JP6911757B2 - 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維 - Google Patents

流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維 Download PDF

Info

Publication number
JP6911757B2
JP6911757B2 JP2017505878A JP2017505878A JP6911757B2 JP 6911757 B2 JP6911757 B2 JP 6911757B2 JP 2017505878 A JP2017505878 A JP 2017505878A JP 2017505878 A JP2017505878 A JP 2017505878A JP 6911757 B2 JP6911757 B2 JP 6911757B2
Authority
JP
Japan
Prior art keywords
porous carbon
fluid separation
separation membrane
carbon fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017505878A
Other languages
English (en)
Other versions
JPWO2017126501A1 (ja
Inventor
康作 竹内
康作 竹内
大 近藤
大 近藤
健太郎 田中
健太郎 田中
崇晃 三原
崇晃 三原
堀口 智之
智之 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2017126501A1 publication Critical patent/JPWO2017126501A1/ja
Application granted granted Critical
Publication of JP6911757B2 publication Critical patent/JP6911757B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/026Sponge structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/08Inorganic fibres
    • D06N2201/087Carbon fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は、流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維に関するものである。
各種混合ガスや混合液体から特定の成分を選択的に分離・精製する手法として、膜分離法が利用されている。膜分離法は他の流体分離法と比較して省エネルギーな手法であるため、注目されている。
例えば、天然ガスの精製プラントでは、主成分であるメタンガスに含まれる不純物の二酸化炭素を分離・除去する必要があり、分離膜の上流側と下流側の圧力差が大きいほうが透過速度が向上するため、エネルギーの効率利用の観点から、数MPa以上の高いガス圧で分離・精製することが求められている。
また、化学工業においてアルコールや酢酸中に含まれる不純物の水を分離・精製する工程において膜分離法が使われ始めており、分離対象物質の透過流量を向上させるために高圧で分離・精製することが求められている。
膜分離法に用いられる分離膜として、中空糸状の分離膜が提案されており、単位体積あたりの膜面積が大きい点や連続的に製造できる点で、シート状の分離膜やセラミックス基材の複合分離膜と比べて利点がある(例えば、特許文献1、2)。
日本国特開昭61−133106号公報 米国特許第8366804号明細書
一般的に、特許文献1または2に記載されているような有機高分子からなる中空糸膜では、流体の透過速度を向上させるために膜厚を薄くする検討が行われるが、膜厚が薄くなると繊維断面方向(繊維軸と直交する方向)の圧縮強度が低下するため、高圧下では使用が困難であった。
本発明は、上記従来の実情を鑑みてなされたものであって、繊維断面方向の圧縮強度が高い流体分離膜を提供することを解決すべき課題としている。
本発明者らは、鋭意検討を重ねた結果、共連続多孔構造を有する多孔質炭素繊維の表面に、有機高分子層を形成することで、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は下記<1>〜<14>に関するものである。
<1>共連続多孔構造を有する多孔質炭素繊維の表面に、有機高分子層が形成されてなる流体分離膜。
<2>前記多孔質炭素繊維の全体に前記共連続多孔構造を有する、<1>に記載の流体分離膜。
<3>水銀圧入法により測定される前記多孔質炭素繊維の全体の平均細孔直径が30〜5,000nmである、<1>または<2>に記載の流体分離膜。
<4>走査型電子顕微鏡による表面観察によって測定される前記多孔質炭素繊維の表面の平均細孔直径が2〜500nmである、<1>〜<3>のいずれか1つに記載の流体分離膜。
<5>前記共連続多孔構造の構造周期が10〜10,000nmである、<1>〜<4>のいずれか1つに記載の流体分離膜。
<6>前記多孔質炭素繊維のX線散乱の強度ピークの半値幅が5°以下である、<1>〜<5>のいずれか1つに記載の流体分離膜。
<7>前記有機高分子層が、芳香族ポリイミド、酢酸セルロース、ポリスルホン、芳香族ポリアミド、ポリエーテルイミド、ポリエーテルスルホン、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリフッ化ビニリデンおよびこれらの誘導体からなる群より選択される1種または2種以上の有機高分子を含む層である、<1>〜<6>のいずれか1つに記載の流体分離膜。
<8>前記有機高分子層が、芳香族ポリイミド、芳香族ポリアミドおよびこれらの誘導体からなる群より選択される1種または2種以上の有機高分子を含む層である、<1>〜<7>のいずれか1つに記載の流体分離膜。
<9>ケーシング内に<1>〜<8>のいずれか1つに記載の流体分離膜を複数本収容してなる流体分離膜モジュール。
<10>全体に共連続多孔構造を有する多孔質炭素繊維。
<11>水銀圧入法により測定される全体の平均細孔直径が30nm〜5,000nmである、<10>に記載の多孔質炭素繊維。
<12>走査型電子顕微鏡による表面観察によって測定される表面の平均細孔直径が2〜500nmである、<10>または<11>に記載の多孔質炭素繊維。
<13>前記共連続多孔構造の構造周期が10〜10,000nmである、<10>〜<12>のいずれか1つに記載の多孔質炭素繊維。
<14>X線散乱の強度ピークの半値幅が5°以下である、<10>〜<13>のいずれか1つに記載の多孔質炭素繊維。
本発明により、繊維断面方向(繊維軸と直交する方向)の圧縮強度が高い流体分離膜を提供することができ、流体分離膜モジュールの耐久性を高めることができる。
図1は、本発明の流体分離膜の繊維断面の構造を示した模式図である。 図2は、本発明の多孔質炭素繊維の共連続多孔構造の走査型電子顕微鏡写真である。
<流体分離膜>
〔多孔質炭素繊維〕
本発明の流体分離膜(以下、単に「流体分離膜」または「分離膜」ということがある。)は、共連続多孔構造を有する多孔質炭素繊維を基材とする。
本発明において、多孔質炭素繊維の炭素成分は、60〜90重量%が好ましい。60重量%以上であると多孔質炭素繊維の耐熱性および耐薬品性が向上する傾向にある。多孔質炭素繊維の炭素成分は、65重量%以上がより好ましい。また、90重量%以下であると柔軟性が向上し、曲げ半径が小さくなって取り扱い性が向上する。多孔質炭素繊維の炭素成分は、85重量%以下がより好ましい。
炭素成分比率は、有機元素分析法によって炭素、水素、窒素成分を測定したときの炭素成分の重量割合を用いる。なお、炭素、水素、窒素成分の合計が100重量%にならない場合は酸素など他の元素が存在することを意味する。
共連続多孔構造とは、炭素骨格の枝部と細孔部(空隙部)がそれぞれ連続しつつ三次元的に規則的に絡み合った構造であり、具体的には図2に例示される通り、液体窒素中で充分に冷却した試料をピンセット等により割断した断面を走査型電子顕微鏡で表面観察した際に、炭素骨格の枝部と空隙部がそれぞれ連続しつつ絡み合っている構造を指す。
このような均一な構造を有することで炭素骨格の枝部が構造体全体を支えあう効果が生じて応力を繊維全体に分散させるため、繊維断面方向(繊維軸と直交する方向)の圧縮や曲げなどの外力に対して大きな耐性を有し、圧縮強度および圧縮比強度を向上させることができる。また、空隙が三次元的に連通しているため、繊維の断面方向および繊維軸方向にガスや液体などの流体を供給または排出させるための流路としての役割を有する。
共連続多孔構造としては、格子状やモノリス状が挙げられ、特に限定されないが、上記の効果を発揮できる点では、モノリス状であると繊維断面方向の圧縮強度が向上する傾向にあるため好ましい。
モノリス状とは、共連続多孔構造において炭素骨格が三次元網目構造をなす形態をいい、個別の粒子が凝集・連結した構造や、あるいは逆に、凝集・連結した鋳型粒子を除去することにより生じた空隙とその周囲の骨格により形成された構造のような不規則な構造とは区別される。
多孔質炭素繊維は、全体に共連続多孔構造を有し、その表面には細孔が開孔していることが好ましい。繊維表面が開孔すると繊維断面方向の流体の圧力損失が減少するため、流体分離膜の透過速度を向上させることができる。また、繊維表面が凹凸構造となるため、アンカー効果により後述する有機高分子層との接着性が向上する。
ここで、全体に共連続多孔構造を有するとは、多孔質炭素繊維の表面を走査型電子顕微鏡にて任意の箇所を10ヶ所観察した際に、すべての箇所において共連続多孔構造が存在し、後述のように平均細孔直径が2nm以上の細孔が観察されることを意味する。また、多孔質炭素繊維が中空糸の場合、外表面と内表面の少なくとも一方に共連続多孔構造が存在すればよい。
多孔質炭素繊維の共連続多孔構造を形成する細孔の全体の平均直径は、小さすぎると繊維軸方向および繊維断面方向の圧力損失が増加して流体の透過度が低下するため30nm以上が好ましく、100nm以上がより好ましい。
また、細孔の全体の平均直径が大きすぎると、炭素の枝部が構造体全体を支えあう効果が低下して圧縮強度が低下するため、5,000nm以下が好ましく、2,500nm以下がより好ましい。
ここで、細孔の全体の平均直径とは、水銀圧入法による分離膜の細孔径分布測定による測定値である。水銀圧入法においては、共連続多孔構造の細孔に圧力を加えて水銀を浸入させ、圧力と圧入された水銀量から細孔容積と比表面積を求める。そして、細孔を円筒と仮定したときに細孔容積と比表面積の関係から得た細孔直径を算出するものであり、水銀圧入法では5nm〜500μmの細孔直径分布曲線を取得できる。なお、後述する有機高分子層は実質的に細孔を有しないため、分離膜全体の細孔の平均直径は、実質的に多孔質炭素繊維の共連続多孔構造の細孔の平均直径と同視できる。
多孔質炭素繊維は、表面の細孔直径が大きいと流体分離膜のガス透過速度が向上するため、表面の平均細孔直径は2nm以上が好ましく、10nm以上がより好ましく、50nm以上がさらに好ましい。また、表面の細孔直径が大きすぎると、有機高分子層を形成させる際に有機高分子が多孔質炭素繊維の内部にまで浸透して、表面に均一に積層できない場合がある。そのため、表面の平均細孔直径は500nm以下が好ましく、400nm以下がより好ましく、300nm以下がさらに好ましい。
ここで、多孔質炭素繊維の表面における平均細孔直径は、走査型電子顕微鏡における表面観察によって解析した測定値を用いる。具体的には、多孔質炭素繊維表面を1±0.1(nm/画素)となる倍率にて70万画素以上で観察して取得した画像を画像解析ソフトによって繊維表面を枝部(炭素部)および細孔部(空隙部)に分離する。続いて、画像中における細孔部分の面積の平均値を算出し、その平均面積と同一の面積の真円の直径を平均細孔直径とする。ここで、前記方法にて細孔部が画像中に10個未満しか観察されない場合は、10±1(nm/画素)となる倍率にて70万画素以上で観察して取得した画像を用いて算出する。
有機高分子層が形成された本発明の流体分離膜の場合、表層の有機高分子層を溶解または分解可能な溶剤にて溶解または分解除去するか、あるいは多孔質炭素繊維の構造が変化しない温度で有機高分子層を熱分解除去することによって多孔質炭素繊維の表面を露出させた上で、表面における平均細孔直径を測定する。
これらいずれの処理も困難である場合は、流体分離膜を液体窒素中で充分に冷却し、ピンセット等により割断して繊維横断面を露出させる。続いて、走査型電子顕微鏡で観察し、多孔質炭素繊維と有機高分子層の界面付近を観察した画像から上述の手法によって平均細孔直径を算出することができる。
多孔質炭素繊維は、表面の細孔は繊維中心部まで連通していることが好ましい。細孔の連通の有無は次の手法により確認する。すなわち、二酸化炭素および窒素の純ガスを用いて多孔質炭素繊維のガス透過速度を測定し、そのガス透過速度比CO/Nが1.0であるか、または0.80(すなわちクヌーセン拡散機構)であれば細孔が連通していると判断する。
多孔質炭素繊維の共連続多孔構造の構造周期は10〜10,000nmが好ましい。多孔質炭素繊維が構造周期を有することは多孔構造の均一性が高いことを示し、炭素骨格の枝の太さや細孔サイズが均一であることを意味する。それによって、多孔質炭素繊維や流体分離膜の圧縮強度が向上する効果が得られる。
また、一般的に細孔サイズが不均一であると、多孔質炭素支持体の撥水性や表面粗さの不均一性に起因して均一な厚みの有機高分子層の形成が困難になる傾向にある。しかしながら、本発明において全体に共連続多孔構造を有する多孔質炭素繊維の場合、濃度や粘度が低いコート原液(有機高分子溶液)の場合でも、有機高分子層の厚みを均一にすることができる。
構造周期が10,000nm以下であると、炭素骨格と細孔が微細な構造となって圧縮強度が向上する。そのため、構造周期は5,000nm以下がより好ましく、3,000nm以下がさらに好ましい。
一方、構造周期が10nm以上であると、空隙部に流体を流す際の圧力損失が減少して流体の透過速度が向上する。また、圧力損失が低下すると、より省エネルギーで分離・精製できる効果を奏する。そのため、構造周期は100nm以上がより好ましく、300nm以上がさらに好ましい。
共連続多孔構造の構造周期は、本発明の多孔質炭素繊維にX線を入射し、小角で散乱して得られた散乱強度のピークトップの位置における散乱角度2θより、下式で算出されるものである。
Figure 0006911757
L:構造周期、λ:入射X線の波長
ただし、構造周期が大きくて小角での散乱が観測できない場合がある。その場合はX線コンピュータ断層撮影(X線CT)によって構造周期を得る。具体的には、X線CTによって撮影した三次元画像をフーリエ変換した後に、その二次元スペクトルの円環平均を取り、一次元スペクトルを得る。その一次元スペクトルにおけるピークトップの位置に対応する特性波長を求め、その逆数として構造周期を算出する。
さらに、共連続多孔構造は均一な構造であるほど、流体分離膜全体に応力を分散させる効果が得られるため、圧縮強度が高くなる。共連続多孔構造の均一性は、多孔質炭素繊維のX線の散乱強度の強度ピークの半値幅により決定できる。
具体的には、本発明の多孔質炭素繊維にX線を入射し、得られた散乱強度ピークの半値幅が小さいほど均一性が高いと判断する。ピークの半値幅は5°以下が好ましく、1°以下がより好ましく、0.1°以下がさらに好ましい。
なお、本発明におけるピークの半値幅とは、ピークの頂点を点Aとし、点Aからグラフの縦軸に平行な直線を引き、該直線とスペクトルのベースラインとの交点を点Bとしたとき、点Aと点Bを結ぶ線分の中点Cにおけるピークの幅である。また、ここでのピークの幅とは、ベースラインに平行で、かつ点Cを通る直線と散乱曲線との交点間の長さのことである。
共連続多孔構造の平均空隙率は、20〜80%が好ましい。
平均空隙率とは、包埋した試料をクロスセクションポリッシャー法(CP法)により精密に形成させた多孔質炭素繊維の断面を、1±0.1(nm/画素)となる倍率にて70万画素以上で観察し、その画像から計算に必要な着目領域を512画素四方で設定し、細孔部分の面積をA、炭素部分の面積をBとして以下の式で算出し、任意の断面20箇所の算術平均値により算出した値である。ここで、多孔質炭素繊維が中空部を有する場合、中空部分の面積は細孔の面積には含めない。
平均空隙率(%)=A/B×100
平均空隙率が高いほど流体の圧力損失が小さくなり、透過速度を向上させることができる。そのため、平均空隙率は25%以上がより好ましく、28%以上がさらに好ましい。一方、平均空隙率が小さいほど、平均かさ密度が高くなり、圧縮比強度が向上する。そのため、平均空隙率は75%以下がより好ましく、70%以下がさらに好ましい。平均空隙率は所望の流体の透過速度と圧縮強度に併せて適宜設定する。
本発明の流体分離膜および多孔質炭素繊維は、圧縮強度が高いほど高圧下で使用できるため好ましい。圧縮強度は10MPa以上が好ましく、20MPa以上がより好ましく、30MPa以上がさらに好ましい。
ここで、圧縮強度の測定は、微小圧縮試験機を用い、多孔質炭素繊維1本を治具で挟み、繊維断面方向(繊維軸と直交する方向)に圧縮して圧縮変位と荷重を測定し、圧縮強度σを下記の式により算出する。
Figure 0006911757
σ:繊維断面方向の圧縮強度、F:破壊重、d:繊維直径、l:繊維長
また、圧縮比強度が高いほど軽くて強度が高い材料であるため、圧縮比強度は一例として10N・m/kg以上が好ましく、20N・m/kg以上がより好ましい。ここで、圧縮比強度は圧縮強度を平均かさ密度で除して算出する。
〔流体分離膜の形状〕
本発明の流体分離膜は多孔質炭素繊維を基材とするが、ここで、繊維とは繊維直径に対する繊維長さ(アスペクト比)が100以上のものを指す。多孔質炭素繊維および流体分離膜の断面の形状は制限されず、丸断面、多角形断面、多葉断面、扁平断面など任意の形状とすることが可能であるが、丸断面であると断面内の強度分布が均一になり、繊維断面方向の圧縮強度および圧縮比強度がより向上するため好ましい。
多孔質炭素繊維として、中空部を有する中空糸を用いた分離膜も、本発明の一態様である。以下、中空部を有する多孔質炭素繊維を基材として用いる場合について説明する。
本発明における中空部とは、繊維軸方向に連続的に形成された略同一の直径からなる空隙部を指し、中空部は共連続多孔構造とともに流体の流路としての役割を有する。中空部を有することで、外圧式、内圧式のいずれの方式で流体を透過させる場合においても流体が特に繊維軸方向に流れる場合に圧力損失が顕著に減少する効果を奏し、中空断面を有していない多孔質炭素繊維と比較して流体の透過速度が向上する。特に、内圧式の場合、圧力損失が低下するため、流体の透過速度がより向上する。
多孔質炭素繊維の断面積Bに対する中空部の断面積Aの面積比率(中空面積比率:A/B)は0.001〜0.7が好ましい。ここで、多孔質炭素繊維の断面積Bは中空部の断面積Aを含んだ断面積である。中空面積比率が大きいほど圧力損失が低下して流体の透過速度が向上する。そのため、中空面積比率は0.01以上がより好ましく、0.05以上がさらに好ましい。
一方、中空面積比率が小さいほど圧縮強度が高くなる。そのため、中空面積比率は0.6以下がより好ましい。中空面積比率が上記の範囲内だと圧縮強度と流体の透過速度のバランスに優れる。
また、圧縮強度と透過速度を両立させるために中空部は複数有していてもよく、その場合は中空部の断面積の総和を中空部の断面積Aとする。
中空部の断面形状は、丸断面、多角形断面、多葉断面、扁平断面など任意の形状とすることが可能であり、丸断面であると圧縮強度がより向上するため好ましい。
なお、本発明においては、多孔質炭素繊維が中空部を有する場合であっても、多孔質炭素繊維の中空部に面する側の表面(以下、「内表面」ということがある。)から外表面まで細孔が連通していることが好ましい。
多孔質炭素繊維の平均直径は小さいと圧縮強度が向上する。そのため500μm以下が好ましく、400μm以下がより好ましく、300μm以下がさらに好ましい。繊維の平均直径の下限値はとくに限定されず、任意に決定することができるが、流体分離膜モジュールを製造する際の取扱い性を向上する観点から、10μm以上が好ましい。
また、多孔質炭素繊維および流体分離膜の平均直径が小さいほど単位容積あたりに充填可能な繊維本数が増加するため、単位容積あたりの膜面積を増加し、単位容積あたりの透過流量を増加させることができる。
繊維の平均長さは任意に決定することができ、分離モジュール化する際の取扱い性向上や流体の透過性能向上の観点から、10mm以上が好ましい。
本発明の流体分離膜においては、多孔質炭素繊維は分離膜の基材としての役割を有するとともに、流体の流路としても機能する。このような構造体であることにより、圧縮強度が向上する。
〔有機高分子層〕
本発明の流体分離膜は、上記の多孔質炭素繊維の表面に有機高分子層が形成されてなる。多孔質炭素繊維が中空部を有する中空糸である場合は、内表面に有機高分子層が形成されていてもよい。
有機高分子層の素材は特に制限されないが、例えば、芳香族ポリイミド、酢酸セルロース、ポリスルホン、芳香族ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ(1−トリメチルシリルプロピン)、ポリジメチルシロキサン、ポリビニルトリメチルシラン、ポリ(4−メチルペンテン)、エチルセルロース、天然ゴム、ポリ(2,6−ジメチル酸化フェニレン)、低密度ポリエチレン、高密度ポリエチレン、スチレン、ポリエチルメタクリレート、ポリカーボネート、ポリエステル、脂肪族ポリアミド、ポリビニルアルコール、ポリエチレングリコールなどの各種ポリエーテル、ポリメタクリル酸、ポリメタクリル酸メチル、各種ミクロ多孔性高分子(PIM)、各種熱転位高分子(TRポリマー)およびそれらの共重合体が挙げられる。
有機高分子と分離対象物質との溶解度パラメータ(SP値)の差の絶対値が小さいほど、分離対象物質の溶解性が向上して透過速度が向上するため好ましい。一方、分離対象でない物質との溶解度パラメータの差の絶対値が大きいほど、透過速度が低下するため、分離対象物質の種類によって適宜有機高分子層を選択することができる。
また、ガラス転移点(Tg)が高く、構造の秩序性が高いガラス状高分子であると高分子鎖間の間隙(自由体積)を広く制御することが可能であることから好ましい。一方、ガラス転移点が高いと脆く、薄膜化が困難になるため、流体分離膜の用途や製造方法に合わせて適宜選択する。
これらの有機高分子の中で、芳香族ポリイミド、酢酸セルロース、ポリスルホン、芳香族ポリアミド、ポリエーテルイミド、ポリエーテルスルホン、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリフッ化ビニリデンおよびこれらの誘導体から選択される1種または2種以上の有機高分子を含むことが好ましい。
これらの中でも特に、芳香族ポリイミド、芳香族ポリアミドおよびこれらの誘導体は流体の分離性が高く、また、耐熱性、耐薬品性、力学強度にも優れるためより好ましい。
有機高分子層は流体の透過速度を向上させるため、ナノ粒子など各種添加物を添加することができる。ナノ粒子としては、シリカ、チタニア、ゼオライト、金属酸化物、金属有機構造体(MOF)が挙げられる。また、分子中にかさ高い置換基を導入して有機高分子中の自由体積を増加させて透過速度を向上させることもできる。
一方、流体の分離係数を向上させるため、分離対象の物質と化学的親和性のある官能基や添加物を導入することができる。化学的親和性のある官能基の例としては、アミノ基、アミド基、スルホ基、カルボニル基、フェノール性ヒドロキシル基などの各種極性官能基が挙げられ、添加物の例としては、イオン液体やアルカリ金属炭酸塩が挙げられる。
有機高分子層の厚みは適宜設定でき、厚みが薄い方が流体の透過速度が向上するため、5μm以下が好ましく、3μm以下がより好ましく、1μm以下がさらに好ましい。本明細書においては、有機高分子層の厚みは、走査型電子顕微鏡画像における任意の20点の厚みの算術平均値とする。
<流体分離膜の製造方法>
本発明の流体分離膜は、一例として、炭化可能樹脂と消失樹脂とを相溶させて樹脂混合物とする工程(工程1)と、相溶した状態の樹脂混合物を紡糸し、相分離させる工程(工程2)と、加熱焼成により炭化する工程(工程3)と、表面に有機高分子層を形成する工程(工程4)とを有する製造方法により製造することができる。
〔工程1〕
工程1は、炭化可能樹脂10〜90重量%と消失樹脂90〜10重量%を相溶させ、樹脂混合物とする工程である。
ここで、炭化可能樹脂とは、焼成により炭化し、枝部(炭素骨格)として残存する樹脂であり、熱可塑性樹脂および熱硬化性樹脂の双方を用いることができる。
熱可塑性樹脂の場合、加熱や高エネルギー線照射などの簡便なプロセスで不融化処理を実施可能な樹脂を選択することが好ましい。また、熱硬化性樹脂の場合、不融化処理が不要の場合が多く、こらも好適な材料として挙げられる。
熱可塑性樹脂の例としては、ポリフェニレンエーテル、ポリビニルアルコール、ポリアクリロニトリル、フェノール樹脂、全芳香族ポリエステル、ポリイミド樹脂、酢酸セルロース、ポリエーテルイミドが挙げられ、熱硬化性樹脂の例としては、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、ユリア樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、リグニン樹脂、ウレタン樹脂、ポリフルフリルアルコール樹脂などを列挙することができる。これらは単独で用いても、混合された状態で用いても構わないが、熱可塑性樹脂あるいは熱硬化性樹脂それぞれで混合することも成形加工の容易さから好ましい。
それらの中でも、炭化収率、紡糸性、経済性の観点から、熱可塑性樹脂を用いることが好ましく、ポリフェニレンエーテル、ポリビニルアルコール、ポリアクリロニトリル、全芳香族ポリエステルがより好ましく用いられる。
炭化可能樹脂の分子量は、重量平均分子量で10,000以上が好ましい。重量平均分子量が10,000以上だと紡糸の過程において糸切れが少なくなる。一方、重量平均分子量の上限は特に限定されないが、紡糸性や樹脂の押し出しが容易にできる観点から、1,000,000以下が好ましい。
また、消失樹脂とは、後述する工程2に引き続いて、不融化処理と同時もしくは不融化処理後、または焼成と同時のいずれかの段階で除去することのできる樹脂である。
消失樹脂を除去する方法については特に限定されず、薬品を用いて解重合するなどして化学的に除去する方法、消失樹脂を溶解する溶媒を添加して溶解除去する方法、加熱して熱分解によって消失樹脂を低分子量化して除去する方法などが好ましく用いられる。これらの手法は単独で、もしくは組み合わせて使用してすることができ、組み合わせて実施する場合にはそれぞれを同時に実施しても別々に実施してもよい。
化学的に除去する方法としては、酸またはアルカリを用いて加水分解する方法が経済性や取り扱い性の観点から好ましい。酸またはアルカリによる加水分解を受けやすい樹脂としては、ポリエステル、ポリカーボネート、ポリアミドなどが挙げられる。
消失樹脂を溶解する溶媒を添加して除去する方法としては、混合された炭化可能樹脂と消失樹脂に対して、連続して溶媒を供給して消失樹脂を溶解、除去する方法や、バッチ式で混合して消失樹脂を溶解、除去する方法などが好ましい例として挙げられる。
溶媒を添加して除去する方法に適した消失樹脂の具体的な例としては、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリビニルピロリドン、脂肪族ポリエステル、ポリカーボネートなどが挙げられる。中でも、溶媒への溶解性から非晶性の樹脂であることがより好ましく、その例としては、ポリスチレン、メタクリル樹脂、ポリカーボネートが挙げられる。
熱分解によって消失樹脂を低分子量化して除去する方法としては、混合された炭化可能樹脂と消失樹脂をバッチ式で加熱して熱分解する方法や、連続して混合された炭化可能樹脂と消失樹脂を加熱源中へ連続的に供給しつつ加熱して熱分解する方法が挙げられる。
消失樹脂は後述する工程3において、炭化可能樹脂を焼成により炭化する際に熱分解により消失する樹脂であることが好ましく、後述する不融化処理の際に大きな化学変化を起さず、かつ焼成後の炭化収率が10%未満となる熱可塑性樹脂であることが好ましい。
このような消失樹脂の具体的な例としては、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフィン、アクリル樹脂、メタクリル樹脂、ポリアセタール、ポリビニルピロリドン、脂肪族ポリエステル、芳香族ポリエステル、脂肪族ポリアミド、ポリカーボネートなどを列挙することができ、これらは単独で用いても混合された状態で用いても構わない。
工程1においては、炭化可能樹脂と消失樹脂を相溶させ、樹脂混合物(ポリマーアロイ)とする。ここでいう「相溶させ」とは、温度および/または溶媒の条件を適切に選択することにより、光学顕微鏡で炭化可能樹脂と消失樹脂の相分離構造が観察されない状態を作り出すことをいう。
炭化可能樹脂と消失樹脂は、樹脂同士のみの混合により相溶させてもよいし、さらに溶媒を加えることにより相溶させてもよい。
複数の樹脂が相溶する系としては、低温では相分離状態にあるが高温では1相となる上限臨界共溶温度(UCST)型の相図を示す系や、逆に、高温では相分離状態にあるが低温では1相となる下限臨界共溶温度(LCST)型の相図を示す系などが挙げられる。
また、特に炭化可能樹脂と消失樹脂の少なくとも一方が溶媒に溶解した系である場合には、非溶媒の浸透によって後述する相分離が誘発されるものも好ましい例として挙げられる。
加えられる溶媒については特に限定されないが、溶解性の指標となる炭化可能樹脂と消失樹脂の溶解度パラメーター(SP値)の平均値からの差の絶対値が、5.0以内が好ましい。
SP値の平均値からの差の絶対値は、小さいほど溶解性が高いことが知られているため、差がないことが好ましい。また、SP値の平均値からの差の絶対値は、大きいほど溶解性が低くなり、炭化可能樹脂と消失樹脂との相溶状態を取ることが難しくなる。このことからSP値の平均値からの差の絶対値は、3.0以下が好ましく、2.0以下がさらに好ましい。
相溶する系の具体的な炭化可能樹脂と消失樹脂の組み合わせ例としては、溶媒を含まない系であれば、ポリフェニレンエーテル/ポリスチレン、ポリフェニレンエーテル/スチレン−アクリロニトリル共重合体、全芳香族ポリエステル/ポリエチレンテレフタレート、全芳香族ポリエステル/ポリエチレンナフタレート、全芳香族ポリエステル/ポリカーボネートなどが挙げられる。
溶媒を含む系の具体的な組合せ例としては、ポリアクリロニトリル/ポリビニルアルコール、ポリアクリロニトリル/ポリビニルフェノール、ポリアクリロニトリル/ポリビニルピロリドン、ポリアクリロニトリル/ポリ乳酸、ポリビニルアルコール/酢酸ビニル−ビニルアルコール共重合体、ポリビニルアルコール/ポリエチレングリコール、ポリビニルアルコール/ポリプロピレングリコール、ポリビニルアルコール/デンプンなどを挙げることができる。
炭化可能樹脂と消失樹脂を混合する方法については限定されず、均一に混合できる限りにおいて公知の種々の混合方式を採用できる。具体例としては、攪拌翼を持つロータリー式のミキサーや、スクリューによる混練押出機などが挙げられる。
また、炭化可能樹脂と消失樹脂を混合する際の温度(混合温度)を、炭化可能樹脂と消失樹脂が共に軟化する温度以上とすることも好ましい。ここで、軟化する温度とは、炭化可能樹脂または消失樹脂が結晶性高分子であれば融点、非晶性樹脂であればガラス転移点温度を適宜選択すればよい。
混合温度を炭化可能樹脂と消失樹脂が共に軟化する温度以上とすることで、両者の粘性を下げられるため、より効率のよい攪拌、混合が可能になる。混合温度の上限についても特に限定されないが、熱分解による樹脂の劣化を防止し、品質に優れた多孔質炭素繊維の前駆体を得る観点から、400℃以下が好ましい。
また、工程1においては、炭化可能樹脂10〜90重量%に対し消失樹脂90〜10重量%を混合する。炭化可能樹脂と消失樹脂が前記の範囲内であると、最適な細孔サイズや空隙率を任意に設計できるため好ましい。
炭化可能樹脂が10重量%以上であれば、炭化後における多孔質炭素繊維の力学的な強度を保つことが可能になるほか、収率が向上するため好ましい。また、炭化可能樹脂が90重量%以下であれば、消失樹脂が効率よく空隙を形成できるため好ましい。
炭化可能樹脂と消失樹脂の混合比については、それぞれの樹脂の相溶性を考慮して、上記の範囲内で任意に選択することができる。具体的には、一般に樹脂同士の相溶性はその組成比が1対1に近づくにつれて悪化するため、相溶性のあまり高くない系を原料に選択した場合には、炭化可能樹脂の量を増やす、または減らすなどして、いわゆる偏組成に近づけることで相溶性を改善することも好ましい態様として挙げられる。
また、炭化可能樹脂と消失樹脂を混合する際に溶媒を添加することも好ましい。溶媒を添加することで炭化可能樹脂と消失樹脂の粘性を下げ、成形を容易にするほか、炭化可能樹脂と消失樹脂を相溶化させやすくなる。
ここでいう溶媒も特に限定されず、炭化可能樹脂、消失樹脂のうち少なくともいずれか一方を溶解、膨潤させることが可能な常温で液体であるものであればよく、炭化可能樹脂及び消失樹脂をいずれも溶解するものであれば、両者の相溶性を向上させることが可能となるためより好ましい。
溶媒の添加量は、炭化可能樹脂と消失樹脂の相溶性を向上させ、粘性を下げて流動性を改善する観点から、炭化可能樹脂と消失樹脂の合計重量に対して20重量%以上が好ましい。また、一方で溶媒の回収、再利用に伴うコストの観点から、炭化可能樹脂と消失樹脂の合計重量に対して90重量%以下が好ましい。
〔工程2〕
工程2は、工程1において相溶させた状態の樹脂混合物を紡糸し、微細な相分離構造を形成する工程である。
相溶させた状態の樹脂混合物を紡糸する方法は特に限定されず、後述の相分離法に合わせた紡糸法を適宜選択できる。樹脂混合物が熱可塑性樹脂の組合せであれば、樹脂の軟化温度以上に加熱してから溶融紡糸を行うことができる。また、樹脂混合物に溶媒が含まれる場合には、溶液紡糸として乾式紡糸、乾湿式紡糸や湿式紡糸などを適宜選択することができる。
溶融紡糸は、混練押出機などを用いて加熱、溶融(流動状態)させた樹脂混合物を口金から押し出し、冷却しつつ巻取ることで繊維化する方法であり、工程速度が溶液紡糸よりも速く、生産性に優れる。また、溶媒の揮散が起こらないため、工程中の安全対策にかかる費用を抑えられることから低コストでの製造が可能であるため好ましい。
また、溶液紡糸は、予め調した樹脂混合物と溶媒からなる紡糸ドープを計量、口金から押し出すことで繊維化する方法であり、相分離状態を緻密に制御することが可能である。特に、凝固浴を用いる乾湿式紡糸、湿式紡糸については、後述する熱誘起相分離、非溶媒誘起相分離などを適宜組み合わせて前駆体繊維の相分離状態を緻密に制御できることから、更に好ましい態様である。
炭化可能樹脂と消失樹脂を相分離させる方法は特に限定されず、例えば、温度変化によって相分離を誘発する熱誘起相分離法、非溶媒を添加することによって相分離を誘発する非溶媒誘起相分離法が挙げられる。
これら相分離法は、単独で、もしくは組み合わせて使用することができる。組み合わせて使用する場合の具体的な方法は、例えば、凝固浴を通して非溶媒誘起相分離を起こした後、加熱して熱誘起相分離を起こす方法や、凝固浴の温度を制御して非溶媒誘起相分離と熱誘起相分離を同時に起こす方法、口金から吐出された樹脂を冷却して熱誘起相分離を起こした後に非溶媒と接触させる方法などが挙げられる。
さらに、次いで凝固浴中を通過させた後、乾燥することで微細構造を形成し、多孔質炭素繊維の前駆体を得ることができる。ここで、凝固液は特に限定されないが、例えば、水、エタノール、飽和食塩水、およびそれらと工程1で使用する溶媒との混合溶媒などが挙げられる。
非溶媒誘起相分離では、繊維の外周に緻密な層が形成されるのを抑制するため、例えば、内管から紡糸溶液を吐出し、外管から紡糸溶液と同一の溶媒や消失樹脂を溶解した溶液などを同時に吐出する複合紡糸法を利用することで本発明の多孔質炭素繊維前駆体を製造することができる。
(消失樹脂の除去)
工程2において得られた多孔質炭素繊維の前駆体は、炭化工程(工程3)に供される前、または炭化工程(工程3)と同時、またはその両方で消失樹脂の除去処理を行うことが好ましい。
除去処理の方法は特に限定されない。具体的には、酸、アルカリ、酵素を用いて消失樹脂を化学的に分解、低分子量化して除去する方法や、消失樹脂を溶解する溶媒により溶解除去する方法、電子線、ガンマ線、紫外線、赤外線などの放射線や熱を用いて消失樹脂を分解除去する方法などが挙げられる。
特に、熱分解によって消失樹脂を除去処理することができる場合には、予め消失樹脂の80重量%以上が消失する温度で熱処理を行うこともできるし、炭化工程(工程3)もしくは後述の不融化処理において消失樹脂を熱分解、ガス化して除去することもできる。炭化工程(工程3)もしくは後述の不融化処理において熱処理と同時に消失樹脂を熱分解、ガス化して除去すると、生産性が高くなることから好ましい。
(不融化処理)
工程2において得られた多孔質炭素繊維の前駆体は、炭化工程(工程3)に供される前に不融化処理を行うことが好ましい。
不融化処理の方法は特に限定されず、公知の方法を用いることができる。具体的な方法としては、酸素存在下で加熱することで酸化架橋を起こす方法、電子線、ガンマ線などの高エネルギー線を照射して架橋構造を形成する方法、反応性基を持つ物質を含浸、混合して架橋構造を形成する方法などが挙げられ、中でも、酸素存在下で加熱することで酸化架橋を起こす方法は、プロセスが簡便であり製造コストを低く抑えることが可能である点から好ましい。これらの手法は単独もしくは組み合わせて使用してもよく、それぞれを同時に使用しても別々に使用してもよい。
酸素存在下で加熱することで酸化架橋を起こす方法における加熱温度は、架橋反応を効率よく進める観点から、150℃以上が好ましく、炭化可能樹脂の熱分解、燃焼等による重量ロスからの収率悪化を防ぐ観点から、350℃以下が好ましい。
また、処理中の酸素濃度については特に限定されないが、18体積%以上の酸素濃度を持つガスを供給することが製造コストを低く抑えることが可能となるため好ましい。ガスの供給方法については特に限定されないが、空気をそのまま加熱装置内に供給する方法や、ボンベ等を用いて純酸素を加熱装置内に供給する方法などが挙げられる。
電子線、ガンマ線などの高エネルギー線を照射して架橋構造を形成する方法としては、市販の電子線発生装置やガンマ線発生装置などを用いて、炭化可能樹脂へ電子線やガンマ線などを照射することで、架橋を誘発する方法が挙げられる。
照射による架橋構造の効率的な導入の観点から、照射強度の下限は1kGy以上であると好ましく、主鎖の切断による分子量低下から多孔質炭素繊維の強度が低下するのを防止する観点から、1,000kGy以下が好ましい。
反応性基を持つ物質を含浸、混合して架橋構造を形成する方法としては、反応性基を持つ低分子量化合物を樹脂混合物に含浸して、加熱または高エネルギー線を照射して架橋反応を進める方法、予め反応性基を持つ低分子量化合物を混合しておき、加熱または高エネルギー線を照射して架橋反応を進める方法などが挙げられる。
〔工程3〕
工程3は、工程2において得られた多孔質炭素繊維の前駆体、あるいは必要に応じて消失樹脂の除去および/または不融化処理に供された前駆体を焼成し、炭化して多孔質炭素繊維を得る工程である。
多孔質炭素繊維の前駆体を炭化させるために、焼成は不活性ガス雰囲気において加熱することにより行うことが好ましい。
ここで、不活性ガスとは、加熱時に化学的に不活性であるものを言い、具体的な例としては、ヘリウム、ネオン、窒素、アルゴン、クリプトン、キセノンなどである。中でも、窒素、アルゴンを用いることが、経済的な観点から好ましい。炭化温度を1,500℃以上とする場合には、窒化物形成を抑制する観点から、アルゴンを用いることが好ましい。
不活性ガスの流量は、加熱装置内の酸素濃度を充分に低下させられる量であればよく、加熱装置の大きさ、原料の供給量、加熱温度などによって適宜最適な値を選択することが好ましい。
流量の上限についても特に限定されないが、経済性や加熱装置内の温度変化を少なくする観点から、温度分布や加熱装置の設計に合わせて適宜設定することが好ましい。
また、炭化時に発生するガスを系外へ充分に排出できると、品質に優れた多孔質炭素繊維を得ることができるため、より好ましい。このことから系内の発生ガス濃度が3,000ppm以下となるように不活性ガスの流量を決定することが好ましい。
上述の不活性ガスと併せて活性ガスを少量導入することで多孔質炭素繊維の表面を化学的にエッチングし、多孔質炭素繊維表面の細孔直径を制御することが可能である。活性ガスとしては、酸素、二酸化炭素、水蒸気、空気、燃焼ガスを用いることができる。
加熱温度は消失樹脂が熱分解する温度を超えていれば特に制限されないが、300℃以上が好ましく、400℃以上がより好ましい。また、加熱温度の上限は限定されないが、1,500℃以下であれば設備に特殊な加工が必要ないため経済的な観点からは好ましい。
連続的に炭化処理を行う場合の加熱方法については、一定温度に保たれた加熱装置内に、多孔質炭素繊維をローラーやコンベヤ等を用いて連続的に供給しつつ取り出す方法であることが、生産性を高くすることが可能であるため好ましい。
加熱装置内にてバッチ式処理を行う場合の昇温速度や降温速度は限定されず、昇温や降温にかかる時間を短縮することで生産性を高めることができるため、1℃/分以上の速度が好ましい。また、昇温速度、降温速度の上限は特に限定されず、クラックなどの欠陥が生じない範囲で適宜設定することができる。
また、炭化温度の保持時間についても任意に設定することが可能である。保持時間が長いと多孔質炭素繊維の収縮が進み、繊維表面の孔径が小さくなる傾向がみられる。
〔工程4〕
工程4は、工程3により製造した多孔質炭素繊維の表面に有機高分子層を形成する工程である。
有機高分子層の形成方法は特に制限されない。一般的な方法は、当該有機高分子そのものを多孔質炭素繊維表面にコートする方法であるが、当該有機高分子の前駆体を多孔質炭素繊維にコートした後、前駆体を反応させて有機高分子とする方法を採ってもよい。
有機高分子または有機高分子前駆体のコート方法としては、ディップコート法、スプレー法、蒸着法が挙げられるが、特に、ディップコート法は製造方法が比較的容易であり好ましい。
ディップコート法は溶融法と溶液法に大別される。溶融法では融点以上の温度で有機高分子またはその前駆体を溶融させて積層した後、融点以下の温度に冷却して流体分離膜を製造する。また、溶液法では有機高分子またはその前駆体が溶解可能な溶媒に溶解させて積層した後、適宜乾燥して溶媒を除去することで流体分離膜を製造する。いずれの手法においても透過速度や流体の分離性能向上などの機能向上のために添加物を添加してもよい。
ディップコート法を用いる場合、コート原液の粘度は多孔質炭素支持体の表面粗さやコート速度、所望の膜厚などの条件によって適宜選択することができる。コート原液の粘度が高いほど均一な有機高分子層を形成できるため、10mPa・s以上が好ましく、50mPa・s以上がより好ましい。また、コート原液の粘度が低いほど薄膜化して流体の透過速度が向上するため、せん断速度0.1s−1におけるせん断粘度は1,000mPa・s以下が好ましく、800mPa・s以下がより好ましい。
有機高分子前駆体を用いた場合、反応方法は前駆体の種類に併せて適宜選択することができ、加熱または触媒を用いて重合、環化、架橋反応を促進させることにより本発明の流体分離膜を製造する。
また、多孔質炭素繊維と有機高分子層との接着性を向上させるため、有機高分子層を形成する前に多孔質炭素繊維に表面処理を行ってもよい。表面処理としては、酸化処理や薬液コート処理が挙げられる。酸化処理としては、硝酸などによる薬液酸化法,電解酸化法,気相酸化法などが挙げられる。
また、薬液コート処理としては、サイジング剤の付与が挙げられる。このような表面処理により濡れ性を改善し、有機高分子層との接着性を向上させることができるため、流体分離膜の圧縮強度をさらに向上させることができる。
<流体分離膜モジュール>
本発明の流体分離膜モジュールは、ケーシング内に本発明の流体分離膜を複数本収容してなる。
本発明の流体分離膜を用いて実際に流体分離を行う際には、複数本の流体分離膜を接続しケーシング内に収納して流体分離膜モジュールとして使用する。
以下に本発明の好ましい実施の例を記載するが、これら記載は本発明を制限するものではない。なお、例中「部」とあるのは、「重量部」を意味する。
[評価手法]
(共連続多孔構造の有無)
流体分離膜または多孔質炭素繊維を液体窒素中で充分に冷却後、ピンセットで割断して形成した断面の多孔質炭素繊維部分を走査型電子顕微鏡で表面観察し、炭素骨格の枝部と細孔部(空隙部)がそれぞれ連続しつつ三次元的に規則的に絡み合った構造であった場合、共連続多孔構造を有していると判定した。
(流体分離膜の圧縮強度、かさ密度および圧縮比強度)
流体分離膜の圧縮強度の測定は、株式会社島津製作所製の微小圧縮試験機MCTW−500を用い、多孔質炭素繊維1本を治具で挟み、φ500μmのダイヤモンド製平面圧子を用い、負荷速度41.482mN/sの負荷速度一定方式にて繊維断面方向に圧縮して圧縮変位と荷重を測定し、圧縮強度σを下記の式により算出した。
Figure 0006911757
σ:繊維断面方向の圧縮強度、F:破壊重、d:繊維直径、l:繊維長
また、圧縮比強度は、圧縮強度を平均かさ密度で除して算出した。
平均かさ密度の測定は、流体分離膜の任意の断面20箇所を走査型電子顕微鏡で撮影し、それぞれの断面積を画像処理で算出して平均断面積を得た。続いて、下記の式によりかさ密度を算出した。そして、流体分離膜20本についてかさ密度を測定し、その平均値を流体分離膜の平均かさ密度とした。
Figure 0006911757
ρ:流体分離膜のかさ密度、W:流体分離膜の重量、S:平均断面積、l:繊維長
(構造周期)
多孔質炭素繊維を試料プレートに固定し、CuKα線光源から得られたX線源から散乱角度10°未満の情報が得られるように、光源、試料および二次元検出器の位置を調整した。二次元検出器から得られた画像データ(輝度情報)から、ビームストッパーの影響を受けている中心部分を除外して、ビーム中心から動径を設け、角度1°毎に360°の輝度値を合算して散乱角度2θに対する散乱強度分布曲線を得た。得られた曲線においてピークを持つ位置の散乱角度2θより、連続構造部分の構造周期を下記の式によって得た。
Figure 0006911757
L:構造周期、λ:入射X線の波長
また、上記の小角X線散乱が観測できなかった場合、多孔質炭素繊維をX線CTで断層撮影し、その三次元画像をフーリエ変換した後に、その二次元スペクトルの円環平均を取り、一次元スペクトルを得た。その一次元スペクトルにおけるピークトップの位置に対応する特性波長を求め、その逆数として構造周期を算出した。
(X線散乱の強度ピークの半値幅)
上記のX線散乱より得られた散乱角度2θ(横軸)と散乱強度(縦軸)からなる散乱強度分布曲線において、散乱強度のピークの頂点を点Aとし、点Aからグラフの縦軸に平行な直線を引き、該直線とスペクトルのベースラインとの交点を点Bとしたとき、点Aと点Bを結ぶ線分の中点Cにおけるピークの幅をX線散乱の強度ピーク半値幅とした。
(平均空隙率)
多孔質炭素繊維を樹脂中に包埋し、その後カミソリで繊維断面を露出させ、日本電子株式会社製クロスセクションポリッシャー装置SM−09010を用いて加速電圧5.5kVにて試料表面にアルゴンイオンビームを照射、エッチングを施す。
得られた繊維の断面を株式会社日立ハイテクノロジーズ製走査型顕微鏡S−5500にて繊維断面の中心部を1±0.1(nm/画素)となるよう調整された拡大率で、70万画素以上の解像度で観察した画像から、計算に必要な繊維断面を512画素四方で設定し、細孔部分の面積をA、炭素部分の面積をBとして、以下の式で平均空隙率を算出し、任意の断面20箇所の算術平均値により算出した。
ここで、多孔質炭素繊維が中空部を有する場合は、中空部の空隙を除外して平均空隙率を算出した。
平均空隙率(%)=A/B×100
(多孔質炭素繊維全体の平均細孔直径)
多孔質炭素繊維を300℃、5時間の条件で真空乾燥を行うことで吸着したガス成分を除去した。その後、株式会社島津製作所製の自動ポロシメータ(オートポアIV9500)を用いて水銀圧入法にて細孔直径分布曲線を取得した。
(繊維直径
多孔質炭素繊維20本をマイクロメーターで測定し、その算術平均値を繊維直径とした。
(多孔質炭素繊維表面の平均細孔直径)
株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡S−5500を用い、多孔質炭素繊維表面を1±0.1(nm/画素)となる倍率にて70万画素以上で観察して取得した画像を画像解析ソフト“ImageJ”によって繊維表面を枝部(炭素部)および細孔部(空隙部)に分離した。
続いて、画像中における細孔部分の面積の平均値を算出し、その平均面積と同一の面積の真円の直径を平均細孔直径とした。細孔部が画像中に10個未満しか観察されない場合は、10±1(nm/画素)となる倍率にて70万画素以上で観察して取得した画像を用いて算出した。
(曲げ半径)
流体分離膜を種々の直径の円柱に180°以上巻きつけて、膜が破断するかどうかを観測した。曲げ半径は、膜が破断しない円柱において最小の半径を有する円柱を求め、その円柱の半径の値で示した。
(ガス透過速度の測定)
長さ10cmの流体分離膜を20本束ねて外径φ6mm、肉厚1mmのステンレス製のケーシング内に収容し、束ねた流体分離膜の端をエポキシ樹脂系接着剤でケーシング内面に固定するとともにケーシングの両端を封止して、流体分離膜モジュールを作製し、ガス透過速度を測定した。
測定ガスは二酸化炭素およびメタンを用い、JIS K7126−1(2006)の圧力センサ法に準拠して測定温度25℃で外圧式にて二酸化炭素およびメタンの単位時間当たりの透過側の圧力変化を測定した。ここで、供給側と透過側の圧力差を0.11MPa(82.5cmHg)に設定した。
続いて、透過したガスの透過速度Qを下記式により算出し、各成分のガスの透過速度の比として分離係数αを算出した。なお、STPは標準条件を意味する。
また、膜面積はガスの透過に寄与する領域において流体分離膜の外径および長さから算出した。
透過速度Q=[ガス透過流量(cm・STP)]/[膜面積(cm)×時間(s)×圧力差(cmHg)
[調製例1]芳香族ポリイミド溶液10重量%の調製
芳香族ポリイミド“Matrimid(登録商標)”5218をN−メチルピロリドン(NMP)に溶解させて10.0重量%の芳香族ポリイミド溶液を作製した。
ここで、“Matrimid(登録商標)”5218は、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物と、5(6)−アミノ−−(4’−アミノフェニル)−,3,3’−トリメチルインダンの縮合生成物である。
[調製例2]芳香族ポリイミド溶液25重量%の調製
芳香族ポリイミド“Matrimid(登録商標)”5218をN−メチルピロリドン(NMP)に溶解させて25.0重量%の芳香族ポリイミド溶液を作製した。
[実施例1]
70gのポリサイエンス社製ポリアクリロニトリル(M15万)と70gのシグマ・アルドリッチ社製ポリビニルピロリドン(M4万)、及び、溶媒として400gの和研薬製ジメチルスルホキシド(DMSO)をセパラブルフラスコに投入し、3時間攪拌および還流を行いながら150℃で均一かつ透明な溶液を調製した。このときポリアクリロニトリルの濃度、ポリビニルピロリドンの濃度はそれぞれ10重量%であった。
得られたポリマー溶液を25℃まで冷却した後、芯鞘型の二重口金の内管からは3mL/分で前記ポリマー溶液を吐出し、外管からはDMSO90重量%水溶液を5.3mL/分で同時に吐出した後、25℃の純水からなる凝固浴へ導き、その後5m/分の速度で引き取り、ローラーに巻き取ることで原糸を得た。このときエアギャップは5mmとし、また、凝固浴中の浸漬長は15cmとした。
得られた原糸は半透明であり、相分離を起こしていた。得られた原糸は水洗した後、循環式乾燥機にて25℃で24時間乾燥して乾燥した原糸を作製した。
その後250℃の電気炉中へ乾燥した原糸を通し、酸素雰囲気で1時間加熱することで不融化処理を行った。
続いて、不融化原糸を窒素流量1L/分、昇温速度10℃/分、到達温度500℃、保持時間1分の条件で炭化処理を行うことで多孔質炭素繊維を作製した。
得られた多孔質炭素繊維の断面を観察したところ、共連続多孔構造が観察された。また、X線CTによって多孔質炭素繊維を撮影して構造周期を算出したところ、1580nmであった。
さらに、長さ10cmの多孔質炭素繊維を調製例1で作製した芳香族ポリイミド溶液に浸漬した後、10mm/分の速度で引き上げ、続いて、水中に浸漬して溶媒を除去し、50℃で24時間乾燥することで多孔質炭素繊維に芳香族ポリイミドが積層された流体分離膜を作製した。
[実施例2]
ポリアクリロニトリルおよびポリビニルピロリドンの濃度がそれぞれ11.5重量%のポリマー溶液を用いて紡糸を行った以外は実施例1と同様の手法で多孔質炭素繊維を作製した。
[実施例3]
ポリアクリロニトリルおよびポリビニルピロリドンの濃度がそれぞれ13重量%のポリマー溶液を用いて紡糸を行い、到達温度を700℃とした以外は実施例1と同様の手法で多孔質炭素繊維を作製した。
[実施例4]
芯鞘型の二重口金の内管から5mL/分で溶液を吐出し、外管からDMSO90重量%水溶液を8.8mL/分で同時に吐出して紡糸を行った以外は実施例1と同様の手法で多孔質炭素繊維を作製した。
[実施例5]
芯鞘型の三重口金を用い、内管からDMSO85重量%水溶液を1mL/分で吐出し、中管からポリマー溶液を3mL/分で吐出し、外管からDMSO90重量%水溶液を5.3mL/分で同時に吐出した中空糸状の多孔質炭素繊維を作製した以外は実施例1と同様の手法で多孔質炭素繊維を作製した。
[実施例6]
φ0.6mmの一穴の口金を用いてポリアクリロニトリルおよびポリビニルピロリドンの濃度がそれぞれ10重量%のポリマー溶液を用いて紡糸を行った以外は実施例1と同様の手法で多孔質炭素繊維を作製した。得られた多孔質炭素繊維の表面には緻密な層が形成されており、細孔は確認されなかった。
[比較例1]
シクロヘキサノンパーオキシド(パーオキサH、日本油脂株式会社製)1部を、メチルメタクリレート(以下MMAと略記する)100部に溶かし、純水800部と乳化剤としてペレックスOTP(日本油脂株式会社製)1部を反応釜に加えて、不活性ガスで十分に置換した後、40℃に保持し、ロンガリット0.76部と硫酸水溶液でpH3とした後、重合を開始した。そのまま攪拌を続け、150分で第一段目の乳化重合を完結させた。
次いで、この乳化液にアクリロニトリル(以下ANと略記する。)72部を加えた後、温度を70℃に昇温して、再び150分攪拌を続け、さらに硫酸ナトリウム4部を加え、30分間攪拌して重合を完了させた。重合体を取り出し、ろ過、水洗および乾燥して重合率65.7%の比粘度0.19のMMA/ANブロック共重合体(相溶化剤)(C)を調製した。
続いて、AN98モル%、メタクリル酸(以下MAAと略記する。)2モル%から構成される比粘度0.24のAN/MAA共重合体(A)60重量部と、MMA99モル%、アクリル酸メチル(以下MAと略記する。)1モル%から構成される比粘度0.21のMMA/MA共重合体(B)40重量部と、上記の方法にて調製した相溶化剤(C)3重量部と、溶剤(D)はジメチルホルムアミドを加え、ポリマー重合体濃度を26重量%とした。
続いて、芯鞘型の二重口金の内管からは空気を0.098kPaで吐出し、外管からは得られたポリマー溶液を3mL/分で同時に吐出した後、25℃の純水からなる凝固浴へ導き、その後5m/分の速度で引き取り、ローラーに巻き取ることで原糸を得た。
このときエアギャップは5mmとし、また、凝固浴中の浸漬長は15cmとした。得られた原糸は水洗した後、循環式乾燥機にて25℃で24時間乾燥して乾燥した原糸を作製した。
得られた原糸を実施例1と同様の手法にて不融化処理および炭化処理を行い、中空糸状の多孔質炭素繊維を作製した。
得られた多孔質炭素繊維の断面を観察したところ、一部連通孔が見られたものの、独立孔が多数観察された。また、小角X線散乱の測定およびX線CTの撮影を行ったところ、散乱強度のピークは観測されなかった。
[比較例2]
調製例2で作製した芳香族ポリイミド溶液を50℃に加温し、芯鞘型の二重口金の内管からは純水を4mL/分で吐出し、外管からは前記芳香族ポリイミドを8mL/分で同時に吐出した後、25℃の純水からなる凝固浴へ導き、ローラーに巻き取ることで原糸を得た。
このときエアギャップは200mmとし、また、凝固浴中の浸漬長は15cmとした。得られた原糸は水洗した後、50℃で24時間乾燥することで芳香族ポリイミド中空糸膜を作製した。中空糸膜の断面を観察したところ、細孔は互いに独立していた。そして膜の表面は緻密で細孔は観察されず、その膜厚は5.5μmであった。
また、小角X線散乱の測定およびX線CTの撮影を行ったところ、散乱強度のピークは観測されなかった。当該中空糸膜には新たに有機高分子層を形成せず、ガスの透過速度を測定した。
各実施例、比較例で作製した流体分離膜の構成および各種評価結果を表1に示す。
Figure 0006911757
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年1月22日出願の日本特許出願(特願2016−010448)に基づくものであり、その内容はここに参照として取り込まれる。
1:流体分離膜
2:多孔質炭素繊維
3:有機高分子層

Claims (8)

  1. 共連続多孔構造を有する多孔質炭素繊維の表面に、有機高分子層が形成されてなり、
    水銀圧入法により測定される前記多孔質炭素繊維の全体の平均細孔直径が30〜5,000nmである、流体分離膜。
  2. 前記多孔質炭素繊維の全体に前記共連続多孔構造を有する、請求項1に記載の流体分離膜。
  3. 走査型電子顕微鏡による表面観察によって測定される前記多孔質炭素繊維の表面の平均細孔直径が2〜500nmである、請求項1又は2に記載の流体分離膜。
  4. 前記共連続多孔構造の構造周期が10〜10,000nmである、請求項1〜のいずれか1項に記載の流体分離膜。
  5. 前記多孔質炭素繊維のX線散乱の強度ピークの半値幅が5°以下である、請求項1〜のいずれか1項に記載の流体分離膜。
  6. 前記有機高分子層が、芳香族ポリイミド、酢酸セルロース、ポリスルホン、芳香族ポリアミド、ポリエーテルイミド、ポリエーテルスルホン、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリフッ化ビニリデンおよびこれらの誘導体からなる群より選択される1種または2種以上の有機高分子を含む層である、請求項1〜のいずれか1項に記載の流体分離膜。
  7. 前記有機高分子層が、芳香族ポリイミド、芳香族ポリアミドおよびこれらの誘導体からなる群より選択される1種または2種以上の有機高分子を含む層である、請求項1〜のいずれか1項に記載の流体分離膜。
  8. ケーシング内に請求項1〜のいずれか1項に記載の流体分離膜を複数本収容してなる流体分離膜モジュール。
JP2017505878A 2016-01-22 2017-01-17 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維 Active JP6911757B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016010448 2016-01-22
JP2016010448 2016-01-22
PCT/JP2017/001408 WO2017126501A1 (ja) 2016-01-22 2017-01-17 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維

Publications (2)

Publication Number Publication Date
JPWO2017126501A1 JPWO2017126501A1 (ja) 2018-11-08
JP6911757B2 true JP6911757B2 (ja) 2021-07-28

Family

ID=59361677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017505878A Active JP6911757B2 (ja) 2016-01-22 2017-01-17 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維

Country Status (9)

Country Link
US (1) US10835874B2 (ja)
EP (1) EP3406326A4 (ja)
JP (1) JP6911757B2 (ja)
KR (1) KR20180101407A (ja)
CN (1) CN108495703A (ja)
AU (1) AU2017209736B2 (ja)
CA (1) CA3012093C (ja)
TW (1) TW201739503A (ja)
WO (1) WO2017126501A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758873B2 (en) * 2016-11-16 2020-09-01 Ut-Battelle, Llc Carbon molecular sieve membrane for gas separations
WO2019172077A1 (ja) * 2018-03-07 2019-09-12 旭化成株式会社 中空糸膜、及び中空糸膜の製造方法
JP6733821B2 (ja) * 2018-06-05 2020-08-05 東レ株式会社 分離膜
US11746190B2 (en) * 2018-07-23 2023-09-05 King Abdullah University Of Science And Technology Ethano-Tröger's base-derived diamines, polyimides, and polyimide-based membranes
JP7151333B2 (ja) * 2018-09-28 2022-10-12 東レ株式会社 流体分離用炭素膜モジュール
CN109731479B (zh) * 2018-12-19 2021-11-16 南京林业大学 一种超疏水纳米纤维膜的制备方法及超疏水纳米纤维膜
AU2020207924A1 (en) * 2019-01-18 2021-07-08 Toray Industries, Inc. Carbon membrane for fluid separation use
AU2020217185A1 (en) 2019-02-01 2021-06-10 Toray Industries, Inc. Porous carbon fiber and fluid separation membrane
US11446610B2 (en) * 2019-04-03 2022-09-20 Generon Igs, Inc. Gas separation membrane module with enhanced performance
JPWO2021106650A1 (ja) * 2019-11-29 2021-06-03
JPWO2021106649A1 (ja) * 2019-11-29 2021-06-03
CN111871223B (zh) * 2020-07-23 2021-10-08 华中科技大学 一种高通量抗菌纳滤膜及其制备方法
CN112337318B (zh) * 2020-09-28 2022-12-02 中国石油化工股份有限公司 一种聚苯硫醚/多孔碳纳米纤维复合膜及制备方法
WO2022071052A1 (ja) * 2020-09-29 2022-04-07 東レ株式会社 多孔質炭素繊維、ガス分離用複合膜およびガス分離膜用モジュール
US11717787B2 (en) * 2021-01-04 2023-08-08 Saudi Arabian Oil Company High free volume membrane for gas separation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670805A (en) * 1979-11-15 1981-06-13 Nitto Electric Ind Co Ltd Preparation of selectively permeable membrane for treating organic liquid
JPS61133106A (ja) 1984-11-30 1986-06-20 Ube Ind Ltd 分離膜の製造法
US5089135A (en) * 1988-01-20 1992-02-18 Mitsubishi Rayon Co., Ltd. Carbon based porous hollow fiber membrane and method for producing same
JPH0274615A (ja) 1988-03-15 1990-03-14 Mitsubishi Rayon Co Ltd 炭素繊維系多孔質中空糸膜およびその製法
US5288304A (en) * 1993-03-30 1994-02-22 The University Of Texas System Composite carbon fluid separation membranes
WO2010111755A2 (en) * 2009-04-01 2010-10-07 Katholieke Universiteit Leuven - K.U.Leuven R & D Improved method for making cross-linked polyimide membranes
US8366804B2 (en) 2010-05-28 2013-02-05 Uop Llc High permeance polyimide membranes for air separation
JP5626865B2 (ja) * 2010-08-13 2014-11-19 旭化成ケミカルズ株式会社 複合多孔性中空糸膜、膜モジュール、膜ろ過装置、水処理方法
JP2014079709A (ja) * 2012-10-17 2014-05-08 Nok Corp 繊維強化多孔質中空糸膜の製造方法
EA034212B1 (ru) 2014-02-26 2020-01-17 Торэй Индастриз, Инк. Пористый углеродистый материал, композитный материал, армированный углеродистым материалом, предшественник пористого углеродистого материала, способ получения предшественника пористого углеродистого материала и способ получения пористого углеродистого материала
WO2016002668A1 (ja) * 2014-07-03 2016-01-07 東レ株式会社 多孔質炭素材料及び多孔質炭素材料の製造方法
JP6436085B2 (ja) * 2014-07-15 2018-12-12 東レ株式会社 金属空気電池用電極材料
AU2015293084B9 (en) * 2014-07-24 2019-12-19 Toray Industries, Inc. Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation
WO2016121887A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体

Also Published As

Publication number Publication date
JPWO2017126501A1 (ja) 2018-11-08
WO2017126501A1 (ja) 2017-07-27
TW201739503A (zh) 2017-11-16
EP3406326A4 (en) 2019-08-21
US20190022599A1 (en) 2019-01-24
CA3012093A1 (en) 2017-07-27
CN108495703A (zh) 2018-09-04
EP3406326A1 (en) 2018-11-28
AU2017209736A1 (en) 2018-08-09
AU2017209736B2 (en) 2022-03-17
US10835874B2 (en) 2020-11-17
KR20180101407A (ko) 2018-09-12
CA3012093C (en) 2024-02-13

Similar Documents

Publication Publication Date Title
JP6911757B2 (ja) 流体分離膜、流体分離膜モジュールおよび多孔質炭素繊維
JP6733177B2 (ja) 流体分離用炭素膜、流体分離膜モジュールおよび、流体分離用炭素膜の製造方法
JP7413993B2 (ja) 多孔質炭素繊維および流体分離膜
WO2020149352A1 (ja) 流体分離用炭素膜
JP2017131882A (ja) 流体分離用炭素膜モジュール
JP7367529B2 (ja) 流体分離膜
JP6607250B2 (ja) 流体分離用炭素膜および流体分離用炭素膜モジュール
WO2022071052A1 (ja) 多孔質炭素繊維、ガス分離用複合膜およびガス分離膜用モジュール
JP2018122293A (ja) ガス分離用炭素膜の製造方法および不融化繊維

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R151 Written notification of patent or utility model registration

Ref document number: 6911757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151