極対数と同数回だけ回転する。
このとき、外乱磁束に起因する誤差角度(δ1,δ2)は、所定の理論式に基づく正弦関数(正弦波)を使用して近似的に表すことができる。このことを利用して、補正角度演算部57は、外乱磁束に起因する誤差角度を、回転角センサ30を通じて検出される実際の回転角θに対する補正角度θrとして演算する。
具体的には、補正角度演算部57は、次式(C1)を使用して補正角度θrを演算する。
θr=A1・sin(N1・θ+α1+β1)+A2・sin(N2・θ+α2+β2)…(C)
「θ」は磁気センサ32を通じて検出される実際の回転角(機械角)である。
「N1,N2」はモータ20の回転位置に応じて一義的に決まる周期的な角度誤差の主成分の次数である。主成分とは、他の周波数成分の振幅に対して、その次数における振幅が大きなものをいう。次数N1,N2は、モータ20の構造に起因して一義的に決まる定数である。たとえば、モータ20の構造が決まれば、どのパターンで通電しているときにどの方向から外乱磁束を受けるか、ということが決まる。次数N1,N2は、バイアス磁石31から発生する磁束φ1とバスバー27などから発生する磁束φ2(外乱磁束)との合成ベクトルに基づき所定の理論式を使用することにより求められる。永久磁石24bが5極対である場合、次数N1は「4」、次数N2は「6」となる。4次の周波数成分および6次の主は数成分の影響が回転角θの誤差として現れる。本例では、式(C)において、右辺第1項は角度誤差の4次の周波数成分を、右辺第2項は角度誤差の6次の周波数成分を表している。
「A1」は次数N1における誤差振幅、「A2」は次数N2における誤差振幅である。これら誤差振幅A1,A2は、モータ20に供給される電流の大きさによって決まる変数である。誤差振幅A1,A2は、たとえば次式(D)で表される。
A1,A2=G√(Id+Iq)…(D)
ただし、「G」は電流に対して線形のゲインである。このゲインGは、図示しないメモリなどの記憶装置に格納されている。
「α1」は、次数N1におけるモータ20の回転角θ(機械角)に対する位相ずれ量(位相誤差)、「α2」は、次数N2におけるモータ20の回転角θに対する位相ずれ量である。正確には、つぎの通りである。
図4のグラフに示されるように、ここでは、バイアス磁石31から発生する磁束φ1(主磁束)の方向変化に応じて磁気センサ32により生成される電気信号(たとえば、sin信号)の波形を基準波形とする。このとき、「α1」は、正弦波で表される角度誤差のN1次成分の基準波形に対する位相のずれ量である。「α2」は、正弦波で表される角度誤差のN2次成分の基準波形に対する位相のずれ量である。これら位相ずれ量α1,α2は、モータ20の構造に起因して一義的に決まる定数であって、図示しないメモリなどの記憶装置に格納されている。
「β1」は、次数N1におけるモータ20の回転角θに対する位相ずれ量(位相誤差)、「β2」は、次数N2におけるモータ20の回転角θに対する位相ずれ量である。これら位相ずれ量β1,β2は、モータ20に供給される電流(正確には、dq座標系におけるd軸電流値Idおよびq軸電流値Iq)に起因して決まる変数である。補正角度演算部57は、つぎのようにして位相ずれ量β1,β2を演算する。
図5のグラフに示すように、補正角度演算部57は、dq座標系における原点を始点とするd軸電流値Idとq軸電流値Iqとの合成ベクトルがq軸(Id=0)となす角度を位相ずれ量β1,β2として演算する。次式(E)で表されるように、補正角度演算部57は、d軸電流値Idおよびq軸電流値Iqに基づく逆正接値を演算することにより、電流に起因する位相ずれ量β1,β2を演算する。
β1,β2=arctan(Id/Iq)…(E)
なお、式(C)は、2つの周波数成分を合成したものとして表記されているところ、考慮する周波数成分の個数に応じて、次式(C1)のように1つの周波数成分で表記してもよいし、次式(C2)のように3つ以上の周波数成分を合成したものとして表記してもよい。
θr=A・sin(N・θ+ε) …(C1)
θr=A1・sin(N1・θ+ε1)+A2・sin(N2・θ+ε2)+…+An・sin(Nn・θ+εn)…(C2)
ただし、次数N(N,N…N)におけるモータ20の回転角θに対する位相ずれ量ε(ε,ε…ε)は、構造起因の位相ずれ量α(α,α…α)および電流起因の位相ずれ量β(β,β…β)の両方を含んでいる。
減算器58は、回転角度演算部51により演算される回転角θから補正角度演算部57により演算される補正角度θrを減算することにより、最終的な回転角θを演算する。補正角度θrは外乱磁束に起因する誤差角度(δ1,δ2)でもあるため、磁気センサ32を通じて検出される回転角θから補正角度θrを減算することにより、検出される回転角θに含まれる角度誤差が除去される。
<回転角の補正処理の手順>
つぎに、MPU42により実行される回転角の補正処理の手順を説明する。
図6のフローチャートに示すように、まずMPU42は、角度誤差の主成分の次数N1,N2を記憶装置から読み込む(ステップS101)。また、MPU42は、モータ装置10の構造に起因する位相ずれ量α1,α2も記憶装置から読み込む(ステップS102)。つぎに、MPU42は、d軸電流値Idおよびq軸電流値Iqに基づきモータ20に供給される電流に起因する位相ずれ量β1,β2を演算する(ステップS103)。つぎに、MPU42は、d軸電流値Idおよびq軸電流値Iqに基づき誤差振幅A1,A2を演算する(ステップS104)。つぎに、MPU42は、次数N1,N2、位相ずれ量α1,α2、位相ずれ量β1,β2、誤差振幅A1,A2、および磁気センサ32を通じて検出される実際の回転角θを先の式(C)に適用することにより、補正角度θrを演算する(ステップS105)。最後に、MPU42は、磁気センサ32を通じて検出される回転角θから補正角度θrを減算することにより最終的な回転角θを演算し(ステップS106)、処理を終了する。
<実施の形態の効果>
したがって、本実施の形態によれば、以下の効果を得ることができる。
(1)外乱磁束に起因する誤差角度(δ1,δ2)を補正角度θrとして演算し、当該演算される補正角度θrを、磁気センサ32を通じて検出される回転角θから減算することにより、より正確な回転角θが得られる。誤差角度を含む回転角θ(検出値)から誤差角度が除去されるからである。
(2)外乱磁束の影響を受けることを前提として、MPU42による補正演算を通じて回転角θ(検出値)を補正することにより、バスバー27などの磁気漏洩部分と磁気センサ32との間の距離をより短く設定すること、ひいてはモータ装置10の体格を小さくすることが可能となる。また、バスバー27と磁気センサ32との間の距離あるいは位置関係などに関する設計の自由度も向上する。
(3)外乱磁束に起因して発生する角度誤差(NVの悪化)を低減する方法として、バスバー27などの磁気漏洩部分と磁気センサ32との間の距離を確保することが考えられる。しかしこの場合、磁気漏洩部分と磁気センサ32との間の距離を長くするほど、モータ装置10の体格が大きくなる。この点、本例では、外乱磁束の影響を受けることを前提として、MPU42による補正演算を通じて回転角θ(検出値)が補正される。このため、モータ装置10の体格の大型化が抑えられる。
(4)また、外乱磁束に起因して発生する角度誤差を低減する方法として、バスバー27などの磁気漏洩部分と磁気センサ32との間に磁気シールド(強磁性体)を設けることも考えられる。しかしこの場合、磁気シールドを設ける分、モータ装置10の製品コストが増大することが懸念される。この点、本例では磁気シールドなどの追加部品を設ける必要がないため、モータ装置10の製品コストの増大が抑えられる。
<第2の実施の形態>
つぎに、回転角検出装置をモータ装置に具体化した第2の実施の形態を説明する。本例は、基本的には先の図1〜図3に示される第1の実施の形態と同様の構成を有している。本例は、MPU42により実行される補正角度θrの演算処理の点で第1の実施の形態と異なる。
さて、モータ20へ供給される電流の大きさが小さくなるほど、当該電流に起因する位相ずれ量β1,β2の演算精度、ひいては補正角度θrの演算精度が低下する。このことを前提として、MPU42は、先の図6のフローチャートにおけるステップS105へ処理が移行したとき、図7のフローチャートに示される各処理を実行する。
図7のフローチャートに示すように、MPU42は先のステップS104において演算される誤差振幅A1,A2が振幅しきい値Athよりも小さいかどうかを判定する(ステップS201)。振幅しきい値Athは、要求される位相ずれ量β1,β2の演算精度、あるいは要求される補正角度θrの演算精度を確保する観点に基づき設定される。振幅しきい値Athは、図示しない記憶装置に格納されている。
MPU42は、誤差振幅A1,A2が振幅しきい値Athよりも小さくない旨判定されるとき(ステップS201でNO)、式(C)を使用して補正角度θrを演算し(ステップS202)、当該演算される補正角度θrを図6のフローチャートで示されるメインルーチンへ返す。
MPU42は、誤差振幅A1,A2が振幅しきい値Athよりも小さい旨判定されるとき(ステップS201でYES)、式(C)を使用した補正角度θrの演算を行うことなく補正角度θrの値を「0」に設定し、当該「0」に設定された補正角度θrを図6のフローチャートで示されるメインルーチンへ返す。この場合、磁気センサ32を通じて検出される回転角θがそのまま最終的な回転角θとなる。
なお、誤差振幅A1,A2は、モータ20へ供給される電流の大きさが反映される指標値であって、振幅しきい値Athは指標値しきい値に相当する。
本実施の形態によれば、以下の効果を得ることができる。
(5)ステップS105のサブルーチンとして図7のフローチャートの各処理を実行することは、精度が確保されていない補正角度θrを使用して回転角θ(検出値)を補正することを回避したい場合に好適である。精度が確保されていない補正角度θrを使用して回転角θ(検出値)を補正することにより、最終的な回転角θの演算精度がかえって低下するおそれもない。
ちなみに、誤差振幅A1,A2は、モータ20へ供給される電流の大きさに依存する。すなわち、電流の値が大きくなるほど外乱磁束の影響がより大きくなり、電流の値が小さくなるほど外乱磁束の影響がより小さくなる。このため、誤差振幅A1,A2が小さいときには、外乱磁束の影響も小さく誤差角度もわずかなものとなる。
<第3の実施の形態>
つぎに、回転角検出装置をモータ装置に具体化した第3の実施の形態を説明する。本例は、位相ずれ量β1,β2の演算精度、ひいては補正角度θrの演算精度が確保できない状況であるとき、回転角θ(検出値)の補正を行わないようにすることについては、第2の実施の形態と同様である。本例は、回転角θの補正を行わないようにするための方法が第2の実施の形態と異なる。
MPU42は、先の図6のフローチャートにおけるステップS104へ処理が移行したとき、図8のフローチャートに示される各処理を実行する。
図8のフローチャートに示すように、MPU42は、d軸電流値Idを二乗した値とq軸電流値Iqを二乗した値との合算値「Id+Iq」が電流しきい値Ithよりも小さいかどうかを判定する(ステップS301)。電流しきい値Ithは、要求される位相ずれ量β1,β2の演算精度、あるいは要求される補正角度θrの演算精度を確保する観点に基づき設定される。電流しきい値Ithは、図示しない記憶装置に格納されている。
MPU42は、合算値が電流しきい値Ithよりも小さい旨判定されるとき(ステップS301でYES)、誤差振幅A1,A2の値を「0」に設定し(ステップS302)、当該「0」に設定された誤差振幅A1,A2を図6のフローチャートで示されるメインルーチンへ返す。この場合、誤差振幅A1,A2が「0」であるため、式(C)を使用して演算される補正角度θrも「0」となる。すなわち、磁気センサ32を通じて検出される回転角θがそのまま最終的な回転角θとなる。
MPU42は合算値が電流しきい値Ithよりも小さくない旨判定されるとき(ステップS301でNO)、式(D)を使用して誤差振幅A1,A2を演算し(ステップS303)、当該演算される誤差振幅A1,A2を図6のフローチャートで示されるメインルーチンへ返す。このとき、MPU42は誤差振幅A1,A2に基づき式(C)を使用して補正角度θrを演算する。
なお、合算値「Id+Iq」はモータ20へ供給される電流の大きさが反映される指標値であって、電流しきい値Ithは指標値しきい値に相当する。また、誤差振幅A1,A2が先の式(D)で表されることから、合算値「Id+Iq」は誤差振幅A1,A2の値を反映する値ともいえる。
本実施の形態によれば、以下の効果を得ることができる。
(6)ステップS104のサブルーチンとして図8のフローチャートの各処理を実行することは、精度が確保されていない補正角度θrを使用して回転角θ(検出値)を補正することを回避したい場合に好適である。精度が確保されていない補正角度θrを使用して回転角θ(検出値)を補正することにより、最終的な回転角θの演算精度がかえって低下するおそれもない。
<第4の実施の形態>
つぎに、回転角検出装置をモータ装置に具体化した第4の実施の形態を説明する。
誤差振幅A1,A2およびゲインGは、バイアス磁石31から発生する磁束φ1およびバスバー27などから発生する外乱としての磁束φ2の回転方向に依存する場合がある。このため本例では、モータ20の角速度に基づきモータ20の回転方向を判定し、当該判定される回転方向に応じたゲインGを使用して誤差振幅A1,A2を求める。また、モータ20の回転方向が細かく繰り返し切り替わる事象(チャタリング)に対応するために、角速度が「0」を含む一定範囲の値であるとき、回転角θ(検出値)の補正を行わない。なお、ここではモータ20の角速度が正の値であるとき、モータ20の回転方向は時計回りである。モータ20の角速度が負の値であるとき、モータ20の回転方向は反時計回りである。
図3に示すように、MPU42は微分器59を有している。微分器59はモータ20の回転角θを時間で微分することによりモータ20の角速度ωを演算する。なお、図示しない記憶装置には時計回り(CW)用のゲインG、および反時計回り(CCW)用のゲインGが格納されている。また、図示しない記憶装置には、正の角速度しきい値ωth、および負の角速度しきい値−ωthが格納されている。これら正負の角速度しきい値ωth,−ωthの絶対値は「0」よりも大きな値である。
さて、MPU42は、先の図6のフローチャートにおけるステップS104へ処理が移行したとき、図9のフローチャートに示される各処理を実行する。
図9のフローチャートに示すように、MPU42は、角速度ωが正の角速度しきい値ωth以上であるかどうかを判定する(ステップS401)。
MPU42は、角速度ωが正の角速度しきい値ωth以上である旨判定されるとき(ステップS401でYES)、時計回り用のゲインGを図示しない記憶装置から読み込む(ステップS402)。つぎにMPU42は、式(D)を使用して誤差振幅A1,A2を演算し(ステップS403)、当該演算される誤差振幅A1,A2を図6のフローチャートで示されるメインルーチンへ返す。このとき、MPU42は誤差振幅A1,A2に基づき式(C)を使用して補正角度θrを演算する。
MPU42は、角速度ωが角速度しきい値ωth以上でない旨判定されるとき(ステップS401でNO)、角速度ωが負の角速度しきい値−ωth以下であるかどうかを判定する(ステップS404)。MPU42は、角速度ωが負の角速度しきい値−ωth以下である旨判定されるとき(ステップS404でYES)、反時計回り用のゲインGを図示しない記憶装置から読み込み(ステップS405)、ステップS403へ処理を移行する。
MPU42は、角速度ωが負の角速度しきい値−ωth以下でない旨判定されるとき(ステップS404でNO)、誤差振幅A1,A2の値を「0」に設定し(ステップS406)、当該「0」に設定された誤差振幅A1,A2を図6のフローチャートで示されるメインルーチンへ返す。この場合、誤差振幅A1,A2が「0」であるため、式(C)を使用して演算される補正角度θrも「0」となる。すなわち、磁気センサ32を通じて検出される回転角θがそのまま最終的な回転角θとなる。
本実施の形態によれば、以下の効果を得ることができる。
(7)モータ20の回転方向(CW、CCW)に応じてゲインGを切り替えることにより、より適切な誤差振幅A1,A2を演算することができる。ひいては、モータ20の回転方向に応じた、より適切な補正角度θrを演算することができる。したがって、より適切な補正角度θrを使用することにより、より適切に回転角θ(検出値)を補正することができる。
(8)また、図10に示すように、角速度ωが負の角速度しきい値−ωthと正の角速度しきい値ωthとの間の領域の値であるとき、誤差振幅A1,A2が「0」とされることにより補正角度θrは「0」となる。このような回転角θ(検出値)の補正処理が行われない、いわゆる不感帯を設けることにより、角速度ωが「0」付近において正の値と負の値との間で細かく繰り返し切り替わる事象、すなわちモータ20の回転方向が細かく繰り返し切り替わる事象(チャタリング)に対応することができる。なお、モータの角速度ωが遅くなるほど、NV(NV:Noise and Vibration)性能に対する角度誤差の影響が問題にならなくなる。このため、モータ20の角速度ωが「0」を基準とする正負の一定範囲の値であるとき、モータ20の回転角θの補正が行われない構成を採用することが可能である。
<第5の実施の形態>
つぎに、回転角検出装置をモータ装置に具体化した第5の実施の形態を説明する。本例は、第3の実施の形態に第4の実施の形態を適用した形態である。
MPU42は、図8のフローチャートにおけるステップS303へ処理を移行したとき、図9のフローチャートに示される各処理を実行する。
図11のフローチャートに示すように、MPU42は、合算値「Id+Iq」が電流しきい値Ithよりも小さくない旨判定されるとき(ステップS301でNO)、角速度ωが正の角速度しきい値ωth以上であるかどうかを判定する(ステップS401)。この後、MPU42は、ステップS402〜ステップS406の各処理を通じて誤差振幅A1,A2を演算する、または誤差振幅A1,A2を「0」に設定する。MPU42は、演算または設定される誤差振幅A1,A2を図6のフローチャートで示されるメインルーチンへ返す。
本実施の形態によれば、第3の実施の形態の(6)、および第4の実施の形態の(7),(8)と同様の効果を得ることができる。
<他の実施の形態>
なお、各実施の形態は、つぎのように変更して実施してもよい。
・各実施の形態では、式(D)を使用して誤差振幅A1,A2を求めたが、電流センサ43を通じて検出される3相各相の電流値Iu,Iv,Iwに基づき次式(F)を使用して誤差振幅A1,A2を求めてもよい。
A1,A2=G√(Iu+Iv+Iw)…(F)
・各実施の形態では、式(D)を使用して誤差振幅A1,A2を求めたが、マップ演算により誤差振幅A1,A2を求めてもよい。たとえば、つぎの2つの方法が考えられる。
第1のマップ演算方法では、図12のグラフに示すように、横軸を電流値(d軸電流値Idを二乗した値とq軸電流値Iqを二乗した値との合算値の平方根)「√(Id+Iq)」、縦軸を誤差振幅A1,A2とするマップM1を設ける。マップM1は、ゲインGを加味し、電流値が大きくなるほど誤差振幅A1,A2の値が直線的に増加する特性を有している。MPU42は、マップM1を使用することにより誤差振幅A1,A2をより簡単に演算することができる。
第2のマップ演算方法では、図13のグラフに示すように、横軸を電流値(d軸電流値Idを二乗した値とq軸電流値Iqを二乗した値との合算値)の大きさ「Id+Iq」、縦軸を誤差振幅A1,A2とするマップM2を設ける。マップM2は、電流値が大きくなるほど誤差振幅A1,A2の値が曲線的に増加する特性を有している。電流値に対する誤差振幅A1,A2の変化割合(傾き)は、電流値が増加するにつれて徐々に大きくなる。マップM2を使用して誤差振幅A1,A2を演算することにより、MPU42の演算負荷を軽減することができる。平方根の演算を行わなくてもよいからである。
・各実施の形態では、位相ずれ量β1,β2を加味して補正角度θrを演算したが、最終的に要求される回転角θの演算精度に応じて、位相ずれ量β1,β2を加味せず補正角度θrを演算するようにしてもよい。このようにすれば、d軸電流値Idおよびq軸電流値Iqに基づく逆正接値を演算する必要がない分、MPU42の演算負荷を低減することができる。
・各実施の形態では、磁気センサ32としてMRセンサを採用したが、当該MRセンサに代えてホールセンサを採用してもよい。
20…モータ、22…ステータ、22b…ステータコイル、23…出力軸、24…ロータ、26…回転角検出装置を構成する基板、31…回転角検出装置を構成するバイアス磁石、32…回転角検出装置を構成する磁気センサ、40…回転角検出装置を構成する制御回路、A1,A2…誤差振幅(指標値)、Ath…振幅しきい値(指標値しきい値)、Id…d軸電流値、Iq…q軸電流値、Id…d軸電流指令値(目標値)、Iq…q軸電流指令値(目標値)、α1,α2…位相ずれ量(第1の位相ずれ量)、β1,β2…位相ずれ量(第2の位相ずれ量)、ε…位相ずれ量、ω…角速度、ωth…角速度しきい値。

Claims (6)

  1. コイルが巻回されたステータと、前記ステータの内部に設けられたロータと、前記ロータに貫通した状態で固定された出力軸とを有するモータの回転角検出装置であって、
    前記出力軸の端部に固定された磁石と、
    前記出力軸の軸方向において前記磁石に対向して設けられて前記磁石の回転に伴う磁界の変化に応じた電気信号を生成する磁気センサと、
    前記磁気センサにより生成される電気信号に基づき前記出力軸の回転角をモータの回転角として演算し当該回転角に応じて前記コイルへの給電を制御する制御回路と、
    前記磁気センサおよび前記制御回路が設けられるとともに前記出力軸の軸方向に沿って延在するバスバーを介して前記コイルに接続されている基板と、を備え、
    前記制御回路は、前記バスバーを介した前記コイルへの給電に伴い前記バスバーまたは前記コイルから発生する外乱磁束に起因する誤差角度を前記回転角に対する補正角度として演算し、当該補正角度を使用して前記回転角を補正することを前提として、
    前記制御回路は、前記誤差角度が前記モータの回転角の関数として正弦波で表記することができることを利用して前記補正角度を演算するものであって、
    前記補正角度を「θr」、前記モータの回転角を「θ」、前記誤差角度の主成分次数を「N」、次数Nにおける誤差振幅を「A」、次数Nにおける前記モータの回転角に対する位相ずれ量を「ε」とするとき、
    前記制御回路は、次式(1)
    θr=A 1 ・sin(N 1 ・θ+ε 1 )+…+A n ・sin(N n ・θ+ε n ) …(1)
    に基づき前記補正角度を演算し、
    前記位相ずれ量は、前記モータの構造に起因して一義的に決まる定数により表される第1の位相ずれ量と、前記コイルへ供給される電流の大きさに起因して決まる変数により表される第2の位相ずれ量とを含む回転角検出装置。
  2. 請求項1に記載の回転角検出装置において、
    前記制御回路は、前記コイルへ供給される電流の大きさが反映される指標値が、前記第2の位相ずれ量の演算精度を確保する観点に基づき設定される指標値しきい値よりも小さいとき、前記補正角度を零とする回転角検出装置。
  3. 請求項に記載の回転角検出装置において、
    前記指標値は、前記コイルへ供給される電流の大きさに基づき演算される前記誤差振幅である回転角検出装置。
  4. 請求項に記載の回転角検出装置において、
    前記制御回路は、前記モータの回転角を使用して前記コイルに供給される相電流の値をd/q座標系におけるd軸電流値およびq軸電流値に変換し、これらd軸電流値およびq軸電流値をそれぞれの目標値に追従させるべく電流フィードバックを実行するものであるとき、
    前記指標値は、前記d軸電流値を二乗した値と前記q軸電流値を二乗した値との合算値である回転角検出装置。
  5. 請求項1〜請求項のうちいずれか一項に記載の回転角検出装置において、
    前記制御回路は、補正前の前記回転角に基づき前記モータの角速度を演算し、当該角速度の絶対値が角速度しきい値未満であるとき、前記補正角度を零とする回転角検出装置。
  6. 請求項に記載の回転角検出装置において、
    前記制御回路は、前記角速度の絶対値が角速度しきい値以上であるとき、前記角速度の正負の符号に基づく前記モータの回転方向を加味して前記補正角度を演算する回転角検出装置。
JP2016021850A 2016-02-08 2016-02-08 回転角検出装置 Active JP6710994B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021850A JP6710994B2 (ja) 2016-02-08 2016-02-08 回転角検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021850A JP6710994B2 (ja) 2016-02-08 2016-02-08 回転角検出装置

Publications (2)

Publication Number Publication Date
JP2017143603A JP2017143603A (ja) 2017-08-17
JP6710994B2 true JP6710994B2 (ja) 2020-06-17

Family

ID=59627956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021850A Active JP6710994B2 (ja) 2016-02-08 2016-02-08 回転角検出装置

Country Status (1)

Country Link
JP (1) JP6710994B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551613B2 (ja) 2016-10-19 2019-07-31 日本精工株式会社 センサの組付け構造体、電動モータ、及び電動パワーステアリング装置
US11038444B2 (en) 2017-08-18 2021-06-15 Infineon Technologies Ag Generation of motor drive signals with misalignment compensation
JP2019097257A (ja) * 2017-11-20 2019-06-20 オムロンオートモーティブエレクトロニクス株式会社 磁極方向検出装置
CN108448987B (zh) * 2018-04-11 2021-04-16 长沙理工大学 三相永磁同步电机扰动感知控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668866B2 (ja) * 1999-07-02 2005-07-06 トヨタ自動車株式会社 交流モータの電気制御装置
JP2005065349A (ja) * 2003-08-11 2005-03-10 Hitachi Ltd 同期モータ制御装置
JP5338031B2 (ja) * 2007-02-09 2013-11-13 株式会社日立製作所 電動駆動装置
JP5626592B2 (ja) * 2011-08-08 2014-11-19 アイシン・エィ・ダブリュ株式会社 制御装置
KR101885009B1 (ko) * 2013-08-26 2018-08-02 미쓰비시덴키 가부시키가이샤 위치 검출기의 각도 오차 보정 장치 및 각도 오차 보정 방법
JP6281688B2 (ja) * 2014-02-04 2018-02-21 日立オートモティブシステムズ株式会社 モータ制御装置およびパワーステアリング装置

Also Published As

Publication number Publication date
JP2017143603A (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
JP5679136B2 (ja) 回転角検出装置、および、回転角検出装置を備えた電動パワーステアリング装置
US9973128B2 (en) Control device
US10871365B2 (en) Angle detection device and electric power steering apparatus
JP6710994B2 (ja) 回転角検出装置
JP5273451B2 (ja) モータ制御装置
US10298157B2 (en) Brushless motor and electric power steering apparatus
JP6238264B2 (ja) 交流回転機の制御装置
JP2008011627A (ja) モータ制御装置
US10666170B2 (en) Failure determination device for angle detector of rotating machine and failure determination method
KR20180008790A (ko) 전력 변환 장치 및 모터 구동 장치
JP2016128772A (ja) 回転角検出装置
US10505482B2 (en) Magnetic pole direction detection device
JP6796573B2 (ja) 磁極方向検出装置
KR101941976B1 (ko) 전동기 제어장치
JP6551473B2 (ja) 制御装置及び制御方法
JP2005168195A (ja) インバータ制御装置及びインバータ制御方法並びに記憶媒体
JP2005218277A (ja) ブラシレスモータの回転トルク方向検出装置
JP2010268599A (ja) 永久磁石モータの制御装置
US11390316B2 (en) Control device for AC rotary machine and control device for electric power steering
JP5652701B2 (ja) モータ駆動制御装置
WO2023175935A1 (ja) モータ制御装置、磁極位置計算方法
JP2022131446A (ja) モータ制御装置
JP7321385B2 (ja) 回転機の制御装置
JP2023136019A (ja) モータ制御装置
JP2022067712A (ja) 電流検出装置及び交流回転機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6710994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150