JP6887125B2 - 素子チップの製造方法 - Google Patents

素子チップの製造方法 Download PDF

Info

Publication number
JP6887125B2
JP6887125B2 JP2017078328A JP2017078328A JP6887125B2 JP 6887125 B2 JP6887125 B2 JP 6887125B2 JP 2017078328 A JP2017078328 A JP 2017078328A JP 2017078328 A JP2017078328 A JP 2017078328A JP 6887125 B2 JP6887125 B2 JP 6887125B2
Authority
JP
Japan
Prior art keywords
plasma
layer
substrate
resistant layer
plasma resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017078328A
Other languages
English (en)
Other versions
JP2018182026A (ja
Inventor
尚吾 置田
尚吾 置田
田村 好司
好司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017078328A priority Critical patent/JP6887125B2/ja
Publication of JP2018182026A publication Critical patent/JP2018182026A/ja
Application granted granted Critical
Publication of JP6887125B2 publication Critical patent/JP6887125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Dicing (AREA)

Description

本発明は、素子チップの製造方法に関する。
高耐圧かつ低損失の次世代のパワーデバイスとして、ワイドバンドギャップ構造を持つSiCパワーデバイスが開発されている。このSiCパワーデバイスの製造に使用されるSiCを含む基板は、非常に硬いために加工が困難である。特に、SiCを含む基板を個々の素子チップの大きさに個片化することは困難であり、様々な方法が考案されている。
SiCを含む基板を個片化する方法として、例えば特許文献1に開示されているように、超音波を用いたメカニカルダイサーを使用する方法が考案されている。
また、例えば特許文献2に開示されているように、レーザを用いて基板の内部に加工変質層を作る所謂ステルスダイサーを使用する方法が考案されている。
特開2014−13812号公報 特開2012−182342号公報
しかしながら、特許文献1に開示されているようなメカニカルダイサーを用いた方法では、ブレードの消耗が大きく、チッピングも発生する。従って、コストが高く、歩留が低いため、生産性が悪い。
また、特許文献2に開示されているようなレーザを用いた方法では、レーザの焦点を合わせるためのストリート開口が必要である。従って、ストリートを狭くすることができず、基板面積当たりの素子チップの形成個数が少ないため、生産性が悪い。
本発明は、SiCを含む基板を使用した素子チップの製造方法において、生産性を向上させることを課題とする。
本発明の素子チップの製造方法は、複数の素子領域と前記素子領域を画定する分割領域とを備え、SiCを含む基板の第1の面に、電極層と、耐プラズマ層と、前記電極層および前記耐プラズマ層の間に設けられたTiを含むバインダ層とからなる多層膜を形成し、前記多層膜に前記基板の分割領域を露出させる開口を形成し、前記開口に露出する前記基板を、フッ素を含む第1のプラズマによりエッチングし、前記第1のプラズマによる前記基板のエッチング中に、前記バインダ層を前記第1のプラズマに晒すことにより、前記バインダ層を介した前記電極層と前記耐プラズマ層との結合力を低減し、前記電極層を前記基板に残した状態で、前記耐プラズマ層を除去することを含む。
この方法によれば、SiCを含む基板を使用した場合でも素子チップの生産性を向上させることができる。この素子チップの製造方法では、メカニカルダイサーまたはレーザを使用することなく、プラズマエッチングによって基板を個片化する。そのため、前述のように生産性が悪化することがなく、効率的にかつ迅速に基板を個片化できるため、むしろ生産性を向上させることができる。プラズマエッチングによって基板を個片化する場合、エッチング不要箇所を耐プラズマ層によってマスクすることで第1のプラズマから保護する必要がある。即ち、上記方法では、素子領域に耐プラズマ層を形成しているため、エッチング不要箇所をエッチングすることがない。また、エッチング後に、バインダ層を介した電極層と耐プラズマ層との結合力を低減させているため、電極層を残した状態で耐プラズマ層を除去することが容易となる。従って、安定して素子チップを製造できるため、生産性を向上させることができる。また、耐プラズマ層と電極層との結合力を低減させる際、プラズマを利用してバインダ層を変質させている。特に、第1のプラズマを利用すると、基板のエッチングと同時にバインダ層を変質させて当該結合力を低減させることができ、効率的である。また、Ti材料はフッ素系のプラズマによりエッチングされ易いため、バインダ層を第1のプラズマによって容易にエッチングでき、即ち、バインダ層を容易に変質させることができる。従って、簡便な方法で上記結合力を低減できる。
前記耐プラズマ層を除去する際、前記耐プラズマ層の表面に粘着テープを貼付け、前記粘着テープを前記耐プラズマ層とともに剥離してもよい。
この方法によれば、粘着テープを使用することで耐プラズマ層を物理的に除去できる(以降、ピールオフという場合がある)ので、耐プラズマ層を溶解させる薬液等を要せず、簡便な方法で正確に耐プラズマ層を除去できる。さらに、多層膜の表面に何らかの残渣物が存在しても耐プラズマ層とともに物理的に除去できる。
前記耐プラズマ層と前記電極層とが同じ金属を含んでいてもよい。
この方法によれば、耐プラズマ層と電極層とが同じ金属を含む場合でも耐プラズマ層の除去においてピールオフを行っているため、電極層に悪影響を与えない。詳細には、仮に薬液に耐プラズマ層を溶解させて除去しようとする場合、薬液は、耐プラズマ層と同じ金属を含む電極層も溶解するおそれがあり、即ち電極層に悪影響を与えるおそれがある。この方法では耐プラズマ層をピールオフによって物理的に除去しているため、薬液またはその他の方法によって生じ得るこのような悪影響が生じない。
前記第1のプラズマによる前記基板のエッチングが、前記基板の温度を100〜250℃に調整した状態で行われてもよい。
前記多層膜を形成する前に、前記基板の前記第1の面に、前記素子領域を露出させるとともに前記分割領域を被覆するレジストマスクを形成し、前記開口の形成は、前記レジストマスク上に形成された前記多層膜をリフトオフすることにより行われてもよい。
この方法によれば、リフトオフを行っているため、多層膜の開口の端部にバインダ層を露出させることができる。そのため、前述の第1または第2のプラズマなどが開口を通じてバインダ層に直接アクセスできる。従って、バインダ層の変質を早めることができ、上記結合力を低下させるのに要する時間を短縮できる。
前記耐プラズマ層がNiを含んでいてもよい。
この方法によれば、Ni材料は多くの種類のプラズマに対して耐性を有しているため、耐プラズマ層としてNi材料を採用することは有効である。即ち、耐プラズマ層が汎用性の高いマスクとして機能する。
前記第1のプラズマによるエッチングが、前記基板の前記第1の面と対向する第2の面を支持部材に貼り付けた状態で行われ、前記開口に露出する前記基板を前記第2の面に達するまでエッチングすることにより前記基板が個片化されてもよい。
この方法によれば、支持部材によって個片化された基板(素子チップ)を一体として支持できるため、基板を個片化した後のハンドリング性が良好である。また、基板を個片化する際に各素子チップの位置がずれることもないため、安定して個片化できる。
本発明によれば、SiCを含む基板を使用した素子チップの製造方法において、バインダ層によって電極層と耐プラズマ層との結合力を低減させることができる。そのため、耐プラズマ層を容易に剥離できるので、生産性を向上させることができる。
本発明の実施形態に係る素子チップの製造方法のプロセス工程を示す断面図。 実施形態に係る素子チップの製造方法の保護工程を示す断面図。 実施形態に係る素子チップの製造方法の薄化工程を示す断面図。 実施形態に係る素子チップの製造方法のレジストマスク形成工程を示す断面図。 実施形態に係る素子チップの製造方法の多層膜形成工程を示す断面図。 実施形態に係る素子チップの製造方法のリフトオフ工程を示す断面図。 実施形態に係る素子チップの製造方法の個片化工程を示す断面図。 実施形態に係る素子チップの製造方法のピールオフ工程を示す断面図。 実施形態に係る素子チップの製造方法のサポート基板除去工程を示す断面図。 実施形態に係る素子チップの製造方法によって製造された素子チップの断面図。 ドライエッチング装置の模式図。 ピールオフ装置の第1概略構成図。 ピールオフ装置の第2概略構成図。
以下、添付図面を参照して本発明の実施形態を説明する。
図1Aから図1Jは本発明の実施形態に係る半導体チップ(素子チップ)2の製造工程を示している。完成図である図1Jを参照すると、製造された半導体チップ2は、半導体層4と、半導体層3下に形成された電極層32と、半導体層4上に形成された素子層6と、素子層6上に形成された電極10とを備える。半導体層4の主な材質は、SiCである。素子層6は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の半導体素子の形成された層である。MOSFETは、例えばSiCなどの半導体からなるソース、ドレイン、およびチャネルと、SiO2などの絶縁膜からなるゲート絶縁膜と、多結晶シリコンなどからなるゲート電極とを備える。また、電極10に含まれる金属は、銅、銅と錫と銀との合金、銀と錫との合金、鉛と錫との合金、金、アルミニウム、アルミニウム合金等であり得る。電極10の形態、配置、および個数は特に限定されず、目的に応じて適宜設定される。
図1Aに示すプロセス工程では、半導体ウエハ(基板)12を準備する。半導体ウエハ12は、半導体層4と、半導体層4上に形成された素子層6とを備える。半導体ウエハ12の素子層6の表面(第2の面)6Aには、電極10が形成されている。半導体ウエハ12は、電極10が形成された複数の素子領域14と、個々の素子領域14の周囲に隣接する分割領域16とを備える。換言すれば、分割領域16によって個々の素子領域14が画定されている。半導体ウエハ12は、例えば直径6インチ程度の円板形状である。
図1Bに示す保護工程では、半導体ウエハ12の表面6Aに、裏面(第1の面)4Aの研削時の保護のためのサポート基板(支持部材)20を貼り付ける。サポート基板20は、粘着層20Aと、ガラス基板層20Bとからなる貼り付け可能な基板である。即ち、粘着層20Aを半導体ウエハ12の表面6Aに貼り付け、ガラス基板層20Bにより半導体ウエハ12の表面6Aを保護する。サポート基板20は、ハンドリング性の観点から、半導体ウエハ12よりもわずかに大きく、例えば直径8インチ程度の円板形状である。
図1Cに示す薄化工程では、図示しない研削装置により半導体ウエハ12の裏面4A側から半導体層4を研削する。半導体ウエハ12は、半導体層4の研削により所定の厚みに薄化される。
図1Dに示すレジストマスク形成工程では、半導体ウエハ12の裏面4Aにレジストマスク24を形成する。レジストマスク24は、後述するリフトオフ工程で剥離され、分割領域16(図1A参照)に対応する部分に開口18を形成するためのものである。そのため、レジストマスク24は、裏面4A全体ではなく、分割領域16(図1A参照)に対応する部分に形成される。
図1Eに示す多層膜形成工程では、レジストマスク24が部分的に形成されている裏面4Aに多層膜30を形成する。多層膜30は、電極層32と、バインダ層34と、耐プラズマ層36とからなり、裏面4Aに近い側から順に、電極層32と、バインダ層34と、耐プラズマ層36とが配置されている。換言すると、耐プラズマ層36が最も外側(半導体ウエハ12から遠い側)に配置され、電極層32が最も内側(半導体ウエハ12に近い側)に配置され、バインダ層34が電極層32と耐プラズマ層36との間に配置されている。電極層32は、外側の例えばAuを含む第1層32Aと、内側の例えばNiを含む第2層32Bとからなり、即ち2層構造を有する。バインダ層34は、例えばTiを含んでいる。好ましくは、バインダ層34は、電極層32との密着性が悪く、かつ、後述する個片化工程において剥離しない材質である。耐プラズマ層36は、例えばNiを含んでいる。従って、電極層32および耐プラズマ層36は、互いに同じ金属を含んでいる。多層膜30は、めっきや蒸着などの任意の方法で各層32,34,36が裏面4A上に積層されることで形成される。ただし、後述するリフトオフ工程におけるリフトオフを行いやすくするため、レジストマスク24の側面への堆積が生じやすいめっきによる形成よりも、レジストマスク24の側面への堆積が生じにくい蒸着によって多層膜30を形成することが好ましい。蒸着の方法は、特に限定されず、例えば既存の真空蒸着装置やスパッタ装置(図示せず)などを使用して蒸着処理を行ってもよい。
図1Fに示すリフトオフ工程では、レジストマスク24とともに多層膜30を剥離する(以降、リフトオフという場合がある)することで、レジストマスク24と多層膜30とを裏面4A上から除去する。これにより、裏面4A上において、分割領域16(図1A参照)に対応する部分に開口18を形成できる。
図1Gに示す個片化工程では、ドライエッチング装置50(図2参照)を使用して半導体ウエハ12をプラズマエッチングにより個片化する。図2は、本工程で使用されるドライエッチング装置50の一例を示している。ドライエッチング装置50のチャンバ52の頂部には誘電体窓(図示せず)が設けられており、誘電体窓の上方には上部電極としてのアンテナ54が配置されている。アンテナ54は、第1高周波電源部56に電気的に接続されている。一方、チャンバ52内の処理室58の底部側には、半導体ウエハ12が配置されるステージ60が配置されている。ステージ60は、冷媒を流すための流路やヒータなどの温度調節手段を備え、温度調節が可能になっている。ステージ60は下部電極としても機能し、第2高周波電源部62に電気的に接続されている。また、ステージ60は図示しない静電吸着用電極を備え、ステージ60に載置されたサポート基板20(即ち半導体ウエハ12)をステージ60に静電吸着できるようになっている。これに代えて、真空吸着機構を採用し、ステージ60に載置されたサポート基板20(即ち半導体ウエハ12)をステージ60に真空吸着してもよい。また、ステージ60には伝熱用ガスを供給するための図示しない伝熱用ガス孔が設けられており、伝熱用ガス孔からヘリウムなどの伝熱用ガスを供給することでステージ60に静電吸着された半導体ウエハ12の温度を調節できる。チャンバ52のガス導入口64はエッチングガス源66に流体的に接続されており、排気口68はチャンバ52内を真空排気するための真空ポンプを含む真空排気部70に接続されている。
この個片化工程では、サポート基板20を介して半導体ウエハ12をステージ60に載置し、サポート基板20の周囲を図示しないクランプで保護する。そして、処理室58内を真空排気部70によって真空排気するとともにエッチングガス源66から処理室58内に例えばフッ素系のエッチングガスを供給する。そして、処理室58内を所定圧力に維持し、アンテナ54に対して第1高周波電源部56から高周波電力を供給し、処理室58内に第1のプラズマを発生させて半導体ウエハ12に照射する。このとき、第1のプラズマ中のラジカルとイオンの物理化学的作用により開口18から露出している半導体ウエハ12が除去される。この個片化工程を経て、半導体ウエハ12は、個々の半導体チップ2に個片化される。個片化工程で第1のプラズマにより除去される半導体ウエハ12の部分がSiCを含む場合、SiCがエッチングされやすい観点から、半導体ウエハ12の温度は100〜250℃に温度調節されることが好ましく、150〜200℃に温度調節されることがさらに好ましい。
本実施形態では、バインダ層34がTiを含む材料からなるため、フッ素系のエッチングガスからなる第1のプラズマによって、バインダ層34が開口18にて露出した端部から順にサイドエッチングされる。従って、バインダ層34を変質させ、電極層32と耐プラズマ層36との結合力を低減させることができる。即ち、本実施形態では、この個片化工程が、上記結合力を低減させる結合力低減工程を兼ねている。これに代えて、この結合力低減工程では、エッチングガスのガス種を切り替え、第1のプラズマとは異なる第2のプラズマを生成し、第2のプラズマにバインダ層34を晒すことでバインダ層34を変質させてもよい。第2のプラズマのガス種は、バインダ層34の材料に応じて適宜選定される。なお、フッ素系のエッチングガスからなるプラズマによるTiの反応性エッチングは、ウエハ温度が100℃よりも高い領域で顕著に起こる。したがって、結合力低減工程では半導体ウエハ12の温度を、100〜250℃、好ましくは、150〜200℃に調節することが望ましい。
図1Hに示すピールオフ工程では、ピールオフ装置120(図3A,3B参照)によって、マスクとなっている耐プラズマ層36(およびバインダ層34)を除去する。図3Aに示すように、ピールオフ装置120には、供給ローラ122と、回収ローラ124と、押圧ローラ126と、二つの引張具128と、載置台130とが設けられている。
ピールオフの際、半導体ウエハ12は、載置台130の上に載置され、固定される。このとき、供給ローラ122には未使用の粘着テープTが巻き付けられており、供給ローラ122の位置は固定されている。回収ローラ124は、供給ローラ122と粘着テープTを共有している。即ち、回収ローラ124は、供給ローラ122から供給され、耐プラズマ層36の剥離に使用した後の粘着テープTを巻き取ることで回収する。回収ローラ124は、供給ローラ122と同程度の高さに配置されており、水平方向に可動である(図3B中の矢印参照)。二つの引張具128は、供給ローラ122および回収ローラ124の下方にそれぞれ配置されている。二つの引張具128は、一方が固定されており、他方が水平方向に可動である。粘着テープTは、二つの引張具128によって水平方向に引っ張られ、張力によって持ち上げられ、半導体チップ2の僅かに上方に位置している。押圧ローラ126は、可動であって(図3A中の矢印参照)、粘着テープTを半導体チップ2上の耐プラズマ層36(図では、耐プラズマ層36とバインダ層34を一体に示している)に向けて半導体チップ2が損傷しない程度の力で押圧し、粘着テープTを耐プラズマ層36に貼り付ける。これに代えてまたは加えて、粘着テープTの貼り付けが、例えば圧縮空気によって行われてもよい。この場合、半導体チップ2に過剰な力を加えることなく、表面6Aの電極10等の凹凸に沿って粘着テープTを貼ることができる。
図3Bに示すように、粘着テープTを剥がすときは、回収ローラ124および他方の引張具128を供給ローラ122および一方の引張具128に向けて移動させる。このとき、回収ローラ124は、耐プラズマ層36およびバインダ層34の除去に使用された粘着テープTを巻き取ることで回収する。このようにして、粘着テープTを剥がすとともに各半導体チップ2から耐プラズマ層36およびバインダ層34を剥離する。
図1Iに示すサポート基板除去工程では、半導体チップ2からサポート基板20を除去する。サポート基板20の除去方法については、特に限定されず、任意の方法を使用できる。例えば、レーザを粘着層20Aに照射し、粘着力を低下させ、サポート基板20を半導体チップ2から剥離してもよい。好ましくは、各半導体チップ2を支持するフィルム22Aを裏面4A側に貼り付けた後、即ち、電極層32に貼り付けた後、サポート基板20を除去する。フィルム22Aの周囲にはフレーム22Bが取り付けられている。このフレーム22B付のフィルム22Aによってサポート基板20の除去後のハンドリング性を維持できる。
図1Jには、このようにして製造された半導体チップ2が示されている。
以上のような半導体チップ2の製造方法には、以下のような利点がある。
本実施形態によれば、SiCを含む半導体ウエハ12を使用して半導体チップ2を製造する場合でも、加工の困難性を克服して生産性を向上させることができる。本実施形態の半導体チップ2の製造方法では、メカニカルダイサーまたはレーザを使用することなく、プラズマエッチングによって半導体ウエハ12を個片化する。そのため、メカニカルダイサーまたはレーザを使用する場合のように生産性が悪化することがなく、効率的にかつ迅速に半導体ウエハ12を個片化できるため、むしろ生産性を向上させることができる。プラズマエッチングによって半導体ウエハ12を個片化する場合、エッチング不要箇所を耐プラズマ層36によってマスクすることで第1のプラズマから保護する必要がある。本実施形態では、素子領域14に耐プラズマ層36を形成しているため、エッチング不要箇所をエッチングすることがない。また、エッチング後に、バインダ層34を介した電極層32と耐プラズマ層36との結合力を低減させているため、電極層32を残した状態で耐プラズマ層36を除去することが容易となる。従って、安定して半導体チップ2を製造できるため、生産性を向上させることができる。
また、本実施形態によれば、粘着テープTを使用することで耐プラズマ層36を物理的に除去できるので、耐プラズマ層36を溶解させる薬液等を要せず、簡便な方法で正確に耐プラズマ層36を除去できる。さらに、多層膜30の表面に何らかの残渣物が存在しても耐プラズマ層36とともに物理的に除去できる。
また、本実施形態によれば、耐プラズマ層36と電極層32とが同じ金属Niを含んでいるが、耐プラズマ層36の除去においてピールオフを行っているため、電極層32に悪影響を与えない。詳細には、仮に薬液に耐プラズマ層36を溶解させて除去しようとする場合、薬液は、耐プラズマ層36と同じ金属を含む電極層32も溶解するおそれがあり、即ち電極層32に悪影響を与えるおそれがある。この方法では耐プラズマ層36をピールオフによって物理的に除去しているため、薬液またはその他の方法によって生じ得るこのような悪影響が生じない。
また、本実施形態によれば、耐プラズマ層36と電極層32との結合力を低減させる際、プラズマを利用してバインダ層34を変質させている。特に、第1のプラズマを利用すると、半導体ウエハ12のエッチングと同時にバインダ層34を変質させて当該結合力を低減させることができ、効率的である。また、第2のプラズマを利用するときであっても、第1のプラズマを発生させる設備と同じ設備として例えばドライエッチング装置50を利用できるため、効率的である。
また、本実施形態によれば、Ti材料はフッ素系のプラズマによりエッチングされ易いため、バインダ層34を第1のプラズマまたは第2のプラズマによって容易にエッチングでき、即ち、バインダ層34を容易に変質させることができる。従って、簡便な方法で上記結合力を低減できる。
また、本実施形態によれば、リフトオフを行っているため、多層膜30の開口18の端部にバインダ層34を露出させることができる。そのため、前述の第1または第2のプラズマなどが開口18を通じてバインダ層34に直接アクセスできる。従って、バインダ層34の変質を早めることができ、上記結合力を低下させるのに要する時間を短縮できる。
また、本実施形態によれば、Ni材料は多くの種類のプラズマに対して耐性を有しているため、耐プラズマ層36としてNi材料を採用することは有効である。即ち、耐プラズマ層36が汎用性の高いマスクとして機能する。
また、本実施形態によれば、サポート基板20によって個片化された各半導体チップ2を一体として支持できるため、半導体ウエハ12を個片化した後のハンドリング性が良好である。また、半導体ウエハ12を個片化する際に各半導体チップ2の位置がずれることもないため、安定して個片化できる。
以上より、本発明の具体的な実施形態について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、本実施形態以外にも、多層膜30の各層32,34,36の材質と、それに対応するエッチングガスの種類など任意であり得る。これに伴い、バインダ層34の変質による上記結合力の低下は、バインダ層34の材質に応じて紫外線やレーザの照射によるものであってもよい。また、開口18の形成方法は、必ずしもリフトオフによらず、単にメカブレードまたはレーザ加工等による方法であってもよい。
2 半導体チップ(素子チップ)
4 半導体層
4A 裏面(第1の面)
6 素子層
6A 表面(第2の面)
10 電極
12 半導体ウエハ(基板)
14 素子領域
16 分割領域
18 開口
20 サポート基板(支持部材)
20A 粘着層
20B ガラス基板層
22A フィルム
22B フレーム
24 レジストマスク
30 多層膜
32 電極層
32A 第1層
32B 第2層
34 バインダ層
36 耐プラズマ層
50 ドライエッチング装置
52 チャンバ
54 アンテナ
56 第1高周波電源部
58 処理室
60 ステージ
62 第2高周波電源部
64 ガス導入口
66 エッチングガス源
68 排気口
70 真空排気部
120 ピールオフ装置
122 供給ローラ
124 回収ローラ
126 押圧ローラ
128 引張具
130 載置台

Claims (7)

  1. 複数の素子領域と前記素子領域を画定する分割領域とを備え、SiCを含む基板の第1の面に、電極層と、耐プラズマ層と、前記電極層および前記耐プラズマ層の間に設けられたTiを含むバインダ層とからなる多層膜を形成し、
    前記多層膜に前記基板の分割領域を露出させる開口を形成し、
    前記開口に露出する前記基板を、フッ素を含む第1のプラズマによりエッチングし、
    前記第1のプラズマによる前記基板のエッチング中に、前記バインダ層を前記第1のプラズマに晒すことにより、前記バインダ層を介した前記電極層と前記耐プラズマ層との結合力を低減し、
    前記電極層を前記基板に残した状態で、前記耐プラズマ層を除去する
    ことを含む、素子チップの製造方法。
  2. 前記耐プラズマ層を除去する際、前記耐プラズマ層の表面に粘着テープを貼付け、前記粘着テープを前記耐プラズマ層とともに剥離する、請求項1に記載の素子チップの製造方法。
  3. 前記耐プラズマ層と前記電極層とが同じ金属を含む、請求項2に記載の素子チップの製造方法。
  4. 前記第1のプラズマによる前記基板のエッチングが、前記基板の温度を100〜250℃に調整した状態で行われる、請求項1から3のいずれか1項に記載の素子チップの製造方法。
  5. 前記多層膜を形成する前に、前記基板の前記第1の面に、前記素子領域を露出させるとともに前記分割領域を被覆するレジストマスクを形成し、
    前記開口の形成は、前記レジストマスク上に形成された前記多層膜をリフトオフすることにより行われる、請求項1から請求項4のいずれか1項に記載の素子チップの製造方法。
  6. 前記耐プラズマ層がNiを含む、請求項1から請求項5のいずれか1項に記載の素子チップの製造方法。
  7. 前記第1のプラズマによるエッチングが、前記基板の前記第1の面と対向する第2の面を支持部材に貼り付けた状態で行われ、前記開口に露出する前記基板を前記第2の面に達するまでエッチングすることにより前記基板が個片化される、請求項1から6のいずれか1項に記載の素子チップの製造方法。
JP2017078328A 2017-04-11 2017-04-11 素子チップの製造方法 Active JP6887125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017078328A JP6887125B2 (ja) 2017-04-11 2017-04-11 素子チップの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017078328A JP6887125B2 (ja) 2017-04-11 2017-04-11 素子チップの製造方法

Publications (2)

Publication Number Publication Date
JP2018182026A JP2018182026A (ja) 2018-11-15
JP6887125B2 true JP6887125B2 (ja) 2021-06-16

Family

ID=64276744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017078328A Active JP6887125B2 (ja) 2017-04-11 2017-04-11 素子チップの製造方法

Country Status (1)

Country Link
JP (1) JP6887125B2 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183036A (ja) * 1998-12-11 2000-06-30 Nitto Denko Corp レジスト除去方法及びその装置
JP4612534B2 (ja) * 2005-12-01 2011-01-12 三菱電機株式会社 半導体装置の製造方法
JP4516538B2 (ja) * 2006-03-01 2010-08-04 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
JP2008098456A (ja) * 2006-10-13 2008-04-24 Eudyna Devices Inc 半導体装置の製造方法
US9126285B2 (en) * 2011-06-15 2015-09-08 Applied Materials, Inc. Laser and plasma etch wafer dicing using physically-removable mask
JP6101227B2 (ja) * 2014-03-17 2017-03-22 株式会社東芝 プラズマダイシング方法およびプラズマダイシング装置
JP6237489B2 (ja) * 2014-06-23 2017-11-29 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP5780351B1 (ja) * 2014-11-06 2015-09-16 富士ゼロックス株式会社 半導体片の製造方法
US20160268165A1 (en) * 2015-03-10 2016-09-15 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2018182026A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
JP4288252B2 (ja) 半導体チップの製造方法
JP4018096B2 (ja) 半導体ウェハの分割方法、及び半導体素子の製造方法
WO2012157287A1 (ja) 半導体チップの製造方法
JP2004265902A (ja) 半導体装置の製造方法および半導体ウェハの切断装置
JP2018137405A (ja) 素子チップおよびその製造方法
JP6524534B2 (ja) 素子チップの製造方法
JP4416108B2 (ja) 半導体ウェーハの製造方法
CN107180788A (zh) 元件芯片的制造方法
JP6650593B2 (ja) プラズマ処理装置およびプラズマ処理方法
US10468303B2 (en) Device chip manufacturing method
CN107180754B (zh) 等离子体处理方法
JP2006080509A (ja) 薄い基板支持体
JP6887125B2 (ja) 素子チップの製造方法
JP2015133460A (ja) ウェーハの分割方法
CN107154369A (zh) 等离子体处理方法
US10276423B2 (en) Method of manufacturing element chip
JP2016195155A (ja) プラズマ処理装置およびプラズマ処理方法
JP2018133496A (ja) 素子チップの製造方法
JP5352777B2 (ja) 水晶デバイスの製造方法
JP2018133497A (ja) 素子チップの製造方法
JP6481979B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP7139065B2 (ja) ウェーハの加工方法
JP5335421B2 (ja) 真空処理装置
JP6440120B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP2020053472A (ja) 素子チップの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6887125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151