JP6911692B2 - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
JP6911692B2
JP6911692B2 JP2017197264A JP2017197264A JP6911692B2 JP 6911692 B2 JP6911692 B2 JP 6911692B2 JP 2017197264 A JP2017197264 A JP 2017197264A JP 2017197264 A JP2017197264 A JP 2017197264A JP 6911692 B2 JP6911692 B2 JP 6911692B2
Authority
JP
Japan
Prior art keywords
gas
tip
diameter
diameter portion
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017197264A
Other languages
English (en)
Other versions
JP2019070601A (ja
Inventor
伊藤 誠
伊藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017197264A priority Critical patent/JP6911692B2/ja
Publication of JP2019070601A publication Critical patent/JP2019070601A/ja
Application granted granted Critical
Publication of JP6911692B2 publication Critical patent/JP6911692B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、車両用内燃機関等に用いられて、被測定ガス中の特定ガス濃度を検出するガスセンサに関する。
自動車用エンジンの排気系には、排ガスを浄化するための触媒と、排ガス中の酸素濃度等を検出するガスセンサを備える排ガス浄化システムが設けられる。代表的な触媒として、排ガスに含まれるCO、HC、及びNOxを理論空燃比の近傍において効率的に浄化する三元触媒があり、例えば、その後段に、酸素濃度に応じた信号を出力するガスセンサ素子を備えるガスセンサ(すなわち、酸素センサ)が配置されて、検出結果を基に燃焼状態を制御し又は触媒状態の監視等を行っている。
このようなガスセンサは、一般に、ガスセンサ素子をハウジングに挿通保持した状態で、排気管壁に取付けられる。ハウジングの先端側には、排ガスに晒されるガスセンサ素子の先端側を覆うように、一重又は二重カバー構造を有する素子カバーが設けられ、応答性と耐被水性を両立させることが課題となっている。
例えば、特許文献1に開示されるガスセンサは、先端面に内側先端通気孔を有する内側筒状部を含む内側カバー部と、側面に外側ガス導入窓を有する外側筒状部を含む外側カバー部とからなる二重構造の素子カバーを備えている。素子カバーが固定される主体金具の先端部は、外側筒状部と内側筒状部とを後端側にて連通させる内側ガス導入路を構成している。この構成では、外側ガス導入窓から導入される被測定ガスが、主体金具の先端側において内側筒状部の後端側を越えるようにし、比較的短い距離で、凝縮水の侵入を抑制しながら、被測定ガスをガスセンサ素子の先端部に導くようになっている。
また、外側カバー部と内側カバー部の底部を密接させ、内側先端通気孔と外側先端通気孔を連通させて、被測定ガスが排出されやすいようにしている。
特許第4355622号公報
近年、各国の排ガス規制や燃費規制へ対応するため、過給機を用いたエンジンのダウンサイジングを行うと共に、ガスセンサを三元触媒の前段に配置したシステム構成が一般的になりつつある。このようなシステム構成においては、搭載スペースの制約から、ガスセンサが排気管の屈曲部位に取付けられることがあるが、排ガスの流れ方向に対して斜め45度搭載となるために、二重カバー構造の素子カバーであっても、耐被水性が低下しやすくなる。つまり、素子カバー内の流路方向も排ガスの流れ方向に対して45度傾斜となり、通常の垂直搭載よりも傾きが緩くなるので、排気管内で発生する凝縮水が排ガスと共に飛来した場合には、排ガスの流れに沿って比較的容易に、外側カバー部内の通路から内側カバー部の内部に侵入してしまう。
また、素子カバーの先端面も排ガスの流れ方向に傾くので、特に、特許文献1のように、内側先端通気孔が外部に開口している構成では、先端通気孔からも排ガスが流入し、ガスセンサ素子に到達しやすくなる。
ガスセンサが排気管の屈曲部位に取付けられない場合においても、例えば、排気管の連結部等に溜まった凝縮水が、排ガス流れによって斜め下方から飛来すると、同様の現象が起こり得る。このようにして、排ガスと共に凝縮水が内部に侵入し、ガスセンサ素子に到達すると、例えば、内蔵ヒータによる加熱時に、熱膨張係数差による素子割れを引き起こすおそれがある。
本発明は、かかる課題に鑑みてなされたものであり、ガスセンサの搭載位置等によらず、飛来する凝縮水が素子カバー内へ侵入するのを抑制することができるガスセンサを提供しようとするものである。
本発明の一態様は、
筒状のハウジング(H)に挿通保持され、軸方向(X)の先端部に被測定ガス(G)中の特定ガス濃度を検出する検出部(3)を有するガスセンサ素子(2)と、
上記ハウジングの先端側に配設されて、上記ハウジングから突出する上記ガスセンサ素子の周囲を取り囲む筒状の素子カバー(1)と、を備えるガスセンサ(S)であって、
上記素子カバーは、
上記ハウジング側の端部に位置する第1径部(11)、及び、上記第1径部の先端側に位置し上記第1径部よりも小径の第2径部(12)と、
上記第1径部と上記第2径部とを連結する連結部(13)と、
上記連結部を貫通して設けられ、上記第1径部の内部に被測定ガスを導入する複数の基端側ガス流通孔(131)と、
上記第2径部(12)よりも先端側に位置する先端部(14)と、
上記先端部において、上記ガスセンサ素子の先端面(21)よりも先端側に設けられる先端側ガス流通孔(141)と、
上記第2径部の外周から側方に張り出して設けられ、上記基端側ガス流通孔と上記軸方向に対向する、フランジ部(121)と、を有する、ガスセンサにある。
上記構成のガスセンサにおいて、排ガスは、ハウジングに隣接する素子カバーの基端側において、第1径部と第2径部との連結部に設けられる、基端側ガス流通孔から、大径の第1径部の内部空間に流入し、小径の第2径部から先端側ガス流通孔へ向かうガス流れを形成する。素子カバーには、基端側ガス流通孔に対向するフランジ部が設けられるので、ガス流れと共に凝縮水が直接、基端側ガス流通孔に流入することが抑制される。また、被測定ガスは、基端側ガス流通孔から一旦ハウジング側へ向かい、その後向きを変えて先端側へ向かうので、凝縮水が自重で排ガスから分離されやすい。したがって、ガスセンサが被水しやすい上流側配管に傾斜配置されたり、凝縮水が斜め方向から飛来したりする構成においても、ガスセンサ素子の被水を抑制しながら、検出部へ速やかに排ガスを導入して、応答性を向上させることができる。
以上のごとく、上記態様によれば、ガスセンサの搭載位置等によらず、凝縮水が素子カバー内へ侵入するのを抑制することができるガスセンサを提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
実施形態1における、ガスセンサの主要部構成を示す軸方向断面図。 実施形態1における、ガスセンサの主要部構成を示す径方向断面図で、図1のII−II線断面図。 実施形態1における、ガスセンサの取り付け状態の一例を示す排気管の屈曲部の部分拡大図。 実施形態1における、ガスセンサの取り付け状態の一例を示す排気管の直線部の部分拡大図。 実施形態2における、ガスセンサの主要部構成を示す軸方向断面図。 実施形態2における、ガスセンサの取り付け状態の一例を示す排気管の曲線部及び直線部の部分拡大図。 実施形態3における、ガスセンサの主要部構成を示す軸方向断面図。 実施形態3における、ガスセンサの要部構成を示す径方向断面図で、図7のVIII部拡大図。 実施形態3における、ガスセンサの取り付け状態の一例を示す排気管の曲線部及び直線部の部分拡大図。 実施形態4における、ガスセンサの主要部構成を示す軸方向断面図。 実施形態4における、ガスセンサの取り付け状態の一例を示す排気管の曲線部及び直線部の部分拡大図。 実施形態5における、ガスセンサの主要部構成を示す軸方向断面図。 実施形態5における、ガスセンサの主要部構成を示す径方向断面図で、図1のXIII−XIII線断面図。 実施形態5における、ガスセンサの要部構成を示す軸方向断面図で、図11のXIV部拡大図。 実施形態5の変形例における、ガスセンサの主要部構成を示す軸方向断面図。 実施形態5における、ガスセンサを用いた排ガス浄化システムの全体概略構成図。 実施形態5における、ガスセンサの全体構成を示す部分断面図。 試験例1における、ガスセンサを用いた被水性評価試験方法を説明するための試験装置の模式図。 試験例1における、ガスセンサの被水性評価試験の結果を比較して示す柱状グラフ図。 従来の二重カバー構造又は一重カバー構造のガスセンサとその取り付け状態を示す排気管の曲線部の部分拡大図。 実施形態6における、ガスセンサの主要部構成を示す軸方向断面図。 実施形態7における、ガスセンサの主要部構成を示す軸方向断面図。 試験例2における、ガスセンサの被水評価試験の結果を比較して示す柱状グラフ図。 試験例2における、ガスセンサの応答性評価試験の結果を比較して示す柱状グラフ図。
(実施形態1)
以下に、ガスセンサに係る実施形態1について、図1〜図4を参照して説明する。
図1、図2に主要部を示すように、ガスセンサSは、筒状のハウジングH内に挿通保持され、先端部に被測定ガス中の特定ガス濃度を検出する検出部3を有するガスセンサ素子2と、ハウジングHの先端側に配設されて、ハウジングHから突出するガスセンサ素子2の周囲を取り囲む筒状の素子カバー1と、を備えている。
ガスセンサSは、例えば、図3、図4に示されるように、自動車用エンジンの排気管EXに設置されて、被測定ガスである排ガスGに含まれる、特定ガス濃度としての酸素濃度を検出する酸素センサに用いられる。あるいは、酸素濃度に基づいて空燃比(すなわち、A/F)を検出する空燃比センサや、NOx濃度を検出するNOxセンサ等に用いることができる。
図1において、ガスセンサSは、図中の上下方向を軸方向Xとしており、素子カバー1は、基端側(すなわち、図中の上端側)開口縁部が、ハウジングHの先端側(すなわち、図中の下端側)外周縁部に、加締め固定される。ガスセンサ素子2は、先端側の一部が、ハウジングHの先端側から突出して、素子カバー1の内側に、同軸的に位置している。素子カバー1は概略筒状で、軸方向Xに外径が異なる複数の部分が並設される。具体的には、ハウジングH側の端部に位置する第1径部11と、第1径部11の先端側に位置し第1径部11よりも小径の第2径部12と、これら第1径部11と第2径部12とを連結する連結部13と、第2径部12よりも先端側に位置する先端部14と、を有している。
素子カバー1の連結部13には、複数の基端側ガス流通孔としてのガス導入孔131が設けられる。ガス導入孔131は、連結部13を貫通して外部に開口し、第1径部11の内部空間111に被測定ガスを導入する。第2径部12の外周には、外周面から側方、例えば、径方向(すなわち、軸方向Xと直交する方向)に張り出すフランジ部121が設けられる。フランジ部121は、ガス導入孔131と軸方向Xに対向している。フランジ部121の配置や大きさ、複数のガス導入孔131の配置との関係については、後述する。
先端部14は、ガスセンサ素子2の先端面21よりも先端側に、外部に開口する先端側ガス流通孔としてのガス排出孔141を有する。具体的には、先端部14は、ガスセンサ素子2の先端部を取り囲むテーパ状の筒部14Aと、筒部14Aの先端側に連続する第3径部14Bとを有し、第3径部14Bの先端開口にて、ガス排出孔141が構成される。
本形態において、ガスセンサ素子2は、中空有底のコップ型に成形された固体電解質体22を含むコップ型素子として構成される。固体電解質体22の内側には、基準ガス室33が設けられ、軸方向Xに延びる棒状のヒータ4が収容される。固体電解質体22は、例えば、ジルコニア(すなわち、ZrO2)を主成分とするジルコニア系固体電解質からなり、その外表面側に被測定ガス側電極31が形成され、内表面側に基準ガス側電極32が対向して形成されて、検出部3を構成している。基準ガス室33には、基準ガスとしての大気が導入される。
被測定ガス側電極31及び基準ガス側電極32は、例えば、Pt等の貴金属元素を含む電極材にて構成されるガス透過性電極からなる。このとき、検出部3では、固体電解質体22を挟んで、排ガスに晒される被測定ガス側電極31と、大気に晒される基準ガス側電極32とが対向することで、被測定ガス側電極31と基準ガス側電極32の間に、酸素分圧差に基づく起電力が生じる。これを利用して、排ガス中の酸素濃度に応じたセンサ信号を得ることができる。
ヒータ4は、例えば、棒状のセラミックス基体内に発熱抵抗体が埋設されたセラミックスヒータとして構成されている。ヒータ4は検出部3の対向位置を発熱部として、外部からの通電により発熱し、検出部3を活性温度(例えば、500℃)以上に加熱することができる。
このようなガスセンサSは、エンジンの排ガス浄化システムの一部を構成して、燃焼状態の監視を行い、所望の燃焼状態が維持されることで規制物質の排出抑制に寄与する。
そのため、例えば、エンジン始動時には、速やかにヒータ4に通電してガスセンサSを作動させることが望まれるが、一方で、低温の排気管内で水分が凝縮し、凝縮水が生じやすい。このように、排気管EX内に凝縮水が存在するような条件では、排ガスと共に飛来する凝縮水が、ガスセンサ素子2の表面に付着すると、ヒータ加熱によって素子割れを引き起こすおそれがある。
これに回避するために、従来から、素子カバー1内の通路を気液分離しやすい形状とする工夫がなされているが、例えば、ガスセンサSがよりエンジンに近く、より多量の凝縮水が発生するような配置では、さらなる耐被水性の向上が必要となる。また、耐被水性を確保するために、従来のような二重カバー構造とすると、応答性が低下する。
そこで、本形態では、素子カバー1を一重カバー構造とし、ハウジングH側から、大径の第1径部11とこれより小径の第2径部12を有する形状として、これらの連結部13にガス導入孔131を設ける。さらに、第2径部12の軸方向Xにおける中間部の外周にフランジ部121を突設し、ガス導入孔131に対向させて配置する。第1径部11及び第2径部12は、それぞれ一定径の円筒状で、軸方向Xに連続しており、連結部13は、第1径部11の先端側と第2径部12の基端側を繋ぐ、平面状の段部となっている。素子カバー1の外周側において、フランジ部121は、連結部13と平行に径方向に拡がり、両者の対向面間に、排ガスの導入空間部10を区画形成している。
図2に示すように、連結部13は、ガスセンサ素子2の周囲を円環状に取り囲んでいる。ガス導入孔131は、連結部13を貫通して内外を連通させる複数の円形孔からなり、周方向に沿って複数箇所(例えば、8箇所)に均等配置される。これにより、ガス流れ方向によらずガス導入孔131から排ガスGを導入可能となり、ガスセンサSの取付時に周方向の位置決めが不要になる。ガス導入孔131、周方向に沿う6箇所であってもよく、その孔数や孔径は、連結部13の大きさ等に応じて適宜設定することができる。
フランジ部121の外径は、ここでは、第1径部11の内径と同等か僅かに小さく、ガス導入孔131は、フランジ部121の外周縁部よりも僅かに内側に位置している。このとき、ガス導入孔131は、フランジ部121と連結部13との間に形成される導入空間部10に面すると共に、第1径部11の内部空間111に面して、両空間を互いに連通させる。
図1において、第1径部11の内部空間111は、第1径部11の内周面とガスセンサ素子2の外周面23との間に形成される環状空間であり、第2径部12の内部空間122に連通している。内部空間122は、第2径部12の内周面とガスセンサ素子2の外周面23との間の環状空間であり、先端部14の内部空間142に連通している。
素子カバー1内の空間は、ガス導入孔131から、内部空間111、122、142を経て、ガス排出孔141に至る、排ガス通路を形成する。
先端部14の筒部14Aは、ガスセンサ素子2の半球状の先端面21に沿うように、先端側へ向けて縮径するテーパ状に形成されている。筒部14Aは、ガスセンサ素子2よりも先端側において段付に縮径して、環状の段部を形成し、この段部の内周縁部から先端側へ連続して、一定径の第3径部14Bが設けられる。
先端部14は、筒部14Aをテーパ状とすることで、ガスセンサ素子2の先端面21との間の隙間を第2径部12と同等程度に保つことが望ましい。これにより、内部空間142の容積を小さくして、排ガスGの流速を大きくすることができる。
好適には、ガスセンサ素子2の検出部3は、図示するように、先端面21に近い一定径部に設けられ、第2径部12の内部空間122に面するように配置される。第2径部12の外周に設けられるフランジ部121は、軸方向Xにおいて、例えば検出部3と同等位置か、より基端側に配置され、連結部13は、検出部3よりも基端側に位置することが望ましい。検出部3が第1径部11及び連結部13よりも先端側に設けられ、内部空間111に流入する排ガスGの流れ方向に位置しないので、検出部3の被水が抑制される。
上記構成のガスセンサSは、例えば、図3に示すように、排気管EXの90°に屈曲する屈曲部EX1に取り付けられる。排気管EXの取付位置に対して垂直搭載されるガスセンサSの軸方向Xと、排ガスGの流れ方向とは、45°の角度を有して交わることになる(すなわち、斜め45°搭載)。
このとき、ガス導入孔131を、軸方向Xと直交する連結部13に設けて、素子カバー1の側面に直接露出しない構成とし、さらに、フランジ部121を対向させることで、ガス導入孔131の対向方向から飛来する凝縮水Wの侵入を規制することができる。
排ガスGは、図中に示すように、ガス導入孔131とフランジ部121との間に区画される導入空間部10を経て、導入空間部10に開口するガス導入孔131から、第1径部11の内部空間111に流入する。そして、流入方向に沿って、一旦、ハウジングH側へ向かった後、向きを変えて、先端側へ向かう。すなわち、排ガスGの流入方向が、ガスセンサ素子2の検出部3と反対方向となるので、仮に凝縮水Wが素子カバー1の内部に侵入しても、自重で排ガスGから分離されやすくなる。
また、素子カバー1の先端部14は、ガスセンサ素子2よりも先端側に、これよりも小径の第3径部14Bが延出し、最先端にガス排出孔141が開口する構成としたので、仮に凝縮水Wがガス排出孔141から侵入しても、ガスセンサ素子2に到達しにくい。
これらにより、検出部3への付着による素子割れ等を抑制して、耐被水性を向上させる。
さらに、素子カバー1の先端部14は、筒部14Aをテーパ状とし、その先端側により小径の第3径部14Bを有することで、排ガスGの流れを絞り、ガス排出孔141へ向かうガス流れを促進することができる。したがって、ガス導入孔131から内部空間111、121、141を通過するガス流れが形成されやすくなり、検出部3への排ガスGの導入が促進されて、応答性を向上させる。
図4に示すように、ガスセンサSを、排気管EXの直線部EX2に取り付けることもできる。このとき、ガスセンサSの軸方向Xと、排ガスGの流れ方向とは、90°の角度を有して交わる(すなわち、垂直搭載)。そして、例えば、ガスセンサSの上流側において、排気管EXの接続部等に、凝縮水Wが溜まる凹部EX3が形成されると、排ガスGの流れに乗って、凝縮水Wが舞い上がる。この場合にも、ガスセンサSに対して、例えば、斜め下方45°の角度で、凝縮水Wが下方から飛来することになる。
したがって、上述したように、素子カバー1の外周にフランジ部121を設けて、導入空間部10を区画し、ガス導入孔131を開口させることで、排ガスGと共に凝縮水Wが侵入するのを抑制することができる。また、先端部14は、テーパ状の筒部14Aの先端側に小径の第3径部14Bを設けて、その最先端にガス排出孔141を開口させることで、排ガスGの流れを促進すると共に、先端からの凝縮水Wの侵入を抑制することができる。これらにより、耐被水性と応答性を向上させる同様の効果が得られる。
(実施形態2)
次に、ガスセンサに係る実施形態2について、図5〜図6を参照して説明する。
図5に主要部を示すように、本形態のガスセンサSは、上記実施形態1と同様の基本構成を有し、素子カバー1のフランジ部121の構成が一部異なっている。ハウジングHの先端側に固定された素子カバー1の内側に、ガスセンサ素子2の先端側が収容されており、コップ型のガスセンサ素子2の先端に検出部3を有する構成は、上記実施形態1と同様であり、説明を省略する。以下、相違点を中心に説明する。
なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
本形態においても、素子カバー1は、ハウジングH側から第1径部11、第2径部12、先端部14が軸方向Xに並設された構成を有し、第1径部11と第2径部12の間を連結する連結部13に、複数のガス導入孔131が設けられる。第2径部12に設けられるフランジ部121の外径は、上記実施形態1では、第1径部11の内径と同等か僅かに小さい程度としたが、ここでは、第1径部11の外径と同等か僅かに大きい。すなわち、フランジ部121の外周縁部は、ガス導入孔131の対向位置よりも、十分外側に位置している。
このとき、図6上図に示すように、排気管EXの屈曲部EX1にガスセンサSが取り付けられると、フランジ部121が素子カバー1の径方向において、より外方に突出するので、排ガスGと共に飛来する凝縮水Wが、ガス導入孔131へ直接到達するのを抑制する効果が高い。また、フランジ部121との間の導入空間部10がより外方へ拡がることで、導入空間部10に達した排ガスGが、その内表面となるフランジ部121の表面及び第2径部12の表面に沿って、ガス導入孔131へ誘導されやすくなり、凝縮水Wの侵入がさらに抑制される。
図6下図に示すように、ガスセンサSが、排気管EXの直線部EX2に取り付ける場合も同様であり、一重カバー構造の素子カバー1を用いて、耐被水性と応答性とを両立させることができる。
(実施形態3)
ガスセンサに係る実施形態3について、図7〜図9を参照して説明する。
図7に主要部を示すように、素子カバー1のフランジ部121を、より外方へ突出する構成とすることもできる。その他のガスセンサSの基本構成は、上記実施形態1と同様であり、説明を省略する。以下、相違点を中心に説明する。
本形態においても、素子カバー1は、ハウジングH側から第1径部11、第2径部12、先端部14が軸方向Xに並設された構成を有し、第1径部11と第2径部12の間を連結する連結部13に、複数のガス導入孔131が設けられる。第2径部12に設けられるフランジ部121の外径は、上記実施形態2では、第1径部11の外径と同等か僅かに大きい程度としたが、第1径部11の外径よりも十分大きく形成することができる。ここでは、フランジ部121の外周縁部は、第1径部11の基端開口縁部が固定されるハウジングHの下端部と対向し、素子カバー1の最大径部となっている。
このとき、図8に示すように、径方向において、フランジ部121の外周縁部は、ガス導入孔131が形成される連結部13の外周縁部よりも外側に、大きく突出して位置する。これにより、排ガスGの流れからガス導入孔131を遮蔽する効果が高くなる。
好適には、図7において、ガス導入孔131の外周縁部とフランジ部121の外周縁部とを結ぶ線L1と、ガス導入孔131の外周縁部を通り軸方向Xと平行な線L2とのなす角度αを、搭載角度等に対応させて設定するのがよい。図9上図又は下図において、角度αが大きくなるほど、フランジ部121がより外側へ突出するので、凝縮水Wの侵入を抑制する効果がより高くなる。例えば、斜め45°搭載の場合には、角度αが45°となるように、フランジ部121の外径や第2径部12の軸方向Xにおける設置位置を設定することが好ましい。
このとき、図9上図に示すように、線L1が排ガスGの流れ方向とほぼ平行となり、フランジ部121がガス導入孔131と排ガスGの流れとの間を遮蔽するので、排ガスGの流れが直接、ガス導入孔131に流入するのを防止できる。角度αは、45°に限らず、例えば、30°以上60°以下の範囲で、所望の遮蔽効果が得られるように、また、素子カバーAの外径が必要以上に大きくならないように、適宜設定するとよい。
同様に、図9下図においても、線L1が凝縮水Wの飛来方向とほぼ平行となり、フランジ部121が、斜め下方から排ガスGと共に飛来する凝縮水Wと、ガス導入孔131との間を遮蔽するので、排ガスGの流れが直接、ガス導入孔131に流入するのを防止できる。これにより、凝縮水Wが、導入空間部10に流入し、さらに、ガス導入孔131から内部への侵入を防止することができる。
(実施形態4)
ガスセンサに係る実施形態4について、図10〜図11を参照して説明する。
図10に主要部を示すように、素子カバー1の先端部14形状を変更することもできる。フランジ部121は、ここでは、上記実施形態3と同様としているが、上記実施形態1又は2の形状としてもよい。その他のガスセンサSの基本構成は、上記実施形態1と同様であり、説明を省略する。以下、相違点を中心に説明する。
本形態においても、素子カバー1は、ハウジングH側から第1径部11、第2径部12、先端部14が軸方向Xに並設された構成を有し、第1径部11と第2径部12の間を連結する連結部13に、複数のガス導入孔131が設けられる。第2径部12に設けられるフランジ部121の外径は、上記実施形態3と同様に、第1径部11の外径よりも大きくし、素子カバー1の基端開口縁部よりも外側に位置して、ハウジングHの下端部と対向させている。
素子カバー1の先端部14は、テーパ状の筒部14Aの先端側に、小径の第3径部14Bを有する形状は、上記各実施形態と同様であり、さらに、第3径部14Bの先端側に、これより大径の第4径部14Cを有する。第4径部14Cは、一定径の円筒状で、先端面が閉鎖され、側面を貫通する複数の基端側ガス流通孔(以下、ガス流通孔と略称する)143を有している。これら複数のガス流通孔143の少なくとも1つは、ガス排出孔141として機能する。
第4径部14Cの外径は、第3径部14Bより大きければよく、ここでは、筒部14Aの先端側より大きく、基端側より小さくなっている。ガス流通孔143は、ガス導入孔131と同様に、側面の全周に均等に配置されるのがよく、これにより、ガスセンサSの取付時に周方向の位置決めが不要になり、ガス流通孔143の一部から排ガスGを導入すると共に、対向するガス流通孔143からなるガス排出孔141へ向かうガス流れを、容易に形成可能となる。ガス流通孔143の孔数や孔径等は、第4径部14Cの外径や軸方向長等に応じて適宜設定され、例えば、側面の6箇所ないし8箇所に等間隔で円形孔を形成して、ガス流通孔143とすることができる。
図11上図又は下図に示すように、先端部14に、小径の第3径部14Bに続く第4径部14Cを設け、その側面に複数のガス流通孔143を形成することで、その内部を通過する排ガスGの流れを形成することができる。例えば、図11上図において、排気管EXの屈曲部EX1に達した排ガスGの一部は、ガスセンサSの基端側の導入空間部10へ向かい、第1径部11から先端部14の第3径部14Bを経て、第4径部14Cに至る。一方、排ガスGの一部は、先端側の第4径部14Cへ向かい、排ガスGの流れに対向する側面に開口するガス流通孔143から内部に流入する。流入した排ガスGは、第4径部14Cの内部空間142Cを通過して、反対側の側面に開口するガス流通孔143から外部へ流出する。
このとき、反対側の側面に開口するガス流通孔143が、ガス排出孔141となり、軸方向Xに素子カバー1内を通過する排ガスGの流れは、第4径部14Cの内部空間142Cにおいて、径方向(すなわち、軸方向Xと直交する方向)のガス流れに合流し、ガス排出孔141から排出される。
この軸方向Xと直交する方向のガス流れによる吸出し効果で、軸方向Xに素子カバー1内を先端側へ向かう排ガスGの流速が上昇し、応答性がさらに向上する。また、第4径部14C内に、排ガスGと共に凝縮水Wが侵入しても、軸方向Xと直交するガス流れによって、ガス排出孔141から排出され、第3径部14Bから基端側に侵入することが抑制される。したがって、ガスセンサ素子2が収容される筒部14Aより基端側へ、先端側から凝縮水Wが侵入することはなく、耐被水性がさらに向上する。
図11下図に示すように、排気管EXの直線部EX2にガスセンサSが取り付けられる場合も同様の効果が得られる。すなわち、ガス導入孔131に対向して設けられるフランジ部121により、基端側からの凝縮水Wの侵入が抑制されると共に、先端部14に設けられる第4径部14Cにより、先端側からの凝縮水Wの侵入が抑制される。また、第4径部14Cの内部に形成されるガス流れの効果により、素子カバー1の内部を先端側へ向かうガス流れを促進する。よって、応答性と耐被水性をより向上両立させることができる。
(実施形態5)
ガスセンサに係る実施形態4について、図12〜図14を参照して説明する。
図12に主要部を示すように、本形態では、素子カバー1の先端部14において、第4径部14Cを、より外径が大きい構成としている。フランジ部121その他のガスセンサSの基本構成は、上記実施形態4と同様であり、説明を省略する。以下、相違点を中心に説明する。
本形態においても、素子カバー1は、ハウジングH側から第1径部11、第2径部12、先端部14が軸方向Xに並設された構成を有し、第1径部11と第2径部12の間を連結する連結部13に、複数のガス導入孔131が設けられる。第2径部12に設けられるフランジ部121の外径は、上記実施形態3と同様に、第1径部11の外径よりも大きく、フランジ部121の外周縁部は、複数のガス導入孔131を有する連結部13の外側に突出して、素子カバー1の基端開口縁部が固定されるハウジングHの下端部と対向している。
素子カバー1の先端部14は、テーパ状の筒部14Aの先端側に、小径の第3径部14Bと、これより大径の第4径部14Cを有する。第4径部14Cは、一定径の円筒状で、先端面が閉鎖され、側面に設けた複数のガス流通孔143の一部により、ガス排出孔141が構成されている。第4径部14Cの外径は、第3径部14Bより十分大きく、例えば、筒部14Aの基端開口部、すなわち第2径部12の外径と同等程度となっている。
なお、第4径部14Cの外径が大きくなり、第4径部14Cの側面の面積が大きくなるのに伴い、全周に均等配置されるガス流通孔143の孔数を、より多くすることが望ましい。あるいは、ガス流通孔143を長孔形状としての開口面積を大きくしてもよい。これにより、第4径部14Cの内部空間142Cに排ガスGを導入しやすくして、ガス流れの流速が上昇する。
このように、第4径部14Cの内部空間142Cがより大きくなることで、ガス排出孔141へ向かうガス流れによる吸出し効果も大きくなる。したがって、軸方向Xに素子カバー1内を先端側へ向かう排ガスGの流速が上昇し、応答性がさらに向上すると共に、内部に侵入する凝縮水Wの排出効果を高めて、耐被水性がさらに向上する。
図13に示すように、好適には、フランジ部121は、ガス導入孔131の外周縁部とフランジ部121の外周縁部とを結ぶ線L1と、ガス導入孔131の外周縁部を通り軸方向Xと平行な線L2とのなす角度αが、30°以上60°以下、例えば、45°程度となるように設けられる。
また、図14に示すように、第4径部14Cについても、その内部空間143Cにおいて、ガス流通孔143の先端縁部と第3径部14Bの先端縁部とを結ぶ線L3と、ガス流通孔143の先端縁部を通り軸方向Xと平行な線L4とのなす角度βが、例えば、45°程度となっているのがよい。このようにすると、図中の斜め下方から排ガスGがガス流通孔143内に侵入しても、第4径部14Cの基端側端面に衝突するので、第3径部14B内に直接侵入することが防止される、好適には、角度βが、30°以上60°以下となるように、第4径部14Cの径やガス流通孔143の位置等を、適宜設定することができる。
このような構成の素子カバー1は、例えば、鋼材をプレス加工することにより製作することができる。この場合は、図12、図13等に示されるように、フランジ部121が、その外径に合わせて折り返し曲げされることにより、重ね合わされた板材の衝合部によって形成される。
あるいは、図15に変形例として示すように、フランジ部121を、素子カバー1の第2径部12の外周から径方向に突出する環状部材にて形成することもできる。この場合には、フランジ部121を、素子カバー1とは別体の環状の板材で形成して、素子カバー1に溶接等により固定してもよいが、素子カバー1と一体に形成することもできる。例えば、三次元造形装置を用いて、金属粉末層の所定領域を加熱固化させることを繰り返し、所望形状の積層造形物を形成して素子カバー1とすることができ、素子カバー1の寸法精度を高めることができる。
また、ガスセンサ素子2は、上述したコップ型素子に限らず、図15に示されるように、細長い直方体形状の積層型素子としてもよい。詳細な図示は省略するが、例えば、平板状の固体電解質体の両面に、被測定ガス側電極と基準ガス側電極を形成し、平板状の絶縁体を積層して、基準ガス室やヒータを内蔵する積層型素子とすることができる。
このようなガスセンサ素子2と素子カバー1の組み合わせによっても、応答性と耐被水性を向上させたガスセンサSとすることができる。
図16に示すように、このようにして、応答性と耐被水性を向上させたガスセンサSは、例えば、過給機5を備える車両用エンジンEの排ガス浄化システムに、好適に適用される。エンジンEは、各気筒の燃焼室E1に面して燃料噴射弁INJを有し、所定のタイミングで燃料を噴射して着火燃焼させる。過給機5は、排気管EXに設けられるタービン51が、吸気管INに設けられるコンプレッサ52を駆動して、吸入空気を所定の過給圧となるように圧縮する。排気管EXは、例えば、図示するように、タービン51の下流に配置される三元触媒Cとの間に屈曲部EX1を有し、この屈曲部EX1にガスセンサSが、斜め45°搭載されている。
図17に示すように、ガスセンサSは、ハウジングHの先端部(すなわち、図中の下端部)外周に取付用のネジ部H1を有し、図示しない排気管EXの取付穴にネジ固定される。ハウジングHの基端部(すなわち、図中の上端部)には、大気カバー6が設けられ、図示しない大気導入孔が設けられ、ガスセンサ素子2の内部に設けられる基準ガス室31に基準ガスである大気を導入する。大気カバー6の基端開口から外部に取り出される信号線7は、ガスセンサ素子2の検出部3に接続されて、その検出結果を図示しない制御部に出力する。大気カバー6は、ハウジングHに加締め又は溶接等により取り付けられる。
ここで、排ガスの温度が低いエンジンEの始動時等には、排ガスに含まれる水分が凝縮水となって、過給機5の直下に位置するガスセンサSへ向かうことになる。このような場合でも、上記実施形態1〜5に示したように、応答性と耐被水性を向上させた素子カバー1を有することで、ガスセンサ素子2の被水割れを抑制することが可能になる。また、三元触媒Cの上流側にガスセンサSが配置されることで、さらに応答性の向上が可能であり、エンジンEの排ガス浄化システムの制御性を高めることができる。
(試験例1)
図18に示す試験装置100を用い、ガスセンサSのサンプル1〜5について、それぞれ被水性評価を行い、素子カバー1の形状による効果を調べた。
ガスセンサSの素子カバー1は、寸法精度よく作製するため三次元造形装置を用いて、以下の寸法となるように作製した。第1径部11、第2径部12、第3径部14B、第4径部14Cの径又は長さと、ガス導入孔131の径及び数は一定とした。また、フランジ部121の幅、第3径部14Bと第4径部14Cの径差、ガス排出孔の径と数を、表1のように変更した。
全長:23mm
第1径部11:径φ14.5×長さ5.1mm
第2径部12:径φ8.6×長さ5.7mm
第3径部14B:長さ2.5mm
第4径部14C:径φ8.6×長さ2.2mm
フランジ部121:幅1mm又は2mm又は3mm
第3径部14Bと第4径部14Cの径差:1.5mm又は2.5mm
ガス導入孔131:φ1.2mm×6個
ガス排出孔141又はガス流通孔143:φ1.8mm×1個又はφ1.2mm×6個
Figure 0006911692
サンプル1〜5の6個のガス導入孔131、サンプル4〜5の6個のガス流通孔143は、周方向に等間隔で配置した。サンプル1〜3は、ガス排出孔141が先端面に開口する上記実施形態1〜3の構成に対応し、フランジ部121の幅が順に大きくなっている。サンプル4〜5は、第4径部14Cを有する上記実施形態4〜5の構成に対応し、第4径部14Cの外径が順に大きくなっている。
試験装置100は、排気管EXを模した試験通路101の上流側から、送風機102、ヒータ103、噴射装置104を順に配置し、その下流に、ガスセンサSを45°の傾斜角度を有して設置した。送風機102を用いて、試験通路101の上流端部から導入した空気を、流速:7m/sでヒータ103を通過させ、噴射装置104から0.2mlの水をガスセンサSに向けて5回噴射した後、素子カバー1内のガスセンサ素子2の被水量を定量化した。サンプル1〜5のガスセンサSについて、それぞれ被水試験を行った結果を、図19に示す。
また、比較のために、図20に示すように、素子カバー1に代えて、従来の二重カバー構造の素子カバー200、又は、一重カバー構造の素子カバー300を用いたガスセンサSのサンプル7、8について、同様の被水試験を行った。これらの結果を、図19に併記する。
図20の上図に示される素子カバー200は、外側カバー201と内側カバー202にて構成されており、外側カバー201は、基端側の側面に複数の通孔203を有するとともに、先端面の中央に通孔204を有する。また、内側カバー202は、基端側の側面に複数の通孔205が開口するとともに、先端面の中央に通孔206が開口する。
また、図20の下図に示される素子カバー300は、ガスセンサ素子2の外側の大径部と、ガスセンサ素子2より先端側の小径部302とを有しており、大径部301と小径部302とを繋ぐ段部に通孔303が開口すると共に、小径部302の先端面に通孔304が開口している。
図19に明らかなように、サンプル1〜5のガスセンサSは、いずれも、従来構成のサンプル7、8に比べて、被水量が大きく低減している。これは、サンプル7の素子カバー200では、外側カバー201の先端側の側面に開口する通孔203から、排ガスGと共に凝縮水Wが容易に侵入するためであり、そのまま基端側へ流れて内側カバー202の通孔204に到達しやすい。また、先端面の通孔204、206からも排ガスGが流入して、凝縮水Wがガスセンサ素子2に到達しやすい。サンプル8の素子カバー300は、傾斜配置されることで、段部の通孔303が排ガスGの流れに向くために、排ガスGと共に凝縮水Wが浸入しやすくなり、一重カバー構造であるために、容易にガスセンサ素子2に到達する。また、先端面の通孔304からも排ガスGが流入するので、サンプル7よりもさらに被水量が多くなる。
サンプル1〜3のガスセンサSは、フランジ部121の幅、すなわち外径が大きくなるのに伴い被水量が低減しており、フランジ部121が径方向に突出するほど、ガス導入孔131からの凝縮水Wの侵入が抑制されることがわかる。また、第4径部4Cを有するサンプル4〜5のガスセンサSは、さらに被水量が低減しており、ガス排出孔141が側面に開口することで、先端側からの凝縮水Wの侵入が、さらに抑制されることがわかる。この効果は、サンプル4〜5のガスセンサSは、第3径部4Bと第4径部4Cの外径の差が大きいサンプル5の方が大きい。
(実施形態6)
ガスセンサに係る実施形態6について、図21を参照して説明する。
上記各実施形態では、ガスセンサSに素子カバー1を設けた一重カバー構造としたが、素子カバー1の応答性を損なわない範囲で、二重カバー構造とすることもできる。
素子カバー1その他のガスセンサSの基本構成は、上記実施形態4と同様であり、説明を省略する。以下、相違点を中心に説明する。
図20に主要部を示すように、本形態では、素子カバー1の内側に、金属多孔体からなる通気性カバー15を配置している。通気性カバー15は、ガスセンサ素子2の先端側の外周囲を取り囲む筒状体で、ガスセンサ素子2と対向する側面及び先端面を有している。基端部は拡径して素子カバー1の基端部と共に、例えば、図示しないハウジングHに固定される。金属多孔体は、例えば、メッシュ状の鋼材でも、鋼板に多数の貫通孔を形成したパンチングメタル等でもよい。このように、全面に多数の通孔を有する金属多孔体を、筒状に加工して、ガスセンサ素子2の外周囲を通気可能に保護する通気性カバー15とすることができる。
このように、外側に耐被水性を向上させた素子カバー1を配置し、その内側に、通気性カバー15を配置することにより、二重カバー構造であっても、耐被水性と応答性を両立させることができる。
(実施形態7)
ガスセンサに係る実施形態7について、図22を参照して説明する。
上記実施形態6では、素子カバー1の内側に通気性カバー15を設けているが、図22に実施形態7として示すように、外側に、金属多孔体からなる通気性カバー16を配置することもできる。通気性カバー16は、ガスセンサ素子2の先端側の外周囲を取り囲む筒状体で、ガスセンサ素子2と対向する側面及び先端面を有し、基端部は例えば、素子カバー1の基端部に固定される。通気性カバー16を構成する金属多孔体には、通気性カバー15と同様のものが用いられ、同様に、金属多孔体は、筒状メッシュ形状でもパンチングメタル形状でもよく、素子カバー1の外周囲を通気可能に保護することができる。
このように、内側に耐被水性を向上させた素子カバー1を配置し、その外側に、通気性カバー16を配置した二重カバー構造としても、耐被水性と応答性を両立させることができる。また、外側に通気性カバー16が配置されることで、複数の径部からなる変形形状の素子カバー1全体を収容して保護することができる。
(試験例2)
上記実施形態6、7の構成に対応するガスセンサSのサンプル8、9について、それぞれ被水性と応答性の評価を行い、素子カバー1の形状による効果を調べた。結果を、それぞれ図23、図24に示す。被水性評価は、上記図18に示した試験装置100を用い、試験例1と同様にして行った。また、応答性は、排気量2.0Lのエンジンを使用し、空燃比A/Fが14から15の間で変化するように、排気管EXに排ガスを排出させて、排気管EXに設置したガスセンサSの起電力が0.45Vを過ぎる時間を、応答時間とした。エンジンEの運転条件は、以下の通りとした。
回転数:1500rpm
吸入空気量:約10g/sec
図23に明らかなように、サンプル8、9の被水量は同等であり、従来の二重カバー構造のサンプル6に対して、大きく低減している。また、図24に示される応答時間も、サンプル8、9では、従来構造のサンプル6に対して、大きく短縮されている。応答時間は、素子カバー1の内側に通気性カバー15を有するサンプル6よりも、外側に通気性カバー16を有するサンプル9の方が、やや短くなっている。
このように、二重カバー構造とする場合には、通気性カバー15、16と組み合わせることで、耐被水性と応答性を両立可能であることがわかる。
上記各実施形態において、素子カバー1は、フランジ部121が径方向に張り出すと共に、連結部13がフランジ部121と平行な段部にて形成される構成としたが、フランジ部121と連結部13は必ずしも平行でなくともよく、いずれかが径方向に対して傾斜する配置となっていてもよい。
本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、ガスセンサSは、自動車用エンジンに限らず、任意の排気系における排ガス浄化システムその他に適用されて、被測定ガス中の特定ガス濃度を検出するものであればよい。また、ガスセンサ素子の検出部等、ガスセンサSの構成も適宜変更することができる。
1 素子カバー
2 ガスセンサ素子
3 検出部
11 第1径部
12 第2径部
121 フランジ部
13 連結部
131 ガス導入孔(基端側ガス流通孔)
14 先端部
141 ガス排出孔(先端側ガス流通孔)

Claims (7)

  1. 筒状のハウジング(H)に挿通保持され、軸方向(X)の先端部に被測定ガス(G)中の特定ガス濃度を検出する検出部(3)を有するガスセンサ素子(2)と、
    上記ハウジングの先端側に配設されて、上記ハウジングから突出する上記ガスセンサ素子の周囲を取り囲む筒状の素子カバー(1)と、を備えるガスセンサ(S)であって、
    上記素子カバーは、
    上記ハウジング側の端部に位置する第1径部(11)、及び、上記第1径部の先端側に位置し上記第1径部よりも小径の第2径部(12)と、
    上記第1径部と上記第2径部とを連結する連結部(13)と、
    上記連結部を貫通して設けられ、上記第1径部の内部に被測定ガスを導入する複数の基端側ガス流通孔(131)と、
    上記第2径部(12)よりも先端側に位置する先端部(14)と、
    上記先端部において、上記ガスセンサ素子の先端面(21)よりも先端側に設けられる先端側ガス流通孔(141)と、
    上記第2径部の外周から側方に張り出して設けられ、上記基端側ガス流通孔と上記軸方向に対向する、フランジ部(121)と、を有する、ガスセンサ。
  2. 上記フランジ部の外径は、上記第1径部の外径と同じかそれ以上である、請求項1に記載のガスセンサ。
  3. 上記フランジ部の外径は、上記基端側ガス流通孔の外周縁部と上記フランジ部の外周縁部とを結ぶ線(L1)と、上記基端側ガス流通孔の外周縁部を通り上記軸方向と平行な線(L2)とのなす角度(α)が、30°以上60°以下の範囲となるように設定される、請求項1に記載のガスセンサ。
  4. 上記先端部は、先端側へ向けて縮径するテーパ状の筒部(14A)と、上記筒部の先端側に連続する第3径部(14B)とからなり、上記第3径部の先端側に上記先端側ガス流通孔が開口する、請求項1〜3のいずれか1項に記載のガスセンサ。
  5. 上記先端部は、先端側へ向けて縮径するテーパ状の筒部(14A)と、上記筒部の先端側に連続する第3径部(14B)と、上記第3径部の先端側に連続し上記第3径部よりも大径の第4径部(14C)とを有し、上記第4径部の側面に複数の先端側ガス流通孔が開口する、請求項1〜3のいずれか1項に記載のガスセンサ。
  6. 上記第4径部は、その内部において、上記先端側ガス流通孔の先端縁部と上記第3径部の先端縁部とを結ぶ線(L3)と、上記先端側ガス流通孔の先端縁部を通り上記軸方向と平行な線(L4)とのなす角度(β)が、30°以上60°以下の範囲となるように設定される、請求項5に記載のガスセンサ。
  7. 上記素子カバーの外側又は内側に、金属多孔体からなる通気性カバー(15、16)を備える、請求項1〜6のいずれか1項に記載のガスセンサ。
JP2017197264A 2017-10-10 2017-10-10 ガスセンサ Active JP6911692B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197264A JP6911692B2 (ja) 2017-10-10 2017-10-10 ガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197264A JP6911692B2 (ja) 2017-10-10 2017-10-10 ガスセンサ

Publications (2)

Publication Number Publication Date
JP2019070601A JP2019070601A (ja) 2019-05-09
JP6911692B2 true JP6911692B2 (ja) 2021-07-28

Family

ID=66441067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197264A Active JP6911692B2 (ja) 2017-10-10 2017-10-10 ガスセンサ

Country Status (1)

Country Link
JP (1) JP6911692B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022072459A (ja) * 2020-10-29 2022-05-17 日本特殊陶業株式会社 ガスセンサ及びガスセンサ取付構造
CN115104026A (zh) * 2020-10-29 2022-09-23 日本特殊陶业株式会社 气体传感器

Also Published As

Publication number Publication date
JP2019070601A (ja) 2019-05-09

Similar Documents

Publication Publication Date Title
JP4725494B2 (ja) ガスセンサ
EP2037257B1 (en) Exhaust gas sensor abnormality diagnostic device
JP4765865B2 (ja) ガスセンサ
JP5291232B2 (ja) ガスセンサ
JP4826458B2 (ja) ガスセンサ取付構造
JP5204284B2 (ja) ガスセンサ
JP6911692B2 (ja) ガスセンサ
JP6857051B2 (ja) ガスセンサ素子およびガスセンサ
JP6589944B2 (ja) 内燃機関の排気システム
JP2004157111A (ja) 空燃比センサ
JP5171896B2 (ja) ガスセンサ
JP2009025076A (ja) ガスセンサ
JP2013238556A (ja) ガスセンサ
US20100000290A1 (en) Gas sensor mounting structure
JP2006170938A (ja) 酸素濃度センサの取付構造
JP4565760B2 (ja) 通気構造を有するセンサ
JPH10253576A (ja) 酸素センサ
JP6702342B2 (ja) ガスセンサ
JP5152863B2 (ja) ガスセンサ
JP4398393B2 (ja) ガスセンサの評価方法
US8117906B2 (en) Gas sensor shield without perforations
WO2019107262A1 (ja) センサ装置
JP2009058364A (ja) ガスセンサ
JP2005114487A (ja) ガスセンサ
JP4938587B2 (ja) ガスセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R151 Written notification of patent or utility model registration

Ref document number: 6911692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151