JP6842020B2 - 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池 - Google Patents

陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池 Download PDF

Info

Publication number
JP6842020B2
JP6842020B2 JP2017143135A JP2017143135A JP6842020B2 JP 6842020 B2 JP6842020 B2 JP 6842020B2 JP 2017143135 A JP2017143135 A JP 2017143135A JP 2017143135 A JP2017143135 A JP 2017143135A JP 6842020 B2 JP6842020 B2 JP 6842020B2
Authority
JP
Japan
Prior art keywords
group
divalent
anion exchange
carbon
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017143135A
Other languages
English (en)
Other versions
JP2019023258A (ja
Inventor
宮武 健治
健治 宮武
純平 三宅
純平 三宅
小野 英明
英明 小野
愛生 島田
愛生 島田
尚樹 横田
尚樹 横田
菜摘 吉村
菜摘 吉村
葵 高野
葵 高野
朝澤 浩一郎
浩一郎 朝澤
英里子 西野
英里子 西野
唯 桑原
唯 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Takahata Precision Co Ltd
University of Yamanashi NUC
Original Assignee
Daihatsu Motor Co Ltd
Takahata Precision Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Takahata Precision Co Ltd, University of Yamanashi NUC filed Critical Daihatsu Motor Co Ltd
Priority to JP2017143135A priority Critical patent/JP6842020B2/ja
Priority to US16/043,682 priority patent/US10734663B2/en
Publication of JP2019023258A publication Critical patent/JP2019023258A/ja
Application granted granted Critical
Publication of JP6842020B2 publication Critical patent/JP6842020B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)

Description

本発明は陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池に関する。
単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素−炭素結合を介して互いに結合する複数の芳香環からなる2価の疎水性基と、単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素−炭素結合を介して互いに結合する複数の芳香環からなり、前記芳香環のうち少なくとも1つが陰イオン交換基を有する2価の親水性基と、所定の構造を有する2価のフッ素含有基とからなり、前記疎水性基が、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して繰り返される疎水ユニットと、前記親水性基が、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して繰り返される親水ユニットとを有し、前記疎水ユニットと前記親水ユニットとが、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して結合しており、かつ前記2価のフッ素含有基が、前記疎水ユニットおよび/または前記親水ユニットの主鎖中に、エーテル結合、チオエーテル結合、炭素−ケイ素結合、または炭素−炭素結合を介して結合している陰イオン交換樹脂が知られている(特許文献1)。
特開2016−44224号公報
しかし、特許文献1に記載された陰イオン交換樹脂には、化学的安定性(耐久性、特に耐アルカリ性)および機械的特性(薄膜の柔軟性)が十分ではないという課題が存在した。
そこで、本発明は、化学的特性(耐久性)および機械的特性(薄膜の柔軟性)に優れる電解質膜、電極触媒層形成用バインダーおよび電池電極触媒層を製造できる陰イオン交換樹脂、その陰イオン交換樹脂から形成される電解質膜および電極触媒層形成用バインダー、その電極触媒層形成用バインダーから形成される電池電極触媒層、ならびにその電解質膜または電池電極触媒層を備える燃料電池を提供することを目的とする。
前記課題を解決するために、本発明の陰イオン交換樹脂は、
単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素−炭素結合を介して互いに結合する複数の芳香環からなる2価の疎水性基と、
単数の多環式化合物からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、もしくは2価の硫黄含有基である連結基、および/または炭素−炭素結合を介して互いに結合する複数の多環式化合物からなり、前記連結基または前記多環式化合物のうち少なくとも1つが、炭素数2以上の2価の飽和炭化水素基を介して陰イオン交換基と結合した2価の親水性基と
からなり、
前記疎水性基が、下記式(1a)で表されるビスフェノール残基を含み、
前記疎水性基単体からなる、または、前記疎水性基が、エーテル結合、チオエーテル結合、もしくは炭素−炭素結合を介して繰り返される疎水ユニットと、
前記親水性基単体からなる、または、前記親水性基が、エーテル結合、チオエーテル結合、もしくは炭素−炭素結合を介して繰り返される親水ユニットと
を有し、
前記疎水ユニットと前記親水ユニットとが、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して結合していることを特徴とする。
Figure 0006842020
(式中、Alkは、互いに同一または相異なって、アルキル基またはアリール基を示し、a、b、c、およびdは、互いに同一または相異なって、0〜4の整数を示し、lは、1以上の整数を示す。)
本発明の陰イオン交換樹脂では、前記疎水性基が、下記式(1’)で表されるビスフェノール残基を含むことが好適である。
Figure 0006842020
(式中、lは、1以上の整数を示す。)
本発明の陰イオン交換樹脂では、前記親水性基が、下記式(3)で表されるフルオレン残基を含むことが好適である。
Figure 0006842020
(式中、IonおよびIon’は、互いに同一または相異なって、陰イオン交換基を示し、yおよびzは、互いに同一または相異なって、2〜20の整数を示す。)
前記課題を解決するために、本発明の電解質膜は、上記の陰イオン交換樹脂を含むことを特徴とする。
前記課題を解決するために、本発明の電極触媒層形成用バインダーは、上記の陰イオン交換樹脂を含むことを特徴とする。
前記課題を解決するために、本発明の電池電極触媒層は、上記の電極触媒層形成用バインダーを含むことを特徴とする。
前記課題を解決するために、本発明の燃料電池は、
上記の陰イオン交換樹脂を含む電解質膜と、
前記電解質膜を挟んで対向配置され、含水素燃料が供給される燃料側電極、および、酸素または空気が供給される酸素側電極と、
を備えたことを特徴とする。
本発明の燃料電池では、前記含水素燃料が、水素、アルコール、またはヒドラジン類であることが好適である。
前記課題を解決するために、本発明の燃料電池は、
電解質膜と、
前記電解質膜を挟んで対向配置され、含水素燃料が供給される燃料側電極、および、酸素または空気が供給される酸素側電極と
を備え、
前記燃料側電極および/または前記酸素側電極が、上記の電池電極触媒層を含むことを特徴とする。
本発明の燃料電池では、前記含水素燃料が、水素、アルコール、またはヒドラジン類であることが好適である。
本発明によれば、化学的特性および機械的特性に優れる電解質膜、電極触媒層形成用バインダーおよび電池電極触媒層を製造できる陰イオン交換樹脂、その陰イオン交換樹脂から形成される電解質膜および電極触媒層形成用バインダー、その電極触媒層形成用バインダーから形成される電池電極触媒層、ならびにその電解質膜または電池電極触媒層を備える燃料電池を提供できる。
本発明の燃料電池の一実施形態を示す概略構成図である。 実施例および比較例で得られたサンプルの水酸化物イオン導電率の結果を示すグラフである。 実施例で得られたサンプルの引張試験の結果を示すグラフである。 比較例で得られたサンプルの低温(50℃)における引張試験の結果を示すグラフである。
本発明の陰イオン交換樹脂は、2価の疎水性基と、2価の親水性基とからなる。
本発明の陰イオン交換樹脂において、2価の疎水性基は、単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素−炭素結合を介して互いに結合する複数(2つ以上、好ましくは、2つ)の芳香環からなる。
芳香環としては、例えば、ベンゼン環、ナフタレン環、インデン環、アズレン環、フルオレン環、アントラセン環、フェナントレン環などの、炭素数6〜14の単環または多環式化合物、および、アゾール、オキソール、チオフェン、オキサゾール、チアゾール、ピリジンなどの、複素環式化合物が挙げられる。
芳香環として、好ましくは、炭素数6〜14の単環芳香族炭化水素が挙げられ、より好ましくは、ベンゼン環が挙げられる。
また、芳香環は、必要により、ハロゲン原子、アルキル基、アリール基、擬ハロゲン化物などの置換基に置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。擬ハロゲン化物としては、トリフルオロメチル基、−CN、−NC、−OCN、−NCO、−ONC、−SCN、−NCS、−SeCN、−NCSe、−TeCN、−NCTe、−Nが挙げられる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の炭素数1〜20のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数1〜20のシクロアルキル基が挙げられる。アリール基としては、例えば、フェニル基、ビフェニル基、ナフチル基、フルオレニル基が挙げられる。
なお、芳香環がハロゲン原子、アルキル基、アリール基、擬ハロゲン化物などの置換基に置換される場合において、ハロゲン原子、アルキル基、アリール基、擬ハロゲン化物などの置換基の置換数および置換位置は、目的および用途に応じて、適宜設定される。
ハロゲン原子に置換された芳香環として、より具体的には、例えば、1〜4つのハロゲン原子で置換されたベンゼン環(例えば、1〜4つのフッ素で置換されたベンゼン環、1〜4つの塩素で置換されたベンゼン環、1〜4つの臭素で置換されたベンゼン環、1〜4つのヨウ素で置換されたベンゼン環など、1〜4のハロゲン原子は、全て同一であっても、相異なっていてもよい)などが挙げられる。
2価の炭化水素基としては、例えば、メチレン(−CH−)、エチレン、プロピレン、i−プロピレン(−C(CH−)、ブチレン、i−ブチレン、sec−ブチレン、ペンチレン(ペンテン)、i−ペンチレン、sec−ペンチレン、ヘキシレン(ヘキサメチレン)、3−メチルペンテン、ヘプチレン、オクチレン、2−エチルヘキシレン、ノニレン、デシレン、i−デシレン、ドデシレン、テトラデシレン、ヘキサデシレン、オクタデシレンなどの、炭素数1〜20の2価の飽和炭化水素基が挙げられる。
2価の炭化水素基として、好ましくは、炭素数1〜3の2価の飽和炭化水素基、具体的には、メチレン(−CH−)、エチレン、プロピレン、i−プロピレン(−C(CH−)が挙げられ、より好ましくは、メチレン(−CH−)、イソプロピレン(−C(CH−)が挙げられ、とりわけ好ましくは、i−プロピレン(−C(CH−)が挙げられる。
2価の炭化水素基は、前記した芳香環における、1価の残基で置換されていても良い。
芳香族基としては、例えば、前記した芳香環における、2価の残基が挙げられる。好ましくは、m−フェニレン基およびフルオレニル基が挙げられる。
このような疎水性基として、好ましくは、下記式(2)で示される、アルキル基、アリール基、ハロゲン原子または擬ハロゲン化物で置換されていてもよいビスフェノール残基(Rを介して互いに結合する2つのベンゼン環からなる2価の疎水性基)が挙げられる。
Figure 0006842020
(式中、Rは、炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、芳香族基、または直接結合を示し、Alkは、互いに同一または相異なって、アルキル基またはアリール基を示し、Xは、互いに同一または相異なって、ハロゲン原子または擬ハロゲン化物を示し、a、b、c、およびdは、互いに同一または相異なって、0〜4の整数を示す。)
上記式(2)において、Rは、炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、好ましくは、i−プロピレン(−C(CH−)を示す。
上記式(2)において、Alkは、互いに同一または相異なって、アルキル基またはアリール基を示す。アルキル基としては、上記したアルキル基が挙げられ、アリール基としては、上記したアリール基が挙げられる。
上記式(2)において、Xは、互いに同一または相異なって、上記したハロゲン原子または擬ハロゲン化物を示す。
上記式(2)において、aおよびbは、互いに同一または相異なって、0〜4の整数を示し、好ましくは、0〜2の整数を示し、さらに好ましくは、aおよびbが、ともに0を示す。
上記式(2)において、cおよびdは、互いに同一または相異なって、0〜4の整数を示し、好ましくは、0〜2の整数を示し、さらに好ましくは、cおよびdが、ともに0を示す。
このような疎水性基として、とりわけ好ましくは、下記式(1)で表される、ハロゲン原子または擬ハロゲン化物またはアルキル基またはアリール基で置換されていてもよいビスフェノール残基が挙げられる。
Figure 0006842020
(式中、Alk、X、a、b、c、およびdは、前記式(2)のAlk、X、a、b、c、およびdと同意義を示し、Zは、互いに同一または相異なって、炭素原子またはケイ素原子を示し、Rは、互いに同一または相異なって、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、lは、1以上の整数を示し、h、h’、h’’、i、i’、i’’、jおよびkは、互いに同一または相異なって、0以上の整数を示す。)
上記式(1)において、Zは、互いに同一または相異なって、炭素原子またはケイ素原子を示し、好ましくは炭素原子を示す。
上記式(1)において、Rは、互いに同一または相異なって、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、好ましくは直接結合を示す。
上記式(1)において、Xは、互いに同一または相異なって、上記したハロゲン原子もしくは擬ハロゲン化物、または水素原子を示し、好ましくはハロゲン原子または水素原子を示し、より好ましくはフッ素原子を示す。
上記式(1)において、lは1以上の整数を示し、好ましくは1〜20の整数を示し、より好ましくは2〜6の整数を示す。
上記式(1)において、h、h’、h’’、i、i’、i’’、j、およびkは、互いに同一または相異なって、0以上の整数を示し、好ましくは0〜20の整数を示し、より好ましくは0〜3の整数を示し、さらに好ましくは0または1を示す。
このような疎水性基として、とりわけ好ましくは、下記式(1’)で表されるフッ素含有ビスフェノール残基が挙げられる。
Figure 0006842020
(式中、lは、前記式(1)のlと同意義を示す。)
このように、2価のフッ素含有基を疎水ユニットを構成する疎水性基の主鎖中に導入することで、以下の効果が得られる。
・分子間相互作用の低い主鎖により溶解性・柔軟性が向上する
・撥水性を与え、親水部(イオン交換基周辺)との相分離が発達しイオン導電パスを形成できる
・撥水性により、親水性の水酸化物イオンや酸化剤が主鎖に近づきにくくなる(耐アルカリ性・化学的安定性向上)
・主鎖の剛性を制御できる(電解質膜の柔軟性向上)
・ガラス転移温度が低く、触媒層と接着できる(接触抵抗低下)
・ガス拡散性を制御できる(バインダーとして使用した際の酸素の拡散性増大)
また、このような疎水性基として、好ましくは、炭素−炭素結合を介して互いに結合する2つ以上の芳香環からなる2価の疎水性基が挙げられ、その具体例としては、下記式(2a)で表される直鎖状オリゴフェニレン基が挙げられる。
Figure 0006842020
(式中、xは、2〜8の整数を示す。)
疎水性基として、炭素−炭素結合を介して互いに結合する2つ以上の芳香環からなる2価の疎水性基(好ましくは、上記式(2a)で表される直鎖状オリゴフェニレン基)を含むことで、電気的特性(導電率)が優れたものとなる。特に、IEC(イオン交換容量)が上昇してもイオン基1個あたりの含水数が上昇しにくく、高い導電率が達成しやすくなる。
上記式(2a)において、xは、2〜8の整数を示し、好ましくは、2〜6の整数を示し、さらに好ましくは、2(すなわちビフェニレン基)を示す。
疎水性基として、その他にも、以下の構造を有するものが挙げられる。
Figure 0006842020
本発明の陰イオン交換樹脂において、2価の親水性基は、単数の多環式化合物からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、もしくは2価の硫黄含有基である連結基、および/または炭素−炭素結合を介して互いに結合する複数の多環式化合物からなり、前記連結基または前記多環式化合物のうち少なくとも1つが、炭素数2以上の2価の飽和炭化水素基を介して陰イオン交換基と結合している。
多環式化合物としては、例えば、ナフタレン環、インデン環、アズレン環、フルオレン環、アントラセン環、フェナントレン環、カルバゾール環、インドール環が挙げられ、好ましくは、フルオレン環が挙げられる。
2価の炭化水素基としては、上記した2価の炭化水素基が挙げられる。
陰イオン交換基は、親水性基において側鎖に導入され、具体的には、特に制限されず、四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ホスフィン、ホスファゼン、三級スルホニウム基、四級ボロニウム基、四級ホスホニウム基、グアニジウム基など、公知の陰イオン交換基をいずれも採用することができる。陰イオン伝導性の観点から、好ましくは、四級アンモニウム基が挙げられる。
陰イオン交換基として、好ましくは、−N(CHが挙げられるが、その他にも、以下の構造を有するものが挙げられる。なお、以下の構造式において、*は置換基を含む芳香環に結合する部分を示す。
Figure 0006842020
(図中、Alk、Alk’、Alk’’は、上記したアルキル基を示し、iPrはi−プロピル基を示す。)
このような陰イオン交換基は、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、もしくは2価の硫黄含有基である連結基、および/または炭素−炭素結合を介して互いに結合する複数の芳香環からなる2価の親水性残基の連結基または芳香環に、2価の飽和炭化水素基を介して結合される。
陰イオン交換基は、連結基または芳香環の少なくとも1つに結合されていればよく、複数の連結基または芳香環に結合されていてもよく、全ての連結基または芳香環に結合れていてもよい。また、陰イオン交換基は、1つの連結基または芳香環に複数個結合されていてもよい。
2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、もしくは2価の硫黄含有基である連結基、および/または炭素−炭素結合を介して互いに結合する複数の芳香環からなる2価の親水性残基の連結基または芳香環と、陰イオン交換基とを結合させる2価の飽和炭化水素基の炭素数は、2以上である。2価の飽和炭化水素基の炭素数は、好ましくは、2〜20の整数であり、より好ましくは、3〜10の整数であり、さらに好ましくは、4〜8の整数である。
2価の飽和炭化水素基としては、好ましくは、エチレン(−(CH−)、トリメチレン(−(CH−)、テトラメチレン(−(CH−)、ペンタメチレン(−(CH−)、ヘキサメチレン(−(CH−)、ヘプタメチレン(−(CH−)、オクタメチレン(−(CH−)等の直鎖状飽和炭化水素基を挙げることができる。
このような親水性基として、好ましくは、下記式(3)で表されるフルオレン残基が挙げられる。
Figure 0006842020
(式中、IonおよびIon’は、互いに同一または相異なって、陰イオン交換基を示し、yおよびzは、互いに同一または相異なって、2〜20の整数を示す。)
上記式(3)において、IonおよびIon’は、互いに同一または相異なって、陰イオン交換基を示し、好ましくは、互いに同一または相異なって、上記した四級アンモニウム基を示し、とりわけ好ましくは−N(CHである。
上記式(3)において、yおよびzは、互いに同一または相異なって、2〜20の整数を示し、好ましくは、3〜10の整数を示し、さらに好ましくは、4〜8の整数を示す。
このような親水性基として、とりわけ好ましくは、下記式(3’)で示されるフルオレン残基が挙げられる。
Figure 0006842020
本発明の陰イオン交換樹脂では、上記した疎水性基が、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して繰り返される疎水ユニットと、上記した親水性基が、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して繰り返される親水ユニットとを有していてもよい。疎水ユニットは、疎水性基単体からなる、または疎水性基が炭素−炭素結合を介して繰り返されていることが好ましく、また親水ユニットは、親水性基単体からなる、または親水性基が炭素−炭素結合を介して繰り返されて形成されていることが好ましい。
なお、ユニットとは一般に用いられるブロック共重合体のブロックに相当する。
疎水ユニットとして、好ましくは、上記式(2)で示される、アルキル基、アリール基、ハロゲン原子または擬ハロゲン化物で置換されていてもよいビスフェノール残基が、炭素−炭素結合を介して互いに結合して形成されるユニットが挙げられる。上記ビスフェノール残基は、複数種がランダム状、交互などの規則状、またはブロック状で互いに結合して形成されるユニットでもよい。
このような疎水ユニットは、例えば、下記式(7)で示される。
Figure 0006842020
(式中、R、Al、X、a、b、c、およびdは、上記式(2)のR、Al、X、a、b、c、およびdと同意義を示し、qは、1〜200を示す。)
上記式(7)において、qは、例えば、1〜200、好ましくは、1〜50を示す。
このような疎水ユニットとして、さらに好ましくは、上記式(1)で表される、ハロゲン原子または擬ハロゲン化物またはアルキル基またはアリール基で置換されていてもよいビスフェノール残基が、炭素−炭素結合を介して互いに結合して形成されるユニットが挙げられる。
このような疎水ユニットは、例えば、下記式(7a)で示される。
Figure 0006842020
(式中、Alk、X、a、b、c、およびdは、前記式(2)のAlk、X、a、b、c、およびdと同意義を示し、Z、R、X、l、h、h’、h’’、i、i’、i’’、j、およびkは、前記式(1)のZ、R、X、l、h、h’、h’’、i、i’、i’’、j、およびkと同意義を示し、qは、1〜200を示す。)
上記式(7)において、qは、例えば、1〜200、好ましくは、1〜50を示す。
このような疎水ユニットは、とりわけ好ましくは、下記式(7a’)で示される。
Figure 0006842020
(式中、lは、前記式(1)のlと同意義を示し、qは、1〜200(好ましくは、1〜50)を示す。)
親水ユニットとして、好ましくは、上記式(3)で示されるフルオレン残基(親水性基)が、エーテル結合、チオエーテル結合、または炭素−炭素結合(好ましくは、炭素−炭素結合)を介して互いに結合して形成されるユニットが挙げられる。上記フルオレン残基は、複数種がランダム状、交互などの規則状、またはブロック状で互いに結合して形成されるユニットでもよい。
このような親水ユニットは、例えば、下記式(9)で示される。
Figure 0006842020
(式中、Ion、Ion’、y、およびzは、互いに同一または相異なって、上記式(3)のIon、Ion’、y、およびzと同意義を示し、mは、1〜200(好ましくは、1〜50)を示す。)
このような親水ユニットとして、とりわけ好ましくは、上記式(3’)で示されるフルオレン残基が炭素−炭素結合を介して互いに結合して形成されるユニットが挙げられる。
このような親水ユニットは、例えば、下記式(9’)で示される。
Figure 0006842020
(式中、IonおよびIon’は、互いに同一または相異なって、上記式(3)のIonおよびIon’と同意義を示し、mは、1〜200(好ましくは、1〜50)を示す。)
本発明の陰イオン交換樹脂では、上記した疎水ユニットと上記した親水ユニットとが、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して結合している。特に、上記した疎水ユニットと上記した親水ユニットとが、炭素−炭素結合を介して結合していることが好ましい。
このような陰イオン交換樹脂として、好ましくは、下記式(13)で示されるように、上記式(7)で示される疎水ユニットと、上記式(9)で示される親水ユニットとが炭素−炭素結合を介して結合された陰イオン交換樹脂が挙げられる。
Figure 0006842020
(式中、R、Al、X、a、b、c、およびdは、上記式(7)のR、Al、X、a、b、c、およびdと同意義を示し、Ion、Ion’、y、およびzは、上記式(9)のIon、Ion’、y、およびzと同意義を示し、qおよびmは配合比あるいは繰り返し数を表し、1〜100を示し、oは、繰り返し数を表し、1〜100を示す。)
このような陰イオン交換樹脂として、さらに好ましくは、下記式(13’)で示されるように、上記式(7a)で示される疎水ユニットと、上記式(9)で示される親水ユニットとが炭素−炭素結合を介して結合された陰イオン交換樹脂が挙げられる。
Figure 0006842020
このような陰イオン交換樹脂として、とりわけ好ましくは、下記式(13’’)で示されるように、上記式(7a’)で示される疎水ユニットと、上記式(9’)で示される親水ユニットとが炭素−炭素結合を介して結合された陰イオン交換樹脂が挙げられる。
Figure 0006842020
(式中、lは、前記式(7a’)のlと同意義を示し、IonおよびIon’は、上記式(9’)のIonおよびIon’と同意義を示し、qおよびmは配合比あるいは繰り返し数を表し、1〜100を示し、oは、繰り返し数を表し、1〜100を示す。)
このような陰イオン交換樹脂の数平均分子量は、上記したように、例えば、10〜1000kDa、好ましくは、30〜500kDaである。
陰イオン交換樹脂を製造する方法としては、特に制限されず、公知の方法を採用することができる。好ましくは、重縮合反応による方法が、採用される。
この方法により陰イオン交換樹脂を製造する場合には、例えば、疎水性基形成用モノマーを準備し、陰イオン交換基前駆官能基を有する親水性基形成用モノマーを準備し、疎水性基形成用モノマーと陰イオン交換基前駆官能基を有する親水性基形成用モノマーとを重合反応させることによりポリマーを合成し、ポリマー中の陰イオン交換基前駆官能基をイオン化させることにより、陰イオン交換樹脂を製造することができる。あるいは、疎水性基形成用モノマーを準備し、親水性基形成用モノマーを準備し、疎水性基形成用モノマーと親水性基形成用モノマーとを重合反応させることによりポリマーを合成し、ポリマー中に陰イオン交換基を有する置換基を導入することにより、陰イオン交換樹脂を製造することができる。
重縮合反応については、従来公知の一般的な方法を採用することができる。好ましくは、炭素−炭素結合を形成する、クロスカップリングが採用される。
疎水性基形成用モノマーとして、好ましくは、上記式(2)に対応する、下記式(22)で示される化合物が挙げられる。
Figure 0006842020
(式中、Alk、R、X、a、b、c、およびdは、前記式(2)のAlk、R、X、a、b、c、およびdと同意義を示し、YおよびY’は、互いに同一または相異なって、ハロゲン原子、擬ハロゲン化物、ボロン酸基、ボロン酸誘導体、または水素原子を示す。)
疎水性基形成用モノマーとして、とりわけ好ましくは、上記式(1)に対応する、下記式(21)で示される化合物が挙げられる。
Figure 0006842020
(式中、Alk、R、X、Z、a、b、c、d、l、h、h’、h’’、i、i’、i’’、jおよびkは、前記式(1)のAlk、R、X、Z、a、b、c、d、l、h、h’、h’’、i、i’、i’’、jおよびkと同意義を示し、YおよびY’は、互いに同一または相異なって、ハロゲン原子、擬ハロゲン化物、ボロン酸基、ボロン酸誘導体、または水素原子を示す。)
陰イオン交換基前駆官能基を有する親水性基形成用モノマーとして、好ましくは、上記式(3)に対応する、下記式(23)で示される化合物が挙げられる。
Figure 0006842020
(式中、yおよびzは、前記式(3)のyおよびzと同意義を示し、Preは、互いに同一または相異なって、陰イオン交換基前駆官能基を示し、YおよびY’は、互いに同一または相異なって、ハロゲン原子、擬ハロゲン化物、ボロン酸基、ボロン酸誘導体、または水素原子を示す。)
疎水性基形成用モノマーおよび陰イオン交換基前駆官能基を有する親水性基形成用モノマーをクロスカップリングにより重合させる際において、第1モノマーおよび第2モノマーの配合量は、それぞれ、得られる陰イオン交換樹脂前駆体ポリマーにおいて所望の疎水ユニットと親水ユニットの配合比になるように調整される。
これらの方法では、疎水性基形成用モノマーと陰イオン交換基前駆官能基を有する親水性基形成用モノマーとを、例えば、N,N−ジメチルアセトアミド、ジメチルスルホキシドなどの溶媒に溶解させ、ビス(シクロオクタ−1,5−ジエン)ニッケル(0)などを触媒として、重合する方法など、公知の方法を採用することができる。
クロスカップリング反応における反応温度は、例えば、−100〜300℃、好ましくは、−50〜200℃であり、反応時間は、例えば、1〜48時間、好ましくは、2〜5時間である。
これにより、下記式(15)、および、下記式(16)で示される陰イオン交換樹脂前駆体ポリマーが得られる。
Figure 0006842020
(式中、Alk、R、X、a、b、c、およびdは、前記式(1)のAlk、R、X、a、b、c、およびdと同意義を示し、yおよびzは、前記式(3)のyおよびzと同意義を示し、Preは、互いに同一または相異なって、陰イオン交換基前駆官能基を示し、qおよびmは配合比あるいは繰り返し数を表し、1〜100を示し、oは繰り返し数を表し、1〜100を示す。)
Figure 0006842020
(式中、Alk、R、X、Z、a、b、c、d、l、h、h’、h’’、i、i’、i’’、jおよびkは、前記式(1)のAlk、R、X、Z、a、b、c、d、l、h、h’、h’’、i、i’、i’’、jおよびkと同意義を示し、yおよびzは、前記式(3)のyおよびzと同意義を示し、Preは、互いに同一または相異なって、陰イオン交換基前駆官能基を示し、qおよびmは配合比あるいは繰り返し数を表し、1〜100を示し、oは繰り返し数を表し、1〜100を示す。)
次いで、この方法では、陰イオン交換基前駆官能基をイオン化する。イオン化する方法としては、特に制限されず、公知の方法を採用することができる。
陰イオン交換樹脂前駆体ポリマーを、例えば、N,N−ジメチルアセトアミド、ジメチルスルホキシドなどの溶媒に溶解させ、ヨウ化メチルなどをアルキル化剤として、イオン化する方法など、公知の方法を採用することができる。
イオン化反応における反応温度は、例えば、0〜100℃、好ましくは、20〜80℃であり、反応時間は、例えば、24〜72時間、好ましくは、48〜72時間である。
これにより、上記式(13)および(13’)で示される陰イオン交換樹脂が得られる。
陰イオン交換樹脂のイオン交換基容量は、例えば、0.1〜4.0meq./g、好ましくは、0.6〜3.0meq./gである。
なお、イオン交換基容量は、下記式(24)により求めることができる。
[イオン交換基容量(meq./g)]=親水ユニット当たりの陰イオン交換基導入量×親水ユニットの繰り返し単位×1000/(疎水ユニットの分子量×疎水ユニットの繰り返し単位数+親水ユニットの分子量×親水ユニットの繰り返し単位数+イオン交換基の分子量×親水ユニットの繰り返し単位数) (24)
なお、イオン交換基導入量とは、単位親水性基あたりのイオン交換基の数と定義される。また、陰イオン交換基導入量は、親水性基において主鎖または側鎖に導入された上記陰イオン交換基のモル数(mol)である。
そして、このような陰イオン交換樹脂は、単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素−炭素結合を介して互いに結合する複数の芳香環からなる2価の疎水性基と、単数の多環式化合物からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、もしくは2価の硫黄含有基である連結基、および/または炭素−炭素結合を介して互いに結合する複数の多環式化合物からなり、前記連結基または前記多環式化合物のうち少なくとも1つが、炭素数2以上の2価の飽和炭化水素基を介して陰イオン交換基と結合した2価の親水性基とからなり、前記疎水性基単体からなる、または、前記疎水性基が、エーテル結合、チオエーテル結合、もしくは炭素−炭素結合を介して繰り返される疎水ユニットと、前記親水性基単体からなる、または、前記親水性基が、エーテル結合、チオエーテル結合、もしくは炭素−炭素結合を介して繰り返される親水ユニットとを有し、前記疎水ユニットと前記親水ユニットとが、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して結合している。つまり、この陰イオン交換樹脂には、炭素数2以上の2価の飽和炭化水素基を介して陰イオン交換基と結合した多環式化合物に由来する親水性基が導入されているため、化学的特性(耐久性)および機械的特性(柔軟性)に優れる。さらに、炭素−炭素結合を介して互いに結合する3つ以上の芳香環からなる2価の疎水性基が導入されている場合には、電気的特性(イオン導電率)にも優れる。
特に、親水性基が炭素−炭素結合を介して繰り返される親水ユニットを有する場合、エーテル結合が含有されていないため、耐アルカリ性などの耐久性に優れる。より詳しくは、親水ユニットにエーテル結合が含有されていると、下記のように、水酸化物イオン(OH)による分解が起きる可能性があり、耐アルカリ性が十分でない場合があった。
Figure 0006842020
それに対し、親水性基が炭素−炭素結合を介して繰り返される親水ユニットを有する陰イオン交換樹脂の親水ユニットには、エーテル結合が含有されていないため、上記の機構による分解は起こらず、その結果として耐アルカリ性などの耐久性に優れたものとなる。
本発明は、このような陰イオン交換樹脂を用いて得られる電解質層(電解質膜)、さらには、その電解質層(電解質膜)を備える燃料電池を、含んでいる。すなわち、本発明の電解質膜は、燃料電池用電解質膜であることが好ましい。
図1は、本発明の燃料電池の一実施形態を示す概略構成図である。図1において、この燃料電池1は、燃料電池セルSを備えており、燃料電池セルSは、燃料側電極2、酸素側電極3および電解質膜4を備え、燃料側電極2および酸素側電極3が、それらの間に電解質膜4を挟んだ状態で、対向配置されている。
電解質膜4としては、上記した陰イオン交換樹脂を用いることができる(すなわち、電解質膜4は、上記した陰イオン交換樹脂を含んでいる。)。
なお、電解質膜4としては、例えば、多孔質基材などの公知の補強材により補強することができ、さらには、例えば、分子配向などを制御するための二軸延伸処理や、結晶化度や残存応力を制御するための熱処理などの各種処理することができる。また、電解質膜4には、その機械強度を上げるために、公知のフィラーを添加することができ、電解質膜4と、ガラス不織布などの補強剤とをプレスにより複合化させることもできる。
また、電解質膜4において、通常用いられる各種添加剤、例えば、相溶性を向上させるための相溶化剤、例えば、樹脂劣化を防止するための酸化防止剤、例えば、フィルムとしての成型加工における取扱性を向上するための帯電防止剤や滑剤などを、電解質膜4としての加工や性能に影響を及ぼさない範囲で、適宜含有させることができる。
電解質膜4の厚さは、特に制限されず、目的および用途に応じて、適宜設定される。
電解質膜4の厚みは、例えば、1.2〜350μm、好ましくは、5〜200μmである。
燃料側電極2は、電解質膜4の一方の面に対向接触されている。この燃料側電極2は、例えば、多孔質担体に触媒が担持されている触媒層(電池電極触媒層)を含んでいる。
多孔質担体としては、特に限定されず、カーボンなどの、撥水性担体が挙げられる。
電極触媒としては、特に制限されず、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)、鉄族元素(Fe、Co、Ni)などの周期表第8〜10(IUPAC Periodic Table of the Elements(version date 19 February 2010)に従う。以下同じ。)族元素や、例えば、Cu、Ag、Auなどの周期表第11族元素など、さらにはこれらの組み合わせなどが挙げられ、好ましくは、Pt(白金)が挙げられる。
燃料側電極2は、例えば、上記多孔質単体および触媒を、公知の電解質溶液に分散させ、電極インクを調製する。次いで、必要により、電極インクの粘度を、アルコール類などの適量の有機溶媒を配合することにより調整し、その後、電極インクを、公知の方法(例えば、スプレー法、ダイコーター法など)により電解質膜4の一方面に塗布し、所定の温度で乾燥させることにより、薄膜状の電極膜として電解質膜4の一方面に接合される。
燃料側電極2における電極触媒の担持量は、特に限定されないが、例えば、0.1〜10.0mg/cm、好ましくは、0.5〜5.0mg/cmである。
燃料側電極2では、後述するように、供給される燃料と、電解質膜4を通過した水酸化物イオン(OH)とを反応させて、電子(e)および水(HO)を生成させる。なお、例えば、燃料が水素(H)である場合には、電子(e)および水(HO)のみを生成させ、燃料がアルコールである場合には、電子(e)および水(HO)、および二酸化炭素(CO)などを生成させ、燃料がヒドラジン(NHNH)である場合には、電子(e)、水(HO)および窒素(N)を生成させる。
酸素側電極3は、電解質膜4の他方の面に対向接触されている。この酸素側電極3は、例えば、多孔質担体に触媒が担持されている触媒層(電池電極触媒層)を含んでいる。
酸素側電極3は、例えば、上記多孔質単体および触媒を、公知の電解質溶液に分散させ、電極インクを調製する。次いで、必要により、電極インクの粘度を、アルコール類などの適量の有機溶媒を配合することにより調整し、その後、電極インクを、公知の方法(例えば、スプレー法、ダイコーター法など)により電解質膜4の他方面に塗布し、所定の温度で乾燥させることにより、薄膜状の電極膜として電解質膜4の他方面に接合される。
これにより、電解質膜4、燃料側電極2および酸素側電極3は、電解質膜4の一方面に薄膜状の燃料側電極2が接合され、電解質膜4の他方面に薄膜状の酸素側電極3が接合されてなる膜・電極接合体を形成している。
酸素側電極3における触媒の担持量は、特に限定されないが、例えば、0.1〜10.0mg/cm、好ましくは、0.5〜5.0mg/cmである。
酸素側電極3では、後述するように、供給される酸素(O)と、電解質膜4を通過した水(HO)と、外部回路13を通過した電子(e)とを反応させて、水酸化物イオン(OH)を生成させる。
燃料電池セルSは、さらに、燃料供給部材5および酸素供給部材6を備えている。燃料供給部材5は、ガス不透過性の導電性部材からなり、その一方の面が、燃料側電極2に対向接触されている。そして、この燃料供給部材5には、燃料側電極2の全体に燃料を接触させるための燃料側流路7が、一方の面から凹む葛折状の溝として形成されている。なお、この燃料側流路7には、その上流側端部および下流側端部に、燃料供給部材5を貫通する供給口8および排出口9がそれぞれ連続して形成されている。
また、酸素供給部材6も、燃料供給部材5と同様に、ガス不透過性の導電性部材からなり、その一方の面が、酸素側電極3に対向接触されている。そして、この酸素供給部材6にも、酸素側電極3の全体に酸素(空気)を接触させるための酸素側流路10が、一方の面から凹む葛折状の溝として形成されている。なお、この酸素側流路10にも、その上流側端部および下流側端部に、酸素供給部材6を貫通する供給口11および排出口12がそれぞれ連続して形成されている。
この燃料電池1は、実際には、上記した燃料電池セルSが、複数積層されるスタック構造として形成される。そのため、燃料供給部材5および酸素供給部材6は、実際には、両面に燃料側流路7および酸素側流路10が形成されるセパレータとして構成される。
なお、図示しないが、この燃料電池1には、導電性材料によって形成される集電板が備えられており、集電板に備えられた端子から燃料電池1で発生した起電力を外部に取り出すことができるように構成されている。
また、図1においては、この燃料電池セルSの燃料供給部材5と酸素供給部材6とを外部回路13によって接続し、その外部回路13に電圧計14を介在させて、発生する電圧を計測するようにしている。
この燃料電池1においては、燃料が、改質などを経由することなく直接に、または、改質などを経由した上で、燃料側電極2に供給される。
燃料としては、含水素燃料が挙げられる。
含水素燃料は、分子中に水素原子を含有する燃料であって、例えば、水素ガス、アルコール類、ヒドラジン類などが挙げられ、好ましくは、水素ガスまたはヒドラジン類が挙げられる。
ヒドラジン類として、具体的には、例えば、ヒドラジン(NHNH)、水加ヒドラジン(NHNH・HO)、炭酸ヒドラジン((NHNHCO)、塩酸ヒドラジン(NHNH・HCl)、硫酸ヒドラジン(NHNH・HSO)、モノメチルヒドラジン(CHNHNH)、ジメチルヒドラジン((CHNNH、CHNHNHCH)、カルボンヒドラジド((NHNHCO)などが挙げられる。上記例示の燃料は、単独または2種類以上組み合わせて用いることができる。
上記した燃料化合物のうち、炭素を含まない化合物、すなわち、ヒドラジン、水加ヒドラジン、硫酸ヒドラジンなどは、COおよびCOの生成がなく、触媒の被毒が生じないことから、耐久性の向上を図ることができ、実質的なゼロエミッションを実現することができる。
また、上記例示の燃料としては、上記の燃料化合物をそのまま用いてもよいが、上記例示の燃料化合物を、例えば、水および/またはアルコール(例えば、メタノール、エタノール、プロパノール、i−プロパノールなどの低級アルコールなど)などの溶液として用いることができる。この場合、溶液中の燃料化合物の濃度は、燃料化合物の種類によっても異なるが、例えば、1〜90質量%、好ましくは、1〜30質量%である。上記例示の溶媒は、単独または2種類以上組み合わせて用いることができる。
さらに、燃料は、上記した燃料化合物をガス(例えば、蒸気)として用いることができる。
そして、酸素供給部材6の酸素側流路10に酸素(空気)を供給しつつ、燃料供給部材5の燃料側流路7に上記した燃料を供給すれば、酸素側電極3においては、次に述べるように、燃料側電極2で発生し、外部回路13を介して移動する電子(e)と、燃料側電極2で発生する水(HO)と、酸素(O)とが反応して、水酸化物イオン(OH)を生成する。生成した水酸化物イオン(OH)は、アニオン交換膜からなる電解質膜4を、酸素側電極3から燃料側電極2へ移動する。そして、燃料側電極2においては、電解質膜4を通過した水酸化物イオン(OH)と、燃料とが反応して、電子(e)と水(HO)とが生成する。生成した電子(e)は、燃料供給部材5から外部回路13を介して酸素供給部材6に移動され、酸素側電極3へ供給される。また、生成した水(HO)は、電解質膜4を燃料側電極2から酸素側電極3へ移動する。このような燃料側電極2および酸素側電極3における電気化学的反応によって、起電力が生じ、発電が行われる。
なお、この燃料電池1の運転条件は、特に限定されないが、例えば、燃料側電極2側の加圧が200kPa以下、好ましくは、100kPa以下であり、酸素側電極3側の加圧が200kPa以下、好ましくは、100kPa以下であり、燃料電池セルSの温度が0〜120℃、好ましくは、20〜80℃として設定される。
そして、このような燃料電池1においては、電解質膜4に、上記の耐久性に優れる陰イオン交換樹脂を含む電解質膜が、用いられている。
そのため、本発明の陰イオン交換樹脂を用いて得られる本発明の電解質膜、および、そのような電解質膜を備える燃料電池は、耐久性に優れる。
また、本発明は、上記した陰イオン交換樹脂を含む電極触媒層形成用バインダー、その電極触媒層形成用バインダーを含む電池電極触媒層、さらには、その電池電極触媒層を備える燃料電池を含んでいる。
すなわち、燃料電池1では、上記した燃料側電極2および/または酸素側電極3の形成時において、陰イオン交換樹脂を電極触媒層形成用バインダーに含有させることができる。
陰イオン交換樹脂を電極触媒層形成用バインダーに含有させる方法として、具体的には、例えば、陰イオン交換樹脂を細断し、アルコール類などの適量の有機溶媒に溶解させることにより、電極触媒層形成用バインダーを調製する。
電極触媒層形成用バインダーにおいて、陰イオン交換樹脂の含有割合は、電極触媒層形成用バインダー100質量部に対して、例えば、2〜10質量部、好ましくは、2〜5質量部である。
また、その電極触媒層形成用バインダーを、上記した燃料側電極2および/または酸素側電極3の触媒層(電池電極触媒層)の形成に用いることにより、陰イオン交換樹脂を、触媒層(電池電極触媒層)に含有させることができ、これにより、陰イオン交換樹脂を含む触媒層(電池電極触媒層)を備える燃料電池1を得ることができる。
そして、このような燃料電池1においては、電池電極触媒層の形成において、上記の耐久性に優れる陰イオン交換樹脂を含む電極触媒層形成用バインダーが、用いられている。
そのため、本発明の陰イオン交換樹脂を用いて得られる本発明の電極触媒層形成用バインダー、また、その電極触媒層形成用バインダーを用いて得られる電池電極触媒層は、耐久性に優れており、優れたアニオン導電性を確保することができる。
その結果、そのような電池電極触媒層を備える燃料電池は、耐久性に優れており、優れたアニオン導電性を確保することができる。
以上、本発明の実施形態について説明したが、本発明の実施形態は、これに限定されるものではなく、本発明の要旨を変更しない範囲で、適宜設計を変形することができる。
本発明の燃料電池の用途としては、例えば、自動車、船舶、航空機などにおける駆動用モータの電源や、携帯電話機などの通信端末における電源などが挙げられる。
次に、本発明を実施例および比較例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。
〔実施例1:陰イオン交換樹脂QPAF−4(IEC=1.47meq./g)の合成〕
<モノマー1の合成>
窒素インレットおよび冷却管を備えた100mLの丸底三口フラスコに、1,6−ジヨードパーフルオロヘキサン(5.54g、10.0mmol)、3−クロロヨードベンゼン(11.9g、50mmol)、N,N−ジメチルスルホキシド(60mL)を加えた。この混合物を撹拌して均一溶液にした後、銅粉末(9.53g、150mmol)を加え、120℃にて48時間反応を行った。反応溶液を0.1M硝酸水溶液中に滴下し反応を停止させた。混合物中からろ過によって回収した析出物をメタノールで洗浄し、ろ液を回収した。同様の操作を繰り返し行った後、合わせたろ液に純水を加えることにより析出した白色固体をろ別回収し、純水とメタノールの混合溶液(純水/メタノール=1/1)で洗浄後、一晩真空乾燥(60℃)させることにより、下記式で示されるモノマー1(白色固体)を収率84%で得た。
Figure 0006842020
<モノマー2の合成>
500mLの丸底三口フラスコに、フルオレン(83.1g、0.50mol)、N−クロロスクシンイミド(167g、1.25mol)、アセトニトリル(166mL)を加えた。この混合物を撹拌して均一溶液にした後、12M塩酸(16.6mL)を加え、室温にて24時間反応を行った。反応溶液中からろ過によって回収した析出物をメタノール、および純水で洗浄後、一晩真空乾燥(60℃)させることにより、下記式で示されるモノマー2(白色固体)を収率65%で得た。
Figure 0006842020
<モノマー3の合成>
300mLの丸底三口フラスコに、モノマー2(8.23g、35.0mmol)、1,6−ジブロモヘキサン(53mL)を加えた。この混合物を撹拌して均一溶液にした後、テトラブチルアンモニウム(2.26g、7.00mmol)、水酸化カリウム(35.0g)、純水(35mL)の混合溶液を加え、80℃にて1時間反応を行った。反応溶液に純水を加え反応を停止させた。水層から目的物をジクロロメタンで抽出し、合わせた有機層を純水および食塩水で洗浄後、水、ジクロロメタンおよび1、6−ジブロモヘキサンを留去した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン=1/4)によって精製した後、一晩真空乾燥(60℃)させることにより、下記式で示されるモノマー3(淡黄色固体)を収率75%で得た。
Figure 0006842020
<モノマー4の合成>
300mLの丸底三口フラスコに、モノマー3(13.2g、23.4mol)、テトラヒドロフラン(117mL)を加えた。この混合物を撹拌して均一溶液にした後、40wt%ジメチルアミン水溶液(58.6mL)を加え、室温にて24時間反応を行った。反応溶液に飽和炭酸水素ナトリウム水溶液を加え反応を停止させた。テトラヒドロフランを除去した後、ヘキサンを加え、目的成分の抽出を行った。有機層を食塩水で洗浄後、水およびヘキサンを留去した。40℃一晩真空乾燥させることにより、下記式で示されるモノマー4(淡黄色固体)を収率75%で得た。
Figure 0006842020
(重合反応)
窒素インレットおよび冷却管を備えた100mLの丸底三口フラスコに、モノマー1(1.52g、2.91mmol)、モノマー4(0.82g、1.67mmol)、2,2’−ビピリジン(1.70g、10.9mmol)、N,N−ジメチルアセトアミド(11mL)を加えた。この混合物を撹拌して均一溶液にした後、ビス(1,5−シクロオクタジエン)ニッケル(0)(3.00g、10.9mmol)を加え、80℃にて3時間反応させた。反応混合物をメタノールと12M塩酸の混合溶液(メタノール/12M塩酸=1/1)中に滴下し反応を停止させた。混合物中から濾過によって回収した析出物を12M塩酸、0.2M炭酸カリウム水溶液、および純水で洗浄後、一晩真空乾燥(60℃)させることにより、下記式で示される陰イオン交換樹脂前駆体ポリマーPAF−4(黄色固体)を収率96%で得た。
Figure 0006842020
(四級化反応・製膜・イオン交換)
50mLの丸底三口フラスコに、陰イオン交換樹脂前駆体ポリマー(1.70g)、N,N−ジメチルアセトアミド(9.6mL)を加えた。この混合物を撹拌して均一溶液にした後、ヨウ化メチル(0.45mL、7.22mmol)を加え、室温にて48時間反応を行った。N,N−ジメチルアセトアミド(10mL)を加えた反応溶液を濾過した。濾液をシリコーンゴムで縁取りされたガラス板上に流し込み、水平に調節したホットプレート(50℃)上で乾燥させた。この膜を純水(2L)中で洗浄後、一晩真空乾燥(60℃)させることにより、淡茶色透明の膜を得た。さらに、1M水酸化カリウム水溶液中に48時間浸漬させた後、脱気した純水で洗浄することにより、イオン交換基(四級アンモニウム基)の対イオンをヨウ化物イオンから水酸化物イオンへと変換した。これにより、下記式で示される陰イオン交換樹脂QPAF−4(m/n=1/0.60、IEC=1.47meq./g、水酸化物イオン型)の膜を得た。
Figure 0006842020
〔実施例2:陰イオン交換樹脂QPAF−4(IEC=1.84meq./g)の合成〕
上記モノマー1およびモノマー4を用いて、上記と同様の方法で、必要に応じて試薬の仕込み量を変更することにより、陰イオン交換樹脂QPAF−4(m/n=1/0.89、IEC=1.84meq./g)の膜を得た。
〔実施例3:陰イオン交換樹脂QPAF−4(IEC=0.75meq./g)の合成〕
上記モノマー1およびモノマー4を用いて、上記と同様の方法で、必要に応じて試薬の仕込み量を変更することにより、陰イオン交換樹脂QPAF−4(m/n=1/0.l7、IEC=0.75meq./g)の膜を得た。
〔比較例1:陰イオン交換樹脂QPAF−1(IEC=1.26meq./g)の合成〕
(重合反応)
窒素インレットおよび冷却管を備えた100mLの丸底三口フラスコに、モノマー1(0.26g、0.50mmol)、1,4−ジクロロベンゼン(0.020g、0.14mmol)、1,3−ジクロロベンゼン(0.060g、0.41mmol)、2,2’−ビピリジン(0.41g、2.6mmol)、N,N−ジメチルアセトアミド(3mL)を加えた。この混合物を撹拌して均一溶液にした後、ビス(1,5−シクロオクタジエン)ニッケル(0)(0.72g、2.6mmol)を加え、80℃にて3時間反応させた。反応混合物を12M塩酸中に滴下し反応を停止させた。混合物中から濾過によって回収した析出物を純水およびメタノールで洗浄後、一晩真空乾燥(60℃)させることにより、下記式で示される陰イオン交換樹脂前駆体ポリマーPAF−1(白色固体)を収率86%で得た。
Figure 0006842020
(クロロメチル化反応)
100mLのガラス反応容器に陰イオン交換樹脂前駆体ポリマー(0.20g)、1,1,2,2−テトラクロロエタン(9mL)を加えた。この混合物を撹拌して均一溶液にした後、アルゴンで置換されたグローブボックス中において、クロロメチルメチルエーテル(5mL)、0.5mol/L塩化亜鉛テトラヒドロフラン溶液(1mL)を加え、80℃にて5日間反応させた。反応混合物をメタノール中に滴下し反応を停止させた。混合物中から濾過によって回収した析出物をメタノールで洗浄後、一晩真空乾燥(60℃)させることにより、下記式で示される、クロロメチル化された陰イオン交換樹脂前駆体ポリマーを得た。
Figure 0006842020
(四級化反応)
クロロメチル化された陰イオン交換樹脂前駆体ポリマー(100mg)を、45wt%トリメチルアミン水溶液中に浸漬し、室温にて48時間反応させた。反応の進行に伴って、クロロメチル化された陰イオン交換樹脂前駆体ポリマーは溶解し、均一な溶液が得られた。この溶液を1M塩酸中に滴下した後、透析チューブ(分画分子量:1kDa)を用いてトリメチルアミンおよび塩酸を除去した。水を留去した後、一晩真空乾燥(60℃)させることにより、陰イオン交換樹脂QPAF−1(褐色固体)を収率75%で得た。
(製膜・イオン交換)
20mLの丸底三口フラスコに、QPAF−1(100mg)、N,N−ジメチルアセトアミド(2mL)を加えた。この混合物を撹拌して均一溶液にした後、濾過を行った。ろ液をシリコーンゴムで縁取りされたガラス板上に流し込み、水平に調節したホットプレート(50℃)上で乾燥させることにより、透明な膜を得た。さらに、1M水酸化カリウム水溶液中に48時間浸漬させた後、脱気した純水で洗浄することにより、イオン交換基(四級アンモニウム基)の対イオンを水酸化物イオンへと変換した。これにより、下記式で示される陰イオン交換樹脂QPAF−1(m/n/o=1.0/0.41/0.53、IEC=1.26meq./g、水酸化物イオン型)の膜を得た。
Figure 0006842020
〔比較例2:陰イオン交換樹脂QPAF−1(C6)(IEC=1.19meq./g)の合成〕
<モノマー5の合成>
窒素インレットおよび冷却管を備えた1Lの丸底三口フラスコに、(4−カルボキシブチル)トリフェニルホスホニウムブロミド(18.0g、40.6mmol)、およびテトラヒドロフラン(240mL)を加えた。氷浴中において、この懸濁液に、カリウム tert−ブトキシド(10.0g、89.4mmol)をテトラヒドロフラン(100mL)に溶解させた溶液を加え、0℃にて3時間撹拌を行った。さらに、2,5−ジクロロベンズアルデヒド(6.07g)をテトラヒドロフラン(60mL)に溶解させた溶液を加え、室温にて17時間、80℃にて4時間反応させた。反応溶液に1M塩酸(145mL)を滴下し反応を停止させた。酢酸エチルを加えた有機層を純水で洗浄後、水、酢酸エチルおよびテトラヒドロフランを留去した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/9)によって精製した後、一晩真空乾燥(60℃)させることにより、下記式で示されるモノマー5(淡黄色固体)を収率78%で得た。
Figure 0006842020
<モノマー6の合成>
500mLの丸底三口フラスコに、モノマー5(7.02g、27.1mmol)、および酢酸エチル(270mL)を加えた。この混合物を撹拌して均一溶液にした後、10wt%パラジウム/カーボン(1.06g)を加え、水素雰囲気下において、室温にて19時間反応させた。ろ過により不溶物を除去した後、一晩真空乾燥(60℃)させることにより、下記式で示されるモノマー6(橙色液体)を収率98%で得た。
Figure 0006842020
<モノマー7の合成>
300mLの丸底フラスコに、モノマー6(6.92g、26.5mmol)、ジクロロメタン(62mL)を加えた。この混合物を撹拌して均一溶液にした後、塩化オキサリル(3.70g、29.2mmol)とジクロロメタン(6mL)を混合した溶液、およびN,N−ジメチルホルムアミド(数滴)を加え、室温にて3.5時間反応を行った。氷浴中において、この溶液に、ジメチルアミン塩酸塩(4.32g、53.0mmol)、およびトリエチルアミン(11mL、78.9mmol)をゆっくりと加え、室温において20時間反応を行った。反応溶液に純水を加え反応を停止させた。水層から目的物をジクロロメタンで抽出し、合わせた有機層を1M塩酸、飽和炭酸水素ナトリウム水溶液、および純水で洗浄後、水およびジクロロメタンを留去した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/1)によって精製した後、一晩真空乾燥(60℃)させることにより、下記式で示されるモノマー7(淡黄色固体)を収率84%で得た。
Figure 0006842020
<モノマー8の合成>
100mLの丸底フラスコに、モノマー7(3.14g、10.9mmol)、テトラヒドロフラン(25mL)を加えた。この混合物を撹拌して均一溶液にした後、水素化アルミニウムリチウム(0.41g、10.9mmol)を加え、加熱還流下にて24時間反応を行った。反応溶液に純水(0.4mL)、15wt%水酸化ナトリウム水溶液(0.4mL)、純水(2mL)を加え反応を停止させた。ろ過により不溶物を除去した後、水およびテトラヒドロフランを留去した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/9)によって精製した後、一晩真空乾燥(60℃)させることにより、下記式で示されるモノマー8(淡黄色液体)を収率63%で得た。
Figure 0006842020
(重合反応)
ディーンスタークトラップ、窒素インレット、および冷却管を備えた100mLの丸底三口フラスコに、モノマー1(1.04g、2.0mmol)、モノマー8(0.405g、1.5mmol)、2,2’−ビピリジン(1.92g、12.3mmol)、N,N−ジメチルアセトアミド(10mL)、トルエン(4mL)を加えた。この混合物を撹拌して均一溶液にした後、170℃にて2時間脱水した。トルエンを留去した後、溶液を80℃まで放冷した。ビス(1,5−シクロオクタジエン)ニッケル(0)(3.36g、12.3mmol)を加え、80℃にて3時間反応させた。反応混合物を12M塩酸中に滴下し反応を停止させた。混合物中から濾過によって回収した析出物を12M塩酸、0.2M炭酸カリウム水溶液、および純水で洗浄後、一晩真空乾燥(60℃)させることにより、下記式で示される陰イオン交換樹脂前駆体ポリマーPAF−1(C6)(黄色固体)を収率70%で得た。
Figure 0006842020
(四級化反応・製膜・イオン交換)
50mLの丸底三口フラスコに、陰イオン交換樹脂前駆体ポリマー(1.00g)、N,N−ジメチルアセトアミド(12.4mL)を加えた。この混合物を撹拌して均一溶液にした後、ヨウ化メチル(0.880mL、6.20mmol)を加え、室温にて48時間反応を行った。反応溶液を濾過した後、濾液をシリコーンゴムで縁取りされたガラス板上に流し込み、水平に調節したホットプレート(50℃)上で乾燥させた。この膜を純水中で洗浄後、一晩真空乾燥(60℃)させることにより、淡茶色透明の膜を得た。さらに、1M水酸化カリウム水溶液中に48時間浸漬させた後、脱気した純水で洗浄することにより、イオン交換基(四級アンモニウム基)の対イオンをヨウ化物イオンから水酸化物イオンへと変換した。これにより、下記式で示される陰イオン交換樹脂QPAF−1(C6)(m/n=1/0.75、IEC=1.19meq./g、水酸化物イオン型)の膜を得た。
Figure 0006842020
<耐久試験>
実施例および比較例で得た陰イオン交換樹脂の膜に対して、耐久試験を行った。具体的には、陰イオン交換樹脂の膜(水酸化物イオン型)を1M水酸化カリウム水溶液(80℃)に浸漬させた際の水酸化物イオン導電率の経時変化を測定した。上記で得られた陰イオン交換樹脂の膜を幅1cm、長さ3cmに切り出したものを測定サンプルとした。水酸化物イオン導電率測定は、1M水酸化カリウム水溶液(80℃)から取り出したサンプルを脱気した純水で洗浄した後、交流四端子法(300mV、10−100000Hz)で、40℃の水中において実施した。測定装置にはSolartolon1255B/1287を使用し、プローブにはφ1mmの金線を用いた。水酸化物イオン導電率σ(S/cm)は、次式より、プローブ間距離L(1cm)、インピーダンスZ(Ω)、膜断面積A(cm)から算出した。
σ=(L/Z)×1/A
<引張強度試験>
Toshin Kogyo temperature control unit Bethel−3を搭載したShimazu universal testing instrument Autogragh AGS−J500Nを用い、恒温、恒湿に制御されたチャンバー内で行った。測定は、12mm×2mm(サンプル全体の面積:35mm×6mm)のダンベル型サンプル(DIN−53504−S3)を80℃、60%RHの条件下に保持後、10mm/minの速度で引張り、得られた応力−歪み曲線により膜の面内方向の機械強度を評価した。測定条件において、温度および湿度の安定化待ち時間は3時間とした。
実施例サンプルの水酸化物イオン導電率は、いずれのIECの試料でも1000時間経過後も、初期の水酸化物イオン導電率を保持した(図2)。試験前後の実施例サンプルについて、引張試験を行ったところ、変化は確認できなかった(図3)。
比較例サンプルは、48時間経過時に破膜が生じた。また、実施例と同様の条件における引張試験は、測定不能であった。参考として、低温(50℃)における比較例の引張試験結果を図4に示す。
1 燃料電池
2 燃料側電極
3 酸素側電極
4 電解質膜
S 燃料電池セル

Claims (10)

  1. 単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素−炭素結合を介して互いに結合する複数の芳香環からなる2価の疎水性基と、
    単数の多環式化合物からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、もしくは2価の硫黄含有基である連結基、および/または炭素−炭素結合を介して互いに結合する複数の多環式化合物からなり、前記連結基または前記多環式化合物のうち少なくとも1つが、炭素数2以上の2価の飽和炭化水素基を介して陰イオン交換基と結合した2価の親水性基と
    からなり、
    前記疎水性基が、下記式(1a)で表されるビスフェノール残基を含み、
    前記疎水性基単体からなる、または、前記疎水性基が、エーテル結合、チオエーテル結合、もしくは炭素−炭素結合を介して繰り返される疎水ユニットと、
    前記親水性基単体からなる、または、前記親水性基が、エーテル結合、チオエーテル結合、もしくは炭素−炭素結合を介して繰り返される親水ユニットと
    を有し、
    前記疎水ユニットと前記親水ユニットとが、エーテル結合、チオエーテル結合、または炭素−炭素結合を介して結合していることを特徴とする、陰イオン交換樹脂。
    Figure 0006842020
    (式中、Alkは、互いに同一または相異なって、アルキル基またはアリール基を示し、a、b、c、およびdは、互いに同一または相異なって、0〜4の整数を示し、lは、1以上の整数を示す。)
  2. 前記疎水性基が、下記式(1’)で表されるビスフェノール残基を含むことを特徴とする、請求項1記載の陰イオン交換樹脂。
    Figure 0006842020
    (式中、lは、1以上の整数を示す。)
  3. 前記親水性基が、下記式(3)で表されるフルオレン残基を含むことを特徴とする、請求項1または2に記載の陰イオン交換樹脂。
    Figure 0006842020
    (式中、IonおよびIon’は、互いに同一または相異なって、陰イオン交換基を示し、yおよびzは、互いに同一または相異なって、2〜20の整数を示す。)
  4. 請求項1ないしのいずれか1項に記載の陰イオン交換樹脂を含むことを特徴とする、電解質膜。
  5. 請求項1ないしのいずれか1項に記載の陰イオン交換樹脂を含むことを特徴とする、電極触媒層形成用バインダー。
  6. 請求項に記載の電極触媒層形成用バインダーを含むことを特徴とする、電池電極触媒層。
  7. 請求項1ないしのいずれか1項に記載の陰イオン交換樹脂を含む電解質膜と、
    前記電解質膜を挟んで対向配置され、含水素燃料が供給される燃料側電極、および、酸素または空気が供給される酸素側電極と、
    を備えたことを特徴とする、燃料電池。
  8. 前記含水素燃料が、水素、アルコール、またはヒドラジン類であることを特徴とする、請求項に記載の燃料電池。
  9. 電解質膜と、
    前記電解質膜を挟んで対向配置され、含水素燃料が供給される燃料側電極、および、酸素または空気が供給される酸素側電極と
    を備え、
    前記燃料側電極および/または前記酸素側電極が、請求項に記載の電池電極触媒層を含むことを特徴とする、燃料電池。
  10. 前記含水素燃料が、水素、アルコール、またはヒドラジン類であることを特徴とする、請求項に記載の燃料電池。
JP2017143135A 2017-07-24 2017-07-24 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池 Active JP6842020B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017143135A JP6842020B2 (ja) 2017-07-24 2017-07-24 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
US16/043,682 US10734663B2 (en) 2017-07-24 2018-07-24 Anion exchange resin, electrolyte membrane, binder for forming electrode catalyst layer, fuel cell electrode catalyst layer and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143135A JP6842020B2 (ja) 2017-07-24 2017-07-24 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池

Publications (2)

Publication Number Publication Date
JP2019023258A JP2019023258A (ja) 2019-02-14
JP6842020B2 true JP6842020B2 (ja) 2021-03-17

Family

ID=65023262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143135A Active JP6842020B2 (ja) 2017-07-24 2017-07-24 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池

Country Status (2)

Country Link
US (1) US10734663B2 (ja)
JP (1) JP6842020B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142852B2 (ja) * 2018-08-27 2022-09-28 国立大学法人山梨大学 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP2022018683A (ja) * 2020-07-16 2022-01-27 国立大学法人山梨大学 陰イオン交換樹脂の製造方法および電解質膜の製造方法
JP2022024326A (ja) * 2020-07-16 2022-02-09 国立大学法人山梨大学 陰イオン交換樹脂の製造方法および電解質膜の製造方法
JPWO2022230196A1 (ja) * 2021-04-30 2022-11-03
JPWO2022244780A1 (ja) * 2021-05-19 2022-11-24
JP2024011720A (ja) * 2022-07-15 2024-01-25 国立大学法人山梨大学 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダーおよび電池電極触媒層
WO2024080321A1 (ja) * 2022-10-13 2024-04-18 国立大学法人東京工業大学 化合物、ポリマー、電解質膜、燃料電池、及び電解装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117438A1 (en) * 2005-09-16 2009-05-07 Sumitomo Chemical Company , Limited Polymer electrolyte, and polymer electrolyte membrane, membrane-electrode assembly and fuel cell that are using the polymer electrolyte
US7973088B2 (en) * 2006-08-25 2011-07-05 Sumitomo Chemical Company, Limited Polymer electrolyte membrane, method for producing the same, and proton conductivity evaluation method for polymer electrolyte membrane
CN102869448A (zh) * 2009-09-24 2013-01-09 乔治亚州技术研究公司 阴离子交换聚电解质
JP6049212B2 (ja) * 2014-03-17 2016-12-21 国立大学法人山梨大学 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP5960763B2 (ja) 2014-08-22 2016-08-02 タカハタプレシジョンジャパン株式会社 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP6653434B2 (ja) * 2015-09-22 2020-02-26 国立大学法人山梨大学 陰イオン交換樹脂の製造方法、燃料電池用電解質膜の製造方法、電極触媒層形成用バインダーの製造方法、電池電極触媒層の製造方法および燃料電池の製造方法

Also Published As

Publication number Publication date
JP2019023258A (ja) 2019-02-14
US20190027767A1 (en) 2019-01-24
US10734663B2 (en) 2020-08-04

Similar Documents

Publication Publication Date Title
JP6842020B2 (ja) 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP6653434B2 (ja) 陰イオン交換樹脂の製造方法、燃料電池用電解質膜の製造方法、電極触媒層形成用バインダーの製造方法、電池電極触媒層の製造方法および燃料電池の製造方法
JP5960763B2 (ja) 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
Li et al. Boosting the performance of an anion exchange membrane by the formation of well-connected ion conducting channels
JP5674395B2 (ja) 新規の両親媒性ブロック共重合体、その製造方法、それを含む高分子電解質及びそれを利用した高分子電解質膜
JP2016033199A (ja) 陰イオン交換樹脂、燃料電池用電解質層、燃料電池および陰イオン交換樹脂の製造方法
JP7126646B2 (ja) 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP6049212B2 (ja) 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
Zhang et al. Synthesis and characterization of sulfonated poly (aryl ether sulfone) containing pendent quaternary ammonium groups for proton exchange membranes
JP7142852B2 (ja) 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP7233642B2 (ja) 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
WO2022014356A1 (ja) 陰イオン交換樹脂の製造方法および電解質膜の製造方法
WO2022014355A1 (ja) 陰イオン交換樹脂の製造方法および電解質膜の製造方法
JP2007258003A (ja) 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5076310B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP6166438B2 (ja) 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
Zhu et al. Facile synthesis of anion conductive poly (2, 6-dimethyl-1, 4-phenylene oxide) s from a clickable di-quaternized side-chain precursor
US20120296065A1 (en) Polyarylene ionomers membranes
JP6888778B2 (ja) 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
WO2022230196A1 (ja) 陰イオン交換樹脂および電解質膜
WO2024014280A1 (ja) 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダーおよび電池電極触媒層
WO2024014269A1 (ja) 陽イオン交換樹脂、陽イオン交換膜、電解質膜、電極触媒層形成用バインダーおよび電池電極触媒層
Itoh et al. Synthesis, Ionic Conductivity, and Thermal Properties of Hyperbranched Polymer with Phosphonic Acid Groups at Terminals for High Temperature Fuel Cell
AFZAL Colloidal Behavior of Highly Branched Poss Particles and Development of Anion Exchange Membrane.

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6842020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250