JP6848177B2 - 分離材及びカラム - Google Patents

分離材及びカラム Download PDF

Info

Publication number
JP6848177B2
JP6848177B2 JP2016006325A JP2016006325A JP6848177B2 JP 6848177 B2 JP6848177 B2 JP 6848177B2 JP 2016006325 A JP2016006325 A JP 2016006325A JP 2016006325 A JP2016006325 A JP 2016006325A JP 6848177 B2 JP6848177 B2 JP 6848177B2
Authority
JP
Japan
Prior art keywords
separating material
polymer particles
porous polymer
particles
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016006325A
Other languages
English (en)
Other versions
JP2017125812A (ja
Inventor
優 渡邊
優 渡邊
智子 東内
智子 東内
史彦 河内
史彦 河内
後藤 泰史
泰史 後藤
道男 佛願
道男 佛願
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016006325A priority Critical patent/JP6848177B2/ja
Publication of JP2017125812A publication Critical patent/JP2017125812A/ja
Application granted granted Critical
Publication of JP6848177B2 publication Critical patent/JP6848177B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、分離材及びカラムに関する。
従来、タンパク質に代表される生体高分子を分離精製する場合、一般的には合成高分子を母体とする多孔質型粒子、親水性天然高分子の架橋ゲルを母体とする粒子が用いられている。上記の多孔質型の合成高分子を母体とするイオン交換体は、塩濃度による体積変化が小さく、カラムに充填しクロマトグラフィーで用いた場合、通液時の耐圧性が良いといった利点を持っている。しかし、このイオン交換体は、タンパク質等の分離に用いた場合、疎水的相互作用に基づく不可逆吸着等の非特異吸着が起き、ピークの非対称化が発生する問題点、又は、該疎水的相互作用でイオン交換体に吸着されたタンパク質が吸着されたまま回収できないことがあるといった問題点がある。
一方、デキストラン、アガロース等の多糖に代表される親水性天然高分子の架橋ゲルを母体とする上記のイオン交換体の場合、タンパク質の非特異吸着がほとんどないという利点がある。ところが、このイオン交換体は、水溶液中で著しく膨潤し、溶液のイオン強度による体積変化、及び、遊離酸形と負荷形との体積変化が大きく、機械的強度も充分ではないという欠点を有する。特に、架橋ゲルをクロマトグラフィーで使用する場合、通液時の圧力損失が大きく、通液によりゲルが圧密化するといった欠点がある。
親水性天然高分子の架橋ゲルが持つ欠点を克服するため、いわば“骨格”となる剛直な物質と組み合わせる試みがこれまでになされている。
例えば、特許文献1では、多孔性高分子の細孔内に天然高分子ゲル等のゲルを保持した複合体を、ペプチド合成の分野で用いるという記載があり、それにより反応性物質の負荷係数を高め、高収率で合成できることが発明の効果として挙げられている。
しかも、この特許文献1では、硬質な合成高分子物質でゲルを包囲するため、カラムベッドの形態で使用しても、容積変化がなく、カラムを通過するフロースルーの圧力が変化しないという効果が挙げられている。
特許文献2及び3では、セライト等の無機多孔質体にデキストラン、セルロース等の多糖などのキセロゲルを保持させ、このゲルに収着性能を付加するためにジエチルアミノメチル(DEAE)基等を付与したものをヘモグロビンの除去に使用している。その効果として、カラムでの通液性の良さが挙げられている。
特許文献4では、いわゆるマクロネットワーク構造のコポリマの細孔を、モノマから合成した架橋共重合体のゲルで埋めたハイブリッドコポリマのイオン交換体が挙げられている。特許文献4では、架橋共重合体のゲルの架橋度が低い場合、圧力損失、体積変化等の問題があるが、ハイブリッドコポリマにすることで通液特性が改善され、圧力損失が少なくなること、また、イオン交換容量が向上し、リーク挙動が改善されることが記載されている。
特許文献5及び6では、有機合成ポリマ基体の細孔内に、巨大網目構造を有する親水性天然高分子の架橋ゲルを充填した複合化充填材が提案されている。
特許文献7では、メタクリル酸グリシジルとアクリル架橋モノマにより構成される多孔質粒子が合成されている。
米国特許第4965289号明細書 米国特許第4335017号明細書 米国特許第4336161号明細書 米国特許第3966489号明細書 特開平1−254247号公報 米国特許第5114577号明細書 特開2009−244067号公報
しかしながら、従来のカラム充填材では、従来の天然高分子やポリマ粒子の課題を充分なレベルで解決することが難しく、特に、動的吸着量を向上させることが求められている。
そこで、本発明は、動的吸着量を向上させることが可能な分離材、並びに、該分離材を用いたカラムを提供することを目的とする。
本発明は、下記[1]〜[10]に記載の分離材及びカラムを提供する。
[1]多孔質ポリマ粒子と、該多孔質ポリマ粒子の表面の少なくとも一部を被覆する被覆層と、を備える分離材であって、前記被覆層が、水酸基を有する高分子を含み、前記分離材の細孔径分布において、最大の細孔体積を示す極大値を基準として、前記極大値を有する細孔径以下の細孔径を有する領域の合計細孔体積Aに対する、前記極大値を有する細孔径を超える細孔径を有する領域の合計細孔体積Bの比率B/Aが1.2以上である、分離材。
[2]前記多孔質ポリマ粒子の比表面積が30m/g以上である、[1]に記載の分離材。
[3]前記多孔質ポリマ粒子が、ジビニルベンゼンに由来する構造単位を有する共重合体を含む、[1]又は[2]に記載の分離材。
[4]前記極大値を有する細孔径が0.05〜0.6μmである、[1]〜[3]のいずれかに記載の分離材。
[5]前記多孔質ポリマ粒子の平均粒径が10〜500μmである、[1]〜[4]のいずれかに記載の分離材。
[6]前記水酸基を有する高分子が多糖類又はその変性体である、[1]〜[5]のいずれかに記載の分離材。
[7]前記水酸基を有する高分子がアガロース又はその変性体である、[1]〜[6]のいずれかに記載の分離材。
[8]前記多孔質ポリマ粒子1g当たり30〜400mgの前記被覆層を備える、[1]〜[7]のいずれかに記載の分離材。
[9]カラムに充填した場合、カラム圧が0.3MPaのときに通液速度が800cm/h以上である、[1]〜[8]のいずれかに記載の分離材。
[10][1]〜[9]のいずれかに記載の分離材を備える、カラム。
本発明によれば、動的吸着量を向上させることが可能な分離材、並びに、該分離材を用いたカラムを提供することができる。また、本発明に係る分離材及びカラムは、イオン交換容量、及び、従来の天然高分子の課題である通液性にも優れている。
図1は、細孔径分布の一例を示す図である。 図2は、実施例1の分離材の外観写真を示す図である。 図3は、実施例1の分離材の表面状態の写真を示す図である。 図4は、実施例1の分離材の断面写真を示す図である。 図5は、実施例1の分離材の断面写真を示す図である。
以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
本実施形態の分離材は、多孔質ポリマ粒子と、該多孔質ポリマ粒子の表面の少なくとも一部を被覆する被覆層と、を備え、前記被覆層が、水酸基を有する高分子を含む。なお、本明細書中、「多孔質ポリマ粒子の表面」とは、多孔質ポリマ粒子の外側の表面のみでなく、多孔質ポリマ粒子の内部における細孔の表面を含むものとする。例えば、多孔質ポリマ粒子の外側の表面、及び/又は、多孔質ポリマ粒子の内部における細孔の表面に、水酸基を有する高分子がコーティングされていてもよい。
本実施形態によれば、通液性を確保しつつ、動的吸着量を向上できると共に非特異吸着を低減できる。また、本実施形態によれば、天然高分子及びポリマ粒子の従来の課題を解決した充填材として、親水性天然高分子を母体とする充填材が有する、タンパク質等の生体高分子の分離に対する優れた分離能を保持しながら、疎水的相互作用による非特異吸着がなく、且つ、静電的相互作用やアフィニティ精製により生体高分子を分離精製するカラム充填材を提供することができる。
(多孔質ポリマ粒子)
本実施形態の多孔質ポリマ粒子は、例えば、モノマを重合することにより得られる重合体を含み、モノマ由来の構造単位を有することができる。多孔質ポリマ粒子は、粒子の全質量基準で50質量%以上のポリマを含んでいてもよく、ポリマからなる粒子であってもよい。また、多孔質ポリマ粒子は、モノマと多孔質化剤とを含む組成物を重合させた後、多孔質化剤を除去することによって得ることができる。多孔質ポリマ粒子は、例えば、従来の懸濁重合、乳化重合等によって合成することができる。モノマとしては、特に限定されないが、例えば、(メタ)アクリル系モノマ、スチレン系モノマ等のビニルモノマを使用することができる。具体的なモノマとしては、以下のような多官能性モノマ、単官能性モノマ等が挙げられる。
多官能性モノマとしては、例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフェナントレン等のジビニル化合物;(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコール系ジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1,1,1−トリスヒドロキシメチルエタントリ(メタ)アクリレート、1,1,1−トリスヒドロキシメチルプロパントリアクリレート等の3官能以上の(メタ)アクリレート;エトキシ化ビスフェノールA系ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA系ジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,1,1−トリスヒドロキシメチルエタンジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート等のジ(メタ)アクリレート;ジアリルフタレート及びその異性体;トリアリルイソシアヌレート及びその誘導体が挙げられる。多官能性モノマとしては、新中村化学工業株式会社製のNKエステル(A−TMPT−6P0、A−TMPT−3E0、A−TMM−3LMN、A−GLYシリーズ、A−9300、AD−TMP、AD−TMP−4CL、ATM−4E、A−DPH等)、新日鉄住金化学株式会社のジビニルベンゼン(DVB960)などが商業的に入手可能である。多官能性モノマは、1種単独で又は2種以上組み合わせて用いることができる。
単官能性モノマとしては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、o−エチルスチレン、m−エチルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−t−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロロスチレン、3,4−ジクロロスチレン等のスチレン及びその誘導体;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2−クロロエチル、アクリル酸フェニル、α−クロロアクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸ラウリル、メタクリル酸ステアリル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等のN−ビニル化合物;フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、アクリル酸トリフルオロエチル、アクリル酸テトラフルオロプロピル等の含フッ素化モノマ;ブタジエン、イソプレン等の共役ジエンが挙げられる。単官能性モノマは、1種単独で又は2種以上組み合わせて用いることができる。上記の中でも、耐酸性及び耐アルカリ性に優れる観点から、スチレンを使用することが好ましい。また、カルボキシ基、アミノ基、水酸基、アルデヒド基等の官能基を有するスチレン誘導体も使用することができる。
上記の中でも、耐酸性及び耐アルカリ性に優れる観点から、スチレン及びジビニルベンゼンからなる群より選ばれる少なくとも一種を使用することが好ましく、ジビニルベンゼンを使用することがより好ましい。本実施形態の多孔質ポリマ粒子は、耐酸性及び耐アルカリ性に優れる観点から、スチレン及びジビニルベンゼンからなる群より選ばれる少なくとも一種に由来する構造単位を有する共重合体を含むことが好ましく、ジビニルベンゼン由来の構造単位を有する共重合体を含むことがより好ましい。モノマがジビニルベンゼンを含む場合、ジビニルベンゼンの含有量は、耐アルカリ性及び耐圧性に優れる観点から、モノマ全質量基準で、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましい。
多孔質化剤としては、重合時に相分離を促し、粒子の多孔質化を促進する有機溶媒である脂肪族又は芳香族の炭化水素類、エステル類、ケトン類、エーテル類、アルコール類等が挙げられる。具体的には、トルエン、ジエチルベンゼン、キシレン、シクロヘキサン、オクタン、酢酸ブチル、フタル酸ジブチル、メチルエチルケトン、ジブチルエーテル、1−ヘキサノール、イソアミルアルコール、2−オクタノール、デカノール、ラウリルアルコール、シクロヘキサノール等が挙げられる。多孔質化剤は、1種単独で又は2種以上組み合わせて用いることができる。
多孔質化剤として、水を取り込みやすい物質を使用した場合、粒子内部に大きな孔が開きやすくなるため使用することが好ましい。このような多孔質化剤としては、1−ヘキサノール、イソアミルアルコール、2−オクタノール、デカノール、ラウリルアルコール、シクロヘキサノール等のアルコール類などが挙げられる。
上記多孔質化剤は、モノマ全質量基準で0〜200質量%使用できる。多孔質化剤の量によって、多孔質ポリマ粒子の空孔率をコントロールできる。さらに、多孔質化剤の種類によって、多孔質ポリマ粒子の細孔の大きさ及び形状をコントロールできる。
また、溶媒として使用する水を多孔質化剤として使用することもできる。水を多孔質化剤として使用する場合、モノマに油溶性界面活性剤(乳化剤)を溶解させることで、水を吸収し、粒子を容易に多孔質化させることが可能である。
油溶性界面活性剤としては、分岐C16〜C24脂肪酸、鎖状不飽和C16〜C22脂肪酸又は鎖状飽和C12〜C14脂肪酸のソルビタンモノエステル(例えば、ソルビタンモノラウレート、ソルビタンモノオレエート、ソルビタンモノミリステート又はヤシ脂肪酸から誘導されるソルビタンモノエステル);分岐C16〜C24脂肪酸、鎖状不飽和C16〜C22脂肪酸又は鎖状飽和C12〜C14脂肪酸のジグリセロールモノエステル(例えば、ジグリセロールモノオレエート(例えば、C18:1(炭素数18個、二重結合数1個)脂肪酸のジグリセロールモノエステル)、ジグリセロールモノミリステート、ジグリセロールモノイソステアレート、又は、ヤシ脂肪酸のジグリセロールモノエステル);分岐C16〜C24アルコール(例えば、ゲルベアルコール)、鎖状不飽和C16〜C22アルコール又は鎖状飽和C12〜C14アルコール(例えば、ヤシ脂肪アルコール)のジグリセロールモノ脂肪族エーテル;及び、これらの乳化剤の混合物が挙げられる。
好ましい油溶性界面活性剤としては、ソルビタンモノラウレート(例えば、SPAN(スパン、登録商標)20。好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるソルビタンモノラウレート);ソルビタンモノオレエート(例えば、SPAN(登録商標)80。好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるソルビタンモノオレエート);ジグリセロールモノオレエート(例えば、好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるジグリセロールモノオレエート);ジグリセロールモノイソステアレート(例えば、好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるジグリセロールモノイソステアレート);ジグリセロールモノミリステート(好ましくは純度約40%を超える、より好ましくは純度約50%を超える、最も好ましくは純度約70%を超えるソルビタンモノミリステート);ジグリセロールのココイル(例えば、ラウリル基、ミリストイル基等)エーテル;及び、これらの混合物が挙げられる。
油溶性界面活性剤は、モノマ全質量基準で5〜80質量%の範囲で使用することが好ましい。油溶性界面活性剤の含有量が5質量%以上であると、水滴の安定性が充分となることから、大きな単一孔を形成しやすくなる。油溶性界面活性剤の含有量が80質量%以下であると、重合後に多孔質ポリマ粒子が形状をより保持しやすくなる。
多孔質ポリマ粒子を得るための組成物は、多孔質化剤として溶解性粒子を含んでいてもよい。溶解性粒子とは、例えば、酸、アルカリ、溶剤等に溶解させることが可能な粒子である。溶解性粒子は、重合中には溶解せず、粒子形成後にポリマ粒子を酸溶液に浸すことによって粉体多孔質化剤を溶解する方法等により、除去することができる。溶解性粒子の構成材料としては、具体的には、炭酸カルシウム、第三リン酸カルシウム、シリカ、ポリマ、金属コロイド等を使用することができる。溶解性粒子の構成材料としては、除去しやすさの観点から、炭酸カルシウム、第三リン酸カルシウム等を用いることが好ましい。溶解性粒子の粒径は、0.6〜5μmが好ましい。溶解性粒子の粒径は、分離材内の通液性をさらに向上させる観点から、1〜5μmがより好ましい。なお、溶解性粒子の平均粒径は、後述の多孔質ポリマ粒子の平均粒径の測定方法と同様の方法で測定することができる。
重合反応に用いられる水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体等が挙げられる。水性媒体には、界面活性剤が含まれていてもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系及び両性イオン系の界面活性剤のうち、いずれも用いることができる。
アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩;アルカンスルホン酸塩;ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩;アルケルニルコハク酸塩(ジカリウム塩);アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物;ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンアルキル硫酸エステル塩が挙げられる。
カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド等の4級アンモニウム塩が挙げられる。
ノニオン系界面活性剤としては、例えば、ポリエチレングリコールアルキルエーテル類、ポリエチレングリコールアルキルアリールエーテル類、ポリエチレングリコールエステル類、ポリエチレングリコールソルビタンエステル類、ポリアルキレングリコールアルキルアミン又はアミド類等の炭化水素系ノニオン界面活性剤;シリコンのポリエチレンオキサイド付加物類、ポリプロピレンオキサイド付加物類等のポリエーテル変性シリコン系ノニオン界面活性剤;パーフルオロアルキルグリコール類等のフッ素系ノニオン界面活性剤が挙げられる。
両性イオン系界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド等の炭化水素界面活性剤;リン酸エステル系界面活性剤;亜リン酸エステル系界面活性剤が挙げられる。
界面活性剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤の中でも、モノマの重合時の分散安定性に優れる観点から、アニオン系界面活性剤が好ましい。
必要に応じて添加される重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、tert−ブチルパーオキシ−2−エチルヘキサノエート、ジ−tert−ブチルパーオキサイド等の有機過酸化物;2,2’−アゾビスイソブチロニトリル、1,1’−アゾビスシクロヘキサンカルボニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物が挙げられる。重合開始剤は、モノマ100質量部に対して、0.1〜7.0質量部の範囲で使用することができる。
重合温度は、モノマ及び重合開始剤の種類に応じて適宜選択することができる。重合温度は、25〜110℃が好ましく、50〜100℃がより好ましい。
多孔質ポリマ粒子の合成(重合工程)において、粒子の分散安定性を向上させるために、高分子分散安定剤を用いてもよく、乳化液に高分子分散安定剤を添加してもよい。
高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース等)、ポリビニルピロリドンが挙げられ、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物も併用することができる。これらのうち、ポリビニルアルコール又はポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、モノマ100質量部に対して1〜10質量部が好ましい。
モノマが単独で重合することを抑えるため(例えば、水中でモノマが単独に乳化重合した粒子の発生を抑えるため)に、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。
多孔質ポリマ粒子の平均粒径は、好ましくは500μm以下、より好ましくは300μm以下、さらに好ましくは150μm以下、特に好ましくは100μm以下である。また、多孔質ポリマ粒子の平均粒径は、通液性の更なる向上の観点、及び、カラム充填後のカラム圧が増加することを抑制する観点から、好ましくは10μm以上、より好ましくは30μm以上、さらに好ましくは50μm以上である。
多孔質ポリマ粒子の細孔容積(空隙率)は、多孔質ポリマ粒子の全体積基準で30〜70体積%であることが好ましく、50〜70体積%であることがより好ましい。多孔質ポリマ粒子は、細孔径(モード径)が0.01μm以上1μm未満である細孔、すなわちマクロポアー(マクロ孔)を有することが好ましい。細孔径は、0.02μm以上1μm未満であることがより好ましい。細孔径が0.01μm以上であると、細孔内に物質が入りやすくなる傾向があり、細孔径が1μm未満であると、比表面積が充分なものになる。これらは上述の多孔質化剤により調整可能である。
多孔質ポリマ粒子の比表面積は、30m/g以上が好ましい。比表面積が30m/g以上であると、分離する物質の吸着量が大きくなる傾向がある。多孔質ポリマ粒子の比表面積は、より高い実用性の観点から、35m/g以上がより好ましく、40m/g以上がさらに好ましい。
(被覆層)
本実施形態の被覆層は、水酸基を有する高分子(例えば水溶性高分子)を含む。水酸基を有する高分子で多孔質ポリマ粒子を被覆することによりカラム圧の上昇を抑制することができると共に、タンパク質の非特異吸着を抑制することが可能となる上、分離材のタンパク質吸着量を、天然高分子を用いた場合と同等又はそれ以上とすることができる。さらに、水酸基を有する高分子が架橋されていると、カラム圧の上昇をさらに抑制することが可能となる。
水酸基を有する高分子は、1分子中に2個以上の水酸基を有することが好ましい。また、水酸基を有する高分子は、親水性高分子であることが好ましい。水酸基を有する高分子としては、例えば多糖類(アガロース、デキストラン、セルロース、ポリビニルアルコール、キトサン等)が挙げられ、各々重量平均分子量1万〜20万程度のものが使用できる。
また、水酸基を有する高分子としては、界面吸着能を向上させる観点から、疎水基により変性された変性体(疎水基を導入した変性体等)を用いることができる。疎水基としては、例えば、炭素数1〜6のアルキル基、炭素数6〜10のアリール基等が挙げられる。炭素数1〜6のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。炭素数6〜10のアリール基としては、フェニル基、ナフチル基等が挙げられる。疎水基は、水酸基と反応する官能基(エポキシ基等)及び疎水基を有する化合物(グリシジルフェニルエーテル等)を、水酸基を有する高分子と従来公知の方法で反応させることにより導入することができる。このような変性体としては、例えば、多糖類の変性体が挙げられ、具体的には、アガロースの変性体(変成アガロース)、デキストランの変性体、セルロースの変性体、ポリビニルアルコールの変性体、キトサンの変性体等が挙げられる。
[被覆層の形成方法]
水酸基を有する高分子を含む被覆層は、例えば、以下に示す方法により形成することができる。被覆層は、水酸基を有する高分子を多孔質ポリマ粒子にコーティングさせることで形成することができる。被覆層の形成方法としては、例えば、水酸基を有する高分子の溶液を多孔質ポリマ粒子表面に吸着させ、未吸着分を除去後、架橋剤により架橋反応させて、細孔内に担持させる方法が挙げられる。水酸基を有する高分子の溶液の溶媒としては、水酸基を有する高分子を溶解することのできるものであれば、特に限定されないが、水が最も一般的である。溶媒に溶解させる高分子の濃度は、5〜20mg/mLが好ましい。
この溶液を多孔質ポリマ粒子に含浸させる。含浸方法としては、水酸基を有する高分子の溶液に多孔質ポリマ粒子を加えて一定時間放置する方法が挙げられる。含浸時間は、多孔質ポリマ粒子の表面状態によっても変わるが、通常一昼夜含浸すれば高分子濃度が多孔質ポリマ粒子の内部で外部濃度と平衡状態となる。その後、水、アルコール等の溶媒で洗浄し、水酸基を有する高分子の未吸着分を除去する。
[架橋処理]
次いで、架橋剤を加えて、多孔質ポリマ粒子表面に吸着された水酸基を有する高分子を架橋反応させて、架橋体を形成する。例えば、架橋剤を加えて、多孔質ポリマ粒子の表面に吸着した水酸基を有する高分子を架橋反応させて、高分子の架橋ゲルを形成させる。このとき、架橋体において、例えば、水酸基を有する高分子が3次元架橋網目構造を有するようになる。
架橋剤としては、例えば、エピクロロヒドリン等のエピハロヒドリン、グルタルアルデヒド等のジアルデヒド化合物、メチレンジイソシアネート等のジイソシアネート化合物、エチレングリコールジグリシジルエーテル等のグリシジル化合物などのような、水酸基(OH基)に活性な官能基を2個以上有する化合物が挙げられる。また、水酸基を有する高分子として、キトサンのような、アミノ基を有する化合物を使用する場合には、ジクロロオクタンのようなジハライドも架橋剤として使用できる。
この架橋反応には通常触媒が用いられ、該触媒は架橋剤の種類により異なるが、例えば、架橋剤がエピクロロヒドリン等の場合には水酸化ナトリウム等のアルカリが有効であり、架橋剤がジアルデヒド化合物の場合には塩酸等の鉱酸が有効である。
架橋剤による架橋反応は、通常、架橋前の分離材を適当な媒体中に分散、懸濁させた系に架橋剤を添加することによって行うことができる。架橋剤の添加量は、水酸基を有する高分子として多糖類又はその変性体を使用した場合、単糖類の1単位を1モルとすると、それに対して0.1〜100モル倍の範囲内で、目的とする分離材の性能に応じて選定することができる。一般的に、架橋剤の添加量が0.1モル倍未満であると、被覆層が多孔質ポリマ粒子から剥離しやすくなる傾向がある。また、架橋剤の添加量が100モル倍を超え、且つ、水酸基を有する高分子との反応率が高い場合、原料の水酸基を有する高分子の特性が損なわれる傾向がある。
また、架橋反応時の触媒の使用量としては、架橋剤の種類にもよるが、通常、水酸基を有する高分子として多糖類を使用する場合、多糖類を形成する単糖類の1単位を1モルとすると、これに対して好ましくは0.01〜10モル倍の範囲、より好ましくは0.1〜5モル倍の範囲で使用される。
例えば、該架橋反応条件を温度条件とした場合、反応系の温度を上げ、その温度が反応温度に達すれば架橋反応が生起する。
水酸基を有する高分子の溶液等を吸着させた多孔質ポリマ粒子を分散、懸濁させる媒体の具体例としては、吸着させた高分子、架橋剤等を抽出してしまうことなく、且つ、架橋反応に不活性なものであれば制限はない。そのような媒体としては、具体的には、水、アルコール等が挙げられる。
架橋反応は、通常、5〜90℃の範囲の温度で、1〜24時間かけて行う。好ましくは、30〜90℃の範囲の温度である。
架橋反応終了後、生成した多孔質ポリマ粒子(多孔質体)と架橋ゲルとの複合体をろ別し、次いで、水、親水性有機溶媒(メタノール、エタノール等)などで洗浄し、未反応の高分子、懸濁用媒体等を除去すれば、多孔質ポリマ粒子の表面の少なくとも一部が、水酸基を有する高分子を含む被覆層により被覆された分離材が得られる。本実施形態の分離材は、多孔質ポリマ粒子1g当たり30〜400mgの被覆層を備えることが好ましい。被覆層の量は、熱分解の重量減少等で測定することができる。
[イオン交換基の導入]
被覆層を備える分離材は、イオン交換基、リガンド(プロテインA)等を粒子表面の水酸基等を介して導入することによりイオン交換精製、アフィニティ精製等に使用することができる。イオン交換基の導入方法としては、例えば、ハロゲン化アルキル化合物(ハロゲン化アルキル基含有化合物)を用いる方法が挙げられる。
ハロゲン化アルキル化合物としては、モノハロゲノ酢酸、モノハロゲノプロピオン酸等のモノハロゲノカルボン酸及びそのナトリウム塩;ジエチルアミノエチルクロライド等の、ハロゲン化アルキル基を少なくとも1つ有する1級、2級又は3級アミン;ハロゲン化アルキル基を有する4級アンモニウムの塩酸塩などが挙げられる。ハロゲン化アルキル化合物としては、臭化物又は塩化物が好ましい。ハロゲン化アルキル化合物の使用量は、イオン交換基を導入する分離材(イオン交換基を導入する前の分離材)の全質量基準で0.2質量%以上が好ましい。
イオン交換基の導入には、反応を促進させるために、有機溶媒を用いることが有効である。有機溶媒としては、エタノール、1−プロパノール、2−プロパノール(イソプロピルアルコール)、1−ブタノール、イソブタノール、1−ペンタノール、イソペンタノール等のアルコール類が挙げられる。
通常、イオン交換基の導入は、分離材表面の水酸基に行われるので、湿潤状態の粒子を、ろ過等により水切りした後、所定濃度のアルカリ性水溶液に浸漬し、一定時間放置した後、水、又は、水−有機溶媒混合系で、上記ハロゲン化アルキル化合物を添加し反応させる。イオン交換基の導入方法としては、一般的には、水酸化ナトリウム水溶液に親水性天然高分子を溶解し、水、又は、水−有機溶媒混合系で、ハロゲン化アルキル化合物と反応させる方法が挙げられる。ハロゲン化アルキル化合物の使用量は、例えば、親水性天然高分子の全質量基準で0.2質量%以上である。この反応は、温度40〜90℃で、還流下、0.5〜12時間行うことが好ましい。上記の反応で使用されるハロゲン化アルキル化合物の種類により、付与されたイオン交換基が決定される。
弱塩基性基であるアミノ基をイオン交換基として導入する方法としては、前記ハロゲン化アルキル化合物のうち、モノ−、ジ−又はトリ−アルキルアミノクロライド、モノ−、ジ−又はトリ−アルカノールアミノクロライド、モノ(又はジ−)アルキル−モノ(又はジ−)アルカノールアミノクロライド等の2級又は3級アミノハロゲナイドなどを反応させる方法が挙げられる。これらのアミンの使用量は、例えば、イオン交換基を導入する分離材の全質量基準で0.2質量%以上である。反応条件は、例えば、40〜90℃で0.5〜12時間である。
強塩基性基である4級アンモニウム基をイオン交換基として導入する方法としては、まず、3級アミノ基を導入し、該3級アミノ基にエピクロロヒドリン等のハロゲン化アルキル化合物を反応させて4級アンモニウム基に変換させる方法などが挙げられる。又は、4級アンモニウムクロライド等の4級アミノハロゲナイドなどを上述の1〜3級アミノクロライドと同様の方法で分離材(複合体)と反応させてもよい。
弱酸性基であるカルボキシ基をイオン交換基として導入する方法としては、上記ハロゲン化アルキル化合物として、モノハロゲノ酢酸、モノハロゲノプロピオン酸等のモノハロゲノカルボン酸又はそのナトリウム塩を反応させる方法が挙げられる。これらのハロゲン化アルキル化合物の使用量は、例えば、イオン交換基を導入する分離材の全質量基準で0.2質量%以上である。
強酸性基であるスルホン酸基をイオン交換基として導入する方法としては、分離材に対してエピクロロヒドリン等のグリシジル化合物を反応させ、亜硫酸ナトリウム、重亜硫酸ナトリウム等の亜硫酸塩又は重亜硫酸塩の飽和水溶液に分離材を添加する方法が挙げられる。反応条件は、例えば、30〜90℃で1〜10時間である。
イオン交換基を導入する他の方法としては、アルカリ性雰囲気下で、分離材に1,3−プロパンスルトンを反応させる方法も挙げられる。1,3−プロパンスルトンは、例えば、イオン交換基を導入する分離材の全質量基準で0.4質量%以上使用する。反応条件は、例えば、0〜90℃で0.5〜12時間である。
これらの方法以外のイオン交換基の導入方法としては、スルホプロピルを反応させる方法や、エピハロヒドリンジグリシジル化合物等を付加させた後にグリシジル基にイオン交換基を導入する方法も挙げられる。一般的には、水酸化ナトリウム水溶液に親水性天然高分子を溶解し、水、又は、水−有機溶媒混合系で、ハロゲン化アルキル基含有化合物と反応させる方法が挙げられる。ハロゲン化アルキル基含有化合物の使用量は、例えば、親水性天然高分子の全質量基準で0.2質量%以上であり、この反応は、温度40〜90℃、還流下で、0.5〜12時間行うのが好ましい。
本実施形態の分離材の吸湿度は、1〜30質量%が好ましく、1〜20質量%がより好ましく、1〜10質量%がさらに好ましい。吸湿度が30質量%以下であると、被覆層の厚みにより分離材の通液性が低下することをさらに抑制できる。
本実施形態の分離材の細孔径(モード径、細孔径分布の最頻値、最大頻度径)は、0.05〜0.6μmであることが好ましく、0.05〜0.5μmであることがより好ましく、0.1〜0.5μmであることがさらに好ましい。細孔径がこれらの範囲にあると、粒子中に液が流れやすくなり、動的吸着量を多くしやすい。
本実施形態の分離材の比表面積は、30m/g以上であることが好ましい。より高い実用性の観点から、比表面積は、35m/g以上であることがより好ましく、40m/g以上であることがさらに好ましい。比表面積が30m/g以上であると、分離する物質の吸着量が大きくなりやすい傾向がある。分離材の比表面積の上限は、特に限定されないが、例えば300m/g以下とすることができる。
本実施形態の分離材又は多孔質ポリマ粒子の細孔容積、細孔径(モード径)及び比表面積は、水銀圧入測定装置(オートポア:株式会社島津製作所製)を用いて、例えば、以下のようにして測定することができる。試料約0.05gを、標準5mL粉体用セル(ステム容積0.4mL)に加え、初期圧21kPa(約3psia、細孔直径約60μm相当)の条件で測定する。水銀パラメータは、装置デフォルトの水銀接触角130degrees、水銀表面張力485dynes/cmに設定する。また、細孔径0.05〜5μmの範囲に限定してそれぞれの値を算出する。
本実施形態の分離材の平均粒径は、10〜300μmが好ましい。分取用又は工業用のクロマトグラフィーでの使用には、カラム内圧の極端な増加を避けるために、50〜300μmがより好ましい。
本実施形態の分離材又は多孔質ポリマ粒子の平均粒径は、以下の測定法により求めることができる。
1)超音波分散装置を使用して粒子を水(界面活性剤等の分散剤を含む)に分散させ、1質量%の粒子を含む分散液を調製する。
2)粒度分布計(シスメックスフローFPIA−3000、シスメックス株式会社製)を用いて、上記分散液中の粒子約1万個の画像により平均粒径を測定する。
分離材の細孔径、比表面積等は、多孔質ポリマ粒子の原料、多孔質化剤、水酸基を有する高分子等を適宜選択することによって調整することができる。
本実施形態の分離材の細孔径分布において、最大の細孔体積を示す極大値を基準として、前記極大値を有する細孔径以下の細孔径を有する領域の合計細孔体積Aに対する、前記極大値を有する細孔径を超える細孔径を有する領域の合計細孔体積Bの比率B/Aは、優れた動的吸着量及び通液性を得る観点から、1.2以上である。すなわち、細孔径分布において、極大値以下の領域の合計体積と、極大値を超える領域の合計体積の体積比は1.2以上である。このような効果が得られる要因は明確ではないが、タンパク質等の生体高分子の粒子内への拡散が起こりやすくなることにより、動的吸着量及び通液性が向上すると推測される。
細孔径分布(細孔径の頻度分布)の横軸は細孔径であり、縦軸は細孔体積(水銀圧入法の場合、水銀圧入体積)である。図1は、細孔径分布の一例を示す図である。図1において、符号Pは、最大の細孔体積を示す極大値を有するピークを示し、符号Dは、極大値を有する細孔径を示し、符号Aは、極大値を有する細孔径以下の細孔径を有する領域の合計細孔体積を示し、符号Bは、極大値を有する細孔径を超える細孔径を有する領域の合計細孔体積を示す。細孔径分布は、水銀圧入法により得ることができる。細孔径分布は、単一の極大値を有していてもよく、複数の極大値を有していてもよい。なお、最大の細孔体積を示す極大値が複数存在する場合には、最大の細孔体積を示す極大値を有する最も大きな細孔径を基準として採用する。
比率B/Aの下限は、さらに優れた動的吸着量及び通液性を得る観点から、1.25以上が好ましく、1.3以上がより好ましい。比率B/Aの上限は、さらに優れた動的吸着量及び通液性を得る観点から、2.5以下が好ましく、2.3以下がより好ましく、2.1以下がさらに好ましい。比率B/Aは、例えば、モノマと多孔質化剤の割合を変えることにより調整することができる。例えば、モノマに対する多孔質化剤の割合を多くすると、比率B/Aが増加する傾向がある。
前記極大値を有する細孔径(頻度分布が最も多い細孔径)は、さらに優れた動的吸着量及び通液性を得る観点から、0.05〜0.6μmであることが好ましく、0.05〜0.5μmであることがより好ましく、0.1〜0.5μmであることがさらに好ましい。
本実施形態の分離材は、タンパク質の静電的相互作用による分離、アフィニティ精製等に用いるのに好適である。例えば、イオン交換基を導入した分離材(イオン交換体)を用いて、以下の方法により、タンパク質を回収することができる。まず、タンパク質を含む混合溶液の中に本実施形態の分離材を添加し、静電的相互作用によりタンパク質だけを分離材に吸着させた後、分離材を溶液からろ別し、塩濃度の高い水溶液中に添加すれば、分離材に吸着しているタンパク質を容易に脱離及び回収できる。また、本実施形態の分離材は、例えば、液体クロマトグラフィー用分離材として、カラムクロマトグラフィーにおいて使用することもできる。本実施形態のカラムは、本実施形態の分離材を備え、例えば、本実施形態の分離材を充填してなる。
本実施形態の分離材を用いて分離できる生体高分子としては、水溶性物質が好ましい。具体的には、血清アルブミン(BSA:Bovine Serum Alubumin)、免疫グロブリン等の血液タンパク質などのタンパク質;生体中に存在する酵素;バイオテクノロジーにより生産されるタンパク質生理活性物質;DNA;生理活性をするペプチド等の生体高分子である。生体高分子の分子量は、200万以下が好ましく、50万以下がより好ましい。また、公知の方法に従い、タンパク質の等電点、イオン化状態等によって、分離材の性質、条件等を選ぶことができる。公知の方法としては、例えば、特開昭60−169427号公報等に記載の方法が挙げられる。
水酸基を有する高分子の架橋体により多孔質ポリマ粒子をコーティングした後、粒子表面、及び/又は、細孔内にイオン交換基、プロテインA等を導入することにより、タンパク質等の生体高分子の分離において、天然高分子及びポリマからなる粒子の持つそれぞれの利点をあわせ持った特性を示しやすい。この性能は、従来の技術では発揮されなかったものである。特に、このような本実施形態の分離材の骨格となる多孔質ポリマ粒子は、上記のような方法で得られる粒子であるため、耐久性及び耐アルカリ性に優れる。また、水酸基を有する高分子の架橋体をコーティングすることにより、非特異吸着が起こりにくく、タンパク質の脱吸着が起こりやすい傾向にある。さらに、本実施形態の分離材は、同一流速下でのタンパク質等の吸着容量(動的吸着容量)が大きい点でも従来のイオン交換樹脂に比べて好ましい性質を有する。
本明細書における「通液速度」とは、φ7.8×300mmのステンレスカラムに本実施形態の分離材を充填し、液を流した際の通液速度を表す。本実施形態の分離材をカラムに充填した場合、カラム圧が0.3MPaのときの通液速度(流速)は、800cm/h以上であることが好ましく、1000cm/h以上であることがより好ましく、1300cm/h以上であることがさらに好ましく、1500cm/h以上であることが特に好ましい。カラムクロマトグラフィーでタンパク質の分離を行う場合、カラムに通液されるタンパク質溶液等の通液速度としては、一般的に400cm/h以下の範囲であるが、本実施形態の分離材を使用した場合は、通常のタンパク質分離用の分離材よりも速い通液速度である800cm/h以上でも高吸着容量で使用できる。
本実施形態の分離材は、カラムクロマトグラフィーでカラム充填材として使用した場合、使用する溶出液の性質によらず、カラム内での体積変化が少ないため、操作性に優れる。
なお、本実施形態では、主に、イオン交換基を導入する形態の分離材について説明したが、イオン交換基を導入しなくても分離材として用いることができる。このような分離材は、例えば、ゲルろ過クロマトグラフィーに利用することができる。
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
(多孔質ポリマ粒子1の合成)
500mLの三口フラスコ中で、純度96質量%のジビニルベンゼン(DVB960、新日鉄住金化学株式会社)12g、ジエチルベンゼン6g、イソアミルアルコール18g、及び、過酸化ベンゾイル0.64gをポリビニルアルコール水溶液(0.5質量%)に一括して仕込み、80℃のウォーターバスで加熱しながら、撹拌機を用いて約8時間撹拌して粒子を得た。得られた粒子をろ過後、アセトンで洗浄を行い、多孔質ポリマ粒子1を得た。得られた粒子の平均粒径は、粒度分布計(FPIA−3000、シスメックス株式会社製)を用いて測定したところ91μmであった(表1参照)。
(被覆層の形成:水酸基を有する水溶性高分子によるコーティング)
アガロース水溶液(2質量%)100mLに、水酸化ナトリウム4gと、グリシジルフェニルエーテル0.14gとを加え、70℃で12時間反応させることにより、アガロースにフェニル基を導入した。得られた変性アガロースをイソプロピルアルコールで沈殿させ、洗浄した。
得られた変性アガロースを再度水に溶解して20mg/mLの変性アガロース水溶液を調製した。この変性アガロース水溶液70mLに多孔質ポリマ粒子1を1gの割合で投入し、55℃で24時間撹拌することにより、多孔質ポリマ粒子1に変性アガロースを吸着させ、多孔質ポリマ粒子1の表面に被覆層を形成した。その後、ろ過を行い、熱水で洗浄した。
粒子に吸着した変性アガロースを次のようにして架橋させた。エチレングリコールジグリシジルエーテル0.64M及び水酸化ナトリウム0.4Mを含む水溶液に、水溶液35mLに対して粒子1gの割合で粒子を添加し、室温にて24時間撹拌した。その後、加熱した2質量%のドデシル硫酸ナトリウム水溶液で洗浄後、純水で洗浄した。
上記で得られた粒子を含む水懸濁液をろ過し、乾燥した後(乾燥質量20g)、5Mの水酸化ナトリウム水溶液200mLに投入し、室温で1時間放置した。別途、ジエチルアミノエチルクロライド塩酸塩の所定量(60g)を200mL添加し、水溶液の温度を70℃まで上げ、撹拌しながら2時間反応させた。反応終了後、ろ過して水洗し、ジエチルアミノエチル(DEAE)基をイオン交換基として有する分離材(DEAE変性イオン交換体)を得た。得られた分離材の細孔径(モード径)及び比表面積を水銀圧入法(オートポア:株式会社島津製作所製)にて測定した。また、熱重量分析により被覆層の被覆量(水溶性高分子の被覆量、多孔質ポリマ粒子1g当たりの被覆量)を定量した。結果を表2に示す。
また、水銀圧入法(オートポア:株式会社島津製作所製)により分離材の細孔径分布を測定した(図1参照)。得られた細孔径分布より、極大値を有する細孔径以下の細孔径を有する領域の合計細孔体積Aと、極大値を有する細孔径を超える細孔径を有する領域の合計細孔体積Bとを算出した後、細孔体積比として比率(体積分率)B/Aを算出した。結果を表2に示す。
また、走査型電子顕微鏡を用いて分離材の外観、表面状態及び断面を確認した。図2は、実施例1の分離材の外観写真(500倍)を示す図である。図3は、実施例1の分離材の表面状態の写真(5000倍)を示す図である。図4は、実施例1の分離材の断面写真(10000倍)を示す図である。図5は、実施例1の分離材の断面写真(拡大写真。20000倍)を示す図である。
(イオン交換容量の評価)
分離材のイオン交換容量を以下のように測定した。5mL容量の分離材を、0.1Nの水酸化ナトリウム水溶液20mLに1時間浸漬し、室温で撹拌した。その後、洗浄液として用いた水のpHが7以下となるまで洗浄を行った。洗浄した分離材を0.1Nの塩酸20mLに浸漬し、1時間撹拌させた。分離材をろ過で取り除いた後、ろ液の塩酸水溶液を中和滴定することによって、分離材のイオン交換容量を測定した。結果を表2に示す。
(カラム特性評価)
DEAE変性分離材をφ7.8×300mmのステンレスカラムにスラリー(溶媒:メタノール)濃度30質量%にて15分かけて充填した。その後、流速を変えて水をカラムに流し、流速とカラム圧との関係を測定し、カラム圧0.3MPa時の線流速(カラム流速)を測定した。結果を表2に示す。
また、動的吸着量を以下のようにして測定した。20mmol/LのTris−塩酸緩衝液(pH8.0)をカラムに10カラム容量流した。その後、BSA(Bovine Serum Alubumin)濃度2mg/mLの20mmol/LのTris−塩酸緩衝液を800cm/hで流し、UVによりカラム出口でのBSA濃度を測定した。カラム入口と出口でのBSA濃度が一致するまで上記緩衝液を流し、5カラム容量分の1MのNaClのTris−塩酸緩衝液で希釈した。10%breakthroughにおける動的吸着量(動的結合容量)は、下記式を用いて算出した。結果を表2に示す。
10=cF(t10−t)/V
10:10%breakthroughにおける動的吸着量(mg/mL wet resin)
:注入しているBSA濃度(mg/mL)
F:流速(mL/min)
:ベッド体積(mL)
10:10%breakthroughにおける時間(min)
:BSA注入開始時間(min)
<実施例2>
ジビニルベンゼン12g、ジエチルベンゼン6g及びイソアミルアルコール18gをジビニルベンゼン12g、ジエチルベンゼン6g及びイソアミルアルコール20gへ変更して多孔質ポリマ粒子2を合成した以外は、実施例1と同様に処理することによって分離材を得た。分離材について、実施例1と同様の評価を行った。
<実施例3>
ジビニルベンゼン12g、ジエチルベンゼン6g及びイソアミルアルコール18gをジビニルベンゼン12g、ジエチルベンゼン6g及びイソアミルアルコール22gへ変更して多孔質ポリマ粒子3を合成した以外は、実施例1と同様に処理することによって分離材を得た。分離材について、実施例1と同様の評価を行った。
<比較例1>
ジビニルベンゼン12g、ジエチルベンゼン6g及びイソアミルアルコール18gをジビニルベンゼン12g、ジエチルベンゼン3g及イソアミルアルコール12gへ変更して多孔質ポリマ粒子4を合成した以外は、実施例1と同様に処理することによって分離材を得た。分離材について、実施例1と同様の評価を行った。
<比較例2>
ジビニルベンゼン12g、ジエチルベンゼン6g及びイソアミルアルコール18gをジビニルベンゼン4g及びジヒドロキシプロピルメタクリレート8gへ変更して多孔質ポリマ粒子5を合成した。多孔質ポリマ粒子5に対して、被覆層を形成することなく実施例1と同様にしてイオン交換基の導入(DEAE変性)のみを行ったこと以外は、実施例1と同様に処理することによって分離材を得た。分離材について、実施例1と同様の評価を行った。
Figure 0006848177
Figure 0006848177
表2の結果から、細孔体積の比率が1.2以上であるとの要件を満たす実施例では、カラム流速が速い場合においても動的吸着量が非常に大きいと共に、通液性の高い粒子を合成することができることが分かる。

Claims (8)

  1. 多孔質ポリマ粒子と、
    該多孔質ポリマ粒子の表面の少なくとも一部を被覆する被覆層と、を備える分離材であって、
    前記多孔質ポリマ粒子が、ジビニル化合物に由来する構造単位を有し、
    前記被覆層が、水酸基を有する高分子を含み、
    前記水酸基を有する高分子が多糖類又はその変性体であり、
    前記分離材の細孔径分布において、最大の細孔体積を示す極大値を基準として、前記極大値を有する細孔径以下の細孔径を有する領域の合計細孔体積Aに対する、前記極大値を有する細孔径を超える細孔径を有する領域の合計細孔体積Bの比率B/Aが1.2以上である、分離材。
  2. 前記多孔質ポリマ粒子の比表面積が30m/g以上である、請求項1に記載の分離材。
  3. 前記多孔質ポリマ粒子が、ジビニルベンゼンに由来する構造単位を有する共重合体を含む、請求項1又は2に記載の分離材。
  4. 前記極大値を有する細孔径が0.05〜0.6μmである、請求項1〜3のいずれか一項に記載の分離材。
  5. 前記多孔質ポリマ粒子の平均粒径が10〜500μmである、請求項1〜4のいずれか一項に記載の分離材。
  6. 前記水酸基を有する高分子がアガロース又はその変性体である、請求項1〜5のいずれか一項に記載の分離材。
  7. 前記多孔質ポリマ粒子1g当たり30〜400mgの前記被覆層を備える、請求項1〜6のいずれか一項に記載の分離材。
  8. 請求項1〜のいずれか一項に記載の分離材を備える、カラム。
JP2016006325A 2016-01-15 2016-01-15 分離材及びカラム Active JP6848177B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016006325A JP6848177B2 (ja) 2016-01-15 2016-01-15 分離材及びカラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016006325A JP6848177B2 (ja) 2016-01-15 2016-01-15 分離材及びカラム

Publications (2)

Publication Number Publication Date
JP2017125812A JP2017125812A (ja) 2017-07-20
JP6848177B2 true JP6848177B2 (ja) 2021-03-24

Family

ID=59363995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006325A Active JP6848177B2 (ja) 2016-01-15 2016-01-15 分離材及びカラム

Country Status (1)

Country Link
JP (1) JP6848177B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120460A (ja) * 1990-09-12 1992-04-21 Tonen Corp ビタミンb↓6の分析方法
JP4034163B2 (ja) * 2001-12-21 2008-01-16 オルガノ株式会社 有機多孔質体、その製造方法および有機多孔質イオン交換体
SE0201623D0 (sv) * 2002-05-30 2002-05-30 Amersham Biosciences Ab Macroporous cross-linked polymer particles
JP5891703B2 (ja) * 2011-10-21 2016-03-23 三菱化学株式会社 多孔質架橋粒子および分離剤の製造方法ならびに分離方法
CN104558350B (zh) * 2013-10-12 2017-02-08 中国石油大学(华东) 一种亲水性超大孔聚合物微球及其制备方法
JP2015102351A (ja) * 2013-11-21 2015-06-04 公立大学法人首都大学東京 カラム充填剤、カラム、及びカラムシステム

Also Published As

Publication number Publication date
JP2017125812A (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6778382B2 (ja) 分離材
JP6790834B2 (ja) 分離材
JP6848203B2 (ja) 分離材及びカラム
JP6834129B2 (ja) 分離材及びカラム
JP6476887B2 (ja) 分離材
JP6648565B2 (ja) 分離材
JP2018171556A (ja) 分離材及びカラム
JP6922892B2 (ja) 分離材、該分離材を備えるカラム、及び分離材の製造方法
JP6627514B2 (ja) 分離材、カラム、及び分離材の製造方法
JP6848177B2 (ja) 分離材及びカラム
JP2017125815A (ja) 分離材及びカラム
JP6676975B2 (ja) 分離材及びカラム
JP6897007B2 (ja) 分離材及びカラム
JP6834131B2 (ja) 分離材及びカラム
JP2021181037A (ja) 分離材、分離材の製造方法及びカラム
JP6834130B2 (ja) 分離材及びカラム
JP6939021B2 (ja) 分離材及びカラム
JP6746915B2 (ja) 分離材及びカラム
JP6874276B2 (ja) 分離材及びカラム
JP6746914B2 (ja) 分離材及びカラム
JP6852259B2 (ja) 分離材及びカラム
JP2017125799A (ja) 分離材及びカラム
JP6778378B2 (ja) 分離材及びカラム
JP6676976B2 (ja) 分離材及びカラム
JP6610266B2 (ja) 分離材及びカラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6848177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151