JP6921260B2 - 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法 - Google Patents

複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法 Download PDF

Info

Publication number
JP6921260B2
JP6921260B2 JP2020047575A JP2020047575A JP6921260B2 JP 6921260 B2 JP6921260 B2 JP 6921260B2 JP 2020047575 A JP2020047575 A JP 2020047575A JP 2020047575 A JP2020047575 A JP 2020047575A JP 6921260 B2 JP6921260 B2 JP 6921260B2
Authority
JP
Japan
Prior art keywords
memory
partition
command
address
memory array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020047575A
Other languages
English (en)
Other versions
JP2020107360A (ja
Inventor
カワミ,シェコウフェ
サンダラム,ラジェシュ
Original Assignee
マイクロン テクノロジー,インク.
マイクロン テクノロジー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン テクノロジー,インク., マイクロン テクノロジー,インク. filed Critical マイクロン テクノロジー,インク.
Publication of JP2020107360A publication Critical patent/JP2020107360A/ja
Application granted granted Critical
Publication of JP6921260B2 publication Critical patent/JP6921260B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30145Instruction analysis, e.g. decoding, instruction word fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0215Addressing or allocation; Relocation with look ahead addressing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/06Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication
    • G06F12/0646Configuration or reconfiguration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0644Management of space entities, e.g. partitions, extents, pools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Software Systems (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Memory System (AREA)
  • Static Random-Access Memory (AREA)
  • Storage Device Security (AREA)

Description

<相互参照>
特許のための本出願は、それぞれ本出願の譲受人に譲渡された、2017年4月18日に出願した、「Memory Access Techniques in Memory Devices with Multiple Partitions」という名称のPCT出願第PCT/US2017/028177号の優先権を主張するものであり、このPCT出願第PCT/US2017/028177号は、2016年5月3日に出願した、Qawamiらの「Memory Access Techniques in Memory Devices with Multiple Partitions」という名称の米国特許出願第15/145,628号の優先権を主張するものであり、これらの各々は、参照によりその全体が本明細書に明確に組み込まれている。
以下は、一般にメモリデバイスに関し、より詳細には、複数のパーティションを有するメモリデバイスにおける有効なメモリアクセス技法に関する。
メモリデバイスは、コンピュータ、無線通信デバイス、カメラ、およびデジタルディスプレイなどの様々な電子デバイスに情報を記憶するために広く使用されている。情報は、メモリデバイスの異なる状態をプログラミングすることによって記憶される。例えば二進デバイスは、論理「1」または論理「0」でしばしば表される2つの状態を有している。他のシステムでは、3つ以上の状態を記憶することができる。記憶された情報にアクセスするために、電子デバイスの構成要素は、メモリデバイスに記憶されている状態を読み出すか、または感知することができる。情報を記憶するために、電子デバイスの構成要素は、状態をメモリデバイスに書き込むか、またはプログラムすることができる。
磁気ハードディスク、ランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)、同期ダイナミックRAM(SDRAM)、強誘電体RAM(FeRAM)、磁気RAM(MRAM)、抵抗性RAM(RRAM)、リードオンリーメモリ(ROM)、フラッシュメモリ、相変化メモリ(PCM)、3D交点(3DXP)メモリなどを含む、複数のタイプのメモリデバイスが存在している。メモリデバイスは、揮発性または不揮発性であってもよい。不揮発性メモリ、例えばPCMは、外部電力源がない場合であっても、長期間、それらの記憶されている論理状態を維持することができる。揮発性メモリデバイス、例えばDRAMは、それらが外部電力源によって周期的にリフレッシュされない限り、時間の経過につれてそれらの記憶されている状態を失うことになる。メモリデバイスの改善は、とりわけ、記憶セル密度を高くすること、読出し/書込み速度を速くすること、信頼性を高くすること、データ保存を向上させること、電力消費を低減すること、または製造コストを削減することを含み得る。
また、メモリデバイスは、メモリデバイス内のいくつかの異なるパーティションの中にデータを記憶することも可能である。個々のパーティションは、例えばコントローラ論理およびデータバッファなどの記憶セルおよび他の論理を含むことができる。個々のパーティションは、独立して読み出し、または書き込むことができ、複数のパーティションへの同時アクセスを許容する。メモリデバイスにアクセスする場合、メモリコントローラは、読出しコマンド、書込みコマンド、リフレッシュコマンドなどのコマンドと共に、パーティション中の1つまたは複数の記憶セルに対するメモリアドレスを使用することができる。比較的長期間にわたる記憶のために使用されるメモリデバイス(例えば固体ドライブ、ハードドライブ、光学ドライブなど)は、しばしば「ストレージ」サブシステムと呼ばれ、また、ピンの数が比較的少ない、より低い帯域幅バスを使用してこのようなストレージサブシステムをプロセッサと結合させることができる。比較的短期間の記憶のために使用されるメモリデバイス(例えばキャッシュまたはランダムアクセスメモリ)は、しばしば「メモリ」サブシステムと呼ばれ、また、ピンの数が比較的多い、より高い帯域幅バスを使用してこのようなメモリサブシステムをプロセッサと結合させることができる。いくつかのシステムでは、コマンドは、より低い帯域幅バスを使用して、複数のクロックサイクルにわたってストレージサブシステムに送ることができ、また、メモリサブシステムに送られる同様のコマンドは、より高い帯域幅バスを介して、より少ないクロックサイクルを使用することができる。
相変化メモリおよび3DXPメモリは、比較的新しいメモリ類であり、不揮発性の場合もあり、また、他のメモリデバイスと比較すると、改良された読出し/書込み速度および耐久性を提供することができる。このようなメモリデバイスは、いくつかの事例では、メモリサブシステムまたはストレージサブシステムに使用することができる。いくつかの事例では、異なるバスアーキテクチャを有する相変化メモリデバイスまたは3DXPメモリデバイスを提供することは技術的に実行不可能であり、あるいは非常に高額な費用が掛かり得る。その代わりに、コマンドおよびデータ転送のための他の技法がメモリデバイスコストを削減することができ、あるいは性能を向上させることができる。
本発明の一態様に係る、メモリシステムを操作する方法は、連続するメモリアクセスコマンドのための、第1のメモリパーティション及び第2のメモリパーティションの各々における同一の記憶場所を特定することであって、前記第1のメモリパーティション及び前記第2のメモリパーティションは1つのメモリアレイ内に含まれる、ことと、前記第1のメモリパーティションにおける前記記憶場所と、実施される機能とを特定するメモリアクセスコマンドを、前記メモリアレイへ送信することと、前記メモリアクセスコマンドのものと同じ記憶場所及び機能が前記第2のメモリパーティションで使用されることを示す次のパーティションコマンドを、前記メモリアレイへ送信することであって、前記次のパーティションコマンドは、前記第2のメモリパーティションの前記記憶場所のメモリアドレスを含まない、ことと、を含む。
本明細書における開示は以下の図を参照し、また、以下の図を含む。
本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法をサポートする、複数のパーティションを有するメモリアレイを含むシステムを示す図である。 本開示の様々な実施形態による、メモリアクセス技法をサポートする複数のパーティションを有する一例示的メモリデバイスを示す図である。 本開示の様々な実施形態による、メモリデバイスのための一例示的制御/アドレスバスピンおよびコマンドアドレスサイクルを示す図である。 本開示の様々な実施形態による、全コマンドおよびアドレス伝送を使用した制御/アドレスバスピンのためのタイミング図の一例を示す図である。 本開示の様々な実施形態による、次のパーティションコマンドを使用した制御/アドレスバスピンのためのタイミング図の一例を示す図である。 本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスに使用することができる一例示的3D交点メモリアレイを示す図である。 本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスに使用することができる一例示的メモリアレイを示す図である。 本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスに使用することができるメモリアレイのブロック図である。 本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスにおけるメモリアクセス方法を示すフローチャートである。 本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスにおけるメモリアクセス方法を示すフローチャートである。
開示される装置および技法は、記憶セルの複数のパーティションを有するメモリデバイスへの有効なアクセスのために提供される。上で示したように、ストレージサブシステム内で動作するメモリデバイスは、メモリサブシステム内で動作するメモリデバイスとは異なる要求事項を有することができる。上でも示したように、3D交点(3Dクロスポイント、3DXP)メモリは、メモリサブシステム内またはストレージサブシステム内のいずれかのいくつかの計算プラットフォームに使用することができる。本開示の様々な実施形態は、同じメモリデバイスダイをメモリサブシステムまたはストレージサブシステムのいずれかに使用することができるよう、複数のパーティションを有するメモリデバイスと結合されたコマンド/アドレス(C/A)バスの効率を改善するための技法を提供する。
いくつかの実施形態では、メモリデバイスは、記憶セルの複数のパーティションを有することができ、また、記憶セルの個々のパーティションは、いくつかの異なる記憶場所を含むことができる。個々のパーティションのための記憶場所の数は、記憶セルの複数のパーティションにわたって同じであってもよい。メモリデバイスは、いくつかの実施形態では、ダイナミックランダムアクセスメモリ(DRAM)、不揮発性ランダムアクセスメモリ(NVRAM)、リードオンリーメモリ(ROM)および3DXPメモリからなるグループから選択することができる。コマンドおよび関連する記憶場所アドレスは、第1のパーティションの提供された記憶場所で第1のアクションを実施するようにメモリデバイスに命令することができるメモリデバイスと関連した操作命令デコーダ(動作命令デコーダ)に提供することができる。いくつかの実施形態では、操作命令デコーダは、特定のメモリパーティションと関連した局所コントローラに含めるか、複数のメモリパーティションと関連したメモリコントローラに含めることができ、あるいはメモリパーティションから分離したコントローラ内に存在し得る。いくつかの実施形態では、後続するコマンドは、第2のメモリパーティションの、先行するコマンドの中に提供された第1のパーティションの記憶場所と同じ記憶場所で第1のアクションを実施するための「次のパーティション」コマンドを含むことができる。
このような技法は、複数のパーティションにわたって反復されるメモリコマンドと関連したクロックサイクルの数を少なくすることによってメモリサブシステム内またはストレージサブシステム内のいずれかで機能することができるメモリデバイスを提供することができ、したがってより高い帯域幅を有し、一方ではC/Aバスのための比較的少ない数のピンを有するメモリを提供する。このような技法は、いくつかの例では、アドレスおよびコマンドを反復する必要がないことを前提とすることにより、連続的な読出しコマンドおよび書込みコマンドのためのC/Aバス効率を改善することができる。これは、他の操作(動作)およびデバイス管理に使用するための追加C/Aバスサイクルを提供することができる。
以下、上で紹介した特徴(feature)および技法について、メモリアレイの文脈でさらに説明される。次に、複数のパーティションを有する3DXPメモリデバイスにおけるメモリアクセス技法のための特定の例が説明される。本開示のこれらおよび他の特徴は、複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法に関連する装置図、システム図およびフローチャートによってさらに示され、また、これらを参照してさらに説明される。
図1は、本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスにおける有効なメモリアクセスをサポートするシステム100の図を示したものである。システム100は、様々な構成要素を接続し、または様々な構成要素を物理的に支持するプリント回路基板であり得るか、あるいはプリント回路基板を含むことができるデバイス105を含むことができる。デバイス105はメモリアレイ110を含むことができる。メモリアレイ110は、メモリコントローラ150、メモリパーティション0 155−aないしメモリパーティションn 155−nを含む複数のメモリパーティション155を含むことができる。個々のメモリパーティション155は記憶セル160を含むことができる。デバイス105は、プロセッサ115、BIOS構成要素120、(1つ以上の)周辺構成要素125および入力/出力制御構成要素130をも含むことができる。デバイス105の構成要素は、バス135を介して互いに電子通信することができる。
プロセッサ115は、メモリコントローラ150を介してメモリアレイ110を動作させるように構成することができる。いくつかの事例では、プロセッサ115は、メモリコントローラ150の機能を実施する。他の事例では、メモリコントローラ150はプロセッサ115の中に統合することができる。プロセッサ115は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、書替え可能ゲートアレイ(FPGA:field−programmable gate array)または他のプログラマブル論理デバイス、離散ゲートまたはトランジスタ論理、離散ハードウェア構成要素であってもよく、あるいはプロセッサ115は、これらのタイプの構成要素の組合せであってもよく、また、プロセッサ115は、複数のパーティション155にわたる記憶場所にアクセスするための有効なメモリアクセス技法を含む、本明細書において説明される様々な機能を実施することができる。プロセッサ115は、例えばメモリアレイ110に記憶されているコンピュータ可読命令を実行して、デバイス105に様々な機能またはタスクを実施させるように構成することができる。
BIOS構成要素120は、システム100の様々なハードウェア構成要素を初期化し、かつ、動かすことができるファームウェアとして動作する基本入力/出力システム(BIOS)を含むソフトウェア構成要素であってもよい。BIOS構成要素120は、プロセッサ115と様々な構成要素、例えば周辺構成要素125、入力/出力制御構成要素130などとの間のデータフローを管理することも可能である。BIOS構成要素120は、リードオンリーメモリ(ROM)、フラッシュメモリまたは任意の他の不揮発性メモリに記憶されているプログラムまたはソフトウェアを含むことができる。
周辺構成要素125は、任意の入力または出力デバイスであっても、あるいはデバイス105の中に統合されるこのようなデバイスのためのインタフェースであってもよい。例は、ディスクコントローラ、音声コントローラ、グラフィックスコントローラ、イーサネットコントローラ、モデム、ユニバーサルシリアルバス(USB)コントローラ、シリアルポートまたはパラレルポート、あるいは周辺構成要素相互接続(PCI)スロットまたはアクセラレーテッドグラフィックスポート(AGP)スロットなどの周辺カードスロットを含むことができる。
入力/出力制御構成要素130は、プロセッサ115と周辺構成要素125、入力140または出力145との間のデータ通信を管理することができる。入力/出力制御構成要素130は、デバイス105の中には統合されていない周辺装置をも管理することができる。いくつかの事例では、入力/出力制御構成要素130は、外部周辺装置への物理的接続またはポートを表すことができる。
入力140は、デバイス105またはその構成要素に入力を提供する、デバイス105の外部のデバイスまたは信号を表すことができる。これは、ユーザインタフェースまたは他のデバイスとのインタフェース、あるいは他のデバイス間のインタフェースを含むことができる。いくつかの事例では、入力140は、周辺構成要素125を介してデバイス105とインタフェースする周辺装置であってもよく、あるいは入力/出力制御構成要素130によって管理することができる。
出力145は、デバイス105または任意のその構成要素から出力を受け取るように構成された、デバイス105の外部のデバイスまたは信号を表すことができる。出力145の例は、ディスプレイ、音響スピーカ、印刷デバイス、別のプロセッサまたはプリント回路基板などに送られるデータまたは信号を含むことができる。いくつかの事例では、出力145は、周辺構成要素125を介してデバイス105とインタフェースする周辺装置であってもよく、あるいは入力/出力制御構成要素130によって管理することができる。
メモリコントローラ150、デバイス105およびメモリアレイ110の構成要素は、それらの機能を実施するように設計された回路機構で構築することができる。これは、様々な回路要素、例えば導電線、トランジスタ、コンデンサ、インダクタ、抵抗器、増幅器または本明細書において説明される機能を実施するように構成された他の能動素子または受動素子を含むことができる。
いくつかの実施形態では、メモリアレイ110は、メモリサブシステムおよびストレージサブシステムの両方における使用に柔軟性のある3DXPダイであってもよく、また、デバイス105は、メモリサブシステムまたはストレージサブシステムと共に統合することができ、あるいはメモリサブシステムまたはストレージサブシステムとして動作することができる。メモリアレイ110は、マルチクロックサイクルC/Aバスを介してバス135とインタフェースすることができる。メモリコントローラ150は、パーティション0 155−aなどの現在のパーティションからのアレイコマンドを反復することができる次のパーティションコマンドを使用することにより、比較的少ない数のピンを有することができる、C/Aバス上に強化された帯域幅を提供するように構成することができ、パーティションn 155−nなどの異なるパーティションにおけるすべての同じアドレスビットは、次のパーティションコマンドによって特定される。このような次のパーティションコマンドは、本明細書においてより詳細に論じられるように、完全な命令および記憶場所情報を含むコマンドよりも少ないクロックサイクルを使用することができる。
図2は、本開示の様々な実施形態による、メモリアクセス技法をサポートする複数のパーティションを有する一例示的メモリデバイス200を示したものである。この例におけるメモリデバイス200は、コマンド/アドレス(C/A)バス205およびデータバス210とインタフェースすることができる。上で示したように、コマンド情報およびコマンド情報と関連したメモリアドレス情報を提供するために使用することができるC/Aバス205上のピンの数を比較的少ない数に維持することが望ましい場合がある。いくつかの例では、C/Aバス205は5個のピンを含むことができ、また、コマンドおよびアドレスは、C/Aバス205を介して、複数のクロックサイクルにわたって通信することができる。データバス210は、いくつかの例では8個のピンを含むことができ、また、メモリアレイ110−aにデータを通信し、また、メモリアレイ110−aからデータを通信するために使用することができる。図1のメモリアレイ110の一例であってもよいメモリアレイ110−aは、図1のメモリコントローラ150の一例であってもよいメモリコントローラ150−aを含むことができる。メモリアレイ110−aは、図1のパーティション155の例であってもよい、いくつかのパーティション220−aないし220−nをも含むことができる。個々のパーティション220は、関連する局所コントローラ215および関連するデータバッファ225を有することができる。
いくつかの実施形態では、メモリアレイ110−aは3DXPメモリアレイであり、個々のパーティション220は1ギガバイトのパーティションであり、また、デバイスは16個のパーティションを含む。いくつかの例では、個々のパーティション220内のメモリは、16バイトの細分性でアクセスすることができ、したがって26ビットのメモリアドレス情報がC/Aバス205を介してメモリアレイ110−aに提供される。さらに、この例では4個のビットを使用して、C/Aバス205を介してパーティション識別を提供することができる。さらに、いくつかの例では、メモリアレイ110−aを動作させるために最大16個のコマンドまたは命令を使用することができ、したがって4個のビットを使用して、C/Aバス205を介してコマンドまたは命令をメモリアレイ110−aに送ることができる。したがってこの例では、34ビットの情報をC/Aバス205を介して、全コマンドおよびアドレス操作でメモリアレイ110−aに提供することができる。当然、上で説明したコマンドおよびアドレス操作のために使用される特定のパーティションサイズ、パーティションの数およびビットは一例として提供されたものにすぎず、他の実施形態では異なるパーティションサイズ、パーティションの数およびコマンド/アドレスビットを使用することができる。
上で示したように、いくつかの実施形態では、次のパーティションコマンドは、C/Aバス205を介して提供することができる1つのコマンドとして含むことができる。次のパーティションコマンドは、いくつかの例では、C/Aバス205を介して送られるコマンドビットおよびパーティションアドレスのみを含むことができる。操作命令デコーダを含むことができるメモリコントローラ150−aは、単独で、または、同じく操作命令デコーダを含むことができる局所コントローラ215と共に、次のパーティションコマンドと、次のパーティションコマンドが使用されるパーティションの指示とを受け取ることができる。例えばメモリコントローラ150−aは、単独で、または局所コントローラ215と共に、次のパーティションコマンドおよびパーティション情報を受け取ることができ、また、先行する命令からのコマンドを、次のパーティションコマンドの中で示されたパーティションの、先行する命令の中で提供された記憶場所で実施することができる。したがって実施形態の次のパーティションコマンドはメモリアドレスを提供せず、したがってメモリアドレスと関連したビットは伝送されない。いくつかの実施形態では、メモリコントローラ150−aは、先行するコマンドからの次の連続したパーティション上で次のパーティションコマンドを単純に実施することができ、この事例では、次のパーティションコマンドはコマンドビットのみを含むことができる。さらなる実施形態では、次のパーティションコマンドは、コマンドが次の連続したパーティション上で実施されるべきであること、または次のパーティションコマンドのためのパーティションアドレスが次のパーティションコマンドの後に続くことを示すことができる1ビットのインディケータを含むことができる。
言及したように、いくつかの例ではメモリアドレスは26ビットであり、また、C/Aバス205は5ビットのバスである。したがってこれらの例では、次のパーティションコマンドは、C/Aバス205上のクロックサイクルを節約することができる。いくつかの実施形態では、メモリコントローラ150−aまたはメモリアレイ110−aの外部の他のコントローラは、連続したパーティション220の同じ記憶場所でメモリアレイ110−aにおける連続した書込み操作を実施することができる。したがって複数のパーティション220にわたって書込み操作を実施する場合、次のパーティションコマンドを使用することにより、C/Aバス205の有意な数のクロックサイクルを除去することができる。例えば12個の記憶場所にわたって書き込まれるべきデータがメモリコントローラ150−aで受け取られると、メモリコントローラ150−aは、12個の異なるパーティション220にわたる同じ記憶場所への12回の書込みを実施することができる。したがってこの例では、初期命令は、初期データ書込みのための書込みコマンド、パーティションアドレスおよびメモリアドレスを含むことができ、また、後続する11個のコマンドの各々は、単純に、次のパーティション命令およびパーティションアドレスを有する次のパーティションコマンドであってもよい。したがってこのような例における次のパーティションコマンドを使用することにより、必要なクロックサイクルの総数を84個(すなわち12個の連続するコマンドに対する7個のクロックサイクル)から29個(すなわち、第1のコマンドに対する7個のクロックサイクルと、それに続く11個の2クロックサイクルの次のパーティションコマンド)に低減することができ、C/Aバス205のスループットを著しく改善する。一実施形態では、以下でより詳細に論じられるように、全コマンドおよびアドレス(例えばメモリアドレス、パーティションアドレスおよびコマンド命令を含む)操作は、C/Aバス205上で8個のクロックサイクルを使用することができ、また、次のパーティションコマンドは、C/Aバス上で2個のクロックサイクルを使用することができる。したがってこの実施形態では、上記例における次のパーティションコマンドを使用することにより、必要なクロックサイクルの総数を96個(すなわち12個の連続するコマンドに対する8個のクロックサイクル)から30個(すなわち、第1のコマンドに対する8個のクロックサイクルと、それに続く11個の2クロックサイクルの次のパーティションコマンド)に低減することができ、C/Aバス205のスループットをも著しく改善する。次の連続するメモリパーティション上で次のパーティションコマンドを実施し、したがってメモリパーティションアドレスを含まない実施形態では、これは、さらに19個のクロックサイクル(すなわち、第1のコマンドに対する8個のクロックサイクルと、それに続く11個の1クロックサイクルの次のパーティションコマンド)に低減することができる。
上で示したように、いくつかの実施形態では、全コマンドおよびアドレスは、C/Aバスの8個のクロックサイクルを使用することができる。図3は、本開示の様々な実施形態による、メモリデバイスのための制御/アドレスバスピンおよびコマンドアドレスサイクルのこのような一例を示したものである。図3の例では、C/Aバスは5個のピン、すなわちCA0ないしCA4を有している。したがってC/Aバスの個々のクロックサイクル毎に5個のビットをメモリアレイに転送することができる。上で示したように、様々な実施形態では、メモリアレイは複数のパーティションを有することができ、また、いくつかの実施形態では、メモリアレイは、16バイトの細分性でアクセスされる1ギガバイトのメモリを個々のパーティションが含む16個のパーティションを有する3DXPメモリアレイであってもよい。このような実施形態では、26ビットの情報を使用してメモリアドレスを提供することができ、また、4ビットの情報を使用してパーティションアドレスを提供することができる。図3の例では、CMD0ないしCMD3として示されている、C/Aバスを介して第1のコマンド/アドレスクロックサイクルで伝送することができる4ビットの情報を使用してメモリアレイにコマンドが提供される。コマンドビットに続くのは、この例では、将来の使用のために保存される(RFU)2ビットの情報、それからC/Aバスを介して第2のコマンド/アドレスクロックサイクルで伝送される4個のパーティションアドレスビットPA0ないしPA3である。図3の例では、あと4個のRFUビットが次に提供され、C/Aバスを介して第3ないし第8のコマンド/アドレスクロックサイクルで伝送される26ビットのメモリアドレス(MA)情報が後続する。したがって図3の例では、メモリ操作に対して、C/Aバスの8個のクロックサイクルにわたって40ビットの情報がメモリアレイに提供される。
上で論じたように、本開示の実施形態は、異なるパーティションにおける同じメモリアドレスの連続するメモリ操作のために、コマンドビットCMD0ないしCMD3およびパーティションアドレスビットPA0ないしPA3のみがC/Aバスを介して伝送される「次のパーティション」コマンドを提供する。したがってこのような次のパーティションコマンドは、C/Aバスの2個のクロックサイクルを使用してメモリアレイに伝送することができる。したがってC/Aバスが5ビット幅である例では、次のパーティションコマンドは10ビットの情報を介して提供することができ、すなわち8個のクロックサイクルおよび40ビットの情報を取り得る全メモリコマンドおよびアドレス情報と関連したビットの数から75%減少する。メモリコントローラが次の連続するパーティション上で次のパーティションコマンドを単純に実施することができる実施形態では、ビットの数をさらに少なくすることができる。いくつかの実施形態では、メモリコントローラは、後続する連続する読出し操作のために次のパーティションコマンドを使用することができる可能性を高くするために、異なるメモリアレイパーティションにおける同じメモリアドレスでの連続する書込み操作によって提供される情報を記憶することができる。このような技法は、C/Aバス上に送らなければならないデータビットの数を著しく少なくすることができ、したがってC/Aバス上のトグルを最少化することにより、より速く、かつ、より少ないエネルギーでコマンドを処理することができる。さらに、いくつかの実施形態では、C/Aバスは多くのデバイスの間で共有することができており、また、C/Aバスにおける非効率性が複数のデバイスにわたってデバイス出力と、C/Aバス、データバスまたはそれらの組合せの最大帯域幅の維持とに影響を及ぼし得るため、本明細書において提供されるような技法の利点は、改善されたC/Aバス効率によってさらなる利点を提供する。
図4は、全コマンドおよびアドレス伝送を使用した制御/アドレスバスピンのためのタイミング図400の一例を示したものである。このようなタイミング図400は、図1または図2のメモリアレイ110と関連したタイミングを表すことができる。クロック(CK/CK#)信号405は、クロックイネーブル(CKE)信号410およびウェーク信号415と共にメモリアレイに提供することができる。5ビット幅であるC/Aバス信号420もメモリアレイに提供される。チップセレクト(CS#)信号425およびデータストローブ(DQS)430もメモリアレイに提供することができる。8ビットデータバス435は、データをメモリアレイに転送し/データをメモリアレイから転送するためにメモリアレイと結合されることも可能である。上で論じたように、コマンド情報、メモリパーティションアドレスおよび記憶場所アドレスを含む全メモリコマンドは、C/Aバスの8個のクロックサイクルにわたってメモリアレイに提供することができ、メモリコマンドの終わりは、図4の例では440で示されている。
図5は、次のパーティションコマンドを使用した制御/アドレスバスピンのためのタイミング図500の一例を示したものである。このようなタイミング図500は、図1または図2のメモリアレイ110と関連したタイミングを表すことができる。図4に関連して論じたように、クロック(CK/CK#)信号505は、クロックイネーブル(CKE)信号510およびウェーク信号515と共にメモリアレイに提供することができる。5ビット幅であるC/Aバス信号520もメモリアレイに提供される。チップセレクト(CS#)信号525およびデータストローブ(DQS)530もメモリアレイに提供することができる。この場合も、8ビットデータバス535は、データをメモリアレイに転送し/データをメモリアレイから転送するためにメモリアレイとも結合されることも可能である。図5の例では、次のパーティションコマンドは、2個のクロックサイクルにわたってメモリアレイに提供することができ、したがって次のパーティションコマンドに応答する後続するアクションをより速やかに、また、図5の例では540で示されている時間まで完了しない全メモリコマンドおよびアドレス伝送の終了に先立って起動することができる。さらに、次のパーティションコマンドが次の逐次パーティション上で実施され、パーティションアドレスを含まない実施形態では、コマンドは1個のクロックサイクルで提供することができる。
図6は、本開示の様々な実施形態による一例示的メモリアレイ600を示したものである。メモリアレイ600は電子メモリ装置と呼ぶことも可能である。メモリアレイ600は、図1〜2で参照したメモリアレイ110の一例であってもよい。図6の例では、メモリアレイ600のパーティションの一部が示されており、メモリのパーティションの他の部分は同様のアーキテクチャを有することができる。上で示したように、いくつかの実施形態ではメモリアレイ600は3DXPメモリアレイであってもよい。メモリアレイ600は、異なる状態を記憶するためにプログラム可能である記憶セル605を含む。個々の記憶セル605は、論理0および論理1で示されている2つの状態を記憶するためにプログラム可能であってもよい。いくつかの事例では、記憶セル605は、3つ以上の論理状態を記憶するように構成される。
記憶セル605は、論理状態を表す、可変で、かつ、構成可能な電気抵抗を有する、記憶素子と呼ぶことも可能である材料を含むことができる。例えば結晶性または非結晶性原子構成を有する材料は、セット状態またはリセット状態に対応する(例えば論理1および0状態に対応する)異なる電気抵抗を有することができる。したがって記憶セル605に印加される電圧は、材料がセット状態にあるか、またはリセット状態にあるかどうかに応じて異なる電流をもたらすことができ、また、結果として得られる電流の大きさを使用して、記憶セル605によって記憶されている論理状態を決定することができる。いくつかの事例では、記憶セル605は、異なる論理状態(すなわち論理1または論理0以外の状態)に対応することができ、また、記憶セル605による3つ以上の異なる論理状態の記憶を許容し得る中間の抵抗をもたらすことができる、結晶性領域と非結晶性領域の組合せを有することができる。以下で論じられるように、記憶セル605の論理状態は、融解を含む、記憶素子を加熱することによって設定することができる。
メモリアレイ600は、複数の二次元(2D)メモリアレイが個別の層、レベル、平面(プレーン)またはデッキで互いに重ね合わせて形成される、三次元(3D)メモリアレイであってもよい。層、レベル、平面(プレーン)、記憶平面(記憶プレーン;storage plane)およびデッキという用語は、積み重ねられた2Dメモリアレイの3Dメモリにおける2Dメモリアレイを意味するべく交換可能に使用され得る。これは、2Dアレイと比較すると、単一のダイまたは基板の上に置くか、またはこれらの上に生成することができる記憶セルの数を増やすことができ、ひいては製造コストを削減することができ、またはメモリアレイの性能を高くすることができ、あるいはその両方が可能である。図6に示されている例によれば、メモリアレイ600は2つのレベルの記憶セル605を含んでおり、したがって三次元メモリアレイと見なすことができるが、レベルの数は2つに限定されない。個々のレベルは、記憶セル605が個々のレベルにわたって互いにほぼ整列し、記憶セルスタック645を形成することができるように整列させるか、あるいは配置することができる。いくつかの実施形態では、3Dメモリアレイの第1の層および第2の層の両方のためのアドレスビットを含むメモリアドレスを提供することができる。
記憶セル605の個々の行はワード線610に接続されており、また、記憶セル605の個々の列はビット線615に接続されている。ワード線610およびビット線615は、アクセス線としても知られており、また、いくつかの事例ではビット線615はデジット線と呼ぶことも可能である。ワード線およびビット線またはそれらの類似語の参照は、理解または働きを損なうことなく交換可能である。ワード線610およびビット線615は、アレイを生成するべく実質的に互いに直角であってもよい。図6に示されているように、メモリスタック645内の2個の記憶セル605は、デジット線615などの共通アクセス線を共有することができる。すなわちデジット線615は、上側の記憶セル605の底部電極および下側の記憶セル605の頂部電極と電子通信することができる。他の構成も可能であり、例えば第3の層は、下側の層とワード線610を共有することができる。通常、ワード線610およびビット線615などの2本のアクセス線の交点に1個の記憶セル605を配置することができる。この交点は、記憶セルのアドレスと呼ぶことができる。
上で論じたように、電極は、記憶セル605およびワード線610またはビット線615に結合されることが可能である。電極という用語は電気導体を意味することができ、いくつかの事例では記憶セル605への電気接触として使用され得る。電極は、メモリアレイ600の要素または構成要素間の導電経路を提供するトレース、ワイヤ、導線、または導電層などを含むことができる。
読出しおよび書込みなどの操作は、ワード線610およびビット線615を活性化させるか、または選択することによって記憶セル605上で実施することができ、この活性化または選択は、それぞれの線への電圧または電流の印加を含むことができる。ワード線610およびビット線615は、金属(例えば銅、アルミニウム、金、タングステン、チタンなど)、金属合金、炭素などの導電材料で作ることができ、あるいは他の導電材料、合金または化合物で作ることができる。記憶セル605を選択すると、結果として得られる信号を使用して、記憶されている論理状態を決定することができる。例えば電圧を印加することができ、結果として得られる電流を使用して、記憶セルの抵抗状態間を区別することができる。
記憶セル605のアクセスは、行デコーダ620および列デコーダ630を介して制御することができる。例えば行デコーダ620は、メモリコントローラ640から行アドレスを受け取り、かつ、受け取った行アドレスに基づいて適切なワード線610を活性化させることができる。同様に、列デコーダ630は、メモリコントローラ640から列アドレスを受け取り、かつ、適切なビット線615を活性化させる。したがってワード線610およびビット線615を活性化させることによって記憶セル605にアクセスすることができる。
アクセスすると、感知構成要素625によって記憶セル605を読み出す、すなわち感知することができる。例えば感知構成要素625は、記憶セル605にアクセスすることによって生成される信号に基づいて、記憶セル605の記憶されている論理状態を決定するように構成することができる。信号は電圧または電流を含むことができ、また、感知構成要素625は、電圧感知増幅器、電流感知増幅器または両方を含むことができる。例えば(対応するワード線610およびビット線615を使用して)記憶セル605に電圧を印加することができ、結果として得られる電流の大きさは、記憶セル605の電気抵抗に依存し得る。同様に、記憶セル605に電流を印加することができ、電流を生成するための電圧の大きさは、記憶セル605の電気抵抗に依存し得る。感知構成要素625は、ラッチングと呼ぶことができる信号の検出および増幅のために、様々なトランジスタまたは増幅器を含むことができる。記憶セル605の検出された論理状態は、次に、出力635として出力することができる。いくつかの事例では、感知構成要素625は、列デコーダ630または行デコーダ620の一部であってもよい。あるいは感知構成要素625は、列デコーダ630または行デコーダ620に接続するか、またはこれらと電子通信することができる。
記憶セル605は、同様に関連するワード線610およびビット線615を活性化させることによって設定する、すなわち書き込むことができ、すなわち論理値を記憶セル605に記憶させることができる。列デコーダ630または行デコーダ620は、記憶セル605に書き込まれるデータ、例えば入力635を受け取ることができる。相変化メモリの事例では、記憶セル605は、例えば記憶素子に電流を流すことによって記憶素子を加熱することによって書き込まれる。このプロセスは以下でより詳細に論じられる。
いくつかのメモリアーキテクチャでは、記憶セル605のアクセスは、記憶されている論理状態を劣化させ、あるいは破壊することがあり、また、再書込みまたはリフレッシュ操作は、元の論理状態を記憶セル605に戻すために実施することができる。DRAMでは、例えば論理記憶コンデンサは、感知操作の間、部分的または完全に放電し、記憶されている論理状態を破壊することがある。したがって感知操作の後に論理状態を再書込みすることができる。さらに、単一のワード線610の活性化は、その行におけるすべての記憶セルの放電をもたらすことがあり、したがってその行におけるすべての記憶セル605を再書込みする必要があり得る。しかしながらPCMなどの不揮発性メモリでは、記憶セル605のアクセスは論理状態を破壊し得ず、したがってアクセスした後に記憶セル605を再書込みする必要はあり得ない。
DRAMを含むいくつかのメモリアーキテクチャは、それらが外部電力源によって周期的にリフレッシュされない限り、時間の経過につれてそれらの記憶されている状態を失うことになる。例えば充電されたコンデンサは、漏れ電流によって時間の経過につれて放電するようになり、記憶されている情報を失うことになり得る。これらのいわゆる揮発性メモリデバイスのリフレッシュレートは比較的速くなることがあり、例えばDRAMの場合、毎秒数十回のリフレッシュ操作になり、これは著しい電力消費をもたらし得る。メモリアレイがますます大きくなるにつれて、電力消費の増加は、電池などの有限電力源に頼っているとりわけモバイルデバイスの場合、メモリアレイの展開または動作を抑制することがあり得る(例えば電源制限、発熱制限、材料制限など)。以下で論じられるように、不揮発性相変化記憶セルは、他のメモリアーキテクチャに対して改善された性能をもたらし得る有利な特性を有することができる。
メモリコントローラ640は、様々な構成要素、例えば行デコーダ620、列デコーダ630および感知構成要素625を介して記憶セル605の操作(読出し、書込み、再書込み、リフレッシュなど)を制御することができる。いくつかの事例では、行デコーダ620、列デコーダ630および感知構成要素625のうちの1つまたは複数をメモリコントローラ640と同じ位置に配置することができる。メモリコントローラ640は、所望のワード線610およびビット線615を活性化させるために、行アドレス信号および列アドレス信号を生成することができる。メモリコントローラ640は、メモリアレイ600を操作している間に使用される様々な電圧電位または電流をも生成し、かつ、制御することができる。通常、本明細書において論じられている、印加される電圧または電流の振幅、形状または継続期間は、調整または変更が可能であり、また、メモリアレイ600の操作で論じられている様々な操作に対して異なっていてもよい。さらに、メモリアレイ600内の1つの記憶セル605、複数の記憶セル605またはすべての記憶セル605は、同時にアクセスすることも可能であり、例えばすべての記憶セル605または記憶セル605のグループが単一の論理状態に設定されるリセット操作の間、メモリアレイ600の複数またはすべてのセルを同時にアクセスすることができる。本開示においては、3DXP技術におけるPCMメモリアレイが詳細に説明されているが、メモリアレイは、必要な操作適合(例えば信号振幅、形状、タイミングなどにおける)を加えて、任意の他の(揮発性または不揮発性)技術で実現することができることに留意されたい。
図7は、本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法をサポートする一例示的メモリアレイ700を示したものである。メモリアレイ700は、図1〜2および6で参照したメモリアレイ110または600の一例であってもよい。メモリアレイ700は、図6を参照して説明した記憶セル605、ワード線610およびビット線615の例であってもよい記憶セル605−a、ワード線610−aおよびビット線615−aを含む。記憶セル605−aは、電極705、電極705−aおよび記憶素子720を含む。メモリアレイ700は、底部電極710および選択構成要素715をも含む。いくつかの事例では、3Dメモリアレイは、複数のメモリアレイ700を互いに積み重ねることによって形成することができる。いくつかの事例では、2つの積み重ねられたアレイは、図6を参照して説明したように、個々のレベルがワード線610またはビット線615を共有することができるよう、共通アクセス線を有することができる。上で説明したように、記憶素子720の電気抵抗をプログラムすることにより、様々な論理状態を記憶することができる。いくつかの事例では、これは、記憶セル605−aに電流を流すこと、記憶セル605−aを加熱すること、または記憶素子720全体または一部を融解させることを含むことができる。
メモリアレイ700は、材料形成および除去の様々な組合せによって作ることができる。例えば、ワード線610−a、底部電極710、選択構成要素715、電極705−a、記憶素子720および電極705に対応する材料の層を堆積させることができる。次に図7に示されている支柱構造などの所望の特徴を生成するために、材料を選択的に除去することができる。例えば特徴は、フォトレジストをパターン化するためにフォトリソグラフィを使用して画定することができ、次に、エッチングなどの技法によって材料を除去することができる。次に、例えば材料の層を堆積させ、かつ、選択的にエッチングして、図7に示されている線構造を形成することによってビット線615−aを形成することができる。いくつかの事例では、電気絶縁領域または層を形成するか、あるいは堆積させることができる。この電気絶縁領域は、酸化ケイ素、窒化ケイ素などの酸化物材料または窒化物材料を含むことができ、あるいは他の電気絶縁材料を含むことができる。
選択構成要素715は、いくつかの事例では、記憶セル605−aと、ワード線610−aまたはビット線615−aなどの少なくとも1つの導線との間に直列に接続することができる。例えば図7に示されているように、選択構成要素715は、電極705−aと底部電極710の間に配置することができ、したがって選択構成要素715は、記憶セル605−aとワード線610−aの間に直列に配置される。他の構成も可能である。例えば選択構成要素は、記憶セル605−aとビット線615−aの間に直列に配置することができる。選択構成要素は、特定の記憶セル605−aの選択を補助することができ、あるいは漂遊電流が選択された記憶セル605−aに隣接する非選択記憶セル605−aを通って流れるのを積極的に防止することに役立たせることができる。選択構成要素は、ダイオードなどの他のタイプの2端子選択デバイスの中でもとりわけ、金属−絶縁体−金属(MIM)ジャンクション、オボニック閾値スイッチ(OTS)または金属−半導体−金属(MSM)スイッチなどの電気的に非線形の構成要素(例えば非オーム構成要素)を含むことができる。いくつかの事例では、選択構成要素はカルコゲニド膜である。選択構成要素は、いくつかの例では、セレン、ヒ素およびゲルマニウムの合金であってもよい。
様々な技法を使用して、メモリアレイ700の材料または構成要素を形成することができる。これらは、例えば数ある薄膜成長技法の中でもとりわけ、化学気相成長(CVD)、有機金属化学気相成長(MOCVD)、物理気相成長(PVD)、スパッタリング(sputter deposition)、原子層堆積(ALD)または分子線エピタキシ(MBE)を含むことができる。材料は多くの技法を使用して除去することができ、これらは、例えば化学エッチング(「ウェットエッチング」とも呼ばれる)、プラズマエッチング(「ドライエッチング」とも呼ばれる)または化学−機械平坦化を含むことができる。
上で論じたように、図7の記憶セル605−aは、可変抵抗を有する記憶素子720を含むことができる。可変抵抗材料は、例えば金属酸化物、およびカルコゲニドなどを含む様々な材料系を意味することができる。カルコゲニド材料は、元素硫黄(S)、セレン(Se)またはテルル(Te)のうちの少なくとも1つを含む材料または合金である。多くのカルコゲニド合金が考えられ、例えばゲルマニウム−アンチモン−テルル合金(Ge−Sb−Te)はカルコゲニド材料である。ここでは明確に記載されていない他のカルコゲニド合金を使用することも可能である。
相変化メモリは、カルコゲニド材料であってもよい相変化材料における結晶性状態と非結晶性状態の間の大きな抵抗対比を利用している。結晶性状態にある材料は、周期構造で整列した原子を有することができ、これは比較的小さい電気抵抗をもたらし得る。一方、非結晶性状態にある材料は、周期原子構造を有し得ないか、あるいは周期原子構造をほとんど有し得ず、これは比較的大きい電気抵抗を有し得る。材料の非結晶性状態と結晶性状態の間の抵抗値の差は著しいことがあり、例えば非結晶性状態にある材料は、その結晶性状態にある材料の抵抗より一桁または複数桁大きい抵抗を有し得る。いくつかの事例では、材料は、部分的に非結晶性であり、かつ、部分的に結晶性であってもよく、また、抵抗は、完全な結晶性状態にある材料の抵抗と完全な非結晶性状態にある材料の抵抗との間の何らかの値の抵抗であり得る。したがって材料は、二進論理アプリケーション以外、すなわち材料中に記憶される可能状態の数が3つ以上であり得るアプリケーションのために使用することができる。
小さい抵抗状態を設定するために、記憶セルに電流を流すことによって記憶セル605−aを加熱することができる。有限抵抗を有する材料を通って流れる電流による加熱は、ジュール加熱またはオーム加熱と呼ぶことができる。したがってジュール加熱は、電極すなわち相変化材料の電気抵抗に関連付けることができる。相変化材料を高められた温度(ただしその融解温度未満)に加熱することにより、相変化材料は結晶化して小さい抵抗状態を形成する。いくつかの事例では、ジュール加熱以外の手段、例えばレーザを使用することによって記憶素子720を加熱することができる。大きい抵抗状態を設定するために、例えばジュール加熱によってその融解温度より高い温度に相変化材料を加熱することができる。融解した材料の非結晶性構造は、印加された電流を突然に除去して相変化材料を急冷することによって消滅させるか、あるいは固定することができる。
図8は、本開示の様々な実施形態による、複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法をサポートするメモリアレイ600−aのブロック図800を示したものである。メモリアレイ600−aは電子メモリ装置と呼ぶことができ、また、図1、2、6および7を参照して説明したメモリコントローラ150または640および記憶セル160または605の例であってもよいメモリコントローラ640−aおよび記憶セル605−bを含むことができる。メモリコントローラ640−aは、バイアス構成要素810およびタイミング構成要素815を含み、また、図1、2、6および7で説明したようにメモリアレイ600−aを動作させることができる。メモリコントローラ640−aは、図6または7を参照して説明したワード線610、ビット線615および感知構成要素625の例であってもよいワード線610−b、ビット線615−bおよび感知構成要素625−aと電子通信することができる。メモリアレイ600−aはラッチ825をも含むことができる。メモリアレイ600−aの構成要素は互いに電子通信することができ、また、図1ないし7を参照して説明した機能を実施することができる。いくつかの事例では、感知構成要素625−aおよびラッチ825は、メモリコントローラ640−aの構成要素であってもよい。
メモリコントローラ640−aは、様々なノードに電圧または電流を印加することによってワード線610−bまたはビット線615−bを活性化させるように構成することができる。例えばバイアス構成要素810は、電圧を印加して、上で説明したように記憶セル605−bを読出しまたは書き込むように記憶セル605−bを動作させるように構成することができる。印加される電圧は、印加される所望の電流ならびに記憶セル605−bおよび任意の電極の抵抗に基づくことができる。いくつかの事例では、メモリコントローラ640−aは、図6を参照して説明した行デコーダ、列デコーダまたは両方を含むことができる。これは、メモリコントローラ640−aによる1つまたは複数の記憶セル605−bのアクセスを可能にすることができる。バイアス構成要素810は、感知構成要素625−aを動作させるための電圧を提供することも可能である。
いくつかの事例では、メモリコントローラ640−aは、タイミング構成要素815を使用してその操作を実施することができる。例えばタイミング構成要素815は、本明細書において論じられている読出しおよび書込みなどのメモリ機能を実施するための切換えおよび電圧印加のタイミングを含む、様々なワード線選択またはビット線選択のタイミングを制御することができる。いくつかの事例では、タイミング構成要素815は、バイアス構成要素810の動作を制御することができる。
感知構成要素625−aは、記憶セル605−b中の記憶されている論理状態を決定するための電圧または電流感知増幅器を含むことができる。論理状態を決定すると、感知構成要素625−aは、次に出力をラッチ825に記憶することができ、そこで、メモリアレイ600−aを使用した電子デバイスの動作に従ってその出力を使用することができる。
図9は、本開示の様々な実施形態による、メモリデバイスを操作する方法900を示すフローチャートを示したものである。方法900の操作は、図1〜2、6および8を参照して説明したメモリアレイ110または600を使用して実現することができる。例えば方法900の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640と共にプロセッサ115によって実施することができる。いくつかの例では、プロセッサ115は、一組のコードを実行してメモリアレイ110または600の機能素子を制御し、それにより以下で説明される機能を実施することができる。追加的または代替的に、メモリコントローラは、専用ハードウェアを使用して、以下で説明される機能の一部またはすべてを実施することができる。
ブロック905で、方法は、連続するメモリアクセスコマンドのための第1のメモリパーティションおよび第2のメモリパーティションの各々における同じ記憶場所を識別(特定)することを含むことができ、第1のメモリパーティションおよび第2のメモリパーティションは、図1〜5を参照して説明したようにメモリアレイに含まれている。特定の例では、ブロック905の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640と共に、図1のプロセッサ115によって実施することができる。いくつかの実施形態では、複数の連続するパーティション中の同じ記憶場所への連続する書込み操作でメモリアレイにデータを書き込むことができ、また、第1のメモリパーティションおよび第2のメモリパーティションの各々における同じ記憶場所は、このような連続する書込みコマンドに基づいて識別(特定)することができる。同様に、いくつかの実施形態では、複数の連続するパーティション中の同じ記憶場所からの連続する読出し操作でメモリアレイからデータを読み出すことができ、また、第1のメモリパーティションおよび第2のメモリパーティションの各々における同じ記憶場所は、このような連続する読出しコマンドに基づいて識別することができる。
ブロック910で、方法は、図1〜5を参照して説明したように、第1のメモリパーティションにおける記憶場所および実施される機能を識別するメモリアクセスコマンドをメモリアレイに送ることを含むことができる。特定の例では、ブロック910の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640と共に、図1のプロセッサ115によって実施することができる。
ブロック915で、方法は、図1〜5を参照して説明したように、メモリアクセスコマンドにおけるのと同じ記憶場所および機能が第2のメモリパーティションで使用されることを示す次のパーティションコマンドをメモリアレイに送ることを含むことができる。いくつかの例では、次のパーティションコマンドは、コマンドが実施されるパーティションアドレスを含むことができる。他の例では、次のパーティションコマンドは、次の連続するパーティションアドレス上で実施することができ、したがってコマンドはパーティションアドレスを含んでいなくてもよい。特定の例では、ブロック915の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640と共に、図1のプロセッサ115によって実施することができる。いくつかの実施形態では、メモリアクセスコマンドを送るためのクロックサイクルの第1の数は、次のパーティションコマンドを送るためのクロックサイクルの第2の数より多い。
メモリシステムを操作する方法が説明される。いくつかの例では、方法は、連続するメモリアクセスコマンドのために第1のメモリパーティションおよび第2のメモリパーティションの各々における同じ記憶場所を識別するための手段であって、第1のメモリパーティションおよび第2のメモリパーティションがメモリアレイに含まれる、手段と、第1のメモリパーティションにおける記憶場所および実施される機能を識別するメモリアクセスコマンドをメモリアレイに送るための手段と、メモリアクセスコマンドにおけるのと同じ記憶場所および機能が第2のメモリパーティションで使用されることを示す次のパーティションコマンドをメモリアレイに送るための手段とを含むことができる。
いくつかの例では、方法は3D交点(3D XP)メモリアレイを含むことができる。いくつかの例では、方法は、3D XPメモリアレイの第1のメモリパーティション内の第1の記憶平面(記憶プレーン)における第1のアドレス、および3D XPメモリアレイの第1のメモリパーティション内の第2の記憶平面(記憶プレーン)における第2のアドレスとして記憶場所を識別するための手段を含むことができる。いくつかの例では、メモリアクセスコマンドを送るためのクロックサイクルの第1の数は、次のパーティションコマンドを送るためのクロックサイクルの第2の数より多い。
いくつかの例では、第1の数のクロックサイクルは8個のクロックサイクルであり、また、第2の数のクロックサイクルは2個のクロックサイクルである。いくつかの例では、メモリアレイは、ダイナミックランダムアクセスメモリ(DRAM)、不揮発性ランダムアクセスメモリ(NVRAM)、リードオンリーメモリ(ROM)および3D交点(3D XP)メモリからなるグループから選択される。いくつかの例では、次のパーティションコマンドは、第2のメモリパーティションのアドレスを含む。
図10は、本開示の様々な実施形態による、メモリデバイスを操作する方法1000を示すフローチャートを示したものである。方法1000の操作は、図1〜2、6および8を参照して説明したメモリアレイ110または600によって実現することができる。例えば方法1000の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640によって実施することができる。いくつかの例では、メモリコントローラ150または640は、一組のコードを実行してメモリアレイ110または600の機能素子を制御し、それにより以下で説明される機能を実施することができる。追加的または代替的に、メモリコントローラは、専用ハードウェアを使用して、以下で説明される機能の一部またはすべてを実施することができる。
ブロック1005で、方法は、図1〜5を参照して説明したように、メモリデバイスの第1のメモリパーティションにおける記憶場所および実施される機能を識別するメモリアクセスコマンドを受け取ることを含むことができる。特定の例では、ブロック1005の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640によって実施することができる。
ブロック1010で、方法は、図1〜5を参照して説明したように、第1のメモリパーティションにおける記憶場所にアクセスすること、および機能を実施することを含むことができる。特定の例では、ブロック1010の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640によって実施することができる。
ブロック1015で、方法は、図1〜5を参照して説明したように、次のパーティションコマンドを受け取ることを含むことができる。特定の例では、ブロック1015の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640によって実施することができる。いくつかの実施形態では、メモリアクセスコマンドを受け取るためのクロックサイクルの第1の数は、次のパーティションコマンドを受け取るためのクロックサイクルの第2の数より多い。
ブロック1020で、方法は、図1〜5を参照して説明したように、第2のメモリパーティションで、メモリアクセスコマンドの中で受け取った記憶場所にアクセスすること、およびメモリアクセスコマンドの中で受け取った機能を実施することを含むことができる。特定の例では、ブロック1020の操作は、図1〜2、6および8を参照して説明したメモリコントローラ150または640によって実施することができる。
メモリデバイスを操作する方法が説明される。いくつかの例では、方法は、メモリデバイスで、メモリデバイスの第1のメモリパーティションにおける記憶場所および実施される機能を識別するメモリアクセスコマンドを受け取るための手段と、第1のメモリパーティションにおける記憶場所にアクセスし、かつ、機能を実施するための手段と、メモリデバイスで、次のパーティションコマンドを受け取るための手段と、メモリデバイスの第2のメモリパーティションで、メモリアクセスコマンドの中で受け取った記憶場所にアクセスし、かつ、メモリアクセスコマンドの中で受け取った機能を実施するための手段とを含むことができる。
いくつかの例では、メモリデバイスは3D交点(3D XP)メモリアレイを備える。いくつかの例では、記憶場所は、3D XPメモリアレイの第1のメモリパーティション内の第1の記憶平面(記憶プレーン)における第1のアドレス、および3D XPメモリアレイの第1のメモリパーティション内の第2の記憶平面(記憶プレーン)における第2のアドレスを含む。いくつかの例では、メモリアクセスコマンドを受け取るためのクロックサイクルの第1の数は、次のパーティションコマンドを受け取るためのクロックサイクルの第2の数より多い。
いくつかの例では、第1の数のクロックサイクルは8個のクロックサイクルであり、また、第2の数のクロックサイクルは2個のクロックサイクルである。いくつかの例では、メモリデバイスは、ダイナミックランダムアクセスメモリ(DRAM)、不揮発性ランダムアクセスメモリ(NVRAM)、リードオンリーメモリ(ROM)および3D交点(3D XP)メモリからなるグループから選択されるメモリアレイを備える。いくつかの例では、次のパーティションコマンドは、第2のメモリパーティションのアドレスを含む。
したがって方法900および1000は、複数のパーティションを含むメモリアレイのための有効な操作を提供することができる。方法900および1000は可能な実施態様を記述したものであり、操作およびステップは配置し直すことができ、さもなければ他の実施態様が可能であるよう、修正することができることに留意されたい。いくつかの例では、方法900および1000からの特徴またはステップを組み合わせることができる。
データ転送のための装置が説明される。いくつかの例では、装置は、制御/アドレス(C/A)バスおよびデータバスと結合したメモリアレイであって、少なくとも第1のメモリパーティションおよび第2のメモリパーティションを含む複数のメモリパーティションを備えるメモリアレイと、メモリアレイと電子通信するC/Aバスおよびデータバスと結合したコントローラとを含むことができる。いくつかの例では、コントローラは、連続するメモリアクセスコマンドのために第1のメモリパーティションおよび第2のメモリパーティションの各々における同じ記憶場所を識別するための手段と、C/Aバスを介して、第1のメモリパーティションにおける記憶場所および実施される機能を識別するメモリアクセスコマンドをメモリアレイに送るための手段と、データバスを介して、第1のメモリパーティションにおける記憶場所と関連したデータを受け取るための手段と、メモリアクセスコマンドにおけるのと同じ記憶場所および機能が第2のメモリパーティションで使用されることを示す次のパーティションコマンドを、C/Aバスを介してメモリアレイに送るための手段とを含むことができる。
いくつかの例では、メモリアレイは3D交点(3D XP)メモリアレイを備える。いくつかの例では、コントローラは、3D XPメモリアレイの第1のメモリパーティション内の第1の記憶平面における第1のアドレス、および3D XPメモリアレイの第1のメモリパーティション内の第2の記憶平面における第2のアドレスとして記憶場所を識別するための手段を含むことができる。いくつかの例では、メモリアクセスコマンドを送るためのC/Aバスクロックサイクルの第1の数は、次のパーティションコマンドを送るためのC/Aバスクロックサイクルの第2の数より多い。いくつかの例では、第1の数のC/Aバスクロックサイクルは8個のクロックサイクルであり、また、第2の数のC/Aバスクロックサイクルは2個のクロックサイクルである。いくつかの例では、メモリアレイは、ダイナミックランダムアクセスメモリ(DRAM)、不揮発性ランダムアクセスメモリ(NVRAM)、リードオンリーメモリ(ROM)および3D交点(3D XP)メモリからなるグループから選択される。いくつかの例では、次のパーティションコマンドは、第2のメモリパーティションのアドレスを含む。
本明細書における説明は例を提供したものであり、特許請求の範囲に示されている範囲、適用性または例を制限するものではない。本開示の範囲を逸脱することなく、論じられている要素の機能および配置に変更を加えることができる。様々な例は、適切である場合、様々な手順あるいは構成要素の省略、置換えまたは追加が可能である。また、いくつかの例に関して説明されている特徴は、他の例では組み合わせることができる。
本明細書において示されている説明は、添付の図面と相俟って例示的構成を記述したものであって、実現が可能であり、あるいは特許請求の範囲の範囲内であるすべての例を表しているわけではない。本明細書において使用されている「例」、「例示的」および「実施形態」という用語は、「例、実例または例証として働く」ことを意味しており、「好ましいこと」あるいは「他の例に対して有利であること」を意味しているわけではない。詳細な説明は、説明されている技法の理解を提供する目的のための特定の詳細を含む。しかしながらこれらの技法は、これらの特定の詳細がなくても実践することができる。いくつかの実例では、よく知られている構造およびデバイスは、説明されている例の概念を曖昧にすることを回避するために、ブロック図の形で示されている。
添付の図では、同様の構成要素または特徴は、同じ参照ラベルを有することができる。さらに、同じタイプの様々な構成要素は、ダッシュおよび同様の構成要素間を区別する第2のラベルを参照ラベルの後に続けることによって区別することができる。第1の参照ラベルが本明細書において使用されている場合、その説明は、第2の参照ラベルに無関係に、同じ第1の参照ラベルを有する同様の構成要素のうちの任意の1つに適用することができる。
本明細書において使用されているように、「に結合された」は、実質的に互いに接触している構成要素を示している。いくつかの事例では、第3の材料または構成要素が2つの構成要素を物理的に分離している場合であっても、それらの2つの構成要素を結合することができる。この第3の構成要素は、その2つの構成要素またはそれらの機能を実質的に変更し得ない。その代わりに、この第3の構成要素は、第1の2つの構成要素の接続を補助するか、または可能にすることができる。例えばいくつかの材料は、基板材料の上に堆積すると、強力に粘着し得ない。ラミナ層などの薄い(例えば数ナノメートルまたはそれ未満の程度の)層を2つの材料の間に使用して、それらの形成または接続を強化することができる。他の事例では、第3の材料は、2つの構成要素を化学的に隔離するためのバッファとして作用することができる。
本明細書において使用されている「層」という用語は、幾何学的構造の平行に重なった層(stratum)またはシートを意味している。個々の層は、3つの次元(例えば高さ、幅および深さ)を有することができ、また、表面の一部またはすべてを覆うことができる。例えば層は、2つの次元が第3の次元より大きい三次元構造であってもよく、例えば薄膜であってもよい。層は、異なる要素、構成要素および/または材料を含むことができる。いくつかの事例では、1つの層は2つ以上の副層から構成することができる。添付の図のうちのいくつかでは、三次元層のうちの2つの次元が、実例による説明を目的として示されている。しかしながら、層はその性質が三次元であることは当業者には認識されるであろう。
本明細書において使用されているように、「実質的に」という用語は、修飾された特性(例えば実質的にという用語によって修飾された動詞または形容詞)が絶対的なものである必要はなく、その特性の利点を達成するのに十分に近いことを意味している。
本明細書において使用されているように、「電極」という用語は、電気導体を意味することができ、いくつかの事例では、メモリアレイの記憶セルまたは他の構成要素への電気接触として使用することができる。電極は、メモリアレイ600の要素または構成要素間の導電経路を提供するトレース、ワイヤ、導線、または導電層などを含むことができる。
本明細書において使用されている「フォトリソグラフィ」という用語は、フォトレジスト材料を使用してパターン化し、かつ、電磁放射線を使用してこのような材料を露光するプロセスを意味することができる。例えばフォトレジスト材料は、例えばフォトレジストをベース材料の上にスピン塗布することによってベース材料の上に形成することができる。パターンは、フォトレジストを放射線に露光することによってフォトレジスト中に生成することができる。パターンは、例えば放射線がフォトレジストを露光する輪郭を空間的に描写するフォトマスクによって画定することができる。次に、露光されたフォトレジスト領域を例えば化学的処理によって除去し、所望のパターンを後に残すことができる。いくつかの事例では、露光された領域を残し、露光されていない領域を除去することができる。
本明細書において説明されている情報および信号は、任意の様々な異なる技術および技法を使用して表現することができる。例えば上記説明全体を通して参照され得るデータ、命令、コマンド、情報、信号、ビット、記号およびチップは、電圧、電流、電磁波、磁界または粒子、光学場または粒子、あるいはそれらの任意の組合せによって表現することができる。いくつかの図面は、複数の信号を単一の信号として示し得るが、信号は複数の信号のバスを表すことができ、バスは様々なビット幅を有することができることは当業者には理解されよう。
「電子通信」という用語は、構成要素間の電子流をサポートする構成要素間の関係を意味している。これは、構成要素間の直接接続を含むことができ、あるいは中間構成要素を含むことも可能である。電子通信における構成要素は、(例えばエネルギーが供給された回路中で)電子すなわち信号を能動的に交換していても、あるいは(例えばエネルギーが供給されていない回路中で)電子すなわち信号を能動的に交換していなくてもよいが、回路にエネルギーが供給されていると、電子すなわち信号を交換するように構成することができ、また、そのように動作することができる。一例として、スイッチ(例えばトランジスタ)を介して物理的に接続された2つの構成要素は、スイッチの状態(すなわち開いている状態または閉じている状態)に無関係に電子通信している。
メモリアレイ600を含む、本明細書において論じられているデバイスは、ケイ素、ゲルマニウム、ケイ素−ゲルマニウム合金、ヒ化ガリウム、窒化ガリウムなどの半導体基板の上に形成することができる。いくつかの事例では、基板は半導体ウェーハである。他の事例では、基板は、シリコンオングラス(SOG)またはシリコンオンサファイア(SOS)などのシリコンオンインシュレータ(SOI)基板であるか、あるいは他の基板上の半導体材料のエピタキシャル層である。基板または基板の小領域の導電率は、それらに限定されないが、リン、ホウ素またはヒ素を含む様々な化学種を使用したドーピングを介して制御することができる。ドーピングは、イオン注入によって、あるいは任意の他のドーピング手段によって、基板の初期形成の間、または基板が成長している間に実施することができる。メモリアレイまたは回路を含んだ基板の一部または切片はダイと呼ぶことができる。
カルコゲニド材料は、元素硫黄(S)、セレン(Se)およびテルル(Te)のうちの少なくとも1つを含む材料または合金であってもよい。本明細書において論じられている相変化材料はカルコゲニド材料であってもよい。カルコゲニド材料および合金は、それらに限定されないが、Ge−Te、In−Se、Sb−Te、Ga−Sb、In−Sb、As−Te、Al−Te、Ge−Sb−Te、Te−Ge−As、In−Sb−Te、Te−Sn−Se、Ge−Se−Ga、Bi−Se−Sb、Ga−Se−Te、Sn−Sb−Te、In−Sb−Ge、Te−Ge−Sb−S、Te−Ge−Sn−O、Te−Ge−Sn−Au、Pd−Te−Ge−Sn、In−Se−Ti−Co、Ge−Sb−Te−Pd、Ge−Sb−Te−Co、Sb−Te−Bi−Se、Ag−In−Sb−Te、Ge−Sb−Se−Te、Ge−Sn−Sb−Te、Ge−Te−Sn−Ni、Ge−Te−Sn−PdまたはGe−Te−Sn−Ptを含むことができる。本明細書において使用されている、ハイフンが付けられた化学組成表記は、特定の化合物または合金に含まれている元素を示しており、また、示されている元素を含むすべての化学量論を表すことが意図されている。例えばGe−TeはGexTeyを含むことができ、xおよびyは、任意の正の整数であってもよい。可変抵抗材料の他の例は、2つ以上の金属、例えば遷移金属、アルカリ土類金属および/または希土類金属を含む二元金属酸化物材料または混合原子価酸化物を含むことができる。実施形態は、特定の可変抵抗材料、または記憶セルの記憶素子と関連した材料に限定されない。例えば可変抵抗材料の他の例を使用して記憶素子を形成することができ、また、とりわけカルコゲニド材料、膨大な磁気抵抗材料または重合体系材料を含むことができる。
本明細書において論じられているトランジスタは、電界効果トランジスタ(FET)を表すことができ、また、ソース、ドレインおよびゲートを含む3端子デバイスを備えている。端子は、導電材料、例えば金属を介して他の電子素子に接続することができる。ソースおよびドレインは導電性であってもよく、また、高濃度にドープされた領域、例えば縮退半導体領域を備えることができる。ソースおよびドレインは、低濃度にドープされた半導体領域すなわちチャネルによって分離することができる。チャネルがn型である(すなわちほとんどのキャリアが電子である)場合、FETはn型FETと呼ぶことができる。同様にチャネルがp型である(すなわちほとんどのキャリアが正孔である)場合、FETはp型FETと呼ぶことができる。チャネルは、絶縁ゲート酸化物によって覆うことができる。チャネル導電率は、ゲートに電圧を印加することによって制御することができる。例えばそれぞれn型FETまたはp型FETに正の電圧または負の電圧を印加することにより、チャネルを導電性にすることができる。トランジスタは、トランジスタの閾値電圧より高いか、または閾値電圧に等しい電圧がトランジスタゲートに印加されると、「オン」すなわち「活性化」され得る。トランジスタは、トランジスタの閾値電圧未満の電圧がトランジスタゲートに印加されると、「オフ」すなわち「非活性化」され得る。
本明細書における開示に関連して説明した様々な実例のブロック、構成要素およびモジュールは、汎用プロセッサ、DSP、ASIC、FPGAまたは他のプログラマブル論理デバイス、離散ゲートまたはトランジスタ論理、離散ハードウェア構成要素、または本明細書において説明されている機能を実施するように設計されたそれらの任意の組合せを使用して実現することができ、あるいは実施することができる。汎用プロセッサはマイクロプロセッサであってもよいが、代替では、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラまたは状態マシンであってもよい。プロセッサは、計算デバイスの組合せ(例えばDSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサの組合せ、DSPコアまたは任意の他のこのような構成と共に1つまたは複数のマイクロプロセッサの組合せ)として実現することも可能である。
本明細書において説明されている機能は、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェアまたはそれらの任意の組合せの中で実現することができる。プロセッサによって実行されるソフトウェアの中で実現される場合、機能は、コンピュータ可読媒体上に記憶することができ、あるいはコンピュータ可読媒体上の1つまたは複数の命令またはコードとして伝送することができる。他の例および実施態様は、本開示の範囲および添付の特許請求の範囲の範疇である。例えばソフトウェアの性質のため、上で説明した機能は、プロセッサによって実行されるソフトウェア、ハードウェア、ファームウェア、ハードワイヤリングまたはこれらの任意の組合せを使用して実現することができる。また、機能を実現する特徴は、機能の一部が異なる物理的場所で実現されるように分散されることを含む、様々な位置に物理的に配置することも可能である。また、特許請求の範囲における使用を含む、本明細書において使用されているように、項目のリスト(例えば「のうちの少なくとも1つ」または「のうちの1つまたは複数」などの語句が先行する項目のリスト)に使用されている「または」は、例えばA、BまたはCのうちの少なくとも1つのリストは、AもしくはBもしくはC、または、ABもしくはACもしくはBC、またはABC(すなわちAおよびBおよびC)を意味するよう、包含的リストを示している。
コンピュータ可読媒体は、非一時的コンピュータ記憶媒体、および1つの場所から他の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体の両方を含む。非一時的記憶媒体は、汎用コンピュータまたは専用コンピュータによってアクセスすることができる任意の利用可能な媒体であってもよい。非制限の一例として、非一時的コンピュータ可読媒体は、RAM、ROM、電気的消去可能プログラマブルリードオンリーメモリ(EEPROM)、コンパクトディスク(CD)ROMまたは他の光ディスク記憶装置、磁気ディスク記憶装置または他の磁気記憶デバイス、あるいは命令またはデータ構造の形態の所望のプログラムコード手段を運び、あるいは記憶するために使用することができ、また、汎用コンピュータまたは専用コンピュータ、あるいは汎用プロセッサまたは専用プロセッサによってアクセスすることができる任意の他の非一時的媒体を備えることができる。
また、すべての接続は、コンピュータ可読媒体を適切に終端する。例えば同軸ケーブル、光ファイバケーブル、撚線対、デジタル加入者回線(DSL)または赤外線、無線、マイクロ波などの無線技術を使用して、ウェブサイト、サーバまたは他の遠隔源からソフトウェアが伝送される場合、同軸ケーブル、光ファイバケーブル、撚線対、デジタル加入者回線(DSL)または赤外線、無線およびマイクロ波などの無線技術は媒体の定義に含まれる。本明細書において使用されているディスク(diskおよびdisc)は、CD、レーザディスク、光ディスク、デジタル汎用ディスク(DVD)、フロッピーディスクおよびBlu−rayディスクを含み、ディスク(disk)は、通常、データを磁気的に再生し、一方、ディスク(disc)は、レーザを使用してデータを光学的に再生する。上記の組合せもコンピュータ可読媒体の範囲内に含まれる。
本明細書における説明は、当業者による本開示の作成および使用を可能にするために提供されたものである。当業者には本開示に対する様々な修正が容易に明らかであり、また、本明細書において定義されている一般的な概念は、本開示の範囲を逸脱することなく他の変形形態に適用することができる。したがって本開示は、本明細書において説明されている例および設計に限定されるべきものではなく、本明細書において開示されている原理および新規な特徴と矛盾しない最も広い範囲と一致するものとする。

Claims (24)

  1. メモリシステムを操作する方法であって、
    連続するメモリアクセスコマンドのための、第1のメモリパーティション及び第2のメモリパーティションの各々における同一の記憶場所を特定することであって、前記第1のメモリパーティション及び前記第2のメモリパーティションは1つのメモリアレイ内に含まれる、ことと、
    前記第1のメモリパーティションにおける前記記憶場所と、実施される機能とを特定するメモリアクセスコマンドを、前記メモリアレイへ送信することと、
    前記メモリアクセスコマンドを送信した後に、前記メモリアクセスコマンドのものと同じ記憶場所及び機能が前記第2のメモリパーティションで使用されることを示す次のパーティションコマンドを、前記メモリアレイへ送信することであって、前記メモリアレイへ送信された前記次のパーティションコマンドは、前記第2のメモリパーティションのパーティションアドレスを含み、かつ、前記第2のメモリパーティションの前記記憶場所のメモリアドレスを含まず、前記パーティションアドレスは、アクセスされる前記第2のメモリパーティションを示す幾つかのビットを含み、該ビットの数は、前記メモリアレイ内のパーティションの数に少なくとも部分的に基づく、ことと、
    を含む方法。
  2. 前記メモリアレイは3次元クロスポイントメモリアレイを含み、
    前記方法は、
    前記記憶場所を、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第1の記憶プレーンにおける第1のアドレスとして、及び、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第2の記憶プレーンにおける第2のアドレスとして、特定すること、
    を更に含む、請求項1に記載の方法。
  3. 前記メモリアクセスコマンドを送信するための第1の数のクロックサイクルは、前記次のパーティションコマンドを送信するための第2の数のクロックサイクルよりも多い、請求項1に記載の方法。
  4. 前記第1の数のクロックサイクルは8個のクロックサイクルであり、前記第2の数のクロックサイクルは2個のクロックサイクルである、請求項3に記載の方法。
  5. 前記メモリアレイは、ダイナミックランダムアクセスメモリ(DRAM)、不揮発性ランダムアクセスメモリ(NVRAM)、リードオンリメモリ(ROM)、及び3次元クロスポイントメモリからなるグループの中から選択される、請求項1に記載の方法。
  6. メモリデバイスを操作する方法であって、
    前記メモリデバイスで、前記メモリデバイスの第1のメモリパーティションにおける記憶場所と、実施される機能とを特定するメモリアクセスコマンドを受信することと、
    前記第1のメモリパーティションで、前記記憶場所にアクセスし、かつ、前記機能を実施することと、
    前記メモリデバイスで、前記メモリアクセスコマンドを受信した後に、次のパーティションコマンドを受信することであって、前記メモリデバイスで受信された前記次のパーティションコマンドは、第2のメモリパーティションのパーティションアドレスを含み、かつ、前記第2のメモリパーティションの前記記憶場所のメモリアドレスを含まず、前記パーティションアドレスは、アクセスされる前記第2のメモリパーティションを示す幾つかのビットを含み、該ビットの数は、前記メモリデバイスのメモリアレイ内のパーティションの数に少なくとも部分的に基づく、ことと、
    前記メモリデバイスの前記第2のメモリパーティションで、前記メモリアクセスコマンドにおいて受信された前記記憶場所にアクセスし、かつ、前記メモリアクセスコマンドにおいて受信された前記機能を実施することであって、前記第2のメモリパーティション及び前記第1のメモリパーティションは、前記メモリデバイスの前記メモリアレイ内にある、ことと、
    を含む方法。
  7. 前記メモリデバイスは3次元クロスポイントメモリアレイを含み、前記記憶場所は、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第1の記憶プレーンにおける第1のアドレスと、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第2の記憶プレーンにおける第2のアドレスとを含む、請求項に記載の方法。
  8. 前記メモリアクセスコマンドを受信するための第1の数のクロックサイクルは、前記次のパーティションコマンドを受信するための第2の数のクロックサイクルよりも多い、請求項に記載の方法。
  9. 前記第1の数のクロックサイクルは8個のクロックサイクルであり、前記第2の数のクロックサイクルは2個のクロックサイクルである、請求項に記載の方法。
  10. 前記メモリアレイは、ダイナミックランダムアクセスメモリ(DRAM)、不揮発性ランダムアクセスメモリ(NVRAM)、リードオンリメモリ(ROM)、及び3次元クロスポイントメモリからなるグループの中から選択され、請求項に記載の方法。
  11. データ転送のための装置であって、
    コントロール/アドレス(C/A)バス及びデータバスに結合されたメモリアレイであって、少なくとも第1のメモリパーティション及び第2のメモリパーティションを含む複数のメモリパーティションを含むメモリアレイと、
    前記C/Aバス及び前記データバスに結合された、前記メモリアレイと電子通信するコントローラと、
    を備え、
    前記コントローラは、
    連続するメモリアクセスコマンドのための、前記第1のメモリパーティション及び前記第2のメモリパーティションの各々における同一の記憶場所を特定することと、
    前記第1のメモリパーティションにおける前記記憶場所と、実施される機能とを特定するメモリアクセスコマンドを、前記C/Aバスを介して前記メモリアレイへ送信することと、
    前記第1のメモリパーティションにおける前記記憶場所に関連付けられたデータを、前記データバスを介して受信することと、
    前記メモリアクセスコマンドを送信した後に、前記メモリアクセスコマンドのものと同じ記憶場所及び機能が前記第2のメモリパーティションで使用されることを示す次のパーティションコマンドを、前記C/Aバスを介して前記メモリアレイへ送信することであって、前記メモリアレイへ送信された前記次のパーティションコマンドは、前記第2のメモリパーティションのパーティションアドレスを含み、かつ、前記第2のメモリパーティションの前記記憶場所のメモリアドレスを含まず、前記パーティションアドレスは、アクセスされる前記第2のメモリパーティションを示す幾つかのビットを含み、該ビットの数は、前記メモリアレイ内のパーティションの数に少なくとも部分的に基づく、ことと、
    を行うように動作可能である、装置。
  12. 前記メモリアレイは3次元クロスポイントメモリアレイを含み、
    前記コントローラは、前記記憶場所を、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第1の記憶プレーンにおける第1のアドレスとして、及び、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第2の記憶プレーンにおける第2のアドレスとして、特定するように更に動作可能である、請求項11に記載の装置。
  13. 前記メモリアクセスコマンドを送信するための第1の数のC/Aバスクロックサイクルは、前記次のパーティションコマンドを送信するための第2の数のC/Aバスクロックサイクルよりも多い、請求項11に記載の装置。
  14. 前記第1の数のC/Aバスクロックサイクルは8個のクロックサイクルであり、前記第2の数のC/Aバスクロックサイクルは2個のクロックサイクルである、請求項13に記載の装置。
  15. 前記メモリアレイは、ダイナミックランダムアクセスメモリ(DRAM)、不揮発性ランダムアクセスメモリ(NVRAM)、リードオンリメモリ(ROM)、及び3次元クロスポイントメモリからなるグループの中から選択される、請求項11に記載の装置。
  16. 受信した命令を前記次のパーティションコマンドとしてデコードするように構成された操作命令デコーダを更に備え、前記コントローラは、受信された初期の命令をデコードするように構成されており、該受信された初期の命令は、第1のメモリアドレス、前記第1のメモリパーティションの先行する記憶場所、第1のメモリパーティションの識別、又は前記メモリアクセスコマンドのうちの少なくとも1つを含む、請求項11に記載の装置。
  17. 前記メモリアレイは3次元クロスポイントメモリアレイを含む、請求項11に記載の装置。
  18. 連続するメモリアクセスコマンドのための、第1のメモリパーティション及び第2のメモリパーティションの各々における同一の記憶場所を特定する手段であって、前記第1のメモリパーティション及び前記第2のメモリパーティションは1つのメモリアレイ内に含まれる、手段と、
    前記第1のメモリパーティションにおける前記記憶場所と、実施される機能とを特定するメモリアクセスコマンドを、前記メモリアレイへ送信する手段と、
    前記メモリアクセスコマンドを送信した後に、前記メモリアクセスコマンドのものと同じ記憶場所及び機能が前記第2のメモリパーティションで使用されることを示す次のパーティションコマンドを、前記メモリアレイへ送信する手段であって、前記メモリアレイへ送信された前記次のパーティションコマンドは、前記第2のメモリパーティションのパーティションアドレスを含み、かつ、前記第2のメモリパーティションの前記記憶場所のメモリアドレスを含まず、前記パーティションアドレスは、アクセスされる前記第2のメモリパーティションを示す幾つかのビットを含み、該ビットの数は、前記メモリアレイ内のパーティションの数に少なくとも部分的に基づく、手段と、
    を備える装置。
  19. 前記メモリアレイは3次元クロスポイントメモリアレイを含み、
    前記装置は、
    前記記憶場所を、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第1の記憶プレーンにおける第1のアドレスとして、及び、前記3次元クロスポイントメモリアレイの前記第1のメモリパーティション内の第2の記憶プレーンにおける第2のアドレスとして、特定する手段、
    を更に備える、請求項18に記載の装置。
  20. メモリデバイスで、前記メモリデバイスの第1のメモリパーティションにおける記憶場所と、実施される機能とを特定するメモリアクセスコマンドを受信する手段と、
    前記第1のメモリパーティションで、前記記憶場所にアクセスし、かつ、前記機能を実施する手段と、
    前記メモリデバイスで、前記メモリアクセスコマンドを受信した後に、次のパーティションコマンドを受信する手段であって、前記メモリデバイスで受信された前記次のパーティションコマンドは、第2のメモリパーティションのパーティションアドレスを含み、かつ、前記第2のメモリパーティションの前記記憶場所のメモリアドレスを含まず、前記パーティションアドレスは、アクセスされる前記第2のメモリパーティションを示す幾つかのビットを含み、該ビットの数は、前記メモリデバイスのメモリアレイ内のパーティションの数に少なくとも部分的に基づく、手段と、
    前記メモリデバイスの前記第2のメモリパーティションで、前記メモリアクセスコマンドにおいて受信された前記記憶場所にアクセスし、かつ、前記メモリアクセスコマンドにおいて受信された前記機能を実施する手段であって、前記第2のメモリパーティション及び前記第1のメモリパーティションは、前記メモリデバイスの前記メモリアレイ内にある、手段と、
    を備える装置。
  21. コントロール/アドレス(C/A)バス及びデータバスに結合されたメモリアレイであって、少なくとも第1のメモリパーティション及び第2のメモリパーティションを含む複数のメモリパーティションを含むメモリアレイと、
    連続するメモリアクセスコマンドのための、前記第1のメモリパーティション及び前記第2のメモリパーティションの各々における同一の記憶場所を特定する手段と、
    前記第1のメモリパーティションにおける前記記憶場所と、実施される機能とを特定するメモリアクセスコマンドを、前記C/Aバスを介して前記メモリアレイへ送信する手段と、
    前記第1のメモリパーティションにおける前記記憶場所に関連付けられたデータを、前記データバスを介して受信する手段と、
    前記メモリアクセスコマンドを送信した後に、前記メモリアクセスコマンドのものと同じ記憶場所及び機能が前記第2のメモリパーティションで使用されることを示す次のパーティションコマンドを、前記C/Aバスを介して前記メモリアレイへ送信する手段であって、前記メモリアレイへ送信された前記次のパーティションコマンドは、前記第2のメモリパーティションのパーティションアドレスを含み、かつ、前記第2のメモリパーティションの前記記憶場所のメモリアドレスを含まず、前記パーティションアドレスは、アクセスされる前記第2のメモリパーティションを示す幾つかのビットを含み、該ビットの数は、前記メモリアレイ内のパーティションの数に少なくとも部分的に基づく、手段と、
    を備える装置。
  22. 前記第1のメモリパーティションと前記第2のメモリパーティションとの間に、1つ以上の連続するメモリパーティションが配置されている、請求項1に記載の方法。
  23. 前記第1のメモリパーティションと前記第2のメモリパーティションとの間に、前記メモリアレイの1つ以上の連続するメモリパーティションが配置されている、請求項6に記載の方法。
  24. 前記第1のメモリパーティションと前記第2のメモリパーティションとの間に、前記メモリアレイの1つ以上の連続するメモリパーティションが配置されている、請求項11に記載の装置。
JP2020047575A 2016-05-03 2020-03-18 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法 Active JP6921260B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/145,628 2016-05-03
US15/145,628 US10152262B2 (en) 2016-05-03 2016-05-03 Memory access techniques in memory devices with multiple partitions
JP2018557135A JP6921120B2 (ja) 2016-05-03 2017-04-18 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018557135A Division JP6921120B2 (ja) 2016-05-03 2017-04-18 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法

Publications (2)

Publication Number Publication Date
JP2020107360A JP2020107360A (ja) 2020-07-09
JP6921260B2 true JP6921260B2 (ja) 2021-08-18

Family

ID=60203097

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018557135A Active JP6921120B2 (ja) 2016-05-03 2017-04-18 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法
JP2020047575A Active JP6921260B2 (ja) 2016-05-03 2020-03-18 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018557135A Active JP6921120B2 (ja) 2016-05-03 2017-04-18 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法

Country Status (8)

Country Link
US (3) US10152262B2 (ja)
EP (1) EP3452898B1 (ja)
JP (2) JP6921120B2 (ja)
KR (2) KR102341691B1 (ja)
CN (1) CN109154891B (ja)
SG (1) SG11201809795VA (ja)
TW (2) TWI655539B (ja)
WO (1) WO2017192259A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10152262B2 (en) * 2016-05-03 2018-12-11 Micron Technology, Inc. Memory access techniques in memory devices with multiple partitions
US10468458B2 (en) * 2016-05-10 2019-11-05 Winbond Electronics Corp. Resistive random access memory having selector and current limiter structures
US10459855B2 (en) * 2016-07-01 2019-10-29 Intel Corporation Load reduced nonvolatile memory interface
JP2019057194A (ja) * 2017-09-22 2019-04-11 東芝メモリ株式会社 メモリシステム、及び不揮発性メモリの制御方法
US10817430B2 (en) * 2018-10-02 2020-10-27 Micron Technology, Inc. Access unit and management segment memory operations
US10840240B2 (en) * 2018-10-24 2020-11-17 Micron Technology, Inc. Functional blocks implemented by 3D stacked integrated circuit
US10748874B2 (en) 2018-10-24 2020-08-18 Micron Technology, Inc. Power and temperature management for functional blocks implemented by a 3D stacked integrated circuit
US10461076B1 (en) 2018-10-24 2019-10-29 Micron Technology, Inc. 3D stacked integrated circuits having functional blocks configured to accelerate artificial neural network (ANN) computation
US10707197B1 (en) 2018-12-13 2020-07-07 Micron Technology, Inc. 3D stacked integrated circuits having functional blocks configured to provide redundancy sites
US10666264B1 (en) 2018-12-13 2020-05-26 Micron Technology, Inc. 3D stacked integrated circuits having failure management
US11144228B2 (en) * 2019-07-11 2021-10-12 Micron Technology, Inc. Circuit partitioning for a memory device
US11137920B1 (en) * 2020-04-30 2021-10-05 Micron Technology, Inc. Storing zones in a zone namespace on separate planes of a multi-plane memory device
KR102208497B1 (ko) * 2020-07-01 2021-01-27 주식회사 파두 메모리 컨트롤러 및 이를 포함하는 스토리지 디바이스
US11960744B2 (en) 2021-02-01 2024-04-16 Micron Technology, Inc. Register operation in memory devices

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274099B1 (ko) * 1991-08-02 2001-01-15 비센트 비.인그라시아 점진적으로 프로그램가능한 비휘발성 메모리 및 이를 구비한 집적 회로와 비휘발성 메모리 프로그래밍 방법
US5263003A (en) * 1991-11-12 1993-11-16 Allen-Bradley Company, Inc. Flash memory circuit and method of operation
JPH05250309A (ja) * 1992-03-04 1993-09-28 Mitsubishi Electric Corp バス・アダプタ装置
JP3078204B2 (ja) * 1995-06-01 2000-08-21 株式会社東芝 磁気ディスク装置及び磁気ディスク装置におけるバッファ管理方法
FR2748595B1 (fr) * 1996-05-10 1998-07-10 Sgs Thomson Microelectronics Memoire a acces parallele
JPH10172283A (ja) * 1996-12-10 1998-06-26 Hitachi Ltd 半導体記憶装置及びシステム
US6128716A (en) * 1998-01-23 2000-10-03 Motorola Inc. Memory controller with continuous page mode and method therefor
CA2252751C (en) * 1998-01-29 2006-10-03 Nec Corporation Method and apparatus for rotating image data
JP4043151B2 (ja) * 1998-08-26 2008-02-06 富士通株式会社 高速ランダムアクセス可能なメモリデバイス
EP1026595B1 (en) * 1999-01-11 2008-07-23 STMicroelectronics Limited Memory interface device and method for accessing memories
US6853382B1 (en) 2000-10-13 2005-02-08 Nvidia Corporation Controller for a memory system having multiple partitions
US6746164B1 (en) * 2000-10-27 2004-06-08 International Business Machines Corporation Method and system using carrier identification information for tracking printed articles
US6675272B2 (en) 2001-04-24 2004-01-06 Rambus Inc. Method and apparatus for coordinating memory operations among diversely-located memory components
US7054312B2 (en) * 2001-08-17 2006-05-30 Mcdata Corporation Multi-rate shared memory architecture for frame storage and switching
ITRM20020281A1 (it) * 2002-05-20 2003-11-20 Micron Technology Inc Metodo ed apparecchiatura per accesso rapido di memorie.
JP2004013618A (ja) * 2002-06-07 2004-01-15 Renesas Technology Corp 同期型半導体記憶装置のアクセス制御装置
US6906980B2 (en) * 2003-01-08 2005-06-14 Intel Corporation Network packet buffer allocation optimization in memory bank systems
US7243183B2 (en) * 2005-01-07 2007-07-10 Cisco Technology, Inc. SONET data byte switch
US20070089030A1 (en) * 2005-09-30 2007-04-19 Beracoechea Alejandro L L Configurable bandwidth allocation for data channels accessing a memory interface
US8433874B2 (en) * 2006-12-06 2013-04-30 Mosaid Technologies Incorporated Address assignment and type recognition of serially interconnected memory devices of mixed type
US7925854B2 (en) * 2006-12-06 2011-04-12 Mosaid Technologies Incorporated System and method of operating memory devices of mixed type
EP3200189B1 (en) * 2007-04-12 2021-06-02 Rambus Inc. Memory system with point-to-point request interconnect
US20080301391A1 (en) * 2007-06-01 2008-12-04 Jong-Hoon Oh Method and apparatus for modifying a burst length for semiconductor memory
JP2010003067A (ja) * 2008-06-19 2010-01-07 Sony Corp メモリシステムおよびそのアクセス制御方法、並びにプログラム
FR2933802B1 (fr) 2008-07-10 2010-10-15 Commissariat Energie Atomique Structure et procede de realisation d'un dispositif microelectronique de memoire 3d de type flash nand.
US8914589B2 (en) 2008-09-22 2014-12-16 Infineon Technologies Ag Multi-port DRAM architecture for accessing different memory partitions
US9342471B2 (en) 2010-01-29 2016-05-17 Mosys, Inc. High utilization multi-partitioned serial memory
US9354823B2 (en) * 2012-06-06 2016-05-31 Mosys, Inc. Memory system including variable write burst and broadcast command scheduling
EP2536944B1 (en) * 2010-02-02 2020-09-09 Vestas Wind Systems A/S Test system for wind turbine dump load
US8626989B2 (en) * 2011-02-02 2014-01-07 Micron Technology, Inc. Control arrangements and methods for accessing block oriented nonvolatile memory
KR101756111B1 (ko) * 2011-04-15 2017-07-10 삼성전자 주식회사 메모리 컨트롤러 구동방법, 메모리 컨트롤러, 메모리 장치 및 메모리 시스템
US9239611B2 (en) 2011-12-05 2016-01-19 Intel Corporation Method, apparatus, and system for energy efficiency and energy conservation including balancing power among multi-frequency domains of a processor based on efficiency rating scheme
JP2013205872A (ja) 2012-03-27 2013-10-07 Sony Corp 記憶制御装置、記憶装置、情報処理システム、および、それらにおける処理方法
US8853818B2 (en) 2013-02-20 2014-10-07 Macronix International Co., Ltd. 3D NAND flash memory
US9129674B2 (en) 2013-06-27 2015-09-08 Intel Corporation Hybrid memory device
US9246100B2 (en) * 2013-07-24 2016-01-26 Micron Technology, Inc. Memory cell array structures and methods of forming the same
KR101826073B1 (ko) * 2013-09-27 2018-02-06 인텔 코포레이션 메모리 관리를 위한 캐시 동작들
US9417816B2 (en) 2014-01-02 2016-08-16 Advanced Micro Devices, Inc. Partitionable memory interfaces
US10249819B2 (en) * 2014-04-03 2019-04-02 Micron Technology, Inc. Methods of forming semiconductor structures including multi-portion liners
US9411521B2 (en) * 2014-05-30 2016-08-09 Macronix International Co., Ltd. Method and apparatus for improving sequential memory read preformance
TWM489265U (en) 2014-07-22 2014-11-01 Ya Horng Electronic Co Ltd Dehumidifier
US9397145B1 (en) * 2015-05-14 2016-07-19 Micron Technology, Inc. Memory structures and related cross-point memory arrays, electronic systems, and methods of forming memory structures
CN106341007B (zh) * 2015-07-06 2019-08-23 浙江三花汽车零部件有限公司 电驱动泵的制造方法
US10126958B2 (en) * 2015-10-05 2018-11-13 Intel Corporation Write suppression in non-volatile memory
US9910786B2 (en) * 2015-11-03 2018-03-06 Intel Corporation Efficient redundant array of independent disks (RAID) write hole solutions
US10134470B2 (en) * 2015-11-04 2018-11-20 Micron Technology, Inc. Apparatuses and methods including memory and operation of same
US10191833B2 (en) * 2015-12-07 2019-01-29 Vmware, Inc. Method to efficiently trigger concurrency bugs based on expected frequencies of execution interleavings
US10152262B2 (en) * 2016-05-03 2018-12-11 Micron Technology, Inc. Memory access techniques in memory devices with multiple partitions

Also Published As

Publication number Publication date
JP6921120B2 (ja) 2021-08-18
US11586367B2 (en) 2023-02-21
US20170322749A1 (en) 2017-11-09
CN109154891A (zh) 2019-01-04
SG11201809795VA (en) 2018-12-28
EP3452898A4 (en) 2020-01-15
EP3452898B1 (en) 2021-10-13
CN109154891B (zh) 2020-08-04
TW201740277A (zh) 2017-11-16
US10152262B2 (en) 2018-12-11
TW201907307A (zh) 2019-02-16
TWI655539B (zh) 2019-04-01
US20190004729A1 (en) 2019-01-03
KR102035958B1 (ko) 2019-10-23
JP2019520629A (ja) 2019-07-18
JP2020107360A (ja) 2020-07-09
EP3452898A1 (en) 2019-03-13
US11068183B2 (en) 2021-07-20
WO2017192259A1 (en) 2017-11-09
US20220004329A1 (en) 2022-01-06
KR20180128090A (ko) 2018-11-30
KR20190117826A (ko) 2019-10-16
KR102341691B1 (ko) 2021-12-21
TWI716772B (zh) 2021-01-21

Similar Documents

Publication Publication Date Title
JP6921260B2 (ja) 複数のパーティションを有するメモリデバイスにおけるメモリアクセス技法
JP6905067B2 (ja) メモリダイ領域の有効利用
CN108806746B (zh) 混合式交叉点存储器装置及其操作方法
JP6982089B2 (ja) 活性化境界キルトアーキテクチャのメモリ
JP6785315B2 (ja) 3次元メモリアレイのための熱絶縁
JP7314254B2 (ja) 遷移金属ドープのゲルマニウム-アンチモン-テルル(gst)メモリデバイスコンポーネント及び組成物
JP2020532121A (ja) 誘電バリアを有する自己選択型メモリ・セル
JP2020083683A (ja) カルコゲナイドメモリデバイスの構成要素及び組成物
CN111223507A (zh) 硫族化物存储器装置组件和组合物
KR102188583B1 (ko) 칼코게나이드 메모리 디바이스 컴포넌트들 및 조성물

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6921260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250