JP6901577B2 - スイッチング素子制御回路及びパワーモジュール - Google Patents

スイッチング素子制御回路及びパワーモジュール Download PDF

Info

Publication number
JP6901577B2
JP6901577B2 JP2019542897A JP2019542897A JP6901577B2 JP 6901577 B2 JP6901577 B2 JP 6901577B2 JP 2019542897 A JP2019542897 A JP 2019542897A JP 2019542897 A JP2019542897 A JP 2019542897A JP 6901577 B2 JP6901577 B2 JP 6901577B2
Authority
JP
Japan
Prior art keywords
switching element
threshold voltage
electrode
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019542897A
Other languages
English (en)
Other versions
JPWO2019058490A1 (ja
Inventor
鈴木 健一
健一 鈴木
亘 宮澤
亘 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Publication of JPWO2019058490A1 publication Critical patent/JPWO2019058490A1/ja
Application granted granted Critical
Publication of JP6901577B2 publication Critical patent/JP6901577B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/04106Modifications for accelerating switching without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

本発明は、スイッチング素子制御回路及びパワーモジュールに関する。
従来、スイッチング素子のオン/オフ動作を制御するスイッチング素子制御回路が知られている(例えば、特許文献1参照。)。
従来のスイッチング素子制御回路900は、図10に示すように、スイッチング素子800のオン/オフ動作を制御するためにゲート電圧を制御するゲート電圧制御部910を備える。
従来のスイッチング素子制御回路900によれば、ゲート電圧を制御することによってスイッチング素子800のオン/オフ動作を制御することができる。
国際公開第2012/153459号
ところで、近年、スイッチング速度を速くすることによりスイッチング損失を小さくすることが可能なスイッチング素子制御回路が求められている。これを実現するための方法の一つとして、閾値電圧をわずかに超えるゲート電圧をゲート電極に印加してターンオン期間及びターンオフ期間を短くし、スイッチング速度を速くすることにより、スイッチング損失を小さくすることが考えられる(図4参照。)。
しかしながら、動作時のスイッチング素子の動作温度が初期閾値電圧(例えば、出荷時の閾値電圧)を測定したときのスイッチング素子の初期温度よりも高くなることに起因して動作時の閾値電圧が初期閾値電圧から変動するため(図3参照。)、動作時の閾値電圧をわずかに超える電圧をゲート電極に印加してターンオン期間及びターンオフ期間を短くすることが難しく、スイッチング損失を小さくすることが難しい、という問題がある。
そこで、本発明は、上記した問題を解決するためになされたものであり、動作時の閾値電圧が初期閾値電圧から変動する場合でも、スイッチング損失を小さくすることが可能なスイッチング素子制御回路を提供することを目的とする。また、このようなスイッチング素子制御回路を備えるパワーモジュールを提供することを目的とする。
[1]本発明のスイッチング素子制御回路は、第1電極と、第2電極と、第3電極とを備えるスイッチング素子のオン/オフ動作を制御するスイッチング素子制御回路であって、前記スイッチング素子のオン/オフ動作を制御するために第3電極電圧を制御する第3電極電圧制御部と、前記スイッチング素子の動作温度を検出する温度検出部と、前記スイッチング素子の初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報を記憶する記憶部と、前記温度検出部によって検出された前記スイッチング素子の前記動作温度、前記初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報に基づいて前記スイッチング素子の動作時の閾値電圧を算出する閾値電圧算出部とを備え、前記第3電極電圧制御部は、前記スイッチング素子をオン状態とするときに、前記閾値電圧算出部によって算出された前記動作時の閾値電圧に基づいて前記第3電極電圧を制御することを特徴とする。
[2]本発明のスイッチング素子制御回路においては、前記スイッチング素子における閾値電圧の温度特性に関する情報は、前記スイッチング素子における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、前記初期閾値電圧をVthとし前記温度検出部によって検出された前記スイッチング素子の前記動作温度をTとし、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度をTとしたときに、Vth=Vth−α(T−T)の関係を満たす特性式であることが好ましい。
[3]本発明のスイッチング素子制御回路においては、前記初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報は、あらかじめ前記記憶部に記憶されたものであることが好ましい。
[4]本発明のスイッチング素子制御回路において、前記スイッチング素子制御回路は、前記スイッチング素子の前記初期閾値電圧を測定する初期閾値電圧測定モードと、前記スイッチング素子のオン/オフ動作を制御する制御モードとを実施するスイッチング素子制御回路であって、前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、前記スイッチング素子を流れる前記第1電極電流を検出する第1電極電流検出部と、前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部とをさらに備え、前記初期閾値電圧測定モードにおいては、前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の動作温度を記憶するとともに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の前記初期閾値電圧として記憶することが好ましい。
[5]本発明のスイッチング素子制御回路において、前記スイッチング素子制御回路は、前記制御モードを所定時間実施した後に、前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードをさらに実施するスイッチング素子制御回路であって、前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部をさらに備え、前記温度特性測定モードにおいては、前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の前記動作温度を記憶するとともに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することが好ましい。
[6]本発明のスイッチング素子制御回路においては、前記第3電極電圧制御部は、前記初期閾値電圧測定モードにおいては、前記第3電極電圧が時間経過に伴って階段状に高くなるように前記第3電極電圧を制御することが好ましい。
[7]本発明のスイッチング素子制御回路においては、前記第3電極電圧制御部は、前記初期閾値電圧測定モードにおいては、前記第3電極電圧が、時間経過に伴って振幅の大きなパルスとなるパルス状の電圧になるように、前記第3電極電圧を制御することが好ましい。
[8]本発明のスイッチング素子制御回路において、前記スイッチング素子制御回路は、前記スイッチング素子のオン/オフ動作を制御する制御モードを所定時間実施した後に、前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードを実施するスイッチング素子制御回路であって、前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、前記スイッチング素子を流れる第1電極電流を検出する第1電極電流検出部と、前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部と、前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部とをさらに備え、前記温度特性測定モードにおいては、前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することが好ましい。
[9]本発明のスイッチング素子制御回路においては、前記第3電極電圧制御部は、前記温度特性測定モードにおいては、前記第3電極電圧が時間経過に伴って階段状に高くなるように前記第3電極電圧を制御することが好ましい。
[10]本発明のスイッチング素子制御回路においては、前記第3電極電圧制御部は、前記温度特性測定モードにおいては、前記第3電極電圧が、時間経過に伴って振幅の大きなパルスとなるパルス状の電圧になるように、前記第3電極電圧を制御することが好ましい。
[11]本発明のスイッチング素子制御回路においては、前記スイッチング素子における閾値電圧の温度特性に関する情報は、あらかじめ前記記憶部に記憶された温度−閾値電圧の関係を示すデータであることが好ましい。
[12]本発明のスイッチング素子制御回路においては、前記スイッチング素子は、MOSFET、IGBT又はHEMTであることが好ましい。
[13]本発明のスイッチング素子制御回路においては、前記スイッチング素子は、GaN、SiC又はGaを含む材料により形成されたものであることが好ましい。
[14]本発明のパワーモジュールは、第1電極と、第2電極と、第3電極とを備えるスイッチング素子と、前記スイッチング素子のオン/オフ動作を制御する、[1]〜[13]のいずれかに記載のスイッチング素子制御回路とを備えることを特徴とする。
本発明のスイッチング素子制御回路及びパワーモジュールによれば、閾値電圧算出部は、温度検出部によって検出されたスイッチング素子の動作温度を含む情報に基づいてスイッチング素子の動作時の閾値電圧を算出し、ゲート電圧制御部は、スイッチング素子をオン状態とするときに、閾値電圧算出部によって算出された動作時の閾値電圧に基づいてゲート電圧を制御するため、動作時のスイッチング素子の動作温度が初期閾値電圧を測定したときのスイッチング素子の初期温度よりも高くなることに起因して動作時の閾値電圧が初期閾値電圧から変動する場合でも、動作時の閾値電圧をわずかに超える電圧をゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる。
実施形態1に係るパワーモジュール1及びスイッチング素子制御回路100を示す回路図である。 実施形態1に係るスイッチング素子制御回路100を説明するために示すブロック図である。 スイッチング素子の閾値電圧Vth・動作温度Tの関係を示すグラフの模式図である。 閾値電圧をわずかに超えるゲート電圧をゲート電極に印加する場合の効果について説明するために示す図である。図4(a)は比較例に係るスイッチング素子制御回路においてゲート電極にゲート電圧を印加する場合のゲート・ソース間電圧の時間変化を示すグラフの模式図であり、図4(b)は実施形態1に係るスイッチング素子制御回路100において閾値電圧をわずかに超えるゲート電圧をゲート電極に印加する場合のゲート・ソース間電圧の時間変化を示すグラフの模式図である。 実施形態2に係るパワーモジュール2及びスイッチング素子制御回路102を示す回路図である。 実施形態2に係るスイッチング素子制御回路102の初期閾値電圧測定モードを説明するために示すブロック図である。 実施形態2における初期閾値電圧測定モードを説明するために示すグラフの模式図である。 実施形態3における温度特性測定モードを説明するために示すブロック図である。 変形例における初期閾値電圧測定モード(及び/又は温度特性測定モード)を説明するために示すグラフの模式図である。 従来のスイッチング素子制御回路900を説明するために示す図である。
以下、本発明のスイッチング素子制御回路及びパワーモジュールについて、図に示す実施形態に基づいて説明する。なお、各図面は模式図であり、必ずしも実際の回路構成やグラフを厳密に反映したものではない。
[実施形態1]
1.実施形態1に係るパワーモジュール1及びスイッチング素子制御回路100の構成
実施形態1に係るパワーモジュール1は、図1に示すように、スイッチング素子200と、スイッチング素子200のオン/オフ動作を制御する実施形態1に係るスイッチング素子制御回路100とを備える。実施形態1に係るパワーモジュール1は、高耐熱性・高絶縁性の樹脂やセラミックス等により形成されたパッケージで覆われている。実施形態1に係るパワーモジュール1には、直流の電源電圧VDDを入力する(+)側入力端子T1、接地側の(−)側入力端子T2、(+)側出力端子T3、接地側の(−)側出力端子T4、及び、駆動信号(例えば、ゲートパルス)Pgを入力する制御端子T5が設けられている。
(+)側入力端子T1と(−)側入力端子T2との間には、電源電圧VDDを印加するためのゲートドライブ用電源300が接続されている。ゲートドライブ用電源300は、ゲート電圧制御部10を介してスイッチング素子200のゲート電極と接続されており、ゲート電極に電圧を供給する。(+)側出力端子T3及び(−)側出力端子T4には、負荷回路400が接続されている。負荷回路400は、例えば、負荷抵抗410及び直流の駆動電源420を有し、これらが(+)側出力端子T3と(−)側出力端子T4との間に直列に接続されている。なお、(−)側出力端子T4は接地されている。
スイッチング素子200は、ソース電極(第2電極)、ドレイン電極(第1電極)及びゲート電極(第3電極)を備えるMOSFETである。スイッチング素子200は、ゲート電極に閾値電圧を超えるゲート電圧(第3電極電圧)を印加するとオン状態となり、ゲート電圧が閾値電圧を下回るとオフ状態となる。ゲート電圧は、電源電圧VDDから供給され、後述するゲート電圧制御部10(第3電極電圧制御部)によって制御される。なお、スイッチング素子200は、実施形態1においてはMOSFETを用いるが、適宜のスイッチング素子を用いることができる。また、スイッチング素子200は、GaNを含む材料により形成されたものである。スイッチング素子200においては、GaNを含む場合、ゲート電極の絶対最大定格電圧と閾値電圧との差が小さくなる。
スイッチング素子200のドレイン電極は、(+)側出力端子T3を介して負荷回路400と接続されている。スイッチング素子200のゲート電極は、ゲート電圧制御部10と接続されている。スイッチング素子200のソース電極は抵抗を介して(−)側出力端子T4と接続されている。
実施形態1に係るスイッチング素子制御回路100は、ゲート電圧制御部10(第3電極電圧制御部)と、温度検出部20と、記憶部30と、閾値電圧算出部40とを備える(図1参照。)。
ゲート電圧制御部10は、閾値電圧算出部40及び記憶部30と接続されている。ゲート電圧制御部10は、入力された駆動信号(例えば、ゲートパルス)Pgに基づいてスイッチング素子200のオン/オフを制御するためにゲート電圧を制御する。
温度検出部20は、温度検出素子22を有し、閾値電圧算出部40と接続されている。温度検出素子22としては、ダイオードやサーミスタ等適宜の温度検出素子を用いることができる。
記憶部30は、ゲート電圧制御部10及び閾値電圧算出部40と接続されている。記憶部30においては、スイッチング素子200の初期閾値電圧Vth(あらかじめ設定した、使用するスイッチング素子200の閾値電圧の下限値)、及び、初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度T(あらかじめ設定した、初期閾値電圧測定温度)を含む情報、並びに、スイッチング素子200における閾値電圧の温度特性に関する情報が、あらかじめ記憶されている。このため、スイッチング素子200をスイッチング素子制御回路100に組み込んだ後に初期閾値電圧Vth、及び、初期温度Tを計測する必要がない。
スイッチング素子200における閾値電圧の温度特性に関する情報は、スイッチング素子200における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、初期閾値電圧をVthとし温度検出部20によって検出されたスイッチング素子200の動作温度をTとし、初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度をTとしたときに、Vth=Vth−α(T−T)の関係を満たす特性式である(図3参照。)。すなわち、閾値電圧Vthとスイッチング素子200の動作温度Tとの関係は、傾きが負の1次関数となっている。
スイッチング素子200をオン状態とするとき、ゲート電極に印加するゲート電圧を以下のようにして決定する。
まず、温度検出部20が温度検出素子22を介してスイッチング素子200の動作温度Tを検出する。
閾値電圧算出部40は、記憶部30から、スイッチング素子200の初期閾値電圧Vth、初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度Tを含む情報、並びに、スイッチング素子200における閾値電圧の温度特性に関する情報を読み取るとともに、温度検出部20からスイッチング素子200の動作温度Tを読み取り、Vth=Vth−α(T−T)の特性式に代入し、動作時の閾値電圧Vthを算出する。
次に、ゲート電圧制御部10は、閾値電圧算出部40で算出された動作時の閾値電圧Vthに基づいて、当該閾値電圧Vthをわずかに超えるゲート電圧をゲート電極に印加する(図4(b)参照。)。このようにして、ゲート電極に印加するゲート電圧を決定する。
なお、実施形態1に係るスイッチング素子制御回路100においては、逐次スイッチング素子200の温度に追従してゲート電圧を制御してもよいし、所定時間ごとにスイッチング素子200の動作温度を検出して動作時の閾値電圧を算出し、当該動作時の閾値電圧に基づいてゲート電圧を制御してもよい。
2.実施形態1に係るスイッチング素子制御回路100及びパワーモジュール1の効果
実施形態1に係るスイッチング素子制御回路100及びパワーモジュール1によれば、閾値電圧算出部40は、温度検出部20によって検出されたスイッチング素子200の動作温度Tを含む情報に基づいてスイッチング素子200の動作時の閾値電圧Vthを算出し、ゲート電圧制御部10は、スイッチング素子200をオン状態とするときに、閾値電圧算出部40によって算出された動作時の閾値電圧Vthに基づいてゲート電圧を制御するため、動作時のスイッチング素子200の動作温度Tが初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度Tよりも高くなることに起因して動作時の閾値電圧Vthが初期閾値電圧Vthから変動する場合でも、動作時の閾値電圧Vthをわずかに超える電圧をゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる。
実施形態1に係るスイッチング素子制御回路100によれば、スイッチング素子における閾値電圧の温度特性に関する情報は、スイッチング素子における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、初期閾値電圧をVthとし温度検出部によって検出されたスイッチング素子の動作温度をTとし、初期閾値電圧を測定したときのスイッチング素子の初期温度をTとしたときに、Vth=Vth−α(T−T)の関係を満たす特性式であるため、比較的容易にスイッチング素子200の動作時の閾値電圧Vthを算出することができる。
実施形態1に係るスイッチング素子制御回路100によれば、GaNを含む材料により形成されたスイッチング素子のようにゲート電極の絶対最大定格電圧と閾値電圧との差が小さい場合であっても、動作時の閾値電圧Vthをわずかに超える電圧をゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる。また、閾値電圧(設計上の閾値電圧)をわずかに超えるゲート電圧をゲート電極に印加してもスイッチング素子200がオン状態にならない現象が発生することを防ぐことができ、その結果、スイッチング素子200のオン/オフ動作を確実に制御することができる。
また、実施形態1に係るパワーモジュール1によれば、スイッチング素子200がGaNを含む材料により形成されたものであるため、スイッチング素子200のオン抵抗が低くなり、導通損失が小さいパワーモジュールとすることができる。
[実施形態2]
実施形態2に係るスイッチング素子制御回路102は、基本的には実施形態1に係るスイッチング素子制御回路100と同様の構成を有するが、閾値電圧測定用電源、ドレイン電流検出部及びオン/オフ状態判定部をさらに備える点で実施形態1に係るスイッチング素子制御回路100の場合とは異なる。すなわち、実施形態2に係るスイッチング素子制御回路102は、スイッチング素子200の初期閾値電圧Vthを測定する初期閾値電圧測定モードと、スイッチング素子200のオン/オフ動作を制御する制御モードとを切り替えて実施するスイッチング素子制御回路である(図5参照。)。
閾値電圧測定用電源50は、スイッチング素子200のドレイン電極と接続されており、初期閾値電圧測定モードにおいては、閾値電圧測定用スイッチ52をオンすることにより、スイッチング素子200のドレイン電極(第1電極)に閾値電圧測定用の電流を供給する。
閾値電圧測定用スイッチ52としては、適宜のスイッチを用いることができ、例えば、フォトカプラを用いることができる。
ドレイン電流検出部(第1電極電流検出部)60は、スイッチング素子200のソース電極と接続され、初期閾値電圧測定モードにおいて、スイッチング素子200のドレイン電流(第1電極電流、ソース電流)Id、を検出する。また、ドレイン電流検出部60は、後述するオン/オフ状態判定部70と接続されている。なお、ドレイン電流検出部60は、スイッチング素子200のソース電極に接続した抵抗に電流を流して電圧に変換することによって計測しているが、適宜の検出装置を用いてもよい。
オン/オフ状態判定部70は、初期閾値電圧測定モードにおいて、ドレイン電流検出部60から受信した検出結果に基づいてスイッチング素子200のオン/オフ状態を判定する。オン/オフ状態判定部70は、ドレイン電流検出部60及びゲート電圧制御部10と接続されている。
記憶部30は、ゲート電圧制御部10及び閾値電圧算出部40だけでなく、温度検出部20とも接続されている。
実施形態2に係るスイッチング素子制御回路102は、以下のような動作を行う。
(1)初期閾値電圧測定モード
初期閾値電圧測定モードは、スイッチング素子制御回路100に接続されたスイッチング素子200の初期閾値電圧Vthを測定するモードである。このモードは、スイッチング素子制御回路102及びスイッチング素子200を駆動させる前に行う。
まず、駆動電源420から電流供給をしない状態で閾値電圧測定用電源50からスイッチング素子200のドレイン電極に閾値電圧測定用の電流を供給する(図5及び図6参照。)。
次に、ゲート電圧制御部10は、想定されている初期閾値電圧よりも低い電圧をゲート電極に印加するようにゲート電圧を制御する。このとき、ドレイン電流検出部60によってドレイン電流は検出されない(ドレイン電流の値が0である)ため、オン/オフ状態判定部70は、スイッチング素子200がオフ状態であると判定する。オン/オフ状態判定部70によってスイッチング素子200がオフ状態であると判定すると、ゲート電圧制御部10は、ゲート電圧が一段階高くなるようにゲート電圧を制御する(図7参照。)。
これを繰り返してゲート電圧を段階的に高くしていき(具体的には階段状に高くしていき)、ドレイン電流検出部60によってドレイン電流が検出されたとき(ドレイン電流の値が0でなくなったとき)、オン/オフ状態判定部70は、スイッチング素子200がオン状態であると判定する。このとき、温度検出部20によって検出されたスイッチング素子200の動作温度を初期温度Tとして記憶部30へ送信するとともに、ゲート電圧制御部10は、ゲート電極に印加したゲート電圧Vgsを初期閾値電圧Vthとして記憶部30へ送信する。そして、記憶部30では、当該ゲート電圧Vgsを初期閾値電圧Vthとして記憶する。
(2)制御モード
制御モードにおいては、スイッチング素子をオン状態とするときに、初期閾値電圧測定モードにおいて測定された初期閾値電圧Vth及びスイッチング素子200の初期温度T、温度検出部20によって検出されたスイッチング素子200の動作温度T、あらかじめ記憶部30に記憶されているスイッチング素子における閾値電圧の温度特性に関する情報(温度係数α)に基づいて(Vth=Vth−α(T−T)の特性式に代入して)動作時の閾値電圧Vthを算出し、ゲート電圧制御部10は、閾値電圧算出部40で算出された動作時の閾値電圧Vthを、当該閾値電圧Vthをわずかに超えるゲート電圧をゲート電極に印加する(図4(b)参照。)。
このように、実施形態2に係るスイッチング素子制御回路102は、閾値電圧測定用電源、ドレイン電流検出部及びオン/オフ状態判定部をさらに備える点で実施形態1に係るスイッチング素子制御回路100の場合とは異なるが、実施形態1に係るスイッチング素子制御回路100の場合と同様に、閾値電圧算出部40は、温度検出部20によって検出されたスイッチング素子200の動作温度Tを含む情報に基づいてスイッチング素子200の動作時の閾値電圧Vthを算出し、ゲート電圧制御部10は、スイッチング素子200をオン状態とするときに、閾値電圧算出部40によって算出された動作時の閾値電圧Vthに基づいてゲート電圧を制御するため、動作時のスイッチング素子200の動作温度Tが初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度Tよりも高くなることに起因して動作時の閾値電圧Vthが初期閾値電圧Vthから変動する場合でも、動作時の閾値電圧Vthをわずかに超える電圧をゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる。
また、実施形態2に係るスイッチング素子制御回路102及びパワーモジュール2によれば、初期閾値電圧測定モードにおいて、スイッチング素子制御回路102に実際に接続されたスイッチング素子200の実際の閾値電圧を測定することができるため、実際の閾値電圧がスイッチング素子200の製造バラツキによって設計上の閾値電圧から変動していた場合でも、スイッチング素子200をオン状態とするときに、実際の閾値電圧に基づいて実際の閾値電圧をわずかに超えるゲート電圧をスイッチング素子200のゲート電極に印加することができる。従って、スイッチング素子200のオン/オフ動作を確実に制御するために閾値電圧を大きく超えるゲート電圧をスイッチング素子200のゲート電極に印加する場合(比較例。図4(a)参照。)と比較して、ターンオン期間及びターンオフ期間を短くすることができるため、スイッチング素子200のスイッチング速度を速くすることができ、その結果、スイッチング素子200のスイッチング損失を小さくすることができる。
また、実施形態2に係るスイッチング素子制御回路102及びパワーモジュール2によれば、上記したようにスイッチング素子200をオン状態とするときに、実際の閾値電圧に基づいて実際の閾値電圧をわずかに超えるゲート電圧をゲート電極に印加することができるため、実際の閾値電圧がスイッチング素子200の製造バラツキによって設計上の閾値電圧よりも高くなる方向に変動していた場合であっても、実際の閾値電圧をわずかに超えるゲート電圧をゲート電極に印加することができる。従って、閾値電圧(設計上の閾値電圧)をわずかに超えるゲート電圧をゲート電極に印加してもスイッチング素子200がオン状態にならない現象が発生することを防ぐことができ、その結果、スイッチング素子200のオン/オフ動作を確実に制御することができる。
特に、スイッチング素子200が(GaNを含む場合のように)ゲート電極の絶対最大定格電圧と閾値電圧との差が小さい場合であっても、実際の閾値電圧をわずかに超えるゲート電圧をゲート電極に印加することができるため、閾値電圧(設計上の閾値電圧)をわずかに超えるゲート電圧をゲート電極に印加してもスイッチング素子200がオン状態にならない現象が発生することを防ぐことができ、その結果、スイッチング素子200のオン/オフ動作を確実に制御することができる。
また、実施形態2に係るスイッチング素子制御回路102及びパワーモジュール2によれば、初期閾値電圧測定モードにおいて、実際の閾値電圧を測定することができ、制御モードにおいては、スイッチング素子をオン状態とするときに、実際の閾値電圧を含む情報に基づいてゲート電極に印加するゲート電圧を制御することができるため、スイッチング素子200を大量生産したとしても、スイッチング素子制御回路102にスイッチング素子200を接続する前に、製造されたスイッチング素子それぞれの閾値電圧を測定する必要がない。従って、作業が煩雑にならず、生産性を高くすることが容易となる。
また、実施形態2に係るスイッチング素子制御回路102によれば、ゲート電圧制御部10は、初期閾値電圧測定モードにおいては、ゲート電圧が時間経過に伴って階段状に高くなるようにゲート電圧を制御するため、スイッチング素子200の閾値電圧を効率的に、かつ、確実に測定することができる。
なお、実施形態2に係るスイッチング素子制御回路102は、閾値電圧測定用電源、ドレイン電流検出部及びオン/オフ状態判定部をさらに備える点以外の点においては実施形態1に係るスイッチング素子制御回路100と同様の構成を有するため、実施形態1に係るスイッチング素子制御回路100が有する効果のうち該当する効果を有する。
[実施形態3]
実施形態3に係るスイッチング素子制御回路(図示せず。)は、基本的には実施形態2に係るスイッチング素子制御回路102と同様の構成を有するが、温度特性算出部をさらに備える点で実施形態2に係るスイッチング素子制御回路102の場合とは異なる。すなわち、実施形態3に係るスイッチング素子制御回路は、制御モードを所定時間実施した後に、スイッチング素子200における閾値電圧の温度特性を測定する温度特性測定モードを実施するスイッチング素子制御回路である。
温度特性算出部80は、温度検出部20及び記憶部30と接続されており、スイッチング素子における閾値電圧の温度特性を算出する。
温度特性測定モードにおいては、以下のような動作を行う。
制御モードを所定時間実施した後に、駆動電源420から電流供給をしない状態で閾値電圧測定用電源50からスイッチング素子200のドレイン電極に閾値電圧測定用の電流を供給する(図8参照。)。
次に、ゲート電圧制御部10は、想定されている(動作時の)閾値電圧よりも低い電圧をゲート電極に印加するようにゲート電圧を制御する。このとき、ドレイン電流検出部60によってドレイン電流は検出されない(ドレイン電流の値が0である)ため、オン/オフ状態判定部70は、スイッチング素子200がオフ状態であると判定する。オン/オフ状態判定部70によってスイッチング素子200がオフ状態であると判定すると、ゲート電圧制御部10は、ゲート電圧が一段階高くなるようにゲート電圧を制御する(図7参照。)。
これを繰り返してゲート電圧が段階的に高くなるように(具体的には階段状に高くなるように)していき、ドレイン電流検出部60によってドレイン電流が検出されたとき(ドレイン電流の値が0でなくなったとき)、オン/オフ状態判定部70は、スイッチング素子200がオン状態であると判定する。このとき、温度検出部20で検出されたスイッチング素子200の動作温度Tを記憶部30へ送信し、記憶部30が記憶する。また、ゲート電圧制御部10は、ゲート電極に印加したゲート電圧Vgsを温度特性測定時閾値電圧Vthとして記憶部30へ送信し、記憶部30は、当該ゲート電圧Vgsを温度特性測定時閾値電圧Vthとして記憶する。
次に、温度特性算出部80は、記憶部30から、初期閾値電圧Vth、初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度T及び温度特性測定時閾値電圧Vthを含む情報を読み取るとともに、温度特性測定モードにおいて温度検出部20から検出されたスイッチング素子200の動作温度T1を読み取り、Vth=Vth−α(T−T)の特性式にVth=Vth、及び、T=Tをそれぞれ代入して、温度特性(具体的には温度係数α)を算出する。算出された温度係数αは記憶部30に記憶される。
制御モードにおいては、閾値電圧算出部40は、温度特性測定モードで算出された温度係数α、温度検出部20で検出されたスイッチング素子200の動作温度T、記憶部30に記憶されている初期閾値電圧Vth及び初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度Tに基づいて閾値電圧Vthを算出し、当該閾値電圧Vthに基づいてゲート電圧を制御する。
このように、実施形態3に係るスイッチング素子制御回路は、温度特性算出部をさらに備える点で実施形態1に係るスイッチング素子制御回路100の場合とは異なるが、実施形態1に係るスイッチング素子制御回路100の場合と同様に、閾値電圧算出部40は、温度検出部20によって検出されたスイッチング素子200の動作温度Tを含む情報に基づいてスイッチング素子200の動作時の閾値電圧Vthを算出し、ゲート電圧制御部10は、スイッチング素子200をオン状態とするときに、閾値電圧算出部40によって算出された動作時の閾値電圧Vthに基づいてゲート電圧を制御するため、動作時のスイッチング素子200の動作温度Tが初期閾値電圧Vthを測定したときのスイッチング素子200の初期温度Tよりも高くなることに起因して動作時の閾値電圧Vthが初期閾値電圧Vthから変動する場合でも、動作時の閾値電圧Vthをわずかに超える電圧をゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる。
また、実施形態3に係るスイッチング素子制御回路及びパワーモジュールによれば、温度特性算出部は、初期閾値電圧、前記初期閾値電圧を測定したときのスイッチング素子200の初期温度、温度特性測定モードにおいて、温度検出部によって検出されたスイッチング素子の動作温度、温度特性測定時閾値電圧を含む情報に基づいてスイッチング素子における閾値電圧の温度特性を算出するため、実際の温度特性がスイッチング素子200の製造バラツキによって設計上の温度特性から変動していた場合であっても、動作時の閾値電圧を正確に算出することができる。従って、動作時の閾値電圧Vthをわずかに超える電圧を正確にゲート電極に印加することができる。従って、ターンオン期間及びターンオフ期間を短くすることができ、その結果、スイッチング損失を小さくすることができる。
なお、実施形態3に係るスイッチング素子制御回路は、温度特性算出部をさらに備える点以外の点においては実施形態2に係るスイッチング素子制御回路102と同様の構成を有するため、実施形態2に係るスイッチング素子制御回路102が有する効果のうち該当する効果を有する。
以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
(1)上記実施形態において記載した構成要素の数等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。
(2)上記実施形態3においては、初期閾値電圧測定モードと、温度特性測定モードと、制御モードとを実施するスイッチング素子制御回路としたが、本発明はこれに限定されるものではない。例えば、温度特性測定モード及び制御モードのみを実施するスイッチング素子制御回路としてもよい。このとき、初期閾値電圧及び初期温度はあらかじめ記憶部に記憶されている。
(3)上記各実施形態においては、スイッチング素子における閾値電圧の温度特性に関する情報は、Vth=Vth−α(T−T)の関係を満たす特性式であるとしたが、本発明はこれに限定されるものではない。例えば、スイッチング素子における閾値電圧の温度特性に関する情報を、別の特性式としてもよいし、あらかじめ記憶部に記憶された温度−閾値電圧の関係(1対1)を示すデータであるとしてもよい。
(4)上記実施形態2及び3においては、初期閾値電圧測定モードにおいて、実施形態3においては、温度特性測定モードにおいて、ゲート電圧制御部10は、ゲート電圧が時間経過に伴って階段状に高くなるようにゲート電圧を制御したが、本発明はこれに限定されるものではない。例えば、初期閾値電圧測定モード及び温度特性測定モードにおいて、ゲート電圧制御部10は、ゲート電圧が時間経過に伴って振幅の大きなパルスとなるパルス状の電圧になるようにゲート電圧を制御してもよい(図9参照。)。
(5)上記各実施形態において、スイッチング素子制御回路が1つのスイッチング素子を制御したが、本発明はこれに限定されるものではない。スイッチング素子制御回路が複数のスイッチング素子を制御してもよい。
(6)上記各実施形態において、スイッチング素子は、GaNを含む材料により形成されたものであるが、本発明はこれに限定されるものではない。スイッチング素子は、SiCやGa等のワイドギャップ半導体を含む材料や、シリコンを含む材料により形成されたものであってもよい。
(7)上記実施形態においては、スイッチング素子として、MOSFETを用いたが、本発明はこれに限定されるものではない。スイッチング素子として、MOSFET以外のスイッチング素子(例えば、HEMT、IGBT等)を用いてもよい。
(8)上記各実施形態において、スイッチング素子制御回路とスイッチング素子とが別々の半導体基体に形成されていてもよいし、スイッチング素子制御回路とスイッチング素子(例えば、GaNの横型構造の半導体素子)とが同一の半導体基体に形成されていてもよい。
1…パワーモジュール、10…ゲート電圧制御部、20…温度検出部、22…温度検出素子、30…記憶部、40…閾値電圧算出部、50…閾値電圧測定用電源、52…閾値電圧測定用スイッチ、60……50…ドレイン電流検出部、70…オン/オフ状態判定部、100,102,900…スイッチング素子制御回路、200,800…スイッチング素子、300…ゲートドライブ用電源、400…負荷回路、410…負荷抵抗、420…駆動電源、T1…(+)側入力端子、T2…(−)側入力端子、T3…(+)側出力端子、T4…(−)側出力端子、T5…制御端子、VDD…電源電圧、Vth…閾値電圧、Vth…初期閾値電圧、Vth…温度特性測定時閾値電圧、T、T…スイッチング素子の動作温度、T…初期温度

Claims (12)

  1. 第1電極と、第2電極と、第3電極とを備えるスイッチング素子のオン/オフ動作を制御するスイッチング素子制御回路であって、
    前記スイッチング素子のオン/オフ動作を制御するために第3電極電圧を制御する第3電極電圧制御部と、
    前記スイッチング素子の動作温度を検出する温度検出部と、
    前記スイッチング素子の初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報を記憶する記憶部と、
    前記温度検出部によって検出された前記スイッチング素子の前記動作温度、前記初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報に基づいて前記スイッチング素子の動作時の閾値電圧を算出する閾値電圧算出部とを備え、
    前記第3電極電圧制御部は、前記スイッチング素子をオン状態とするときに、前記閾値電圧算出部によって算出された前記動作時の閾値電圧に基づいて前記第3電極電圧を制御し、
    前記スイッチング素子制御回路は、前記スイッチング素子の前記初期閾値電圧を測定する初期閾値電圧測定モードと、前記スイッチング素子のオン/オフ動作を制御する制御モードとを実施するスイッチング素子制御回路であり、
    前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、
    前記スイッチング素子を流れる第1電極電流を検出する第1電極電流検出部と、
    前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部とをさらに備え、
    前記初期閾値電圧測定モードにおいては、
    前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、
    前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、
    前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の動作温度を記憶するとともに、前記第3電極に印加した第3電極電圧を前記スイッチング素子の前記初期閾値電圧として記憶することを特徴とするスイッチング素子制御回路。
  2. 前記スイッチング素子における閾値電圧の温度特性に関する情報は、前記スイッチング素子における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、前記初期閾値電圧をVthとし前記温度検出部によって検出された前記スイッチング素子の前記動作温度をTとし、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度をTとしたときに、Vth=Vth−α(T−T)の関係を満たす特性式であることを特徴とする請求項1に記載のスイッチング素子制御回路。
  3. 前記スイッチング素子制御回路は、前記制御モードを所定時間実施した後に、前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードをさらに実施するスイッチング素子制御回路であって、
    前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部をさらに備え、
    前記温度特性測定モードにおいては、
    前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、
    前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、
    前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記スイッチング素子の前記動作温度を記憶するとともに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、
    前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することを特徴とする請求項1又は2に記載のスイッチング素子制御回路。
  4. 前記第3電極電圧制御部は、前記初期閾値電圧測定モードにおいては、前記第3電極電圧が時間経過に伴って階段状に高くなるように前記第3電極電圧を制御することを特徴とする請求項1〜3のいずれかに記載のスイッチング素子制御回路。
  5. 前記第3電極電圧制御部は、前記初期閾値電圧測定モードにおいては、前記第3電極電圧が、時間経過に伴って振幅の大きなパルスとなるパルス状の電圧になるように、前記第3電極電圧を制御することを特徴とする請求項1〜3のいずれかに記載のスイッチング素子制御回路。
  6. 第1電極と、第2電極と、第3電極とを備えるスイッチング素子のオン/オフ動作を制御するスイッチング素子制御回路であって、
    前記スイッチング素子のオン/オフ動作を制御するために第3電極電圧を制御する第3電極電圧制御部と、
    前記スイッチング素子の動作温度を検出する温度検出部と、
    前記スイッチング素子の初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報を記憶する記憶部と、
    前記温度検出部によって検出された前記スイッチング素子の前記動作温度、前記初期閾値電圧、及び、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度を含む情報、並びに、前記スイッチング素子における閾値電圧の温度特性に関する情報に基づいて前記スイッチング素子の動作時の閾値電圧を算出する閾値電圧算出部とを備え、
    前記第3電極電圧制御部は、前記スイッチング素子をオン状態とするときに、前記閾値電圧算出部によって算出された前記動作時の閾値電圧に基づいて前記第3電極電圧を制御し、
    前記スイッチング素子制御回路は、前記スイッチング素子のオン/オフ動作を制御する制御モードを所定時間実施した後に、前記スイッチング素子における閾値電圧の温度特性を測定する温度特性測定モードを実施するスイッチング素子制御回路であり、
    前記スイッチング素子の前記第1電極に閾値電圧測定用電流を供給する閾値電圧測定用電源と、
    前記スイッチング素子を流れる第1電極電流を検出する第1電極電流検出部と、
    前記スイッチング素子のオン/オフ状態を判定するオン/オフ状態判定部と、
    前記スイッチング素子における閾値電圧の温度特性を算出する温度特性算出部とをさらに備え、
    前記温度特性測定モードにおいては、
    前記第3電極電圧制御部は、前記第3電極電圧が段階的に高くなるように前記第3電極電圧を制御し、
    前記オン/オフ状態判定部は、前記第1電極電流検出部で検出された前記第1電極電流に基づいて前記スイッチング素子がオンしたか否かを判定し、
    前記記憶部は、前記オン/オフ状態判定部によって前記スイッチング素子がオン状態になったことを判定したときに、前記第3電極に印加した前記第3電極電圧を前記スイッチング素子の温度特性測定時閾値電圧として記憶し、
    前記温度特性算出部は、前記初期閾値電圧、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度、前記温度特性測定モードにおいて前記温度検出部によって検出された前記スイッチング素子の前記動作温度、及び、前記温度特性測定時閾値電圧を含む情報に基づいて前記スイッチング素子における閾値電圧の温度特性を算出することを特徴とするスイッチング素子制御回路。
  7. 前記スイッチング素子における閾値電圧の温度特性に関する情報は、前記スイッチング素子における閾値電圧の温度係数をαとし、動作時の閾値電圧をVthとし、前記初期閾値電圧をVth とし 前記温度検出部によって検出された前記スイッチング素子の前記動作温度をTとし、前記初期閾値電圧を測定したときの前記スイッチング素子の初期温度をT としたときに、Vth=Vth −α(T−T )の関係を満たす特性式であることを特徴とする請求項6に記載のスイッチング素子制御回路。
  8. 前記第3電極電圧制御部は、前記温度特性測定モードにおいては、前記第3電極電圧が時間経過に伴って階段状に高くなるように前記第3電極電圧を制御することを特徴とする請求項6又は7に記載のスイッチング素子制御回路。
  9. 前記第3電極電圧制御部は、前記温度特性測定モードにおいては、前記第3電極電圧が、時間経過に伴って振幅の大きなパルスとなるパルス状の電圧になるように、前記第3電極電圧を制御することを特徴とする請求項6又は7に記載のスイッチング素子制御回路。
  10. 前記スイッチング素子は、MOSFET、IGBT又はHEMTであることを特徴とする請求項1〜のいずれかに記載のスイッチング素子制御回路。
  11. 前記スイッチング素子は、GaN、SiC又はGaを含む材料により形成されたものであることを特徴とする請求項1〜10のいずれかに記載のスイッチング素子制御回路。
  12. 第1電極と、第2電極と、第3電極とを備えるスイッチング素子と、
    前記スイッチング素子のオン/オフ動作を制御する、請求項1〜11のいずれかに記載のスイッチング素子制御回路とを備えることを特徴とするパワーモジュール。
JP2019542897A 2017-09-21 2017-09-21 スイッチング素子制御回路及びパワーモジュール Active JP6901577B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034179 WO2019058490A1 (ja) 2017-09-21 2017-09-21 スイッチング素子制御回路及びパワーモジュール

Publications (2)

Publication Number Publication Date
JPWO2019058490A1 JPWO2019058490A1 (ja) 2020-11-12
JP6901577B2 true JP6901577B2 (ja) 2021-07-14

Family

ID=65810696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542897A Active JP6901577B2 (ja) 2017-09-21 2017-09-21 スイッチング素子制御回路及びパワーモジュール

Country Status (4)

Country Link
US (1) US10979043B2 (ja)
JP (1) JP6901577B2 (ja)
CN (1) CN111066234B (ja)
WO (1) WO2019058490A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7279502B2 (ja) 2019-05-14 2023-05-23 株式会社デンソー スイッチング回路とゲート駆動回路
CN116015261B (zh) * 2023-03-23 2023-07-18 派恩杰半导体(杭州)有限公司 基于SiC功率器件的阈值电压保护电路及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384522B2 (ja) * 1996-07-30 2003-03-10 矢崎総業株式会社 スイッチング装置
JP3601310B2 (ja) * 1997-11-06 2004-12-15 富士電機デバイステクノロジー株式会社 パワーデバイスの駆動回路
JP2005151631A (ja) * 2003-11-12 2005-06-09 Mitsubishi Electric Corp 半導体装置および過電流の基準レベルのデータ設定方法
WO2005104743A2 (en) * 2004-04-26 2005-11-10 Rowan Electric, Inc. Adaptive gate drive for switching devices of inverter
JP4762929B2 (ja) * 2007-02-14 2011-08-31 トヨタ自動車株式会社 半導体電力変換装置
JP5189929B2 (ja) * 2008-08-19 2013-04-24 ルネサスエレクトロニクス株式会社 半導体スイッチ制御装置
DE602008005895D1 (de) * 2008-10-17 2011-05-12 Abb Oy Verfahren und Anordnung zur Steuerung einer Halbleiterkomponente
JP5392578B2 (ja) * 2011-01-28 2014-01-22 株式会社デンソー 電子装置
US20120242376A1 (en) * 2011-03-24 2012-09-27 Denso Corporation Load drive apparatus and semiconductor switching device drive apparatus
WO2012153459A1 (ja) 2011-05-11 2012-11-15 富士電機株式会社 絶縁ゲート型スイッチング素子の駆動回路
JP6056128B2 (ja) * 2011-11-04 2017-01-11 株式会社豊田中央研究所 駆動回路
US9030054B2 (en) * 2012-03-27 2015-05-12 Raytheon Company Adaptive gate drive control method and circuit for composite power switch
JP5991526B2 (ja) * 2012-09-18 2016-09-14 株式会社デンソー スイッチング素子駆動ic
JP2015012706A (ja) * 2013-06-28 2015-01-19 旭化成エレクトロニクス株式会社 トランジスタの駆動回路及びそれを用いた半導体遮断器並びにその遮断制御方法
JP6187428B2 (ja) * 2014-03-27 2017-08-30 株式会社デンソー 駆動装置
JP6090256B2 (ja) * 2014-08-05 2017-03-08 株式会社デンソー 半導体スイッチング素子の駆動回路及び半導体スイッチング素子モジュール
JP2016095366A (ja) * 2014-11-13 2016-05-26 株式会社Joled 表示装置およびその駆動方法
JP6575230B2 (ja) * 2015-02-24 2019-09-18 富士電機株式会社 半導体素子の駆動装置
JP6304072B2 (ja) * 2015-02-27 2018-04-04 株式会社オートネットワーク技術研究所 遮断装置、遮断方法及びコンピュータプログラム
JP6669097B2 (ja) * 2017-02-14 2020-03-18 株式会社オートネットワーク技術研究所 給電制御装置
US10171069B1 (en) * 2018-01-26 2019-01-01 General Electric Company Switch controller for adaptive reverse conduction control in switch devices

Also Published As

Publication number Publication date
US20200287532A1 (en) 2020-09-10
CN111066234B (zh) 2023-05-26
JPWO2019058490A1 (ja) 2020-11-12
CN111066234A (zh) 2020-04-24
WO2019058490A1 (ja) 2019-03-28
US10979043B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
JP6934071B2 (ja) 電力変換装置
JP6901577B2 (ja) スイッチング素子制御回路及びパワーモジュール
JP6766256B2 (ja) スイッチング素子制御回路及びパワーモジュール
JP6924277B2 (ja) パワーモジュール
JP6894978B2 (ja) スイッチング素子制御回路及びパワーモジュール
JP6834013B2 (ja) スイッチング素子制御回路及びパワーモジュール
JP6894983B2 (ja) パワーモジュール
JP6724453B2 (ja) 半導体制御回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6901577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150