WO2019107262A1 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
WO2019107262A1
WO2019107262A1 PCT/JP2018/043107 JP2018043107W WO2019107262A1 WO 2019107262 A1 WO2019107262 A1 WO 2019107262A1 JP 2018043107 W JP2018043107 W JP 2018043107W WO 2019107262 A1 WO2019107262 A1 WO 2019107262A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
sensor
inner cover
gas
hole
Prior art date
Application number
PCT/JP2018/043107
Other languages
English (en)
French (fr)
Inventor
悠男 為井
浩史 野田
岳人 木全
貴司 荒木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018006081.0T priority Critical patent/DE112018006081B4/de
Priority to CN201880076521.1A priority patent/CN111406207B/zh
Publication of WO2019107262A1 publication Critical patent/WO2019107262A1/ja
Priority to US16/885,636 priority patent/US11448574B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Definitions

  • the present disclosure relates to a sensor device for detecting a specific component contained in a measured gas.
  • the exhaust gas passage of the internal combustion engine is provided with an exhaust gas purification system provided with a sensor device for detecting a specific component in the exhaust gas and a purification device such as a filter device or a catalyst device.
  • the sensor device is, for example, a PM sensor for detecting particulate matter (that is, Particulate Matter; hereinafter, referred to as PM as appropriate), and is disposed at a downstream position of the filter device for PM collection and has a filter failure It is used to determine the Further, an exhaust gas sensor such as an oxygen sensor is disposed at the upstream or downstream position of the catalyst device.
  • Such sensor devices generally comprise a sensor element housed in a housing and an element cover surrounding the outer periphery of the sensor element projecting from the housing.
  • the sensor element is provided with a detection unit at the tip end (projected side end) protected by the element cover, and detects a specific component contained in the exhaust gas taken into the element cover.
  • the element cover is usually configured in the form of a single or double container.
  • the element cover has, for example, an inner cover located inside the double cover and an outer cover attached to the outer periphery thereof, and the exhaust gas opens at the proximal outer periphery of the outer cover It is introduced into the inside from the gas flow hole in the middle peripheral part of the inner cover from the gas flow hole through the space between the two covers.
  • the front end surface of the inner cover is located in the gas flow hole formed in the front end surface of the outer cover, and the exhaust gas in contact with the sensor element flows out from the gas flow hole formed in the front end surface of the inner cover.
  • the gas flow rate inside the element cover decreases under the operating conditions of the internal combustion engine where the exhaust gas has a low flow rate, and the detection sensitivity or output responsiveness of the sensor element is deteriorated. It has been found. For example, when starting an internal combustion engine, etc., particulate matter is easily discharged, so it is desirable to improve the detection sensitivity of the PM sensor, but when the gas flow is decelerated in the element cover, the flow of exhaust gas containing particulate matter , becomes difficult to reach the detection unit.
  • water break when starting up, condensed water in the exhaust gas passage easily intrudes into the inside through the gas flow holes in the tip surface, and if it adheres to the sensor element, it causes an element break due to water (hereinafter referred to as water break).
  • Patent Document 1 as another cover configuration, the distal end surface of the inner cover located on the inner side of the double cover is separated proximally, and a space is formed between the distal end surface of the outer cover located on the outer side.
  • the element cover of the structure which diameter-reduced the front end side of the inner cover is described.
  • the exhaust gas is introduced from the gas flow hole opened to the outer peripheral surface of the outer cover, flows through the space between the upper and lower surfaces, and then passes through the outer peripheral space of the reduced diameter portion of the inner cover. Head towards the gas flow hole on the end side.
  • the gas flow holes on the tip end surface of the inner cover do not open directly to the outside, so that the water on the sensor element is suppressed.
  • the gas flow flowing into the outer peripheral space of the inner cover forms a large vortex with the stepped surface of the reduced diameter portion, and the flow velocity tends to decrease, and particularly at low flow velocity, the gas flow toward the inner cover was found to not form well. Therefore, it is difficult for the particulate matter to reach the detection unit in the inner cover, which lowers the detection sensitivity of the PM sensor, and when adopted for an exhaust gas sensor, the response of the sensor output may be reduced.
  • An object of the present disclosure in a configuration in which a sensor element is housed in an element cover of a double structure, suppresses generation of eddy current in the element cover to improve a gas flow velocity toward a detection portion of the sensor element It is an object of the present invention to provide a sensor device having improved detection performance of specific components in
  • a sensor element including a detection unit that detects a specific component in a gas to be measured; A housing for inserting the sensor element inside and holding the detection unit so as to be positioned on the tip side in the axial direction; An element cover disposed on the front end side of the housing;
  • the element cover is a sensor device having an inner cover disposed so as to cover the tip side of the sensor element, and an outer cover disposed with a space outside the inner cover,
  • the inner cover is provided with an inner side hole and an inner end surface hole through which the gas to be measured flows on the side surface and the tip surface, respectively.
  • the outer cover is provided on the side surface with an outer side hole through which the gas to be measured flows, and the tip position of the outer side hole is on the tip side of the tip position of the inner cover, and A flow path provided between the outer surface of the inner cover and the inner surface of the outer cover has a large clearance portion as a maximum clearance on the outer peripheral side of the tip end surface of the inner cover, and the large clearance portion
  • the sensor device has a small clearance portion which is minimum clearance on the more proximal side, and has a flow path shape in which the large clearance portion and the small clearance portion are connected without any step.
  • the gas to be measured flows into the inside of the element cover from the outer side surface hole of the outer cover, passes through the space between the tip surface of the inner cover, and is located in the opposite direction of the gas flow. As it goes to the side holes, a part of it flows into the flow path between the outer cover and the side of the inner cover.
  • the flow path has a shape not having a step to suppress the decrease in flow velocity due to the generation of the vortex flow, and the flow path cross-sectional area is reduced from the large clearance at the distal end to the small clearance at the proximal end. This can further increase the flow velocity.
  • the gas to be measured whose flow rate is increased can be introduced from the inner side hole toward the detection unit, so that the supply flow rate to the detection unit can be increased to improve the detection sensitivity or output responsiveness.
  • the gas flow holes are not required on the front end surface of the outer cover, direct flow of the gas to be measured into the inner front end surface holes of the inner cover can be suppressed, and the water break of the sensor element can be prevented.
  • the generation of the eddy current in the element cover is suppressed to improve the gas flow velocity toward the detection portion of the sensor element It is possible to provide a sensor device in which the detection performance of a specific component in the detection unit is improved.
  • FIG. 1 is an enlarged sectional view of an essential part of a PM sensor according to the first embodiment
  • FIG. 2 is an overall perspective view of a sensor element of the PM sensor in the first embodiment
  • FIG. 3 is an axial cross-sectional view showing a schematic configuration of the PM sensor in the first embodiment
  • FIG. 4 is a diagram showing an example of a schematic configuration of an exhaust gas purification system including a PM sensor in the first embodiment
  • FIG. 1 is an enlarged sectional view of an essential part of a PM sensor according to the first embodiment
  • FIG. 2 is an overall perspective view of a sensor element of the PM sensor in the first embodiment
  • FIG. 3 is an axial cross-sectional view showing a schematic configuration of the PM sensor in the first embodiment
  • FIG. 4 is a diagram showing an example of a schematic configuration of an exhaust gas purification system including a PM sensor in the first embodiment
  • FIG. 1 is an enlarged sectional view of an essential part of a PM sensor according to the first embodiment
  • FIG. 2 is an overall perspective view of
  • FIG. 5 is an enlarged sectional view of an essential part for explaining the gas flow in the element cover of the PM sensor in the first embodiment
  • 6 shows the effect of the gas flow (a) due to the arrangement of the outer side surface holes of the element cover in Embodiment 1 in comparison with the gas flow (b) when the arrangement of the outer side surface holes is changed
  • FIG. 7 is an enlarged sectional view of an essential part of a PM sensor schematically showing the result of CAE analysis of the gas flow inside the element cover in Embodiment 1.
  • FIG. 8 is an enlarged sectional view of an essential part of a PM sensor schematically showing the result of CAE analysis of the gas flow inside the conventional element cover
  • FIG. 9 is an enlarged sectional view of an essential part of the PM sensor for explaining the clearance ratio d1 / d2 of the element cover in the first embodiment
  • FIG. 10 is a diagram showing the relationship between the clearance ratio d1 / d2 and the output rise time in the evaluation test
  • FIG. 11 is a schematic configuration diagram of a detection unit for explaining the detection principle of the sensor element in the first embodiment and a diagram showing the relationship between the flow velocity and the detection time
  • FIG. 13 is an enlarged sectional view of an essential part of the PM sensor in the second embodiment
  • FIG. 14 is an overall perspective view of a sensor element of a PM sensor according to a second embodiment
  • FIG. 15 is an enlarged sectional view of an essential part of the PM sensor in the third embodiment.
  • the sensor device in the present embodiment is a PM sensor S for detecting particulate matter, and is applied to, for example, an exhaust gas purification device of an internal combustion engine E shown in FIG.
  • the PM sensor S includes a sensor element 2 including a detection unit 21, and a housing H in which the sensor element 2 is inserted inside and held so that the detection unit 21 is positioned on the tip side in the axial direction X; And an element cover 1 disposed on the front end side of the housing H.
  • the internal combustion engine E is, for example, an automobile diesel engine or a gasoline engine, and the detection unit 21 of the sensor element 2 detects particulate matter as a specific component contained in the exhaust gas as the gas to be measured.
  • the vertical direction in FIGS. 3 and 4 is the axial direction X, the lower end side is the distal end side, and the upper end side is the proximal end side.
  • the element cover 1 has a space on the outer side of the inner cover 11 and the inner cover 11 disposed so as to cover the tip end side in the axial direction X of the sensor element 2 coaxial with the PM sensor S And an outer cover 12 disposed.
  • the inner cover 11 is provided with an inner side hole 11a and an inner end surface hole 11b through which the gas to be measured flows on the side surface 111 and the end surface 112, respectively.
  • the outer cover 12 is provided with the outer side surface hole 12a through which the gas to be measured flows on the side surface 121, and the tip position of the outer side surface hole 12a is on the tip side of the tip position of the inner cover 11.
  • the element cover 1 has a large clearance portion 31 where the flow path 3 provided between the outer surface of the inner cover 11 and the inner surface of the outer cover 12 is the largest clearance on the outer peripheral side of the tip surface 112 of the inner cover 11. Have.
  • the small clearance portion 32 which is the minimum clearance is provided, and the large clearance portion 31 and the small clearance portion 32 have a flow path shape connected without steps. The detailed configuration of the element cover 1 will be described later.
  • the PM sensor S coaxially accommodates the sensor element 2 in a cylindrical housing H, and is attached to the tip opening H1 of the housing H so as to cover the tip opening H1 from the tip opening H1
  • the detection part 21 of the sensor element 2 which protrudes is protected.
  • the PM sensor S is, for example, screwed to the exhaust gas pipe wall of the internal combustion engine E shown in FIG. 4 by a screw member H2 provided on the outer periphery of the housing H, and the tip end thereof protrudes into the exhaust gas passage EX.
  • a diesel particulate filter (hereinafter referred to as DPF) 10 is installed in the middle of the exhaust gas passage EX, and the PM sensor S is disposed downstream of the DPF 10 and the exhaust gas after passing through the DPF 10 Particulate matter contained in G (ie, PM shown in the figure) is detected.
  • the particulate matter slipping through the DPF 10 can be detected, and, for example, a part of the abnormality diagnosis system of the DPF 10 can be configured.
  • the flow direction of the exhaust gas G is orthogonal to the axial direction X of the PM sensor S.
  • the sensor element 2 is a laminated element having a laminated structure, and has a detection unit 21 to which the electrodes 23 and 24 are exposed on the front end surface of the rectangular parallelepiped insulating base 22.
  • the insulating substrate 22 is formed, for example, by firing a laminate in which electrode films to be the electrodes 23 and 24 are alternately disposed between a plurality of insulating sheets to be the insulating substrate 22.
  • the edge portions of the electrodes 23 and 24 at least partially embedded in the insulating substrate 22 are linearly exposed on the tip end surface of the insulating substrate 22 and are alternately formed of linear electrodes of different polarities. Construct multiple electrode pairs.
  • Lead portions 23 a and 24 a connected to the electrodes 23 and 24 are disposed inside the insulating base 22, and are connected to terminal electrodes 25 and 26 formed on the surface of the base end side of the insulating base 22.
  • the insulating substrate 22 can be made of, for example, an insulating ceramic material such as alumina.
  • the electrodes 23 and 24, the lead portions 23a and 24a, and the terminal electrodes 25 and 26 can be made of, for example, a conductive material such as a noble metal.
  • the element cover 1 is in the form of a double container in which the housing H side is open, and includes an inner cover 11 and an outer cover 12 coaxially arranged.
  • the outer cover 12 has a side surface 121 formed of a cylindrical body having a substantially constant diameter, and a tip end surface 122 closing the cylindrical body, and the inner cover 11 is disposed with a space between the outer cover 12 and the inner cover 11. It has the side surface 111 which consists of cylindrical bodies, and the front end surface 112 which closes a cylindrical body.
  • the proximal end portion of the inner cover 11 is an enlarged diameter portion closely contacting the proximal end portion of the outer cover 12 and is integrally fixed to the distal end portion of the housing H.
  • the cylindrical body to be the side surface 111 of the inner cover 11 is continuous with the distal end surface 112 and is continuous with the tapered first cylindrical portion 113 whose diameter increases toward the proximal end, and from the first cylindrical portion 113 toward the proximal end And a second cylindrical portion 114 having a substantially constant diameter.
  • the first cylindrical portion 113 is a tapered surface having a constant taper angle, and a large clearance portion 31 is formed between the first cylindrical portion 113 and the outer cover 12 at the end on the tip end side.
  • the second cylindrical portion 114 forms a small clearance 32 with the outer cover 12.
  • the large clearance portion 31 is a portion where the clearance in the direction orthogonal to the axial direction X, that is, the distance between the outer surface of the inner cover 11 and the inner surface of the outer cover 12 is the maximum clearance. In the flow path 3 facing the first cylindrical portion 113, the clearance becomes smaller as it goes from the large clearance portion 31 on the distal end side to the proximal end side.
  • the small clearance portion 32 is a portion where the clearance in the direction orthogonal to the axial direction X, that is, the distance between the outer surface of the inner cover 11 and the inner surface of the outer cover 12 is the minimum clearance.
  • the clearance is constant from the distal end side to the proximal end side, and becomes the small clearance portion 32 with the minimum clearance.
  • the inner cover 11 is provided with a plurality of inner side surface holes 11 a at an intermediate portion in the axial direction X of the second cylindrical portion 114 which is the side surface 111 on the base end side.
  • the inner end surface hole 11 b is provided at the center of the end surface 112.
  • the inner side surface holes 11a and the inner tip end surface holes 11b are, for example, circular through holes, and the number and the arrangement of the inner side surface holes 11a are not particularly limited, but it is desirable that the inner side surface holes 11a and the inner distal end surface holes 11b be uniformly arranged in the entire circumferential direction.
  • the outer cover 12 is provided with a plurality of outer side surface holes 12 a on the side surface 121 in the vicinity of the distal end surface 122.
  • the outer side surface hole 12a is, for example, formed to have a diameter larger than that of the inner tip end surface hole 11b.
  • the outer side surface holes 12 a are circular through holes that open in the space between the tip end surface 112 of the inner cover 11 and the tip end surface 122 of the outer cover 12, and it is desirable that the outer side surface holes 12 a be uniformly distributed in the circumferential direction. As described above, by providing the outer side surface hole 12a and the inner side surface hole 11a on the entire circumference of the side surface, there is no directivity to the gas flow, and the assemblability is improved.
  • a plurality of water drainage holes 13 are provided on the distal end surface 122 at an outer peripheral portion not facing the inner distal end surface hole 11 b.
  • the water removal hole 13 is a small hole for discharging the condensed water in the element cover 1 to the outside, and is sufficiently smaller than the outer side hole 12 a through which the exhaust gas mainly flows.
  • the exhaust gas G flows from the side of the PM sensor S toward the element cover 1 and is introduced into the outer side hole 12 a opened in the side 121 of the outer cover 12. Since the outer side surface hole 12 a is located on the tip side of the tip position of the inner cover 11, in the element cover 1, the exhaust gas G is a space between the tip surface 112 of the inner cover 11 and the tip surface 122 of the outer cover 12. Flows at a sufficient flow velocity and travels to the outer side hole 12a located in the opposite direction (for example, see the dotted arrow in FIG. 5).
  • part of the exhaust gas G changes its direction toward the base end, and flows in the flow path 3 between the side surface 111 of the inner cover 11 and the side surface 121 of the outer cover 12. It flows in (see, for example, thick arrows in FIG. 5).
  • the flow path 3 has a smaller flow area in the small clearance portion 32 than the large clearance portion 31 on the inflow side, so the exhaust gas G opens in the small clearance portion 32 while improving the flow velocity by the venturi effect. Head toward the inner side hole 11a.
  • the inner cover 11 has a tapered shape in which the first cylindrical portion 113 on the tip end side of the second cylindrical portion 114 forming the small clearance portion 32 reduces in diameter toward the tip end, and the small clearance from the large clearance portion 31 Since the flow passage area is gradually narrowed to the portion 32, the exhaust gas G flows along the side surface 111 of the inner cover 11 and is less likely to cause an eddy flow.
  • the flow velocity of the exhaust gas G is further improved by the effect of suppressing the eddy current, and flows into the inner cover 11 from the inner side surface hole 11a at a sufficient flow velocity. Then, the detection portion 21 of the distal end surface of the sensor element 2 positioned on the proximal end side inward with a sufficient flow velocity is reached.
  • Such flow of exhaust gas G increases the supply flow rate per unit time to the detection unit 21. Therefore, the time required for detecting particulate matter at the time of failure of the DPF 10 is shortened, and the detection sensitivity by the sensor element 2 is improved. It can be done.
  • the exhaust gas G travels to the inner end surface hole 11b opened in the end surface 112 of the inner cover 11 (see, for example, a thick arrow in FIG. 1).
  • the exhaust gas G has a sufficient flow velocity in the space between the end surface 112 of the inner cover 11 and the end surface 122 of the outer cover 12, a negative pressure is generated near the inner end surface hole 11b.
  • the exhaust gas G is a side surface of the inner cover 11 in a configuration where the outer side surface hole 12 a is positioned more proximal than the distal end surface 112 of the inner cover 11 for reference. Since the flux does not pass around the portion 111 and below the inner end surface hole 11b, no negative pressure is generated.
  • a hole serving as a gas flow hole is not formed at the end surface 122 of the outer cover 12, particularly at a position facing the inner end surface hole 11b, so the flow direction of the exhaust gas G is orthogonal to the axial direction X. .
  • the inner front end surface hole 11b is not opened in the flow direction of the exhaust gas G, and a flow in the direction to join the exhaust gas G from the inner front end surface hole 11b is formed by the suction effect described above.
  • the exhaust gas G is prevented from flowing directly into the inner cover 11 from the inner front end surface hole 11b.
  • the gas flow at the time of low flow velocity in the case of the configuration of the present embodiment, the generation of the vortex flow in the flow path 3 is suppressed. That is, the exhaust gas G flowing into the outer cover 12 flows in the opposite direction, and a part of the exhaust gas G smoothly flows into the large clearance portion 31 before flowing out from the outer side surface hole 12a. This flow rises along the flow path 3 and increases in flow velocity in the vicinity of the small clearance portion 32 on the proximal end side to flow into the inner side hole 11 a and is directed to the distal end surface of the sensor element 2. Further, a gas flow is formed which flows out from the inner front end surface hole 11b and joins with the exhaust gas G flowing in the space between the both front end surfaces 112 and 122.
  • the front end side half of the inner cover 11 is used as the constant small diameter portion 115, and the step surface is tapered between the large diameter base end side half 116 and the same.
  • the exhaust gas G flowing into the outer cover 12 is likely to form a large vortex in the outer peripheral space 4 of the front half. That is, although the exhaust gas G flows into the outer peripheral space 4 before flowing out from the outer side surface hole 12a, the exhaust gas G is blocked by the step surface 117 to form a vortex and it is difficult to improve the flow velocity. As a result, if it can not flow into the inner side hole 11a at a sufficient flow velocity and reach the tip surface of the sensor element 2, the detection sensitivity of the detection unit 21 is lowered.
  • FIG. 7 and 8 schematically show the gas flow in the element cover 1 based on the analysis result of CAE (that is, Computer aided Engineering) at a low flow velocity (for example, 10 m / s). .
  • CAE Computer aided Engineering
  • the sensor element 2 performs regeneration of the detection unit 21 to remove heat from PM on the surface prior to the evaluation test, and then applies a predetermined collection voltage between the electrodes 23 and 24.
  • the voltage was applied to start electrostatic collection.
  • the rise time of the output is the time when the particulate matter is collected by electrostatic force on the surface of the insulating substrate 22 and the electrodes 23 and 24 are conducted, and the output of the detection unit 21 exceeds a preset threshold value. is there.
  • the detection characteristics of the PM sensor S are correlated with the flow velocity, and the detection time (that is, the rise time) is shortened as the flow velocity increases. It becomes almost constant. This means that although the particulate matter reaching the vicinity of the detection unit 21 also increases as the flow velocity increases, it becomes difficult to stay in the vicinity of the detection unit 21 at a certain flow velocity or more, and the collection amount further increases Is considered to be difficult.
  • the element cover 1 in which the clearance ratio d1 / d2 is 2.45 or more, and the detection sensitivity can be greatly improved. More preferably, it is preferable that the clearance ratio d1 / d2 be appropriately selected in the range where it is larger than 2.45.
  • Second Embodiment Embodiment 2 of the PM sensor S as a sensor device will be described with reference to FIGS. 13 and 14.
  • the detection unit 21 is provided on the front end surface of the sensor element 2 in the first embodiment, as shown in FIG. 13, the detection unit 21 may be provided on the side surface of the sensor element 2.
  • the configuration of the PM sensor S other than the sensor element 2 is the same as that of the first embodiment, and thus the description thereof will be omitted, and hereinafter, differences will be mainly described.
  • symbol used in Embodiment 2 or subsequent ones represents the component similar to the thing in already-appeared embodiment, etc., unless shown.
  • the sensor element 2 is a laminated element having a laminated structure, and has a detection unit 21 to which the electrodes 23 and 24 are exposed at one end side of the rectangular insulating substrate 22.
  • the configuration in which the electrodes 23 and 24 are connected to the terminal electrodes 25 and 26 via the lead portions 23a and 24a is the same as that in the above embodiment.
  • the sensor element 2 is arranged such that the side surface having the detection unit 21 faces the inner side hole 11 a which allows the exhaust gas G to flow into the inner cover 11.
  • the detection unit 21 is projected onto the side surface 111 of the side inner cover 11, at least a part of the projection surface overlaps with the inner side hole 11a in the axial direction X. It is good to have In other words, when both axial end positions of the detection unit 21 are projected to the side surface 111, at least a part of the inner side surface hole 11a may be located between the both ends.
  • the exhaust gas G flowing into the inner cover 11 from the inner side surface hole 11a can easily reach the detection unit 21 located at the opposite position directly without being diffused. Therefore, good detection performance can be maintained without lowering the detection sensitivity of the PM sensor S even at low flow rates.
  • first cylindrical portion 113 of the inner cover 11 may have a shape in which the diameter gradually decreases from the large clearance portion 31 on the distal end side to the small clearance portion 32 on the proximal end side. It does not have to be in the form.
  • the end portion which is to be the large clearance portion 31 has a shape having a cylindrical portion 113a having a substantially constant diameter.
  • the flow velocity of the exhaust gas G which flows into the flow path 3 and travels to the small clearance portion 32 is improved, and the effect of suppressing the vortex flow can be obtained. Further, since the clearance d1 of the large clearance portion 31 to be the maximum clearance can be easily set, the flow path 3 having the predetermined clearance ratio d1 / d2 can be easily formed, and a desired effect can be obtained.
  • the shape of the inner cover 11 may be a shape in which the clearance of the flow path 3 gradually reduces and does not have a step surface.
  • the inner cover 11 includes a second cylindrical portion 114 having a substantially constant diameter, and a first cylindrical portion 113 provided on the tip end side.
  • the first cylindrical portion 113 is formed in a substantially tapered shape as a whole, and connects a tapered cylindrical surface 113c whose diameter decreases from the proximal end to the distal end, the cylindrical surface 113c, and the distal end surface 112 of the inner cover 11 And a curved tip end cylindrical portion 113b.
  • the configuration of the PM sensor S other than the inner cover 11 is the same as that in each of the above-described embodiments, and the description thereof will be omitted.
  • the distal end surface 112 and the side surface 111 of the inner cover 11 are smoothly connected by the distal end cylindrical portion 113b, so that the exhaust gas flowing into the element cover 1 flows from the distal end surface 112 to the distal end cylindrical portion 113b. And it can flow in into the flow path 3 smoothly along the cylinder surface 113c. Therefore, the effect of improving the detection sensitivity by suppressing the decrease in the flow velocity is enhanced.
  • the tapered surfaces constituting the first cylindrical portion 113 need not have a constant taper angle, and for example, a shape in which a plurality of tapered surfaces having different taper angles are connected in the axial direction X It can also be done.
  • the effect of improving the flow velocity of the exhaust gas G can be obtained, and the shape of the inner cover 11 or the outer cover 12 that forms the flow path 3 can be appropriately changed within a range that does not significantly affect the gas flow.
  • the PM sensor S having the stacked sensor element 2 is described as an example, but in the sensor element 2, the print type element in which the electrodes 23 and 24 are printed on the surface to be the detection unit 21 It may be In this case, the electrodes 23 and 24 are printed in a comb shape on the surface of the insulating substrate 22 formed in a flat plate shape, and lead portions 23 a and 24 a similarly printed on the surface of the insulating substrate 22. And the terminal electrodes 25 and 26.
  • PM sensor S as a sensor apparatus was mainly demonstrated in said each embodiment, not only PM sensor S but a sensor apparatus is a gas sensor which detects the specific gas component contained in waste gas G. Good.
  • an exhaust gas sensor such as an oxygen sensor that detects oxygen in the exhaust gas G, an air-fuel ratio sensor that detects an air-fuel ratio, and an NOx sensor that detects NOx can be mentioned.
  • the sensor element 2 used for these gas sensors can have a known configuration, and for example, can have a configuration in which a detection unit 21 having an electrode for detection is provided on the tip side of a cup-type or stacked-type element. .
  • the element cover 1 can protect the outside by inserting and holding the inside of the housing H so that the detection unit 21 is on the tip side in the axial direction X. Then, the exhaust gas G introduced inside the element cover 1 is guided to the flow path 3 between the inner cover 11 and the outer cover 12, and the flow velocity is improved between the large clearance portion 31 and the small clearance portion 32. Can be led to the detection unit 21 to improve the responsiveness of the output of the detection unit 21 of the sensor element 2.
  • the exhaust gas purification performance can be improved by grasping
  • the present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the invention.
  • the internal combustion engine is not limited to an automobile engine, and exhaust gases from various devices may be measured gas. it can.
  • the gas to be measured is not limited to the exhaust gas from the internal combustion engine, and can be applied to a sensor device for detecting a specific component contained in various gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

センサ装置(S)は、センサ素子(2)の検出部(21)が軸方向(X)の先端側に位置するように保持するハウジング(H)と、その先端側に配設された素子カバー(1)を備える。素子カバー(1)は、インナカバー(11)の側面(111)及び先端面(112)に、インナ側面孔(11a)及びインナ先端面孔(11b)を有し、アウタカバー(12)の側面(121)にアウタ側面孔(21a)を有し、アウタ側面孔(21a)の先端位置がインナカバー(11)の先端位置よりも先端側にある。インナカバー(11)の外側面とアウタカバー(12)の内側面との間には、先端側に大クリアランス部(31)が、基端側に小クリアランス部(32)を有し、大クリアランス部(31)と小クリアランス部(32)が段差なく接続された形状の流路(3)が設けられる。

Description

センサ装置 関連出願の相互参照
 本出願は、2017年11月29日に出願された特許出願番号2017-229645号に基づくもので、ここにその記載内容を援用する。
 本開示は、被測定ガスに含まれる特定成分を検出するためのセンサ装置に関する。
 内燃機関の排ガス通路には、排ガス中の特定成分を検出するセンサ装置と、フィルタ装置や触媒装置等の浄化装置を備える排ガス浄化システムが設けられる。センサ装置は、例えば、粒子状物質(すなわち、Particulate Matter;以下、適宜、PMと称する)を検出するためのPMセンサであり、PM捕集用のフィルタ装置の下流位置に配置されて、フィルタ故障の判定に用いられる。また、触媒装置の上流又は下流位置に酸素センサ等の排ガスセンサが配置される。
 このようなセンサ装置は、一般に、ハウジング内に収容されるセンサ素子と、ハウジングから突出するセンサ素子の外周囲を取り囲む素子カバーとを有する。センサ素子は、素子カバーに保護される先端部(突出側の端部)に検出部を備え、素子カバー内に取り込まれた排ガスに含まれる特定成分を検出する。特許文献1に記載されるように、素子カバーは、通常、一重又は二重の容器状に構成される。
 特許文献1に記載されるガスセンサにおいて、素子カバーは、例えば、二重カバーの内側に位置するインナカバーとその外周に取り付けられたアウタカバーを有し、排ガスは、アウタカバーの基端外周部に開口するガス流通孔から両カバーの間の空間を経て、インナカバーの中間外周部におけるガス流通孔から内部に導入される。インナカバーの先端面は、アウタカバーの先端面に形成されたガス流通孔内に位置し、センサ素子に接触した排ガスは、インナカバーの先端面に形成されたガス流通孔から外部へ流出する。
特開2016-090569号公報
 特許文献1に記載される従来の素子カバー構成では、排ガスが低流速となる内燃機関の運転条件下で、素子カバー内部におけるガス流速が低下し、センサ素子の検出感度又は出力応答性が悪化することが判明した。例えば、内燃機関の始動時等は、粒子状物質が排出されやすいため、PMセンサの検出感度の向上が望まれるが、素子カバー内においてガス流れが減速すると、粒子状物質を含む排ガスの流れが、検出部に到達しにくくなる。一方、始動時には排ガス通路内の凝縮水が、先端面のガス流通孔から内部に侵入しやすくなり、センサ素子に付着すると被水による素子割れ(以下、被水割れと称する)の原因になる。
 特許文献1には、他のカバー構成として、二重カバーの内側に位置するインナカバーの先端面を基端側に離して、外側に位置するアウタカバーの先端面との間に空間を形成すると共に、インナカバーの先端側を縮径した構成の素子カバーが記載されている。この構成において、排ガスは、アウタカバーの先端外周面に開口するガス流通孔から導入され、両先端面間の空間を流れた後、インナカバーの縮径部の外周の空間を経て、インナカバーの基端側のガス流通孔へ向かう。
 この構成では、インナカバーの先端面のガス流通孔が、外部に直接開口しないので、センサ素子の被水は抑制される。ところが、インナカバーの外周の空間に流入するガス流れが、縮径部の段差面との間で大きな渦流を形成して流速が減少しやすくなり、特に低流速時には、インナカバー内へ向かうガス流れが十分形成されないことが判明した。そのため、粒子状物質がインナカバー内の検出部に到達しにくくなって、PMセンサの検出感度が低下し、また、排ガスセンサに採用した場合には、センサ出力の応答性が低下するおそれがあった。
 本開示の目的は、二重構造の素子カバー内にセンサ素子が収容される構成において、素子カバー内における渦流の発生を抑制して、センサ素子の検出部へ向かうガス流速を向上させ、検出部における特定成分の検出性能を向上させたセンサ装置を提供しようとするものである。
 本開示の一態様は、
 被測定ガス中の特定成分を検出する検出部を備えるセンサ素子と、
 上記センサ素子を内側に挿通して、軸方向の先端側に上記検出部が位置するように保持するハウジングと、
 上記ハウジングの先端側に配設された素子カバーと、を備え、
 上記素子カバーは、上記センサ素子の先端側を覆うように配設されたインナカバーと、上記インナカバーの外側に空間を有して配設されたアウタカバーと、を有するセンサ装置であって、
 上記インナカバーは、側面及び先端面に、被測定ガスが流通するインナ側面孔及びインナ先端面孔がそれぞれ設けられ、
 上記アウタカバーは、側面に、被測定ガスが流通するアウタ側面孔が設けられると共に、上記アウタ側面孔の先端位置が上記インナカバーの先端位置よりも先端側にあり、かつ、
 上記インナカバーの外側面と、上記アウタカバーの内側面との間に設けられる流路が、上記インナカバーの上記先端面の外周側において、最大クリアランスとなる大クリアランス部を有し、上記大クリアランス部よりも基端側において、最小クリアランスとなる小クリアランス部を有すると共に、上記大クリアランス部と上記小クリアランス部とが段差なく接続された流路形状を有する、センサ装置にある。
 上記構成のセンサ装置において、被測定ガスは、アウタカバーのアウタ側面孔から素子カバーの内部に流入し、インナカバーの先端面との間の空間を通過して、ガス流れの対向方向に位置するアウタ側面孔へ向かうと共に、その一部は、アウタカバーとインナカバーの側面間の流路に流入する。この流路は、段差を有しない形状とすることで渦流の発生による流速の低下を抑制し、先端側の大クリアランス部から基端側の小クリアランス部へ向けて、流路断面積が縮小することで流速をさらに高めることができる。
 したがって、流速を高めた被測定ガスを、インナ側面孔から検出部へ向けて導入することができるので、検出部への供給流量を増大させて、検出感度又は出力応答性を向上することができる。また、アウタカバーの先端面にはガス流通孔が不要であるので、インナカバーのインナ先端面孔へ、被測定ガスが直接流入することが抑制され、センサ素子の被水割れを防止することができる。
 以上のごとく、上記態様によれば、二重構造の素子カバー内にセンサ素子が収容される構成において、素子カバー内における渦流の発生を抑制して、センサ素子の検出部へ向かうガス流速を向上させ、検出部における特定成分の検出性能を向上させたセンサ装置を提供することができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、PMセンサの要部拡大断面図であり、 図2は、実施形態1における、PMセンサのセンサ素子の全体斜視図であり、 図3は、実施形態1における、PMセンサの概略構成を示す軸方向断面図であり、 図4は、実施形態1における、PMセンサを含む排ガス浄化システムの概略構成例を示す図であり、 図5は、実施形態1における、PMセンサの素子カバー内のガス流れを説明するための要部拡大断面図であり、 図6は、実施形態1における、素子カバーのアウタ側面孔の配置によるガス流れ(a)の効果を、アウタ側面孔の配置を変更した場合のガス流れ(b)と比較して示す素子カバーの要部拡大断面図であり、 図7は、実施形態1における、素子カバーの内部のガス流れをCAE解析した結果を模式的に示すPMセンサの要部拡大断面図であり、 図8は、従来の素子カバーの内部のガス流れをCAE解析した結果を模式的に示すPMセンサの要部拡大断面図であり、 図9は、実施形態1における、素子カバーのクリアランス比d1/d2を説明するためのPMセンサの要部拡大断面図であり、 図10は、評価試験における、クリアランス比d1/d2と出力立ち上がり時間の関係を示す図であり、 図11は、実施形態1における、センサ素子の検出原理を説明するための検出部の概略構成図及び流速と検出時間の関係を示す図であり、 図12は、実施形態1における、クリアランス比をd1/d2=2.5又はd1/d2=1.7のときの素子カバーの形状を比較して示すPMセンサの要部拡大断面図であり、 図13は、実施形態2における、PMセンサの要部拡大断面図であり、 図14は、実施形態2における、PMセンサのセンサ素子の全体斜視図であり、 図15は、実施形態3における、PMセンサの要部拡大断面図である。
(実施形態1)
 以下に、センサ装置の実施形態について、図面を参照して説明する。図1~図3に示すように、本形態におけるセンサ装置は、粒子状物質を検出するためのPMセンサSであり、例えば、図4に示す内燃機関Eの排ガス浄化装置に適用される。図1において、PMセンサSは、検出部21を備えるセンサ素子2と、センサ素子2を内側に挿通して、軸方向Xの先端側に検出部21が位置するように保持するハウジングHと、ハウジングHの先端側に配設された素子カバー1と、を備える。
 内燃機関Eは、例えば、自動車用ディーゼルエンジン又はガソリンエンジンであり、センサ素子2の検出部21は、被測定ガスとしての排ガス中に含まれる特定成分としての粒子状物質を検出する。なお、PMセンサSは、図3、図4の上下方向を軸方向Xとし、下端側を先端側、上端側を基端側としている。
 図1において、素子カバー1は、PMセンサSと同軸のセンサ素子2の軸方向Xにおいて、その先端側を覆うように配設されたインナカバー11と、インナカバー11の外側に空間を有して配設されたアウタカバー12と、を有する。インナカバー11は、側面111及び先端面112に、被測定ガスが流通するインナ側面孔11a及びインナ先端面孔11bがそれぞれ設けられる。また、アウタカバー12は、側面121に、被測定ガスが流通するアウタ側面孔12aが設けられると共に、アウタ側面孔12aの先端位置がインナカバー11の先端位置よりも先端側にある。
 素子カバー1は、インナカバー11の外側面と、アウタカバー12の内側面との間に設けられる流路3が、インナカバー11の先端面112の外周側において、最大クリアランスとなる大クリアランス部31を有する。また、大クリアランス部31よりも基端側において、最小クリアランスとなる小クリアランス部32を有すると共に、大クリアランス部31と小クリアランス部32とが段差なく接続された流路形状を有する。
 素子カバー1の詳細構成については、後述する。
 図3に示すように、PMセンサSは、筒状のハウジングH内にセンサ素子2を同軸的に収容し、ハウジングHの先端開口H1を覆うように取り付けた素子カバー1によって、先端開口H1から突出するセンサ素子2の検出部21を保護している。PMセンサSは、ハウジングHの外周に設けたネジ部材H2により、例えば、図4に示す内燃機関Eの排ガス管壁にネジ固定されて、先端側が排ガス通路EX内に突出位置する。
 図4において、排ガス通路EXの途中には、ディーゼルパティキュレートフィルタ(以下、DPFと称する)10が設置されており、PMセンサSは、DPF10の下流側に配置されて、DPF10を通過後の排ガスGに含まれる粒子状物質(すなわち、図中に示すPM)を検出する。これにより、DPF10をすり抜ける粒子状物質を検出し、例えば、DPF10の異常診断システムの一部を構成することができる。DPF10の下流位置において、排ガスGの流れ方向は、PMセンサSの軸方向Xと直交する方向となっている。
 図2に示すように、センサ素子2は、積層構造を有する積層型素子であり、直方体形状の絶縁性基体22の先端面に、電極23、24が露出する検出部21を有している。絶縁性基体22は、例えば、絶縁性基体22となる複数の絶縁性シートの間に、電極23、24となる電極膜を交互に配設した積層体を焼成して形成される。このとき、絶縁性基体22に少なくとも一部が埋設された電極23、24の端縁部が、絶縁性基体22の先端面に線状に露出して、交互に極性の異なる線状電極からなる複数の電極対を構成する。絶縁性基体22の内部には、電極23、24に接続されるリード部23a、24aが配置され、絶縁性基体22の基端側の表面に形成される端子電極25、26と接続される。
 絶縁性基体22は、例えば、アルミナ等の絶縁性セラミックス材料を用いて構成することができる。また、電極23、24、リード部23a、24a、端子電極25、26は、例えば、貴金属等の導電性材料を用いて構成することができる。
 図1、図3において、素子カバー1は、ハウジングH側が開口する二重容器状で、同軸配置されるインナカバー11とアウタカバー12からなる。アウタカバー12は、概略一定径の筒状体からなる側面121と、筒状体を閉鎖する先端面122とを有し、インナカバー11は、アウタカバー12との間に空間を有して配置される筒状体からなる側面111と、筒状体を閉鎖する先端面112とを有する。インナカバー11の基端部は、アウタカバー12の基端部に密接する拡径部となり、ハウジングHの先端部に一体的に固定される。
 インナカバー11の側面111となる筒状体は、先端面112に連続し、基端側へ向けて拡径するテーパ状の第1筒部113と、第1筒部113から基端側へ連続する概略一定径の第2筒部114とを有する。第1筒部113は、一定のテーパ角度を有するテーパ面であり、先端側の端部において、アウタカバー12との間に大クリアランス部31を形成する。第2筒部114は、アウタカバー12との間に小クリアランス部32を形成する。
 大クリアランス部31は、軸方向Xと直交する方向におけるクリアランス、すなわち、インナカバー11の外側面とアウタカバー12の内側面の距離が、最大クリアランスとなる部分である。第1筒部113に面する流路3において、先端側の大クリアランス部31から基端側へ向かうほど、クリアランスは小さくなる。
 小クリアランス部32は、軸方向Xと直交する方向におけるクリアランス、すなわち、インナカバー11の外側面とアウタカバー12の内側面の距離が、最小クリアランスとなる部分である。第2筒部114に面する流路3では、先端側から基端側へかけてクリアランスは一定であり、最小クリアランスの小クリアランス部32となる。
 インナカバー11には、基端側の側面111となる第2筒部114の軸方向Xの中間部に、複数のインナ側面孔11aが設けられる。先端面112には、中央部に1つのインナ先端面孔11bが設けられる。インナ側面孔11a及びインナ先端面孔11bは、例えば、円形の貫通孔であり、インナ側面孔11aの数や配置は、特に限定されないが、周方向の全体に均等配置されることが望ましい。
 また、アウタカバー12には、先端面122の近傍における側面121に、複数のアウタ側面孔12aが設けられる。アウタ側面孔12aは、例えば、インナ先端面孔11bよりも大径に形成される。アウタ側面孔12aは、インナカバー11の先端面112とアウタカバー12の先端面122との間の空間に開口する円形貫通孔であり、周方向の全体に均等配置されることが望ましい。このように、アウタ側面孔12a、インナ側面孔11aを側面の全周に設けることで、ガス流れに対する指向性を有しない構成となり、組付性が向上する。
 先端面122には、インナ先端面孔11bと対向しない外周部に、複数の水抜き孔13が設けられる。水抜き孔13は、素子カバー1内の凝縮水を外部に排出するための小孔であり、排ガスが主に流通するアウタ側面孔12aに対して十分に小さい。
 このとき、図5に示すように、排ガスGは、PMセンサSの側方から素子カバー1へ向けて流れ、アウタカバー12の側面121に開口するアウタ側面孔12aに導入される。アウタ側面孔12aは、インナカバー11の先端位置よりも先端側に位置するので、素子カバー1内において、排ガスGは、インナカバー11の先端面112とアウタカバー12の先端面122との間の空間を、十分な流速でそのまま流れ、対向方向に位置するアウタ側面孔12aへ向かう(例えば、図5中の点線矢印参照)。
 また、排ガスGの一部は、流れ方向の下流側の大クリアランス部31において、基端側へ向きを変えて、インナカバー11の側面111とアウタカバー12の側面121との間の流路3に流入する(例えば、図5中の太線矢印参照)。
 流路3は、流入側の大クリアランス部31よりも小クリアランス部32における流路面積が狭くなっているので、排ガスGは、ベンチュリ効果により、流速を向上させながら、小クリアランス部32に開口するインナ側面孔11aに向かう。また、インナカバー11は、小クリアランス部32を形成する第2筒部114より先端側の第1筒部113が、先端側へ向けて縮径するテーパ状であり、大クリアランス部31から小クリアランス部32へ至る間に、徐々に流路面積が狭くなる形状となっているので、排ガスGは、インナカバー11の側面111に沿って流れ、渦流を生じにくい。
 したがって、渦流の抑制効果により、排ガスGの流速がさらに向上し、十分な流速でインナ側面孔11aから、インナカバー11の内部に流入する。そして、十分な流速のまま基端側内方に位置するセンサ素子2の先端面の検出部21に到達する。このような排ガスGの流れにより、検出部21への単位時間当たりの供給流量が増加するので、DPF10故障時等に粒子状物質の検出に要する時間が短縮され、センサ素子2による検出感度を向上させることができる。
 その後、排ガスGは、インナカバー11の先端面112に開口するインナ先端面孔11bへ向かう(例えば、図1中の太線矢印参照)。このとき、上述したように、インナカバー11の先端面112とアウタカバー12の先端面122との間の空間において、排ガスGが十分な流速を有するので、インナ先端面孔11bの近傍に負圧が発生する。
 すなわち、図6左図に(a)として示す本形態の構成では、負圧による吸い出し効果で、インナ先端面孔11bからアウタカバー12内へ流出する流れが形成される。なお、参考のため、図6右図に(b)として示すように、アウタ側面孔12aがインナカバー11の先端面112よりも基端側に位置する構成では、排ガスGがインナカバー11の側面111の周囲を通過し、インナ先端面孔11bの下方を流束が通過しないため、負圧が発生しない。
 ここで、アウタカバー12の先端面122、特に、インナ先端面孔11bに対向する位置には、ガス流通孔となる孔が形成されないので、排ガスGの流れ方向は、軸方向Xと直交する方向となる。インナ先端面孔11bは、排ガスGの流れ方向に開口しておらず、また、上述した吸い出し効果により、インナ先端面孔11bから排ガスGへ合流する方向の流れが形成されるので、アウタカバー12内に流入した排ガスGが、インナ先端面孔11bからインナカバー11内に、直接流入することが抑制される。
 したがって、排ガスGに凝縮水が含まれる場合やアウタカバー12の内側に凝縮水が付着している場合においても、凝縮水が排ガスGと共にインナカバー11内に侵入しセンサ素子2に到達するおそれは小さい。よって、センサ素子2が被水により割れを生じるといった不具合を抑制することができる。
 図7に低流速時におけるガス流れを模式的に示すように、本形態の構成とした場合には、流路3における渦流の発生が抑制される。すなわち、アウタカバー12に流入した排ガスGは、対向方向へ流れると共に、アウタ側面孔12aから流出する手前にて一部が大クリアランス部31にスムーズに流入している、渦流は発生しにくい。この流れは、流路3に沿って上昇し、基端側の小クリアランス部32の近傍で流速が増してインナ側面孔11aへ流入し、センサ素子2の先端面へ向かっている。また、インナ先端面孔11bから流出し、両先端面112、122間の空間を流れる排ガスGに合流するガス流れが形成されている。
 これに対して、図8に比較して示すように、インナカバー11の先端側半部を一定の小径部115として、大径の基端側半部116との間に、テーパ状の段差面117を設けた構成では、アウタカバー12に流入した排ガスGが、先端側半部の外周空間4にて大きな渦流を形成しやすい。すなわち、排ガスGは、アウタ側面孔12aから流出する手前にて、外周空間4に流入するものの、段差面117に遮られて渦流を形成し、流速を向上させにくい。その結果、十分な流速でインナ側面孔11aへ流入して、センサ素子2の先端面に到達することができないと、検出部21の検出感度が低下する。
 なお、図7、図8は、低流速(例えば、10m/s)におけるCAE(すなわち、Computer aided Engineering)の解析結果に基づいて、素子カバー1内のガス流れを模式的に示したものである。
 このように、本形態の構成によれば、低流速時においてもPMセンサSの検出感度を低下させることなく、良好な検出性能を維持できる。
(試験例)
 次に、図9~図12により、流路3の形状による効果を調べるために行った評価試験とその結果について説明する。図9に示すように、大クリアランス部31におけるクリアランス(すなわち、最大クリアランス)をd1とし、小クリアランス部32におけるクリアランス(すなわち、最小クリアランス)をd2としたときに、それらの比率であるクリアランス比d1/d2を、1.5~20の範囲で変更した素子カバー1を用意した。これら素子カバー1を備えるPMセンサSを、それぞれPMモデルガスベンチに取り付けて、所定のPM濃度としたモデルガスを導入し、センサ素子2の検出部21における出力の立ち上がり時間を評価した。試験条件は、以下の通りとし、図10に評価結果を示した。
 評価ベンチ:PMモデルガスベンチ
 ガス流速:10m/s
 PM濃度:6mg/m3
 図11の左図に示すように、センサ素子2は、評価試験に先立ち、検出部21の再生を行って表面のPMを加熱除去した後、電極23、24間に所定の捕集用電圧を印加して、静電捕集を開始した。出力の立ち上がり時間とは、絶縁性基体22の表面に、粒子状物質が静電力により捕集されて電極23、24間が導通し、検出部21の出力が予め設定した閾値を超えた時間である。図11の右図に示すように、PMセンサSの検出特性は、流速と相関があり、流速の増加と共に検出時間(すなわち、立ち上がり時間)が短縮されるが、ある流速を超えると検出感度はほぼ一定となる。これは、流速が速くなることで、検出部21の近傍に到達する粒子状物質も増加するものの、一定以上の流速では、検出部21の近傍に留まりにくくなり、それ以上の捕集量の増加が難しくなるためと考えられる。
 図10に示すように、d1/d2を1.5~20の範囲で変更した場合についても、d1/d2の増加に伴い、出力の立ち上がり時間が急減し、d1/d2=2.45以上の範囲では、ほぼ一定値に収束している(すなわち、図中にサチュレーションとして示す範囲)。具体的には、d1/d2=1.7とした構成(例えば、図12の右図参照)では、立ち上がり時間が450秒程度に低減している。さらに、d1/d2=2.45とした構成(例えば、図12の左図参照)では、400秒を下回っており、d1/d2=1.5とした構成よりも100秒程度、出力の立ち上がり時間が低減している。d1/d2=8において、立ち上がり時間は350秒程度まで低減し、ほぼ一定となる。
 したがって、好ましくは、クリアランス比d1/d2が、2.45以上となる素子カバー1を用いるのがよく、検出感度を大きく向上させることができる。より好ましくは、クリアランス比d1/d2が、2.45より大きくなる範囲で適宜選択するのがよい。
(実施形態2)
 図13、図14により、センサ装置としてのPMセンサSの実施形態2について説明する。上記実施形態1では、センサ素子2の先端面に検出部21を設けた構成としているが、図13に示すように、センサ素子2の側面に検出部21を有する構成であってもよい。センサ素子2以外のPMセンサSの構成は、上記実施形態1と同様であるので説明を省略し、以下、相違点を中心に説明する。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 図14において、センサ素子2は、積層構造を有する積層型素子であり、直方体形状の絶縁性基体22の先端側の一側面に、電極23、24が露出する検出部21を有している。電極23、24がリード部23a、24aを介して、端子電極25、26と接続される構成は、上記実施形態と同様である。
 図13において、センサ素子2は、検出部21を有する側面が、インナカバー11の内側へ排ガスGを流入させるインナ側面孔11aを向くように配置される。その際に、好適には、検出部21を、側方のインナカバー11の側面111へ投影したときに、その投影面の少なくとも一部が、軸方向Xにおいて、インナ側面孔11aと重なり代5を有するようにするのがよい。言い換えれば、検出部21の軸方向の両端位置を、側面111へ投影したときに、その両端間に、インナ側面孔11aの少なくとも一部が位置しているとよい。
 これにより、インナ側面孔11aからインナカバー11内に流入する排ガスGが、拡散することなく、対向する位置にある検出部21に、直接到達しやすくなる。したがって、低流速時においてもPMセンサSの検出感度を低下させることなく、良好な検出性能を維持できる。
 また、インナカバー11の第1筒部113は、先端側の大クリアランス部31から基端側の小クリアランス部32へ向けて、徐々に縮径している形状であればよく、必ずしも全体がテーパ状でなくてもよい。ここでは、例えば、大クリアランス部31となる先端部に、概略一定径の筒部113aを有する形状となっている。
 このような構成においても、流路3に流入し小クリアランス部32へ向かう排ガスGの流速を向上させて、渦流を抑制する効果が得られる。また、最大クリアランスとなる大クリアランス部31のクリアランスd1が容易に設定できるので、所定のクリアランス比d1/d2を有する流路3を容易に形成して、所望の効果が得られる。
(実施形態3)
 図15により、センサ装置としてのPMセンサSの実施形態3について説明する。
 上述したように、インナカバー11の形状は、流路3のクリアランスが徐々に縮小し、段差面を有しない形状であればよい。図15において、インナカバー11は、概略一定径の第2筒部114と、その先端側に設けられる第1筒部113からなる。第1筒部113は、全体が概略テーパ状に形成され、基端側から先端側へ向けて縮径するテーパ状の筒面113cと、筒面113cとインナカバー11の先端面112とを接続する曲面状の先端筒部113bとからなる。
 インナカバー11以外のPMセンサSの構成は、上記各実施形態と同様であり、説明を省略する。
 このような構成とすると、インナカバー11の先端面112と側面111とが、先端筒部113bにより滑らかに接続されるので、素子カバー1内に流入する排ガスが、先端面112から先端筒部113b及び筒面113cに沿って、流路3にスムーズに流入することができる。したがって、流速の低下を抑制して、検出感度を向上させる効果が高まる。
 あるいは、インナカバー11において、第1筒部113を構成するテーパ面は、一定のテーパ角度である必要はなく、例えば、テーパ角度の異なる複数のテーパ面が軸方向Xに接続された形状とすることもできる。
 このように、排ガスGの流速を向上させる効果が得られ、ガス流れに大きく影響しない範囲であれば、流路3を形成するインナカバー11あるいはアウタカバー12の形状を適宜変更することができる。
 上記各実施形態では、積層型のセンサ素子2を有するPMセンサSを例示して説明したが、センサ素子2は、電極23、24が、検出部21となる表面に印刷形成された印刷型素子であってもよい。この場合は、電極23、24は、平板状に成形された絶縁性基体22の表面に、櫛歯状に印刷形成され、同様に絶縁性基体22の表面に印刷形成されたリード部23a、24aを介して、端子電極25、26と接続される。
 また、上記各実施形態では、センサ装置としてのPMセンサSについて、主に説明したが、センサ装置は、PMセンサSに限らず、排ガスGに含まれる特定ガス成分を検出するガスセンサであってもよい。具体的には、排ガスG中の酸素を検出する酸素センサや、空燃比を検出する空燃比センサ、NOxを検出するNOxセンサ等の排ガスセンサが挙げられる。これらガスセンサに用いられるセンサ素子2は、公知の構成とすることができ、例えば、コップ型又は積層型素子の先端側に、検出用の電極を有する検出部21を備えた構成とすることができる。
 この場合も、上記各実施形態と同様に、検出部21が軸方向Xの先端側となるように、ハウジングHの内側に挿通保持して、その外側を素子カバー1で保護することができる。そして、素子カバー1の内側に導入される排ガスGを、インナカバー11とアウタカバー12の間の流路3に誘導し、大クリアランス部31から小クリアランス部32に至る間に、流速を向上させて、検出部21へ導くことができ、センサ素子2の検出部21における出力の応答性を向上させる。
 したがって、排ガスGが低流速となる運転条件下においても、良好な検出性能を示すガスセンサを実現することができる。そして、ガスセンサの検出結果に基づいて、内燃機関の状態を把握し、排ガス浄化システムを制御することで、排ガス浄化性能を向上させることができる。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 例えば、上記各実施形態では、センサ装置が自動車用エンジンの排ガス浄化システムに適用される場合について説明したが、内燃機関は自動車用に限らず、各種装置からの排ガスを被測定ガスとすることができる。また、被測定ガスは内燃機関からの排ガスに限らず、各種ガス中に含まれる特定成分を検出するためのセンサ装置に適用することができる。

Claims (7)

  1.  被測定ガス中の特定成分を検出する検出部(21)を備えるセンサ素子(2)と、
     上記センサ素子を内側に挿通して、軸方向(X)の先端側に上記検出部が位置するように保持するハウジング(H)と、
     上記ハウジングの先端側に配設された素子カバー(1)と、を備え、
     上記素子カバーは、上記センサ素子の先端側を覆うように配設されたインナカバー(11)と、上記インナカバーの外側に空間を有して配設されたアウタカバー(12)と、を有するセンサ装置(S)であって、
     上記インナカバーは、側面(111)及び先端面(112)に、被測定ガスが流通するインナ側面孔(11a)及びインナ先端面孔(11b)がそれぞれ設けられ、
     上記アウタカバーは、側面(121)に、被測定ガスが流通するアウタ側面孔(12a)が設けられると共に、上記アウタ側面孔の先端位置が上記インナカバーの先端位置よりも先端側にあり、かつ、
     上記インナカバーの外側面と、上記アウタカバーの内側面との間に設けられる流路(3)が、上記インナカバーの上記先端面の外周側において、最大クリアランスとなる大クリアランス部(31)を有し、上記大クリアランス部よりも基端側において、最小クリアランスとなる小クリアランス部(32)を有すると共に、上記大クリアランス部と上記小クリアランス部とが段差なく接続された流路形状を有する、センサ装置。
  2.  上記インナ側面孔は、上記小クリアランス部に面する上記インナカバーの側面に設けられる、請求項1に記載のセンサ装置。
  3.  上記大クリアランス部の上記軸方向と直交する方向におけるクリアランスをd1、上記小クリアランス部の上記軸方向と直交する方向におけるクリアランスをd2としたとき、クリアランス比d1/d2は2.45以上である、請求項1又は2に記載のセンサ装置。
  4.  上記検出部は、上記センサ素子の先端面に設けられる、請求項1~3のいずれか1項に記載のセンサ装置。
  5.  上記検出部は、上記センサ素子の先端側の側面に設けられ、上記検出部を上記インナカバーの上記側面に投影した投影面と、上記インナ側面孔とが、上記軸方向に重なりを有する、請求項1~3のいずれか1項に記載のセンサ装置。
  6.  上記インナカバーの上記側面は、先端側から基端側へ拡径するテーパ状の第1筒部(113)と、上記第1筒部の基端側に連続する一定径の第2筒部(114)とを有する、請求項1~5のいずれか1項に記載のセンサ装置。
  7.  上記被測定ガスは、内燃機関からの排ガスであり、上記特定成分は、粒子状物質又は特定ガス成分である、請求項1~6のいずれか1項に記載のセンサ装置。
PCT/JP2018/043107 2017-11-29 2018-11-22 センサ装置 WO2019107262A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018006081.0T DE112018006081B4 (de) 2017-11-29 2018-11-22 Sensorvorrichtung
CN201880076521.1A CN111406207B (zh) 2017-11-29 2018-11-22 传感器装置
US16/885,636 US11448574B2 (en) 2017-11-29 2020-05-28 Sensor device detecting specific component in gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017229645A JP6984356B2 (ja) 2017-11-29 2017-11-29 センサ装置
JP2017-229645 2017-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/885,636 Continuation US11448574B2 (en) 2017-11-29 2020-05-28 Sensor device detecting specific component in gas

Publications (1)

Publication Number Publication Date
WO2019107262A1 true WO2019107262A1 (ja) 2019-06-06

Family

ID=66663881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043107 WO2019107262A1 (ja) 2017-11-29 2018-11-22 センサ装置

Country Status (5)

Country Link
US (1) US11448574B2 (ja)
JP (1) JP6984356B2 (ja)
CN (1) CN111406207B (ja)
DE (1) DE112018006081B4 (ja)
WO (1) WO2019107262A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102226385B1 (ko) * 2019-07-25 2021-03-12 에스티엑스엔진 주식회사 질소산화물 측정 센서를 포함하는 챔버

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131242B2 (ja) * 2003-01-20 2008-08-13 株式会社デンソー ガスセンサ
JP2016003927A (ja) * 2014-06-16 2016-01-12 株式会社日本自動車部品総合研究所 粒子状物質検出センサ
JP2017058358A (ja) * 2015-09-17 2017-03-23 株式会社デンソー ガスセンサ
WO2017097491A1 (de) * 2015-12-07 2017-06-15 Robert Bosch Gmbh Gassensor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4260324B2 (ja) 1998-08-05 2009-04-30 日本特殊陶業株式会社 ガスセンサ
EP0978721B1 (en) * 1998-08-05 2011-04-06 Ngk Spark Plug Co., Ltd Gas sensor
JP3829026B2 (ja) 1999-04-19 2006-10-04 日本碍子株式会社 ガスセンサ
JP4174004B2 (ja) * 2003-03-31 2008-10-29 日本碍子株式会社 ガスセンサ
JP4725494B2 (ja) * 2006-04-27 2011-07-13 株式会社デンソー ガスセンサ
JP4765923B2 (ja) * 2006-07-21 2011-09-07 株式会社デンソー ガスセンサ
DE102007016976B4 (de) * 2007-04-10 2021-07-29 Bayerische Motoren Werke Aktiengesellschaft Schutzkappe für einen Gassensor sowie Gassensor
DE102008042942B4 (de) * 2007-10-18 2021-09-30 Denso Corporation Gassensor und Verfahren zum Herstellen dessleben
JP2009145268A (ja) * 2007-12-17 2009-07-02 Denso Corp ガスセンサ
JP4561879B2 (ja) * 2008-06-10 2010-10-13 株式会社デンソー 排気センサ再生装置およびそれを用いた吸排気制御システム
JP5396429B2 (ja) * 2010-05-18 2014-01-22 日本碍子株式会社 ガス濃度検出センサー
CN102565152B (zh) * 2010-12-17 2015-05-20 株式会社电装 气体传感器
JP5747930B2 (ja) * 2012-04-20 2015-07-15 株式会社デンソー ガスセンサ
JP5765394B2 (ja) * 2012-11-20 2015-08-19 株式会社デンソー ガスセンサ
JP5884803B2 (ja) * 2012-11-20 2016-03-15 株式会社デンソー ガスセンサ
JP6154899B2 (ja) 2013-05-31 2017-06-28 日本碍子株式会社 ガスセンサ
JP2015102384A (ja) * 2013-11-22 2015-06-04 株式会社デンソー 酸素センサ素子
JP6269348B2 (ja) * 2014-06-30 2018-01-31 株式会社デンソー ガスセンサ
JP6233207B2 (ja) * 2014-06-30 2017-11-22 株式会社デンソー ガスセンサ
JP6561719B2 (ja) 2014-10-30 2019-08-21 株式会社デンソー ガスセンサ
US10048097B2 (en) * 2014-12-02 2018-08-14 Ngk Insulators, Ltd. Gas sensor
WO2017047511A1 (ja) 2015-09-17 2017-03-23 株式会社デンソー ガスセンサ
JP6654516B2 (ja) * 2016-06-17 2020-02-26 日本碍子株式会社 ガスセンサ
JP7239434B2 (ja) * 2019-10-03 2023-03-14 日本碍子株式会社 ガスセンサ及び保護カバー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131242B2 (ja) * 2003-01-20 2008-08-13 株式会社デンソー ガスセンサ
JP2016003927A (ja) * 2014-06-16 2016-01-12 株式会社日本自動車部品総合研究所 粒子状物質検出センサ
JP2017058358A (ja) * 2015-09-17 2017-03-23 株式会社デンソー ガスセンサ
WO2017097491A1 (de) * 2015-12-07 2017-06-15 Robert Bosch Gmbh Gassensor

Also Published As

Publication number Publication date
JP6984356B2 (ja) 2021-12-17
US11448574B2 (en) 2022-09-20
CN111406207B (zh) 2023-04-04
US20200292421A1 (en) 2020-09-17
DE112018006081T5 (de) 2020-09-03
JP2019100776A (ja) 2019-06-24
DE112018006081B4 (de) 2023-09-28
CN111406207A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
JP6744231B2 (ja) 触媒劣化診断方法および触媒劣化診断システム
US9670817B2 (en) Systems and methods for running a NOx self-diagnostic test
US11422069B2 (en) Sensor device
US10048097B2 (en) Gas sensor
JP2010229957A (ja) 内燃機関の排気システム及びそれに用いる粒子状物質測定センサ
JP6740024B2 (ja) ガスセンサ
JP2007224877A (ja) 内燃機関の排気管への排気センサ取付け構造
JP6740023B2 (ja) ガスセンサ
JP2019101018A5 (ja)
US11835439B2 (en) Sensor device having an element cover including inner and outer covers
JP2017223619A (ja) ガスセンサ
WO2019107262A1 (ja) センサ装置
JP4998828B2 (ja) 空燃比センサ
KR20170114466A (ko) 입자상물질 및 질소산화물 통합감지센서
WO2019107257A1 (ja) センサ装置
WO2017183491A1 (ja) ガスセンサ
WO2022210266A1 (ja) ガス濃度検出システム
JP7261717B2 (ja) ガスセンサ
JP4853461B2 (ja) ガスセンサ
JP2017223622A (ja) ガスセンサ
JP2011064585A (ja) ガスセンサ
JP2018054312A (ja) Pmセンサ
JP2015200628A (ja) ガスセンサ
JP2011185615A (ja) 酸素センサの異常診断装置
JP2020046271A (ja) ガスセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882575

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18882575

Country of ref document: EP

Kind code of ref document: A1