JP6941078B2 - 可変バルブタイミング機構の制御装置及び制御方法 - Google Patents

可変バルブタイミング機構の制御装置及び制御方法 Download PDF

Info

Publication number
JP6941078B2
JP6941078B2 JP2018112924A JP2018112924A JP6941078B2 JP 6941078 B2 JP6941078 B2 JP 6941078B2 JP 2018112924 A JP2018112924 A JP 2018112924A JP 2018112924 A JP2018112924 A JP 2018112924A JP 6941078 B2 JP6941078 B2 JP 6941078B2
Authority
JP
Japan
Prior art keywords
value
detection value
motor
phase detection
differential term
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018112924A
Other languages
English (en)
Other versions
JP2019214974A (ja
Inventor
真 實石
真 實石
宜彦 松尾
宜彦 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2018112924A priority Critical patent/JP6941078B2/ja
Priority to US17/251,637 priority patent/US11230988B2/en
Priority to CN201980038954.2A priority patent/CN112292513B/zh
Priority to PCT/JP2019/006402 priority patent/WO2019239636A1/ja
Priority to DE112019002971.1T priority patent/DE112019002971B4/de
Publication of JP2019214974A publication Critical patent/JP2019214974A/ja
Application granted granted Critical
Publication of JP6941078B2 publication Critical patent/JP6941078B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L2013/10Auxiliary actuators for variable valve timing
    • F01L2013/103Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/09Calibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/042Crankshafts position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、可変バルブタイミング機構の制御装置及び制御方法に関し、詳しくは、操作量のノイズを低減する技術に関する。
特許文献1が開示する可変バルブタイミング装置は、内燃機関の高回転域では、クランクシャフトとカムシャフトとの回転位相差に基づいてバルブタイミングを検出し、内燃機関の低回転域では、モータ回転角信号により検知されるアクチュエータの作動量に基づいて回転位相変化量を逐次演算し、回転位相変化量の積算値に基づいて実際のバルブタイミングを検出する。
特開2007−292038号公報
ところで、クランクシャフトに対するカムシャフトの回転位相をモータの回転によって可変とする可変バルブタイミング機構の制御において、モータの回転角に基づき求めた回転位相を、クランクシャフトの回転角とカムシャフトの回転角との相対関係に基づき求めた回転位相に基づき校正して回転位相を検出すれば、検出応答性と検出精度とを両立させることが可能となる。
しかし、回転位相の検出値が校正処理に伴ってステップ的に変化することで、回転位相の検出値と目標回転位相との偏差、更には、当該偏差の変化速度に比例する微分項が急変し、微分項を含むモータ操作量にノイズが発生する。
そして、モータの操作量にノイズが生じると、可変バルブタイミング機構の制御性が悪化するという問題があった。
本発明は、従来の実情に鑑みてなされたものであり、その目的は、回転位相の検出値の校正処理に伴ってモータの操作量にノイズが発生することを抑止して、可変バルブタイミング機構の制御性の低下を抑制できる、可変バルブタイミング機構の制御装置及び制御方法を提供することにある。
そのため、本願発明に係る可変バルブタイミング機構の制御装置は、その一態様として、モータの回転角に基づき求められる回転位相の第1検出値を、クランクシャフトの回転角とカムシャフトの回転角との相対関係に基づき求められる回転位相の第2検出値に基づき校正し、前記第1検出値と目標回転位相との偏差の変化速度に比例する微分項を含む操作量に基づき前記モータを制御する制御装置において、前記第1検出値が校正されるときに前記微分項の変化を抑制するようにした。
また、本願発明に係る可変バルブタイミング機構の制御方法は、その一態様として、モータの回転角に基づき回転位相の第1検出値を求めるステップと、クランクシャフトの回転角とカムシャフトの回転角との相対関係に基づき前記回転位相の第2検出値を求めるステップと、前記第2検出値の更新タイミングで前記第1検出値を前記第2検出値に基づき校正するステップと、前記第1検出値と目標回転位相との偏差の変化速度に比例する微分項を求めるステップと、前記微分項を含む操作量に基づき前記モータを制御するステップと、前記第1検出値が校正されるときに前記操作量に用いる前記微分項の変化を抑制するステップと、を含む。
上記発明によると、回転位相の検出値の校正処理に伴ってモータの操作量にノイズが発生することを抑止して、可変バルブタイミング機構の制御性の低下を抑制できる。
車両用内燃機関の一態様を示すシステム構成図である。 クランク角信号POS及びカム角信号CAMの出力パターンの一態様を示すタイムチャートである。 可変バルブタイミング機構の一態様を示す断面図である。 図3に示した可変バルブタイミング機構のA−A線断面図である。 図3に示した可変バルブタイミング機構のB−B線断面図である。 ECM及び電動VTCドライバの制御機能の一態様を示す機能ブロック図である。 位相検出値の校正処理に伴う微分項の変動を示すタイムチャートである。 位相検出値の校正処理及びモータ操作量の算出処理の手順を示すフローチャートである。 位相検出値の校正処理及びモータ操作量の算出処理の手順を示すフローチャートである。 モータ操作量の微分項として前回値を用いる処理を説明するためのタイムチャートである。 位相検出値の校正処理及びモータ操作量の算出処理の手順を示すフローチャートである。 位相検出値の校正処理及びモータ操作量の算出処理の手順を示すフローチャートである。
以下に本発明の実施の形態を説明する。
図1は、可変バルブタイミング機構を備えた車両用内燃機関の一態様を示す図である。
図1の内燃機関101は、吸気ダクト102に吸入空気量センサ103を備え、吸入空気量センサ103は、内燃機関101の吸入空気流量QAを検出する。
吸気バルブ105は、各気筒の燃焼室104の吸気口を開閉する。
燃料噴射装置の一態様である燃料噴射弁106は、各気筒の吸気ポート102a内に燃料としてのガソリンを噴射する。
燃料噴射弁106が噴射した燃料は、吸気バルブ105を介して燃焼室104内に空気と共に吸引され、点火プラグ107による火花点火によって着火燃焼する。
そして、燃焼圧力がピストン108をクランクシャフト109に向けて押し下げ、クランクシャフト109を回転駆動する。
また、排気バルブ110は、燃焼室104の排気口を開閉し、排気バルブ110が開くことで燃焼室104内の排ガスが排気管111に排出される。
三元触媒などの触媒を内蔵する触媒コンバータ112は排気管111に設置される。
吸気バルブ105は、クランクシャフト109によって回転駆動される吸気カムシャフト115aの回転に伴って開動作する。また、排気バルブ110は、クランクシャフト109によって回転駆動される排気カムシャフト115bの回転に伴って開動作する。
可変バルブタイミング機構114は、アクチュエータとしてのモータ12の回転速度によってクランクシャフト109に対する吸気カムシャフト115aの回転位相を変化させることで、機関バルブである吸気バルブ105のバルブタイミングを連続的に変化させる機構である。
また、点火モジュール116は点火プラグ107に直付けされ、点火プラグ107に点火エネルギーを供給する。点火モジュール116は、点火コイル及び点火コイルへの通電を制御するパワートランジスタを備える。
内燃機関101の運転を制御する制御装置は、燃料噴射弁106による燃料噴射や点火プラグ107による点火などを制御するエンジン・コントロール・モジュール(以下、ECMと称する)201と、可変バルブタイミング機構114を制御する電動VTCドライバ202とを含む。
ECM201は、マイクロコンピュータ201aを備えた電子制御装置であり、電動VTCドライバ202は、マイクロコンピュータ202aを備えた電子制御装置である。
ECM201は、各種センサの信号を入力し、予めメモリに格納されたプログラムに従って演算処理を行うことで、燃料噴射弁106、点火モジュール116などの操作量を演算して出力する。
また、電動VTCドライバ202は、ECM201が送信する信号などを受け、予めメモリに格納されたプログラムに従って演算処理を行うことで、可変バルブタイミング機構114の操作量を演算して出力する。
ECM201と電動VTCドライバ202とは、CAN(Controller Area Network)などの通信回路211を介して相互に通信可能に構成されている。
上記の各種センサとして、内燃機関101は、吸入空気量センサ103の他、クランクシャフト109の所定角度位置毎にクランク角信号POSを出力するクランク角センサ203、アクセルペダル207の踏込み量、換言すればアクセル開度ACCを検出するアクセル開度センサ206、吸気カムシャフト115aの所定角度位置毎にカム角信号CAMを出力するカム角センサ204、内燃機関101の冷却水の温度TWを検出する水温センサ208、触媒コンバータ112の上流の排気管111に設置され、排気中の酸素濃度に基づいて空燃比AFを検出する空燃比センサ209などを備える。
ECM201は、これら各種センサの信号を入力し、更に、内燃機関101の運転及び停止のメインスイッチであるイグニッションスイッチ(換言すれば、エンジンスイッチ)205の信号を入力する。
可変バルブタイミング機構114は、モータ12の出力軸の回転角に応じてモータ角信号MASを出力するモータ角センサ210を備える。
そして、電動VTCドライバ202は、モータ角センサ210からモータ角信号MASを入力し、クランク角センサ203のクランク角信号POSを入力する。
なお、電動VTCドライバ202は、ECM201を介してクランク角信号POSを入力することができ、また、クランク角センサ203からクランク角信号POSを直接入力することができる。
図2は、クランク角信号POS及びカム角信号CAMの出力パターンの一態様を示す。
クランク角信号POSは、図2に示すように、単位クランク角毎のパルス信号であって、気筒間の行程位相差に相当するクランク角毎に、1個若しくは連続する複数個のパルスが欠落するように信号出力パターンが設定される。
クランク角信号POSの出力周期である単位クランク角は、例えばクランク角10degであり、また、気筒間の行程位相差は点火間隔に相当し、4気筒直列機関ではクランク角180degになる。
なお、クランク角センサ203を、欠落箇所の設定がない単位クランク角毎のクランク角信号POSと、気筒間の行程位相差に相当するクランク角毎の基準クランク角信号REFとをそれぞれ出力するセンサとすることができる。
ここで、クランク角信号POSの欠落箇所若しくは基準クランク角信号REFの出力位置は、各気筒のピストンが基準ピストン位置に位置していることを表す。つまり、クランク角信号POSの欠落箇所の情報は、ECM201において、基準クランク角信号REFの代わりとして基準クランク角位置の検出に用いられる。
一方、カム角センサ204は、気筒間の行程位相差に相当するクランク角毎にカム角信号CAMを出力する。
吸気カムシャフト115aは、クランクシャフト109の回転速度の半分の速度で回転する。このため、内燃機関101が4気筒直列機関で、気筒間の行程位相差に相当するクランク角が180degである場合、クランク角180degは吸気カムシャフト115aの回転角90degに相当することになる。つまり、カム角センサ204は、吸気カムシャフト115aが90deg回転する毎にカム角信号CAMを出力する。
カム角センサ204が出力するカム角信号CAMは、ECM201において、基準ピストン位置に位置している気筒の検出(以下、気筒判別ともいう)に用いられる信号である。
そのため、カム角センサ204は、4気筒直列機関では、クランク角180deg毎に気筒番号を区別できる数のカム角信号CAMを出力する。
一例として、カム角センサ204は、クランク角180deg毎に、1個のパルス信号、連続する2個のパルス信号、連続する2個のパルス信号、1個のパルス信号をこの順で出力する。
ECM201は、クランク角180deg毎に出力されるカム角信号CAMのパルス数を計数することで、基準ピストン位置に位置している気筒が4気筒のうちのいずれの気筒であるかを検出する気筒判別処理を実施する。
そして、ECM201は、気筒判別の結果に基づき、燃料噴射や点火を行わせる気筒を特定し、燃料噴射弁106、点火モジュール116を気筒別に制御する。
なお、気筒判別処理のためのカム角信号CAMのパルス数の設定は上記のパターンに限定されるものではない。
また、カム角信号CAMのパルス数に代えてカム角信号CAMのパルス幅や振幅で気筒判別が実施できるように、カム角センサ204の出力特性を設定することができる。
図3−図5は、可変バルブタイミング機構114の構造の一態様を示す。
但し、可変バルブタイミング機構114の構造は、図3−図5に例示したものに限定されず、モータの回転速度によってクランクシャフトに対するカムシャフトの回転位相を可変とする公知の可変バルブタイミング機構を適宜採用できる。
図3−図5に示した可変バルブタイミング機構114は、内燃機関101のクランクシャフト109によって回転駆動される駆動回転体であるタイミングスプロケット1と、シリンダヘッド上に軸受44を介して回転自在に支持され、タイミングスプロケット1から伝達された回転力によって回転する吸気カムシャフト115aと、タイミングスプロケット1の前方位置に配置されて、チェーンカバー40にボルトによって固定されたカバー部材3と、タイミングスプロケット1と吸気カムシャフト115aの間に配置されて、タイミングスプロケット1に対する吸気カムシャフト115aの回転位相を変更する位相変更装置4と、を備える。
タイミングスプロケット1は、スプロケット本体1aと、スプロケット本体1aの外周に一体に設けられて、巻回されたタイミングチェーン42を介してクランクシャフト109からの回転力を受けるギア部1bと、で構成される。
また、タイミングスプロケット1は、スプロケット本体1aの内周に形成された円形溝1cと吸気カムシャフト115aの前端部に一体に設けられたフランジ部2aの外周との間に介装された第3ボールベアリング43によって、吸気カムシャフト115aに回転自在に支持されている。
スプロケット本体1aの前端部外周縁には、環状突起1eが一体に形成されている。
スプロケット本体1aの前端部には、環状突起1eの内周に同軸に位置決めされ内周に波形状の噛み合い部である内歯19aが形成された環状部材19と、円環状のプレート6とが、ボルト7によって軸方向から共締め固定されている。
また、スプロケット本体1aの内周面の一部には、図5に示すように、円弧状の係合部であるストッパ凸部1dが、周方向に沿って所定範囲に亘り形成されている。
プレート6の前端外周には、位相変更装置4を構成する減速機8やモータ12などを覆う円筒状のハウジング5がボルト11によって固定されている。
なお、モータ12は、可変バルブタイミング機構114のアクチュエータである。
ハウジング5は、鉄系金属によって形成されてヨークとして機能し、前端に円環プレート状のハウジング保持部5aを一体に有すると共に、ハウジング保持部5aを含めた外周全体がカバー部材3によって所定の隙間をもって覆われるように配置されている。
吸気カムシャフト115aは、外周に吸気バルブ105を開作動させる駆動カム(図示省略)を有すると共に、前端部に従動回転体である従動部材9がカムボルト10によって軸方向から結合されている。
また、吸気カムシャフト115aのフランジ部2aには、図5に示すように、スプロケット本体1aのストッパ凸部1dが係入する係止部であるストッパ凹溝2bが円周方向に沿って形成されている。
このストッパ凹溝2bは、円周方向に沿って所定長さの円弧状に形成され、この長さ範囲内で回動したストッパ凸部1dの両端縁が周方向の対向縁2c、2dにそれぞれ当接することによって、タイミングスプロケット1に対する吸気カムシャフト115aの進角方向及び遅角方向の相対回転位置を機械的に規制するようになっている。
つまり、ストッパ凸部1d及びストッパ凹溝2bで機械的ストッパが構成され、ストッパ凸部1dがストッパ凹溝2b内で移動できる角度範囲が、可変バルブタイミング機構114の作動範囲、換言すれば、クランクシャフト109に対する吸気カムシャフト115aの回転位相の可変範囲となる。
そして、ストッパ凸部1dの端縁がストッパ凹溝2bの対向縁2c、2dの一方に当接する位置が、機械的ストッパで制限されるバルブタイミングの最進角位置となり、他方に当接する位置が、機械的ストッパで制限されるバルブタイミングの最遅角位置となる。
カムボルト10の頭部10aの端縁には、フランジ状の座面部10cが一体に形成される。そして、軸部10bの外周には、吸気カムシャフト115aの端部から内部軸方向に形成された雌ねじ部に螺着する雄ねじ部が形成されている。
従動部材9は、鉄系金属材によって形成され、図4に示すように、前端に形成された円板部9aと、後端に一体に形成された円筒状の円筒部9bとで構成される。
従動部材9の円板部9aには、後端面の径方向ほぼ中央位置に吸気カムシャフト115aのフランジ部2aとほぼ同外径の環状段差突起9cが一体に設けられる。
そして、環状段差突起9cの外周面とフランジ部2aの外周面が第3ボールベアリング43の内輪43aの内周に挿通配置される。第3ボールベアリング43の外輪43bは、スプロケット本体1aの円形溝1cの内周面に圧入固定される。
また、従動部材9の円板部9aの外周部には、複数のローラ34を保持する保持器41が一体に設けられている。
保持器41は、円板部9aの外周部から円筒部9bと同方向に突出し、円周方向のほぼ等間隔の位置に所定の隙間を有して複数の細長い突起部41aが形成されている。
円筒部9bは、中央にカムボルト10の軸部10bが挿通される挿通孔9dが貫通形成され、円筒部9bの外周には第1ニードルベアリング28が設けられる。
カバー部材3は、合成樹脂材によって形成され、カップ状に膨出したカバー本体3aと、カバー本体3aの後端部外周に一体に設けたブラケット3bとで構成される。
カバー本体3aは、位相変更装置4の前端、つまりハウジング5の軸方向の保持部5bから後端部のほぼ全体を、所定隙間をもって覆うように配置される。一方、ブラケット3bは、ほぼ円環状に形成され、6つのボス部にそれぞれボルト挿通孔3fが貫通形成されている。
また、ブラケット3bは、チェーンカバー40に複数のボルト47を介して固定され、カバー本体3aの前端部3cの内周面には、内外2重のスリップリング48a,48bが各内端面を露出した状態で埋設固定されている。
さらに、カバー部材3の上端部には、スリップリング48a,48bに導電部材を介して接続されたコネクタ端子49aを有するコネクタ部49を設けてある。
なお、コネクタ端子49aには、電動VTCドライバ202を介して図外のバッテリー電源からの電力が供給される。
カバー本体3aの後端部の内周面とハウジング5の外周面との間には、シール部材である第1オイルシール50が介装されている。
第1オイルシール50は、横断面がほぼコ字形状に形成され、合成ゴムの基材の内部に芯金が埋設されている。また、第1オイルシール50の外周の円環状基部50aは、カバー本体3a後端部の内周面に形成された円形溝3d内に嵌着固定される。
更に、第1オイルシール50の円環状基部50aの内周には、ハウジング5の外周面に当接するシール面50bが一体に形成されている。
位相変更装置4は、吸気カムシャフト115aのほぼ同軸上前端に配置されたモータ12と、モータ12の回転速度を減速して吸気カムシャフト115aに伝達する減速機8と、で構成される。
モータ12は、例えばブラシ付きのDCモータであって、タイミングスプロケット1と一体に回転するヨークであるハウジング5と、ハウジング5の内部に回転自在に設けられた出力軸であるモータ軸13と、ハウジング5の内周面に固定された半円弧状の一対の永久磁石14,15と、ハウジング保持部5aの内底面に固定された固定子16と、を備えている。
モータ軸13は、筒状に形成されてアーマチュアとして機能し、軸方向のほぼ中央位置の外周に複数の極を持つ鉄心ロータ17が固定され、鉄心ロータ17の外周には電磁コイル18が巻回されている。
また、モータ軸13の前端部外周には、コミュテータ20が圧入固定されており、コミュテータ20には、鉄心ロータ17の極数と同数に分割された各セグメントに電磁コイル18が接続されている。
モータ軸13は、軸部10bの外周面に、第1軸受である第1ニードルベアリング28と該第1ニードルベアリング28の軸方向の側部に配置された軸受である第4ボールベアリング35とを介して回転自在に支持されている。
また、モータ軸13の後端部には、減速機8の一部を構成する円筒状の偏心軸部30が一体に設けられている。
また、モータ軸13の外周面とプレート6の内周面との間には、減速機8内部からモータ12内への潤滑油のリークを阻止する第2オイルシール32が設けられている。
第2オイルシール32は、内周部がモータ軸13の外周面に弾接することによって、モータ軸13の回転に摩擦抵抗を付与する。
減速機8は、偏心回転運動を行う偏心軸部30と、偏心軸部30の外周に設けられた第2軸受である第2ボールベアリング33と、第2ボールベアリング33の外周に設けられたローラ34と、ローラ34を転動方向に保持しつつ径方向の移動を許容する保持器41と、保持器41と一体の従動部材9とで主に構成される。
偏心軸部30の外周面に形成されたカム面の軸心は、モータ軸13の軸心Xから径方向へ僅かに偏心している。なお、第2ボールベアリング33、ローラ34などが遊星噛み合い部として構成されている。
第2ボールベアリング33は、第1ニードルベアリング28の径方向位置で全体がほぼオーバラップする状態に配置される。
そして、第2ボールベアリング33の内輪33aが偏心軸部30の外周面に圧入固定されると共に、第2ボールベアリング33の外輪33bの外周面にはローラ34が常時当接している。
また、外輪33bの外周には円環状の隙間Cが形成され、この隙間Cによって第2ボールベアリング33全体が偏心軸部30の偏心回転に伴って径方向へ移動可能、つまり偏心動可能になっている。
各ローラ34は、第2ボールベアリング33の偏心動に伴って径方向へ移動しつつ環状部材19の内歯19aに嵌入すると共に、保持器41の突起部41aによって周方向にガイドされつつ径方向に揺動運動するようになっている。
減速機8の内部には、潤滑油供給手段によって潤滑油が供給される。
潤滑油供給手段は、シリンダヘッドの軸受44の内部に形成されて図外のメインオイルギャラリーから潤滑油が供給される油供給通路44aと、吸気カムシャフト115aの内部軸方向に形成されて油供給通路44aにグルーブ溝を介して連通した油供給孔48と、従動部材9の内部軸方向に貫通形成されて一端が油供給孔48に開口し他端が第1ニードルベアリング28と第2ボールベアリング33の付近に開口した小径なオイル供給孔45と、同じく従動部材9に貫通形成された図外の大径な3つのオイル排出孔と、から構成されている。
以下では、可変バルブタイミング機構114の作動を説明する。
クランクシャフト109が回転すると、タイミングチェーン42を介してタイミングスプロケット1が回転し、その回転力によりハウジング5、環状部材19及びプレート6を介してモータ12が同期回転する。
一方、環状部材19の回転力が、ローラ34から保持器41及び従動部材9を経由して吸気カムシャフト115aに伝達され、吸気カムシャフト115aが回転する。そして、吸気カムシャフト115aが回転することで、吸気カムシャフト115aに設けたカムが吸気バルブ105を開閉動作させる。
電動VTCドライバ202は、クランクシャフト109に対する吸気カムシャフト115aの回転位相、つまり、吸気バルブ105のバルブタイミングを進角又は遅角させる場合、可変バルブタイミング機構114のモータ12に通電してトルクを発生させる。モータ12の出力トルクは、減速機8を介して吸気カムシャフト115aに伝達される。
すなわち、モータ軸13の回転に伴い偏心軸部30が偏心回転すると、各ローラ34がモータ軸13の1回転毎に保持器41の突起部41aに径方向へガイドされながら環状部材19の1つの内歯19aを乗り越えて隣接する他の内歯19aに転動しながら移動し、これを順次繰り返しながら円周方向へ転接する。
この各ローラ34の転接によってモータ軸13の回転が減速されつつ従動部材9に回転力が伝達される。なお、モータ軸13の回転が従動部材9に伝達されるときの減速比は、ローラ34の個数などによって任意に設定することが可能である。
これにより、吸気カムシャフト115aがタイミングスプロケット1に対して正逆相対回転して回転位相が変換され、吸気バルブ105の開閉タイミングが進角方向あるいは遅角方向に変化する。
つまり、モータ12がタイミングスプロケット1から回転駆動力を受けて従動回転し、モータ軸13がタイミングスプロケット1と同じ回転速度で回転するときは、クランクシャフト109に対する吸気カムシャフト115aの回転位相は変化しない。
一方、モータ12が正転方向の回転トルクを発生し、モータ軸13の回転速度がタイミングスプロケット1の回転速度よりも速くなると、クランクシャフト109に対する吸気カムシャフト115aの回転位相は遅角方向に変化する。
逆に、モータ12が逆転方向の回転トルクを発生し、モータ軸13の回転速度がタイミングスプロケット1の回転速度よりも遅くなると、クランクシャフト109に対する吸気カムシャフト115aの回転位相は進角方向に変化する。
すなわち、可変バルブタイミング機構114は、モータ軸13の回転量とタイミングスプロケット1の回転量との差、換言すれば、モータ軸13のタイミングスプロケット1に対する回転速度に応じてバルブタイミングを進角方向若しくは遅角方向に変化させる機構である。
電動VTCドライバ202は、モータ12の回転速度を調整することによって、クランクシャフト109に対する吸気カムシャフト115aの回転位相を可変に制御する機能をソフトウェアとして備える。ここで、電動VTCドライバ202は、位相検出値RAを目標値TAに近づけるようにモータ12の操作量を演算する、回転位のフィードバック制御を実施する。
ECM201は、内燃機関101の運転状態に基づいて回転位相の目標値TAを演算し、また、クランク角信号POS及びカム角信号CAMに基づいて位相検出値RAP(第2検出値)を演算し、演算した目標値TA及び位相検出値RAPに関する情報を電動VTCドライバ202に送信する。
一方、電動VTCドライバ202は、モータ角センサ210が出力するモータ角信号MASに基づき位相検出値RA(第1検出値)を演算し、位相検出値RAPの更新タイミングで位相検出値RAを位相検出値RAPに基づき校正する。
そして、電動VTCドライバ202は、モータ12の印加電圧を調整するための操作量(駆動デューティ比)を、位相検出値RAと目標値TAとの偏差に基づく比例項(比例成分)、偏差の積分値に基づく積分項(積分成分)、及び、偏差の微分値(変化速度)に基づく微分項(微分成分)に基づき求め、当該操作量によってモータ12を制御する。
つまり、電動VTCドライバ202は、比例動作、積分動作、及び微分動作によってモータ12の操作量(フィードバック操作量)を変化させる所謂PID制御方式によって位相検出値RAを目標値TAに近づけるフィードバック制御を実施する。
但し、フィードバック制御をPID制御方式に限定するものではなく、電動VTCドライバ202は、例えば比例動作と微分動作とを組み合わせたPD制御方式でモータ12を制御することができる。
また、ECM201と電動VTCドライバ202とを一体化した制御ユニット、換言すれば、1つのマイクロコンピュータにおいて、目標値TA、位相検出値RA、位相検出値RAP、及び、操作量の演算を実施することができる。
以下では、図6の制御機能ブロック図を参照しつつ、ECM201及び電動VTCドライバ202による可変バルブタイミング機構114の制御処理を詳細に説明する。
ECM201は、目標値演算部501、回転位相検出部502、CAN入出力回路503、POS信号複製回路504を有する。
目標値演算部501は、内燃機関101の運転状態、例えば、機関負荷、機関回転速度、冷却水温度、機関の始動状態などに基づいて目標値TAを演算し、演算した目標値TAを、CAN入出力回路503を介して電動VTCドライバ202に送信する。
回転位相検出部502は、クランク角センサ203が出力するクランク角信号POS、及び、カム角センサ204のカム角信号CAMを入力し、カム角信号CAMの入力毎に位相検出値RAPを演算し、また、位相検出値RAPの更新タイミングを示す演算タイミング情報CTIを演算する。
回転位相検出部502は、例えば、クランク角信号POSに基づき検出した基準クランク角位置からカム角信号CAMが入力されるまでのクランク角度(deg)を計測することで、カム角信号CAMが入力される毎にクランクシャフト109に対する吸気カムシャフト115aの位相検出値RAP(deg)を演算する。
基準クランク角位置からカム角信号CAMが入力されるまでのクランク角度(deg)の計測において、回転位相検出部502は、クランク角信号POSの入力数の積算値(POSカウント値CPOS)や、機関回転速度(rpm)に基づく経過時間のクランク角度換算値などを用いる。
なお、ECM201は、機関回転速度(rpm)をクランク角信号POSの周期TPOSに基づき算出する。
また、回転位相検出部502は、演算タイミング情報CTIとして、カム角信号CAMを入力した時点でのPOSカウント値CPOSと気筒判別値CYLとを電動VTCドライバ202にCAN入出力回路503を介して送信する(図2参照)。
POSカウント値CPOSは、クランク角信号POSの欠落部に基づき設定される基準クランク角位置からのクランク角信号POSの発生数を計数したものである。
また、気筒判別値CYLは、カム角信号CAMに基づく気筒判別によって所定のピストン位置であることが検出された気筒の番号を示すデータであり、電動VTCドライバ202は、POSカウント値CPOSと気筒判別値CYLとから位相検出値RAPの演算タイミングに相当するクランク角信号POSを識別できる。
POS信号複製回路504は、クランク角センサ203のクランク角信号POSを入力し、複製したクランク角信号POSを電動VTCドライバ202に送信する。
一方、電動VTCドライバ202は、CAN入出力回路601、POS入力回路602、回転位相検出部603、校正処理部604、モーションコントロール部605、PWM出力処理部606、モータ駆動回路607、モータ角入力回路608などを備える。
CAN入出力回路601は、ECM201から送信される、目標値TA、位相検出値RAP、及び演算タイミング情報CTIを入力し、目標値TAをモーションコントロール部605に出力し、位相検出値RAP及び演算タイミング情報CTIを校正処理部604に出力する。
POS入力回路602は、ECM201から送信された複製クランク角信号POSを入力して、複製クランク角信号POSを回転位相検出部603及び校正処理部604に出力する。
回転位相検出部603は、複製クランク角信号POSを入力するとともに、モータ角センサ210のモータ角信号MASをモータ角入力回路608を介して入力し、更に、校正処理部604からの校正指令情報を入力する。
そして、回転位相検出部603は、モータ角信号MASに基づき演算したモータ回転速度と複製クランク角信号POSに基づき演算したタイミングスプロケット1の回転速度との差、及び、位相変更装置4の減速比などに基づいて、演算周期当たりの回転位相の変化量dRAを演算する。
更に、回転位相検出部603は、変化量dRAを積算し、基準の回転位相から変化量dRAの積算値だけ変位した回転位相として位相検出値RAを求める。
校正処理部604は、位相検出値RAPの更新タイミング毎に、位相検出値RAを位相検出値RAPに一致させる校正指令情報を回転位相検出部603に出力する。
校正処理部604から校正指令情報を受けた回転位相検出部603は、位相検出値RAを位相検出値RAPに一致させる位相検出値RAの校正処理を実施し、その後、演算した変化量dRAに基づき位相検出値RAを更新する。
これにより、回転位相検出部603は、位相検出値RAPを基準の回転位相として、位相検出値RAをモータ回転速度に応じて更新することになる。
換言すれば、電動VTCドライバ202は、位相検出値RAPが更新される間、つまり、カム角信号CAMが入力される間での回転位相の変化を、モータ角信号MAS及び複製クランク角信号POSに基づき求めた変化量dRAに基づき補間して、フィードバック制御に用いる位相検出値RAを求める。
図7は、目標値TAが変化したときの過渡状態における、クランク角信号POS及びカム角信号CAMに基づく位相検出値RAPと、モータ角信号MAS及び複製クランク角信号POSに基づく位相検出値RAとの相関を示す。
位相検出値RAPは、カム角信号CAMが入力される毎に更新され、次のカム角信号CAMの入力までの間において前回値を保持することになる。
このため、内燃機関101の回転速度が低く、位相検出値RAPの更新周期であるカム角信号CAMの周期が長くなると、更新直前での位相検出値RAPと実回転位相との乖離が大きくなって、位相検出値RAPに基づきフィードバック制御を実施した場合の応答性、収束性が低下する。
ここで、クランク角信号POS及びカム角信号CAMに基づく位相検出値RAPは絶対値であるのに対し、モータ角信号MAS及び複製クランク角信号POSに基づく位相検出値RAは相対値である。
そして、位相検出値RAは、内燃機関101の回転速度に左右されることなく一定周期での更新が可能である。
したがって、電動VTCドライバ202は、位相検出値RAPの更新タイミング毎に位相検出値RAを位相検出値RAPに校正することで、カム角信号CAMの出力周期の間で検出値を逐次更新できるとともに検出誤差が拡大することを抑止でき、内燃機関101の回転速度が低いときでも目標値TAに向けて応答良く収束させることができる。
回転位相検出部603は、位相検出値RAPによって校正した位相検出値RAを、モーションコントロール部605に出力する。
モーションコントロール部605は、回転位相検出部603が演算した位相検出値RAと、ECM201の目標値演算部501が演算した目標値TAとの偏差を演算し、前述したように、偏差に基づくPID制御方式によってモータ12の指令電圧を設定し、この指令電圧に関する情報をPWM出力処理部606に出力する。
PWM出力処理部606は、入力した指令電圧に基づき、モータ駆動回路607をPWM(Pulse Width Modulation)制御するための駆動パルス信号を出力する。
モータ駆動回路607は、駆動パルス信号に応じてモータ12の通電を制御することで、モータ12の印加電圧を指令電圧に調整する。
ところで、位相検出値RAPの更新タイミング毎に位相検出値RAを位相検出値RAPに校正する処理を実施すると、校正に伴って位相検出値RAがステップ的に変化することで偏差の微分値に基づく微分項が急変し(図7参照)、微分項(微分操作量)を含むモータ操作量にノイズが発生して、可変バルブタイミング機構114の制御性が悪化する可能性がある。
そこで、電動VTCドライバ202(モーションコントロール部605)は、位相検出値RAが校正されるときに係る校正に因る微分項の変化を抑制する処理を実施し、校正処理に伴って可変バルブタイミング機構114の制御性が悪化することを抑止する。
図8のフローチャートは、微分項の変化を抑制する処理の一態様を示す。
なお、図8のフローチャートに示すルーチンは、電動VTCドライバ202が一定時間毎の割込みによって実施する処理を示す。
電動VTCドライバ202は、まず、ステップS301で、カム角信号CAMが入力されたか否か、換言すれば、位相検出値RAPの更新タイミングであって更新した位相検出値RAPに基づき位相検出値RAを校正するタイミングであるか否かを判別する。
そして、位相検出値RAPの更新タイミングであるとき、電動VTCドライバ202は、ステップS302に進み、位相検出値RAを、クランク角信号POS及びカム角信号CAMに基づき求めた位相検出値RAPの最新値に一致させる校正処理を実施した後、ステップS303に進む。
一方、位相検出値RAPの更新タイミングではないとき、電動VTCドライバ202は、ステップS302を迂回してステップS303に進む。
電動VTCドライバ202は、ステップS303で、本ルーチンの前回実行時に演算した微分項を前回値としてメモリに保存する。
次いで、電動VTCドライバ202は、ステップS304で、位相検出値RAと目標値TAとの偏差の微分値に基づき微分項(今回値)を演算する。
そして、電動VTCドライバ202は、ステップS305で、位相検出値RAの校正を実施したか否かを判断する。
ここで、位相検出値RAの校正を実施した場合とは、校正前の位相検出値RAに基づく偏差(前回値)と校正後の位相検出値RAに基づく偏差(今回値)とに基づきステップS304で微分項を演算した状態である。
位相検出値RAの校正を実施した場合、校正処理によって位相検出値RAがステップ的に変化し、ステップS304で今回演算した微分項は前回値から大きく変化している可能性がある。そして、微分項の急激な変化は、モータ12の操作量にノイズを発生させ、回転位相(バルブタイミング)の制御性を悪化させる。
そこで、電動VTCドライバ202は、位相検出値RAの校正を実施した場合、ステップS305からステップS306に進み、ステップS303で保存しておいた微分項の前回値を用いてモータ操作量を演算する。
つまり、電動VTCドライバ202は、校正処理の影響を受けて前回値から急変している可能性がある微分項(微分操作量)を用いず、前回と同じ微分項を用いてモータ操作量を演算することで、位相検出値RAの校正処理に伴ってモータ操作量にノイズが発生することを抑止する。
換言すれば、電動VTCドライバ202は、位相検出値RAを校正するときに、校正前の微分項である前回値を用いてモータ操作量を求めることで、校正前後での微分項の変化を零とし、位相検出値RAの校正処理に伴ってモータ操作量にノイズが発生することを抑止する。
これにより、位相検出値RAの校正処理に伴って微分項が急変しても、吸気バルブ105のバルブタイミングの制御性が悪化することが抑止される。
一方、位相検出値RAの校正タイミングではなく、校正処理によって位相検出値RAがステップ的に変化する状況ではない場合、電動VTCドライバ202は、ステップS307に進み、今回ステップS304で演算した微分項(今回値)を用いてモータ操作量を演算する。
微分項の今回値は、制御エラーの変化速度を正しく反映した真値であり、電動VTCドライバ202は、係る今回値を用いてモータ操作量を求めることで、回転位相の収束安定を図る。
ところで、図8のフローチャートに示した処理では、位相検出値RAの校正処理を行ったときにモータ操作量の演算に用いる微分項を前回値とするが、この場合、微分項が位相検出値RAの校正処理に伴って急変しないときにも、微分項の前回値を用いてモータ操作量を演算することになり、目標値TAへの収束安定性を損なう可能性がある。
ここで、電動VTCドライバ202は、位相検出値RAの校正処理に伴って微分項が所定レベルを超えて急変したか否かを検出し、急変が発生したときは微分項の前回値を用いてモータ操作量を演算し、急変していないときは今回値をそのまま用いてモータ操作量を演算することで、モータ12の操作量にノイズが発生することを抑止しつつ、目標値TAへの収束安定性が損なわれることを可及的に抑止できる。
図9のフローチャートは、位相検出値RAの校正処理に伴う微分項の変化度合を判断して、モータ操作量の演算に微分項の今回値を用いるか前回値を用いるかを切り換える処理の手順を示す。
図9のフローチャートにおいて、ステップS401からステップS405までの各ステップは、前述のステップS301からステップS305までの各ステップと同様な処理であるので、詳細な説明は省略する。
電動VTCドライバ202は、ステップS405で位相検出値RAの校正を実施したと判断すると、ステップS406に進む。
電動VTCドライバ202は、ステップS406で、微分項の今回値と前回値との偏差の絶対値ΔDTが所定値SL以上であるか否かを判断することで、位相検出値RAの校正処理に伴って微分項に設定レベルを超える変化が発生したか否かを判断する。
なお、ステップS406において、前回値とは位相検出値RAの校正前の微分項で、今回値とは位相検出値RAの校正前の微分項であり、今回値と前回値との偏差は、校正前後における微分項の変化量を表すことになる。
上記の所定値SLは、モータ操作量に重畳するノイズがバルブタイミングの制御性を悪化させるレベルになるか否かを区別できるように適合され、ΔDTが所定値SL以上である状態は、ノイズに因る制御性の低下が容認できないレベルになることを表す。
電動VTCドライバ202は、ΔDTが所定値SL以上である場合、ステップS407に進み、ステップS403で保存しておいた微分項の前回値(換言すれば、変化が抑制された微分項)を用いてモータ操作量を演算する。
つまり、電動VTCドライバ202は、位相検出値RAの校正前後での微分項の変化量が所定値SL未満になるように、モータ操作量の演算に用いる微分項の変化を抑制する。
電動VTCドライバ202は、微分項の前回値を用いてモータ操作量を演算することで、モータ操作量の演算に用いる微分項の変化を抑制し、微分項の急変によってモータ操作量にノイズが生じることで制御性が低下することを抑止する。
一方、電動VTCドライバ202は、ΔDTが所定値SL未満である場合、ステップS408に進み、今回ステップS404で演算した微分項(今回値)を用いてモータ操作量を演算する。
微分項の今回値は、制御エラーの変化速度を正しく反映した真値であり、電動VTCドライバ202は、位相検出値RAを校正するときであっても、モータ操作量の演算に用いる微分項の変化量が所定値SL未満になる場合は、今回値をそのまま用いてモータ操作量を求めることで、回転位相の収束安定を図る。
以上のように、電動VTCドライバ202は、位相検出値RAの校正を実施したときであっても、位相検出値RAの校正に伴う微分項の変化が小さく、微分項の今回値を用いてモータ操作量を演算してもモータ操作量のノイズによる制御性の低下が十分に抑えられるときには、微分項の今回値を用いてモータ操作量を演算する。
これにより、微分項の前回値を用いてモータ操作量が演算される状態を必要最小限に抑制でき、微分項の前回値に基づくモータ操作量の演算によって目標値TAへの収束安定性が損なわれることを抑止できる。
図10のタイムチャートは、電動VTCドライバ202が図9のフローチャートに示した処理を実施したときの位相検出値RA及び微分項の変化を例示する。
図10の時刻t1において、クランク角信号POS及びカム角信号CAMに基づく位相検出値RAPが更新され、電動VTCドライバ202は、モータ角信号MAS及び複製クランク角信号POSに基づく位相検出値RAを更新後の位相検出値RAPに一致させる位相検出値RAの校正処理を実施する。
係る校正処理に伴って位相検出値RAがステップ的に変化することで微分項が急変し、微分項の今回値と前回値との偏差の絶対値ΔDTが所定値SL以上になると、電動VTCドライバ202は、モータ操作量の演算に微分項の前回値を用いることで、モータ操作量のノイズを抑制する。
電動VTCドライバ202は、図9のフローチャートに示した処理の場合、位相検出値RAを校正したときの微分項の今回値と前回値との偏差の絶対値ΔDTが所定値SL以上であるか否かに応じて、モータ操作量の演算に用いる微分項を今回値と前回値とに切り換えるが、微分項の今回値と前回値との中間値(今回値を減率した値)をモータ操作量の演算に用いることも可能である。
図11のフローチャートに示すルーチンは、位相検出値RAを校正したときの微分項の今回値と前回値との偏差の絶対値ΔDTの大きさに応じて、微分項の今回値と前回値との中間値をモータ操作量の演算に用いるようにしたモータ操作量の演算処理を示す。
図11のフローチャートにおいて、ステップS701からステップS705までの各ステップは、前述のステップS301からステップS305までの各ステップと同様な処理であるので、詳細な説明は省略する。
電動VTCドライバ202は、ステップS705で位相検出値RAの校正を実施したと判断すると、ステップS706に進む。
電動VTCドライバ202は、ステップS706で、微分項の今回値と前回値との偏差の絶対値ΔDTが第1所定値SLA以上であるか否かを判断する。
ここで、ΔDTが所定値SLA以上である場合、つまり、位相検出値RAの校正に伴う微分項の急変が顕著である場合、電動VTCドライバ202は、ステップS707に進み、ステップS703で保存しておいた微分項の前回値を用いてモータ操作量を演算する。
一方、ΔDTが所定値SLA未満である場合、電動VTCドライバ202は、ステップS708に進み、ΔDTが第2所定値SLB(SLB<SLA)以上であるか否かを判断する。
そして、ΔDTが所定値SLA未満でかつ所定値SLB以上である場合、つまり、位相検出値RAの校正に伴う微分項の急変が比較的軽微である場合、電動VTCドライバ202は、ステップS709に進む。
電動VTCドライバ202は、ステップS709で、微分項の今回値と前回値との中間値、換言すれば、今回値を前回値に近づけるように減率した結果を用いてモータ操作量を演算する。
これにより、位相検出値RAの校正量が比較的小さいときにも、微分項の前回値を用いてモータ操作量が演算されることで、目標値TAの収束安定性が損なわれることを抑制できる。
また、電動VTCドライバ202は、位相検出値RAの校正を実施していないときはステップS705からステップS710に進み、ΔDTが所定値SLB未満であって位相検出値RAの校正に伴う微分項の変化が無視できる程度に小さい場合もステップS708からステップS710に進む。
電動VTCドライバ202は、ステップS710で、今回ステップS704で演算した微分項(今回値)を用いてモータ操作量を演算する。
このように、図11のフローチャートに示す処理の場合、電動VTCドライバ202は、位相検出値RAの校正に伴う微分項のステップ変化の大きさに応じて、前回値、今回値、中間値のいずれかを用いてモータ操作量を演算する。
したがって、位相検出値RAの校正に伴う微分項のステップ変化が比較的小さい場合は、モータ操作量のノイズを抑制しつつ、偏差の変化速度に応じた微分動作をある程度実施して目標値TAへの収束安定性を向上させることができる。
ところで、カム角信号CAMの入力間隔角度にセンサの機械的な位置精度に起因するばらつきがあると、係る角度ばらつきによって位相検出値RAPがカム角信号CAMの入力毎にばらつき、カム角信号CAMの入力毎に位相検出値RAと位相検出値RAPとの間にずれが生じ、モータ操作量にノイズを生じさせることになる。
そして、内燃機関101の回転速度が速くなるほどカム角信号CAMの入力間隔時間が短くなって、校正処理に伴うノイズの発生頻度はより増加し、バルブタイミング制御に対するノイズの影響が拡大する。
係るカム角信号CAMの入力間隔のばらつきを要因としてノイズが高い頻度で発生することを抑制するため、電動VTCドライバ202は、位相検出値RAの校正をカム角信号CAMが入力される毎(位相検出値RAPの更新毎)に毎回実施するのではなく、一部のカム角信号CAMの入力時に校正を実施して他のカム角信号CAMの入力時に校正を見送る、校正の間引きを行うことができる。
詳細には、電動VTCドライバ202は、内燃機関101の高回転域において、特定の1つのカム角信号CAM(換言すれば、特定の1気筒が基準ピストン位置であることを示すカム角信号CAM)が入力されたときに位相検出値RAの校正処理を実施し、他のカム角信号CAMの入力時には校正処理を実施しない。
なお、電動VTCドライバ202は、特定の1つのカム角信号CAMが入力されたときに限定して位相検出値RAの校正処理を実施する場合、吸気カムシャフト115aの1回転当たり1回だけ、位相検出値RAの校正処理を実施することになる。
一方、電動VTCドライバ202は、カム角信号CAMが入力される毎(位相検出値RAPの更新毎)に位相検出値RAの校正処理を実施する場合、図2の信号パターンとなる4気筒機関では、吸気カムシャフト115aの1回転当たり位相検出値RAの校正処理を4回実施することになる。
図12のフローチャートは、校正処理の間引きとして、内燃機関101の高回転域において特定の1つのカム角信号CAMが入力されたときに限定して位相検出値RAの校正処理を実施する場合におけるモータ操作量の演算手順を示す。
電動VTCドライバ202は、まず、ステップS801で、内燃機関101の回転速度が設定速度を超えているか否かを判断する。
前記設定速度は、カム角信号CAM毎の校正処理によってフィードバック制御性が許容範囲を超えて低下するか否かを判断するための閾値である。
つまり、カム角信号CAM毎に校正処理が実施される場合、内燃機関101の回転速度が高くなるほどカム角信号CAMの入力間隔のばらつきを要因とするノイズの発生頻度が高くなってフィードバック制御性が低下することになる。
そこで、カム角信号CAM毎に校正処理を実施する場合に、カム角信号CAMの入力間隔のばらつきによるノイズが発生してもフィードバック制御性の低下が容認できる範囲内に止まる回転速度の上限値を前記設定速度とする。
ここで、内燃機関101の回転速度が設定速度以下である場合、電動VTCドライバ202は、ステップS802に進み、カム角信号CAMが入力されたか否か、つまり、位相検出値RAPの更新タイミングであって更新した位相検出値RAPに基づき位相検出値RAを校正するタイミングであるか否かを判別する。
そして、カム角信号CAMが入力されると、電動VTCドライバ202は、ステップS804に進み、位相検出値RAを、クランク角信号POS及びカム角信号CAMに基づき求めた位相検出値RAPの最新値に一致させる校正処理を実施する。
つまり、内燃機関101の回転速度が設定速度以下である場合、電動VTCドライバ202は、カム角信号CAMが入力される毎(位相検出値RAPの更新毎)に位相検出値RAの校正処理を実施する。
一方、内燃機関101の回転速度が設定速度を超える場合、電動VTCドライバ202は、ステップS801からステップS803に進む。
電動VTCドライバ202は、ステップS803で、特定の1つのカム角信号CAMが入力されたか否かを判断し、特定の1つのカム角信号CAMが入力されたときに、ステップS804に進んで、位相検出値RAを位相検出値RAPに一致させる校正処理を実施する。
内燃機関101が4気筒機関であるとき、電動VTCドライバ202は、例えば、第1気筒が基準ピストン位置であることを示すカム角信号CAMが入力されたか否かをステップS803で判断する。
そして、電動VTCドライバ202は、第1気筒が基準ピストン位置であることを示すカム角信号CAMが入力されたときに、ステップS804に進んで位相検出値RAの校正処理を実施する。
一方、電動VTCドライバ202は、第2−第4気筒が基準ピストン位置であることを示すカム角信号CAMが入力されたときは、ステップS804を迂回し、位相検出値RAの校正処理を実施しない。
つまり、電動VTCドライバ202は、内燃機関101の回転速度が高いときに、カム角信号CAMの入力時における位相検出値RAの校正処理を間引いて実施し、校正処理の頻度、引いてはノイズの発生頻度を低下させる。換言すれば、電動VTCドライバ202は、内燃機関101の回転速度の増大に対して位相検出値RAの校正頻度を低下させる。
電動VTCドライバ202は、位相検出値RAの校正処理を特定の1つのカム角信号CAMが入力されたときに限定して実施することで、カム角信号CAMの入力間隔角度のばらつきによって校正処理に用いる位相検出値RAPがばらつくことを抑制でき、これによって、校正処理に伴う微分項の変化を抑制し、また、高頻度にモータ操作量のノイズが生じることを抑制できる。
以上のようにして位相検出値RAの校正処理を実施した後、電動VTCドライバ202は、ステップS805−ステップS812で、前述のステップS703−ステップS710と同様に、微分項の前回値の保存、微分項の今回値の算出、微分項の変化量に応じた微分項の選定処理を実施する。
上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合わせて使用することができる。
また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
例えば、微分項の変化を抑制する方法として、電動VTCドライバ202(可変バルブタイミング機構の制御装置)は、微分項のローパスフィルタ処理や加重平均処理などを実施することができる。
また、内燃機関101の高回転域における位相検出値RAの校正処理の間引きは、特定の1つのカム角信号CAMが出力されたときに限定して校正処理を実施するパターンの他、例えば4気筒機関において2つの気筒或いは3つの気筒に対応するカム角信号CAMが入力されたときに校正処理を実施するパターンとすることができる。
更に、電動VTCドライバ202は、内燃機関101の回転速度が高くなるほど、校正処理の頻度を段階的により低く変化させることができる。
電動VTCドライバ202が、位相検出値RAの校正処理をカム角信号CAM毎に行わずに間引いて実施することで、操作量ノイズが高頻度で発生することを抑止でき、操作量ノイズによる制御性の低下を抑制できる。
また、可変バルブタイミング機構114は、図3−図5に示した機構に限定されず、例えば特開2008−069719号公報に開示される、スプロケット、カムプレート、リンク装置、ガイドプレート、減速機、及びモータで構成される可変バルブタイミング装置などを採用することができる。
また、可変バルブタイミング機構114を、クランクシャフト109に対する排気カムシャフト115bの回転位相を変化させる機構として内燃機関101に設けることができ、この場合も、ECM201及び電動VTCドライバ202は、上記と同様な構成及び処理によって可変バルブタイミング機構114を制御して、同様な作用効果を奏することができる。
また、電動VTCドライバ202は、位相検出値RAに基づくモータ制御を内燃機関101が所定速度以下である低回転域で実施し、前記所定速度を上回る高回転域であって位相検出値RAPが短い周期で更新されるときに、位相検出値RAPに基づきモータ制御を実施することができる。
また、電動VTCドライバ202は、位相検出値RAを位相検出値RAPに一致させる校正処理を実施するときに、校正処理後の位相検出値RAを用いて演算した微分項を含んで求めたモータ操作量について変化を抑制する処理(ローパスフィルタ処理)を施し、当該処理後のモータ操作量に基づきモータ12を制御することができる。
12…モータ、101…内燃機関、105…吸気バルブ、109…クランクシャフト、114…可変バルブタイミング機構、115a…吸気カムシャフト、201…ECM(エンジン・コントロール・モジュール)、202…電動VTCドライバ、203…クランク角センサ、204…カム角センサ、210…モータ角センサ




Claims (5)

  1. 内燃機関のクランクシャフトに対するカムシャフトの回転位相をモータの回転によって可変とする可変バルブタイミング機構の制御装置であって、
    前記モータの回転角に基づき求められる前記回転位相の第1検出値を、前記クランクシャフトの回転角と前記カムシャフトの回転角との相対関係に基づき求められる前記回転位相の第2検出値に基づき校正し、
    前記第1検出値と目標回転位相との偏差の変化速度に比例する微分項を含む操作量に基づき前記モータを制御する制御装置において、
    前記第1検出値が校正されるときに前記微分項の変化を抑制する、
    可変バルブタイミング機構の制御装置。
  2. 前記第1検出値の校正前後での前記微分項の変化量が所定値未満になるように前記微分項の変化を抑制する、
    請求項1記載の可変バルブタイミング機構の制御装置。
  3. 前記微分項の変化の抑制は、前記第1検出値の校正前の前記微分項を用いて前記操作量を求めることを含む、
    請求項1又は請求項2記載の可変バルブタイミング機構の制御装置。
  4. 前記内燃機関の回転速度の増大に対して前記第1検出値の校正頻度を低下させる、
    請求項1から請求項3のいずれか1つに記載の可変バルブタイミング機構の制御装置。
  5. 内燃機関のクランクシャフトに対するカムシャフトの回転位相をモータの回転によって可変とする可変バルブタイミング機構の制御方法であって、
    前記モータの回転角に基づき前記回転位相の第1検出値を求めるステップと、
    前記クランクシャフトの回転角と前記カムシャフトの回転角との相対関係に基づき前記回転位相の第2検出値を求めるステップと、
    前記第2検出値の更新タイミングで前記第1検出値を前記第2検出値に基づき校正するステップと、
    前記第1検出値と目標回転位相との偏差の変化速度に比例する微分項を求めるステップと、
    前記微分項を含む操作量に基づき前記モータを制御するステップと、
    前記第1検出値が校正されるときに前記操作量に用いる前記微分項の変化を抑制するステップと、
    を含む、可変バルブタイミング機構の制御方法。
JP2018112924A 2018-06-13 2018-06-13 可変バルブタイミング機構の制御装置及び制御方法 Active JP6941078B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018112924A JP6941078B2 (ja) 2018-06-13 2018-06-13 可変バルブタイミング機構の制御装置及び制御方法
US17/251,637 US11230988B2 (en) 2018-06-13 2019-02-20 Control device and control method for variable valve timing mechanism
CN201980038954.2A CN112292513B (zh) 2018-06-13 2019-02-20 可变阀正时机构的控制装置以及控制方法
PCT/JP2019/006402 WO2019239636A1 (ja) 2018-06-13 2019-02-20 可変バルブタイミング機構の制御装置及び制御方法
DE112019002971.1T DE112019002971B4 (de) 2018-06-13 2019-02-20 Steuervorrichtung und Steuerverfahren für einen variablen Ventilsteuermechanismus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018112924A JP6941078B2 (ja) 2018-06-13 2018-06-13 可変バルブタイミング機構の制御装置及び制御方法

Publications (2)

Publication Number Publication Date
JP2019214974A JP2019214974A (ja) 2019-12-19
JP6941078B2 true JP6941078B2 (ja) 2021-09-29

Family

ID=68843202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018112924A Active JP6941078B2 (ja) 2018-06-13 2018-06-13 可変バルブタイミング機構の制御装置及び制御方法

Country Status (5)

Country Link
US (1) US11230988B2 (ja)
JP (1) JP6941078B2 (ja)
CN (1) CN112292513B (ja)
DE (1) DE112019002971B4 (ja)
WO (1) WO2019239636A1 (ja)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850598B2 (ja) * 1999-10-07 2006-11-29 株式会社日立製作所 内燃機関のベーン式バルブタイミング制御装置
US6766775B2 (en) * 2001-11-01 2004-07-27 Ford Global Technologies, Llc Method and system for increasing the estimation accuracy of cam phase angle in an engine with variable cam timing
JP4072346B2 (ja) * 2002-01-16 2008-04-09 株式会社日立製作所 可変バルブタイミング機構の制御装置
JP3927434B2 (ja) * 2002-03-29 2007-06-06 株式会社日立製作所 電動アクチュエータ駆動制御装置
JP3625456B2 (ja) * 2002-07-16 2005-03-02 三菱電機株式会社 内燃機関のバルブタイミング制御装置
WO2004038200A1 (ja) * 2002-10-25 2004-05-06 Denso Corporation 内燃機関の可変バルブタイミング制御装置
JP4123127B2 (ja) * 2002-10-25 2008-07-23 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
DE102004062406B4 (de) * 2004-12-23 2007-08-09 Siemens Ag Verfahren und Vorrichtung zum Ermitteln einer Phase einer Brennkraftmaschine
JP4609278B2 (ja) * 2005-10-24 2011-01-12 トヨタ自動車株式会社 内燃機関の可変バルブタイミング制御装置及びその可変バルブタイミング制御装置を備えた内燃機関
JP4699310B2 (ja) 2006-03-27 2011-06-08 トヨタ自動車株式会社 可変バルブタイミング装置
JP4786390B2 (ja) * 2006-03-30 2011-10-05 トヨタ自動車株式会社 可変バルブタイミング装置
JP4767096B2 (ja) * 2006-06-09 2011-09-07 トヨタ自動車株式会社 可変バルブタイミング装置
JP4171036B2 (ja) 2006-09-14 2008-10-22 トヨタ自動車株式会社 可変バルブタイミング装置
JP5263047B2 (ja) * 2009-07-20 2013-08-14 株式会社デンソー 機関バルブ制御装置
JP6266364B2 (ja) * 2014-01-30 2018-01-24 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102014204492A1 (de) * 2014-03-12 2015-10-01 Volkswagen Aktiengesellschaft Kraftfahrzeug, Steuergerät und Verfahren zum Steuern einer Phasenlage einer Nockenwelle
JP6331963B2 (ja) * 2014-10-22 2018-05-30 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
KR101634546B1 (ko) * 2015-10-05 2016-06-29 주식회사 현대케피코 전자식 연속 가변 밸브 타이밍 조정 장치 및 방법

Also Published As

Publication number Publication date
DE112019002971T5 (de) 2021-02-25
US20210246846A1 (en) 2021-08-12
WO2019239636A1 (ja) 2019-12-19
US11230988B2 (en) 2022-01-25
DE112019002971B4 (de) 2022-03-31
CN112292513A (zh) 2021-01-29
JP2019214974A (ja) 2019-12-19
CN112292513B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
KR101958373B1 (ko) 내연 기관의 가변 밸브 타이밍 기구 제어 장치 및 제어 방법
US9151239B2 (en) Control device and method for controlling variable valve timing mechanism in internal combustion engine
JP6266364B2 (ja) 内燃機関の制御装置
JP6378112B2 (ja) 回転検出異常診断装置及び方法とそれを用いた回転位置制御装置
JP4267635B2 (ja) 可変バルブタイミング装置
CN112996996B (zh) 可变气门正时机构的控制装置及其控制方法
CN109790796B (zh) 可变气门正时装置的控制装置以及控制方法
JP6739377B2 (ja) 内燃機関の制御装置及び制御方法
JP6027494B2 (ja) 可変バルブタイミング機構の制御装置
JP6941078B2 (ja) 可変バルブタイミング機構の制御装置及び制御方法
WO2021002252A1 (ja) 可変バルブタイミング機構の制御装置及びその制御方法
US9284891B2 (en) Control apparatus and control method for variable valve mechanism
JP2007255410A (ja) 可変バルブタイミング装置
WO2020162308A1 (ja) 可変バルブタイミング装置の制御装置及び制御方法
JP6672393B2 (ja) バルブタイミングの制御装置
WO2022249612A1 (ja) 可変バルブタイミング機構の制御装置及び制御方法
JP7324378B2 (ja) 可変バルブタイミング機構の制御装置及びその制御方法
JP2018123806A (ja) 内燃機関の制御装置及び内燃機関の可変機構の制御方法
JP2024054013A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210903

R150 Certificate of patent or registration of utility model

Ref document number: 6941078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150