JP6838485B2 - 冷却水制御弁装置 - Google Patents

冷却水制御弁装置 Download PDF

Info

Publication number
JP6838485B2
JP6838485B2 JP2017093162A JP2017093162A JP6838485B2 JP 6838485 B2 JP6838485 B2 JP 6838485B2 JP 2017093162 A JP2017093162 A JP 2017093162A JP 2017093162 A JP2017093162 A JP 2017093162A JP 6838485 B2 JP6838485 B2 JP 6838485B2
Authority
JP
Japan
Prior art keywords
cooling water
flow path
valve
engine
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017093162A
Other languages
English (en)
Other versions
JP2018189041A5 (ja
JP2018189041A (ja
Inventor
祐介 今阪
祐介 今阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017093162A priority Critical patent/JP6838485B2/ja
Priority to PCT/JP2018/017658 priority patent/WO2018207740A1/ja
Priority to DE112018002388.5T priority patent/DE112018002388T5/de
Priority to CN201880013568.3A priority patent/CN110325720B/zh
Publication of JP2018189041A publication Critical patent/JP2018189041A/ja
Publication of JP2018189041A5 publication Critical patent/JP2018189041A5/ja
Priority to US16/676,094 priority patent/US10900408B2/en
Application granted granted Critical
Publication of JP6838485B2 publication Critical patent/JP6838485B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/02Details using shape memory alloys

Description

本発明は、冷却水制御弁装置に関する。
従来、エンジンとラジエータとを接続し冷却水が流れるメイン流路と、ラジエータをバイパスしてエンジンに接続しエンジンから流出した冷却水をエンジンに戻すバイパス流路とを備えるエンジン冷却システムのメイン流路を流れる冷却水の流量を制御する冷却水制御弁装置が知られている。例えば特許文献1の冷却水制御弁装置では、メイン流路を流れる冷却水の流量を制御可能なバルブを迂回してバイパス流路とメイン流路とを接続する迂回通路にフェールセーフバルブが設けられている。フェールセーフバルブは、冷却水の温度が所定の温度以上になると、温度検知媒体により迂回通路を開く。これにより、冷却水の温度が過度に上昇することによるエンジンの損傷を抑制しようとしている。
特開2013−68162号公報
一般に、大流量の冷却水を通水するエンジンは、回転数が高く、冷却水の温度が高くなる。そのため、冷却水の温度を温度検知媒体により素早く検知して、異常時には迂回通路を開くことが重要である。
ところで、特許文献1の冷却水制御弁装置では、フェールセーフバルブの温度検知媒体は、バイパス流路上に設けられている。そのため、特に大流量の冷却水がバイパス流路を流れるとき、温度検知媒体の下流側にカルマン渦が発生する。これにより、温度検知媒体下流の冷却水が移動し難くなり、バイパス流路の通水抵抗が増大するおそれがある。したがって、熱源からの通水量が減少し、温度検知媒体の熱応答性が悪化するおそれがある。
本発明の目的は、温度検知媒体の熱応答性が高い冷却水制御弁装置を提供することにある。
本発明の第1の形態は、エンジンからラジエータへの冷却水が流れるメイン流路と、ラジエータをバイパスしてエンジンに接続しエンジンから流出した冷却水をエンジンに戻すバイパス流路とを備えるエンジン冷却システムのメイン流路を流れる冷却水の流量を制御する冷却水制御弁装置であって、バルブと迂回通路とフェールセーフバルブとを備えている。
バルブは、メイン流路を流れる冷却水の流量を制御可能である。
迂回通路は、バルブを迂回してエンジン側からメイン流路側に接続する。
フェールセーフバルブは、バルブとは別に独立して作動し迂回通路を開閉可能な弁本体、および、冷却水の温度に基づき弁本体を作動させて迂回通路を開閉可能とする温度検知媒体を有している。
本形態では、弁本体は、温度検知媒体に接続する軸部、および、軸部の温度検知媒体とは反対側に設けられた弁部を有している。エンジンからの冷却水が流入する流入口からバイパス流路と迂回通路とに分岐する部分を分岐部とすると、弁部は、弁本体が迂回通路を開くとき、温度検知媒体に対し分岐部とは反対側へ移動する。温度検知媒体は、弁本体が迂回通路を開くときにおいても、分岐部に突出することなく、全体が迂回通路に収容されている。そのため、バイパス流路を冷却水が流れるとき、温度検知媒体がバイパス流路を流れる冷却水の抵抗となることを抑制できる。これにより、バイパス流路を流れる冷却水の通水抵抗の増大を抑制できる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体の熱応答性を高めることができる。
本発明の第2の形態では、弁本体は、温度検知媒体に接続する軸部、および、軸部の温度検知媒体とは反対側に設けられた弁部を有している。温度検知媒体は、エンジンからの冷却水が流入する流入口からバイパス流路に向かう経路とは異なり、かつ、流入口とバイパス流路とに連通可能な位置に設けられている。弁部は、弁本体が迂回通路を開くとき、温度検知媒体に対し前記経路とは反対側へ移動する。温度検知媒体は、弁本体が迂回通路を開くときにおいても、前記経路に突出することなく、全体が前記位置に設けられている。そのため、バイパス流路を冷却水が流れるとき、温度検知媒体がバイパス流路を流れる冷却水の抵抗となることを抑制しつつ、冷却水を温度検知媒体に導くことができる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体の熱応答性を高めることができる。
本発明の第3の形態では、弁本体は、温度検知媒体に接続する軸部、および、軸部の温度検知媒体とは反対側に設けられた弁部を有している。エンジンからの冷却水が流入する流入口から迂回通路に向かって、バイパス流路への入口であるバイパス流路開口部、温度検知媒体の順に並んでいる。弁部は、弁本体が迂回通路を開くとき、温度検知媒体に対しバイパス流路開口部とは反対側へ移動する。温度検知媒体は、弁本体が迂回通路を開くときにおいても、迂回通路に対しバイパス流路開口部側に突出することなく、全体が迂回通路に収容されている。そのため、バイパス流路を冷却水が流れるとき、温度検知媒体がバイパス流路を流れる冷却水の抵抗となることを抑制しつつ、冷却水を温度検知媒体に導くことができる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体の熱応答性を高めることができる。
本発明の第4の形態は、エンジンからラジエータへの冷却水が流れるメイン流路と、ラジエータをバイパスしてエンジンに接続しエンジンから流出した冷却水をエンジンに戻すバイパス流路とを備えるエンジン冷却システムのメイン流路を流れる冷却水の流量を制御する冷却水制御弁装置であって、ハウジングとバルブとフェールセーフバルブとを備えている。
ハウジングは、エンジンとメイン流路およびバイパス流路との間に設けられ、流入口、メイン流路開口部、バイパス流路開口部、メイン通路、バイパス通路および迂回通路を有している。
流入口は、エンジンに接続しエンジンからの冷却水が流入する。メイン流路開口部は、メイン流路に接続しメイン流路への冷却水が流れる。バイパス流路開口部は、バイパス流路に接続しバイパス流路への冷却水が流れる。メイン通路は、流入口とメイン流路開口部とを接続する。バイパス通路は、流入口とバイパス流路開口部とを接続する。迂回通路は、バルブを迂回してバイパス通路からメイン流路に接続する。
バルブは、ハウジングに収容され、流入口からメイン流路に流れる冷却水の流量を制御可能である。
フェールセーフバルブは、バルブとは別に独立して作動し迂回通路を開閉可能な弁本体、および、冷却水の温度に基づき弁本体を作動させて迂回通路を開閉可能とする温度検知媒体を有している。
本形態では、弁本体は、温度検知媒体に接続する軸部、および、軸部の温度検知媒体とは反対側に設けられた弁部を有している。弁部は、弁本体が前記迂回通路を開くとき、温度検知媒体に対しバイパス通路とは反対側へ移動する。温度検知媒体は、弁本体が迂回通路を開くときにおいても、バイパス通路に突出することなく、全体が迂回通路に収容されている。そのため、バイパス流路を冷却水が流れるとき、温度検知媒体がバイパス通路を流れる冷却水の抵抗となることを抑制できる。これにより、バイパス流路を流れる冷却水の通水抵抗の増大を抑制できる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体の熱応答性を高めることができる。
また、本発明では、バルブは、筒状に形成されている。流入口は、バルブの軸上に形成されている。
第1実施形態による冷却水制御弁装置を適用したエンジン冷却システムを示す模式図。 第1実施形態による冷却水制御弁装置の一部を示す断面図。 第1実施形態による冷却水制御弁装置の一部を示す模式的断面図。 第1実施形態による冷却水制御弁装置の一部を示す模式的断面図。 比較形態による冷却水制御弁装置の一部を示す模式的断面図。 第1実施形態による冷却水制御弁装置における冷却水の流れを示す図。 比較形態による冷却水制御弁装置における冷却水の流れを示す図。 第1実施形態、比較形態による冷却水制御弁装置に小流量の冷却水を流したときの温度検知媒体の時間の経過に伴う温度変化を示す図。 第1実施形態、比較形態による冷却水制御弁装置に大流量の冷却水を流したときの温度検知媒体の時間の経過に伴う温度変化を示す図。 第2実施形態による冷却水制御弁装置を示す断面図。 第3実施形態による冷却水制御弁装置の一部を示す断面図。 第3実施形態による冷却水制御弁装置の一部を示す斜視図。 第3実施形態による冷却水制御弁装置の一部を示す斜視図。
以下、複数の形態による冷却水制御弁装置を図面に基づき説明する。なお、複数の形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。また、複数の形態において実質的に同一の構成部位は、同一または同様の作用効果を奏する。
(第1実施形態)
第1実施形態による冷却水制御弁装置を図1〜3に示す。
冷却水制御弁装置10は、例えば、図示しない車両のエンジン2を冷却する冷却水の流量を制御するのに用いられる。具体的には、冷却水制御弁装置10は、車両のエンジン冷却システム1のメイン流路Rmを流れる冷却水の流量を制御する。
図1に示すように、車両には、エンジン冷却システム1、エンジン2、冷却水制御弁装置10の他、ウォーターポンプ3、ラジエータ11、オイルクーラ12、ヒータ13、EGRバルブ14等が設けられている。
エンジン冷却システム1は、メイン流路Rmとバイパス流路Rbとを備えている。
ウォーターポンプ3は、エンジン2のウォータージャケット4に接続するようエンジン2に設けられている。ウォーターポンプ3は、エンジン2の駆動力により駆動し、流入した冷却水を加圧しウォータージャケット4に吐出する。
冷却水制御弁装置10は、エンジン2のウォータージャケット4に接続するようエンジン2に設けられる。そのため、冷却水制御弁装置10には、ウォータージャケット4内の冷却水が流入可能である。
メイン流路Rmは、冷却水制御弁装置10を介してエンジン2のウォータージャケット4とラジエータ11とを接続するよう形成されている。これにより、ウォータージャケット4内の冷却水は、冷却水制御弁装置10、メイン流路Rmを経由してラジエータ11に流れることができる。ラジエータ11は、流入した冷却水から放熱する。ラジエータ11で温度の低下した冷却水は、ウォーターポンプ3に流れ、エンジン2のウォータージャケット4に流入する。ウォータージャケット4に流入した温度の低い冷却水により、エンジン2を冷却することができる。
冷却水制御弁装置10は、メイン流路Rmを流れる冷却水、すなわち、エンジン2からラジエータ11に流れる冷却水の流量を制御可能である。
バイパス流路Rbは、冷却水制御弁装置10を介してエンジン2のウォータージャケット4とウォーターポンプ3とを接続するよう形成されている。すなわち、バイパス流路Rbは、ラジエータ11をバイパスしてエンジン2に接続しエンジン2から流出した冷却水をエンジン2に戻す流路である。エンジン2のウォータージャケット4から流出した冷却水を、ラジエータ11をバイパスしてエンジン2に戻すことにより、エンジン2の始動時等、エンジン2の暖機を促進することができる。
なお、本実施形態では、冷却水制御弁装置10は、バイパス流路Rbを流れる冷却水の流量は制御しない。そのため、冷却水制御弁装置10は、エンジン2の始動時、メイン流路Rmおよびラジエータ11への冷却水の流量を制限することにより、エンジン2の暖機を図る。
オイルクーラ12は、冷却水制御弁装置10とウォーターポンプ3との間に設けられている。エンジン2のウォータージャケット4から流出した冷却水は、冷却水制御弁装置10を経由してオイルクーラ12に流れ、エンジン2に戻る。これにより、オイルクーラ12は、潤滑オイルの温度を上昇させることができる。そのため、環境温度が低い場合でも、潤滑オイルの粘度を低下させることができる。
冷却水制御弁装置10は、オイルクーラ12に流れる冷却水の流量を制御可能である。
ヒータ13は、冷却水制御弁装置10とウォーターポンプ3との間に設けられている。エンジン2のウォータージャケット4から流出した冷却水は、冷却水制御弁装置10を経由してヒータ13に流れ、エンジン2に戻る。これにより、ヒータ13は、車両の車室内の温度を上昇させることができる。
冷却水制御弁装置10は、ヒータ13に流れる冷却水の流量を制御可能である。
本実施形態では、EGRバルブ14により、エンジン2の排気を吸気側に再循環させ、窒素酸化物の濃度を低減可能な排気再循環(EGR:Exhaust Gas Recirculation)を行うことができる。EGRバルブ14は、エンジン2の排気通路と吸気通路とを接続する通路を流れる排気の流量を制御可能である。
EGRバルブ14は、エンジン2のウォータージャケット4とウォーターポンプ3との間に設けられている。そのため、ウォータージャケット4から流出した冷却水は、EGRバルブ14を経由してエンジン2に戻る。これにより、EGRバルブ14を冷却することができる。なお、エンジン2の運転中、冷却水は、ウォーターポンプ3、ウォータージャケット4、EGRバルブ14を循環する。
図2に示すように、冷却水制御弁装置10は、ハウジング20、モータ31、バルブ41、シャフト42、フェールセーフバルブ50等を備えている。
ハウジング20は、ハウジング本体21、パイプ部22、23等を有している。ハウジング本体21、パイプ部22、23は、例えば樹脂等により形成されている。
ハウジング本体21は、流入口Oin、メイン流路開口部Om、バイパス流路開口部Ob、迂回通路開口部Od、メイン通路Pm、バイパス通路Pb、迂回通路Pd等を有している。ハウジング本体21は、内側に空間200を形成している。
流入口Oin、メイン流路開口部Om、バイパス流路開口部Ob、迂回通路開口部Odは、それぞれ、ハウジング本体21の内部、すなわち、空間200と外部とを接続するよう形成されている。なお、空間200のうち特定個所には、流入口Oinに接続するバルブ室201が形成されている。
メイン通路Pmは、流入口Oinとメイン流路開口部Omとを接続するよう空間200に形成されている。また、ハウジング本体21内のメイン通路Pm上には、バルブ室201とメイン流路開口部Omとを接続する流路穴部202が形成されている。
バイパス通路Pbは、流入口Oinとバイパス流路開口部Obとを接続するよう空間200に形成されている。
迂回通路Pdは、バイパス通路Pbと迂回通路開口部Odとを接続するよう空間200に形成されている。
ハウジング本体21は、流入口Oinがエンジン2のウォータージャケット4に接続するようエンジン2に取り付けられる。これにより、ウォータージャケット4内の冷却水は、流入口Oinを経由してハウジング本体21の内部、すなわち、空間200に流入可能である。
パイプ部22、23は、筒状に形成されている。パイプ部22は、一端側の開口部がメイン流路開口部Omおよび迂回通路開口部Odに接続するようハウジング本体21に取り付けられている。パイプ部22の他端側の開口部は、ラジエータ11に接続される。すなわち、パイプ部22の内側には、メイン流路Rmの一部が形成されている。なお、迂回通路Pdは、迂回通路開口部Odを経由してバイパス通路Pbとは反対側の端部がパイプ部22の内側においてメイン流路Rmに接続している。
パイプ部23は、一端側の開口部がバルブ室201に接続するようハウジング本体21に取り付けられている。パイプ部23の他端側の開口部は、ヒータ13に接続される。
バイパス流路開口部Obは、バイパス流路Rbのエンジン2とは反対側の端部に接続する。
モータ31は、ハウジング20の内側の空間200とは異なる空間に設けられている。モータ31は、通電によりトルクを出力可能である。
バルブ41は、例えば樹脂等により、有底筒状に形成されている。バルブ41は、筒部の内側と外側とを接続する弁穴部411を有している。バルブ41は、底部とは反対側の開口部が流入口Oinを向くようバルブ室201に設けられている。
シャフト42は、例えば金属等により棒状に形成されている。シャフト42は、バルブ41の底部に形成された軸穴部に挿通され、バルブ41に対し相対回転不能なようバルブ41に固定されている。シャフト42は、ハウジング本体21に軸受支持されている。これにより、ハウジング本体21は、ハウジング本体21に対し相対回転可能なようシャフト42およびバルブ41を支持している。
モータ31とシャフト42とは、図示しない動力伝達部により接続されている。これにより、モータ31から出力されるトルクはシャフト42に伝達される。そのため、モータ31が回転すると、バルブ41は、バルブ室201においてシャフト42の軸周りに回転する。バルブ41の回転位置により、弁穴部411と流路穴部202との重なり面積が変化する。
バルブ41が回転し、弁穴部411と流路穴部202との重なり面積が0より大きくなると、流入口Oinとメイン流路開口部Omとが、バルブ41の底部とは反対側の開口部、弁穴部411を経由して互いに連通する。このとき、ウォータージャケット4内の冷却水は、流入口Oin、バルブ41の開口部、弁穴部411、メイン流路開口部Om、メイン流路Rmを経由してラジエータ11側へ流れることができる。このように、メイン通路Pmは、バルブ41の開口部、弁穴部411を経由して流入口Oinとメイン流路開口部Omとを接続するよう空間200内に設定されている。
モータ31によりバルブ41の回転位置を制御することで、メイン流路Rmを流れる冷却水、すなわち、エンジン2からラジエータ11に流れる冷却水の流量を制御することができる。
また、モータ31によりバルブ41の回転位置を制御することで、オイルクーラ12、ヒータ13に流れる冷却水の流量を制御することができる。
バイパス通路Pbは、バルブ41の外周壁とハウジング本体21の内壁との間を経由して流入口Oinとバイパス流路開口部Obとを接続するよう空間200内に設定されている。そのため、冷却水は、バルブ41の回転位置に関係なく、バイパス通路Pbを経由して流入口Oinからバイパス流路開口部Obに流れることができる。よって、エンジン2の運転中、ウォータージャケット4内の冷却水は、流入口Oin、バイパス通路Pb、バイパス流路開口部Ob、バイパス流路Rbを経由してウォータージャケット4に戻る。
上述のように、迂回通路Pdは、バイパス通路Pbとメイン流路Rmとを接続している。ここで、迂回通路Pdは、一端がハウジング本体21の内側においてバイパス通路Pbと接続し、他端がパイプ部22の内側においてメイン流路Rmと接続している。このように、迂回通路Pdは、バルブ41を迂回してバイパス通路Pbからメイン流路Rmに接続する通路である。また、迂回通路Pdは、バルブ41を迂回してエンジン2側からメイン流路Rm側に接続する通路であるとも言い換えることができる。
フェールセーフバルブ50は、弁本体51、温度検知媒体52、スプリング53、支持部材54等を有している。
支持部材54は、例えば金属等により筒状に形成されている。支持部材54は、一端がハウジング本体21内に位置し、他端がパイプ部22内に位置するよう迂回通路開口部Odに設けられている。つまり、支持部材54は、軸が迂回通路Pdに沿うよう迂回通路Pd上に設けられている。ここで、支持部材54の外周壁は、迂回通路開口部Odを形成するハウジング本体21の内壁に液密に接している。また、支持部材54の他端には、弁座541が形成されている。
弁本体51は、軸部511、弁部512を有している。軸部511は、棒状に形成され、軸方向に往復移動可能なよう支持部材54の内側に設けられている。弁部512は、例えば略円盤状に形成され、軸部511の一端に取り付けられている。弁部512は、支持部材54の他端の弁座541に当接可能、すなわち、弁座541を閉塞可能である。弁部512は、軸部511とともに軸方向に往復移動し、弁座541に当接または弁座541から離間する。弁部512が弁座541に当接すると、迂回通路Pdが閉じる。一方、弁部512が弁座541から離間すると、迂回通路Pdが開く。以下、適宜、弁部512が弁座541から離間する方向を「開弁方向」、弁部512が弁座541に当接する方向を「閉弁方向」という。
温度検知媒体52は、感温部521を有している。感温部521の内部には、例えばサーモワックス等のワックスが封入されている。温度検知媒体52は、支持部材54の弁座541とは反対側の端部の内側に設けられている。すなわち、温度検知媒体52は、迂回通路Pdに設けられている。さらに言えば、温度検知媒体52は、全体が迂回通路Pdに収容されている。温度検知媒体52は、軸部511の弁部512とは反対側の端部に接続している。
スプリング53は、所謂コイルばねであり、支持部材54の内側に設けられている。スプリング53は、軸部511を閉弁方向に付勢している。これにより、弁部512は、弁座541に当接した状態、すなわち、閉弁状態となる。
温度検知媒体52は、迂回通路Pd内の冷却水の温度が所定の温度以上になると膨張し、スプリング53の付勢力に抗して軸部511を開弁方向に押圧する。これにより、弁部512が弁座541から離間し開弁する。本実施形態では、上記所定の温度、すなわち、フェールセーフバルブ50が開弁する温度は、例えば約110℃に設定されている。
このように、フェールセーフバルブ50は、バルブ41とは別に独立して作動し迂回通路Pdを開閉可能な弁本体51、および、冷却水の温度に基づき弁本体51を作動させて迂回通路Pdを開閉可能とする温度検知媒体52を有している。
次に、本実施形態による冷却水制御弁装置10と比較形態による冷却水制御弁装置とにおける冷却水の流れ方の違いについて図4〜7に基づき説明する。
図4は、本実施形態による冷却水制御弁装置10のフェールセーフバルブ50およびその近傍を模式的に示した図である。図5は、比較形態による冷却水制御弁装置のフェールセーフバルブ50およびその近傍を模式的に示した図である。
図4示すように、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbと迂回通路Pdとに分岐する部分を分岐部Divとすると、本実施形態では、温度検知媒体52は、分岐部Divに突出することなく、全体が迂回通路Pdに収容されている。別の言い方をすると、温度検知媒体52は、バイパス通路Pbに突出することなく、全体が迂回通路Pdに収容されている。また、別の言い方をすると、温度検知媒体52は、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbに向かう経路、すなわち、バイパス通路Pbとは異なり、かつ、流入口Oinとバイパス流路Rbとに連通可能な位置Posに設けられている。さらに別の言い方をすると、温度検知媒体52は、流入口Oinとバイパス流路開口部Obとを最短で結ぶ経路であるバイパス通路Pbから所定距離以上離れた位置Posに設けられている。さらに、本実施形態では、エンジン2からの冷却水が流入する流入口Oinから迂回通路Pd側に向かって、バイパス流路Rbへの入口であるバイパス流路開口部Ob、温度検知媒体52の順に並んでいる。また、本実施形態では、流入口Oinからバイパス通路Pbおよび迂回通路Pdを経由してメイン流路Rmに向かう経路において、バイパス流路開口部Obは、温度検知媒体52に対し流入口Oin側に位置している。
一方、図5に示すように、比較形態では、温度検知媒体52は、分岐部Divに突出するよう迂回通路Pdおよびバイパス通路Pbに設けられている。別の言い方をすると、温度検知媒体52は、バイパス通路Pbに突出するよう、迂回通路Pdに設けられている。また、別の言い方をすると、温度検知媒体52は、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbに向かう経路、すなわち、バイパス通路Pb上に設けられている。さらに別の言い方をすると、温度検知媒体52は、流入口Oinとバイパス流路開口部Obとを最短で結ぶ経路であるバイパス通路Pb上に設けられている。さらに、比較形態では、エンジン2からの冷却水が流入する流入口Oinから迂回通路Pd側に向かって、温度検知媒体52、バイパス流路Rbへの入口であるバイパス流路開口部Obの順に並んでいる。
図6は、本実施形態による冷却水制御弁装置10のバイパス通路Pb、迂回通路Pdにおける冷却水の流れ方をシミュレーションに基づき示した図である。図7は、比較形態による冷却水制御弁装置のバイパス通路Pb、迂回通路Pdにおける冷却水の流れ方をシミュレーションに基づき示した図である。ここで、図中の矢印の向きは冷却水の流れ方向を示し、矢印の大きさは冷却水の流れの速さ(流速)を示している。なお、ここでのシミュレーションは、比較的大流量の冷却水をバイパス通路Pbに流した場合のシミュレーションである。
図6示すように、本実施形態では、流入口Oin側からバイパス流路Rb側に流れる冷却水は、温度検知媒体52によって流れを妨げられることなく、バイパス通路Pbを円滑に流通できることがわかる。
一方、図7示すように、比較形態では、流入口Oin側からバイパス流路Rb側に流れる冷却水は、温度検知媒体52によって流れを妨げられ、バイパス通路Pbにおける円滑な流通が阻害されることがわかる。
次に、本実施形態による冷却水制御弁装置10と比較形態による冷却水制御弁装置とにおける温度検知媒体52の温度変化の違いについて図8、9に基づき説明する。
図8は、本実施形態、比較形態において流入口Oinからバイパス流路Rb側に、例えば約90℃の比較的低温の冷却水を、例えば約5L/minの比較的小流量で流したときの温度検知媒体52の時間の経過に伴う温度変化を示した図である。図8において、実線が本実施形態の温度検知媒体52の温度変化を示し、破線が比較形態の温度検知媒体52の温度変化を示している。
図8に示すように、流入口Oinからバイパス流路Rb側に流れる冷却水、すなわち、バイパス流路Rbを流れる冷却水の流量が比較的小さい場合は、比較形態の温度検知媒体52の方が温度が素早く上昇することがわかる。
図9は、本実施形態、比較形態において流入口Oinからバイパス流路Rb側に、例えば約130℃の比較的高温の冷却水を、例えば約10L/minの比較的大流量で流したときの温度検知媒体52の時間の経過に伴う温度変化を示した図である。図9において、実線が本実施形態の温度検知媒体52の温度変化を示し、破線が比較形態の温度検知媒体52の温度変化を示している。
図9に示すように、流入口Oinからバイパス流路Rb側に流れる冷却水、すなわち、バイパス流路Rbを流れる冷却水の流量が比較的大きい場合は、本実施形態の温度検知媒体52の方が温度が素早く上昇することがわかる。これは、比較形態においては、バイパス通路Pbを流れる冷却水の流量が大きいときは、バイパス通路Pbにおける通水抵抗が増大し、温度検知媒体52に対する熱源からの通水量が減少するためであると考えられる。
以上より、本実施形態は、特にバイパス流路Rbを流れる冷却水の流量が大きいとき、温度検知媒体52の熱応答性の観点で比較形態に対し有利であるといえる。
次に、本実施形態による冷却水制御弁装置10の作動について説明する。
エンジン2の始動時は、エンジン2が低温のため、バルブ41によりメイン流路Rmを遮断し、冷却水がメイン流路Rmを経由してラジエータ11に流れないようにする。このとき、ウォータージャケット4内の冷却水は、流入口Oin、バイパス通路Pb、バイパス流路開口部Ob、バイパス流路Rb、ウォーターポンプ3を経由してウォータージャケット4に戻る。これにより、エンジン2の暖機が促進される。なお、本実施形態では、バルブ41でメイン流路Rmを遮断しているときの、流入口Oinからバイパス流路Rb側へ流れる冷却水の流量は、約10L/minである。
エンジン2の運転状態が継続し、冷却水の温度が所定の温度以上になると、モータ31によりバルブ41を回転駆動し、メイン流路Rmを開く。これにより、ウォータージャケット4内の冷却水は、メイン流路Rmを経由してラジエータ11に流れ、冷却されてウォータージャケット4に戻る。そのため、エンジン2を冷却することができ、エンジン2のオーバーヒートを抑制することができる。なお、このとき、バルブ41の開度は、冷却水の温度に応じて調整される。
バルブ41が何らかの異常等により回転不能となった場合、メイン流路Rmが遮断された状態のままになることがある。メイン流路Rmが遮断された状態のまま、エンジン2の運転が継続すると、ラジエータ11で冷却水を冷却できず、冷却水の温度が過度に高くなるおそれがある。しかしながら、本実施形態では、迂回通路Pdにフェールセーフバルブ50が設けられており、迂回通路Pdの冷却水の温度が所定の温度(例えば約110℃)以上になると、温度検知媒体52により弁本体51が開弁する。これにより、バイパス通路Pbを流れる高温の冷却水は、迂回通路Pdを経由してメイン流路Rmへ流れるようになる。その結果、ラジエータ11で冷却された冷却水がエンジン2に戻されるようになる。したがって、バルブ41の異常に起因するエンジン2のオーバーヒートを回避することができる。
本実施形態では、バイパス流路Rbを流れる冷却水の流量が大きいときの温度検知媒体52の熱応答性が高いため、バルブ41の異常時等、フェールセーフバルブ50を速やかに開弁させることができる。
以上説明したように、(1)本実施形態は、エンジン2からラジエータ11への冷却水が流れるメイン流路Rmと、ラジエータ11をバイパスしてエンジン2に接続しエンジン2から流出した冷却水をエンジン2に戻すバイパス流路Rbとを備えるエンジン冷却システム1のメイン流路Rmを流れる冷却水の流量を制御する冷却水制御弁装置10であって、バルブ41と迂回通路Pdとフェールセーフバルブ50とを備えている。
バルブ41は、メイン流路Rmを流れる冷却水の流量を制御可能である。
迂回通路Pdは、バルブ41を迂回してエンジン2側からメイン流路Rm側に接続する。
フェールセーフバルブ50は、バルブ41とは別に独立して作動し迂回通路Pdを開閉可能な弁本体51、および、冷却水の温度に基づき弁本体51を作動させて迂回通路Pdを開閉可能とする温度検知媒体52を有している。
本実施形態では、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbと迂回通路Pdとに分岐する部分を分岐部Divとすると、温度検知媒体52は、分岐部Divに突出することなく、全体が迂回通路Pdに収容されている。そのため、バイパス流路Rbを冷却水が流れるとき、温度検知媒体52がバイパス流路Rbを流れる冷却水の抵抗となることを抑制できる。これにより、バイパス流路Rbを流れる冷却水の通水抵抗の増大を抑制できる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体52の熱応答性を高めることができる。
また、(2)本実施形態では、温度検知媒体52は、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbに向かう経路(バイパス通路Pb)とは異なり、かつ、流入口Oinとバイパス流路Rbとに連通可能な位置Posに設けられている。そのため、バイパス流路Rbを冷却水が流れるとき、温度検知媒体52がバイパス流路Rbを流れる冷却水の抵抗となることを抑制しつつ、冷却水を温度検知媒体52に導くことができる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体52の熱応答性を高めることができる。
また、(3)本実施形態では、エンジン2からの冷却水が流入する流入口Oinから迂回通路Pdに向かって、バイパス流路Rbへの入口であるバイパス流路開口部Ob、温度検知媒体52の順に並んでいる。そのため、バイパス流路Rbを冷却水が流れるとき、温度検知媒体52がバイパス流路Rbを流れる冷却水の抵抗となることを抑制しつつ、冷却水を温度検知媒体52に導くことができる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体52の熱応答性を高めることができる。
また、(4)本実施形態は、エンジン2からラジエータ11への冷却水が流れるメイン流路Rmと、ラジエータ11をバイパスしてエンジン2に接続しエンジン2から流出した冷却水をエンジン2に戻すバイパス流路Rbとを備えるエンジン冷却システム1のメイン流路Rmを流れる冷却水の流量を制御する冷却水制御弁装置10であって、ハウジング20とバルブ41とフェールセーフバルブ50とを備えている。
ハウジング20は、エンジン2とメイン流路Rmおよびバイパス流路Rbとの間に設けられ、流入口Oin、メイン流路開口部Om、バイパス流路開口部Ob、メイン通路Pm、バイパス通路Pbおよび迂回通路Pdを有している。
流入口Oinは、エンジン2に接続しエンジン2からの冷却水が流入する。メイン流路開口部Omは、メイン流路Rmに接続しメイン流路Rmへの冷却水が流れる。バイパス流路開口部Obは、バイパス流路Rbに接続しバイパス流路Rbへの冷却水が流れる。メイン通路Pmは、流入口Oinとメイン流路開口部Omとを接続する。バイパス通路Pbは、流入口Oinとバイパス流路開口部Obとを接続する。迂回通路Pdは、バルブ41を迂回してバイパス通路Pbからメイン流路Rmに接続する。
バルブ41は、ハウジング20に収容され、流入口Oinからメイン流路Rmに流れる冷却水の流量を制御可能である。
フェールセーフバルブ50は、バルブ41とは別に独立して作動し迂回通路Pdを開閉可能な弁本体51、および、冷却水の温度に基づき弁本体51を作動させて迂回通路Pdを開閉可能とする温度検知媒体52を有している。
本実施形態では、温度検知媒体52は、バイパス通路Pbに突出することなく、全体が迂回通路Pdに収容されている。そのため、バイパス流路Rbを冷却水が流れるとき、温度検知媒体52がバイパス通路Pbを流れる冷却水の抵抗となることを抑制できる。これにより、バイパス流路Rbを流れる冷却水の通水抵抗の増大を抑制できる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体52の熱応答性を高めることができる。
また、(5)本実施形態では、温度検知媒体52は、流入口Oinからバイパス流路開口部Obに向かう経路(バイパス通路Pb)とは異なり、かつ、流入口Oinとバイパス流路開口部Obとに連通可能な位置Posに設けられている。そのため、バイパス流路Rbを冷却水が流れるとき、温度検知媒体52がバイパス流路Rbを流れる冷却水の抵抗となることを抑制しつつ、冷却水を温度検知媒体52に導くことができる。したがって、熱源からの通水量の減少を抑制し、温度検知媒体52の熱応答性を高めることができる。
また、(6)本実施形態では、流入口Oinからバイパス通路Pbおよび迂回通路Pdを経由してメイン流路Rmに向かう経路において、バイパス流路開口部Obは、温度検知媒体52に対し流入口Oin側に位置している。そのため、バイパス流路Rbを冷却水が流れるとき、温度検知媒体52がバイパス流路Rbを流れる冷却水の抵抗となることを抑制しつつ、冷却水を温度検知媒体52に導くことができる。
また、(7)本実施形態では、温度検知媒体52は、流入口Oinとバイパス流路開口部Obとを最短で結ぶ経路であるバイパス通路Pbから所定距離以上離れた位置Posに設けられている。そのため、バイパス流路Rbを冷却水が流れるとき、温度検知媒体52がバイパス流路Rbを流れる冷却水の抵抗となることを抑制できる。
また、(8)本実施形態では、温度検知媒体52は、内部にワックスを封入した感温部521を有している。そのため、温度検知媒体52を比較的安価に製造することができる。
(第2実施形態)
第2実施形態による冷却水制御弁装置を図10に示す。
第2実施形態においても、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbと迂回通路Pdとに分岐する部分を分岐部Divとすると、温度検知媒体52は、分岐部Divに突出することなく、全体が迂回通路Pdに収容されている。別の言い方をすると、温度検知媒体52は、バイパス通路Pbに突出することなく、全体が迂回通路Pdに収容されている。また、別の言い方をすると、温度検知媒体52は、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbに向かう経路、すなわち、バイパス通路Pbとは異なり、かつ、流入口Oinとバイパス流路Rbとに連通可能な位置Posに設けられている。さらに別の言い方をすると、温度検知媒体52は、流入口Oinとバイパス流路開口部Obとを最短で結ぶ経路であるバイパス通路Pbから所定距離以上離れた位置Posに設けられている。さらに、本実施形態では、エンジン2からの冷却水が流入する流入口Oinから迂回通路Pd側に向かって、バイパス流路Rbへの入口であるバイパス流路開口部Ob、温度検知媒体52の順に並んでいる。また、本実施形態では、流入口Oinからバイパス通路Pbおよび迂回通路Pdを経由してメイン流路Rmに向かう経路において、バイパス流路開口部Obは、温度検知媒体52に対し流入口Oin側に位置している。
第2実施形態も第1実施形態と同様の効果を奏することができる。
(第3実施形態)
第3実施形態による冷却水制御弁装置の一部を図11〜13に示す。
第3実施形態においても、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbと迂回通路Pdとに分岐する部分を分岐部Divとすると、温度検知媒体52は、分岐部Divに突出することなく、全体が迂回通路Pdに収容されている。別の言い方をすると、温度検知媒体52は、バイパス通路Pbに突出することなく、全体が迂回通路Pdに収容されている。また、別の言い方をすると、温度検知媒体52は、エンジン2からの冷却水が流入する流入口Oinからバイパス流路Rbに向かう経路、すなわち、バイパス通路Pbとは異なり、かつ、流入口Oinとバイパス流路Rbとに連通可能な位置Posに設けられている。さらに別の言い方をすると、温度検知媒体52は、流入口Oinとバイパス流路開口部Obとを最短で結ぶ経路であるバイパス通路Pbから所定距離以上離れた位置Posに設けられている。
第3実施形態も第1実施形態と同様の効果を奏することができる。
(他の実施形態)
本発明の他の実施形態では、フェールセーフバルブ50の開弁する温度は、110℃以外の温度に設定されていてもよい。
また、上述の実施形態では、通常時、バルブ41のみによりメイン流路Rmの冷却水の流量を制御する例を示した。これに対し、本発明の他の実施形態では、通常時、バルブ41に加えてフェールセーフバルブ50を用いてメイン流路Rmの冷却水の流量を制御してもよい。例えば、バルブ41によりメイン流路Rmを開く温度に上限を設け、冷却水の温度が上限の温度になったとき、バルブ41を閉じ、この上限の温度と略同等の温度でフェールセーフバルブ50が開弁するようにしてもよい。この場合、バルブ41の作動時間を低減し、バルブ41の高寿命化を図ることができる。
また、本発明の他の実施形態では、温度検知媒体52は、温度で変位することにより設定温度で弁本体51を開閉可能であれば、サーモワックスを封入した感温部521に限らず、例えばサーモスタット、バイメタル、形状記憶合金等を用いてもよい。
また、本発明の他の実施形態では、ハウジング20は、樹脂に限らず、金属等により形成してもよい。
このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。
1 エンジン冷却システム、2 エンジン、10 冷却水制御弁装置、11 ラジエータ、Rm メイン流路、Rb バイパス流路、41 バルブ、50 フェールセーフバルブ、51 弁本体、52 温度検知媒体、Oin 流入口、Div 分岐部、20 ハウジング、Om メイン流路開口部、Ob バイパス流路開口部、Pm メイン通路、Pb バイパス通路、Pd 迂回通路

Claims (10)

  1. エンジン(2)からラジエータ(11)への冷却水が流れるメイン流路(Rm)と、前記ラジエータをバイパスして前記エンジンに接続し前記エンジンから流出した冷却水を前記エンジンに戻すバイパス流路(Rb)とを備えるエンジン冷却システム(1)の前記メイン流路を流れる冷却水の流量を制御する冷却水制御弁装置(10)であって、
    前記メイン流路を流れる冷却水の流量を制御可能なバルブ(41)と、
    前記バルブを迂回して前記エンジン側から前記メイン流路側に接続する迂回通路(Pd)と、
    前記バルブとは別に独立して作動し前記迂回通路を開閉可能な弁本体(51)、および、冷却水の温度に基づき前記弁本体を作動させて前記迂回通路を開閉可能とする温度検知媒体(52)を有するフェールセーフバルブ(50)と、を備え、
    前記弁本体は、前記温度検知媒体に接続する軸部(511)、および、前記軸部の前記温度検知媒体とは反対側に設けられた弁部(512)を有し、
    前記エンジンからの冷却水が流入する流入口(Oin)から前記バイパス流路と前記迂回通路とに分岐する部分を分岐部(Div)とすると、
    前記弁部は、前記弁本体が前記迂回通路を開くとき、前記温度検知媒体に対し前記分岐部とは反対側へ移動し、
    前記温度検知媒体は、前記弁本体が前記迂回通路を開くときにおいても、前記分岐部に突出することなく、全体が前記迂回通路に収容されており、
    前記バルブは、筒状に形成され、
    前記流入口は、前記バルブの軸上に形成されている冷却水制御弁装置。
  2. エンジン(2)からラジエータ(11)への冷却水が流れるメイン流路(Rm)と、前記ラジエータをバイパスして前記エンジンに接続し前記エンジンから流出した冷却水を前記エンジンに戻すバイパス流路(Rb)とを備えるエンジン冷却システム(1)の前記メイン流路を流れる冷却水の流量を制御する冷却水制御弁装置(10)であって、
    前記メイン流路を流れる冷却水の流量を制御可能なバルブ(41)と、
    前記バルブを迂回して前記エンジン側から前記メイン流路側に接続する迂回通路(Pd)と、
    前記バルブとは別に独立して作動し前記迂回通路を開閉可能な弁本体(51)、および、冷却水の温度に基づき前記弁本体を作動させて前記迂回通路を開閉可能とする温度検知媒体(52)を有するフェールセーフバルブ(50)と、を備え、
    前記弁本体は、前記温度検知媒体に接続する軸部(511)、および、前記軸部の前記温度検知媒体とは反対側に設けられた弁部(512)を有し、
    前記温度検知媒体は、前記エンジンからの冷却水が流入する流入口(Oin)から前記バイパス流路に向かう経路(Pb)とは異なり、かつ、前記流入口と前記バイパス流路とに連通可能な位置(Pos)に設けられており、
    前記弁部は、前記弁本体が前記迂回通路を開くとき、前記温度検知媒体に対し前記経路とは反対側へ移動し、
    前記温度検知媒体は、前記弁本体が前記迂回通路を開くときにおいても、前記経路に突出することなく、全体が前記位置に設けられており、
    前記バルブは、筒状に形成され、
    前記流入口は、前記バルブの軸上に形成されている冷却水制御弁装置。
  3. エンジン(2)からラジエータ(11)への冷却水が流れるメイン流路(Rm)と、前記ラジエータをバイパスして前記エンジンに接続し前記エンジンから流出した冷却水を前記エンジンに戻すバイパス流路(Rb)とを備えるエンジン冷却システム(1)の前記メイン流路を流れる冷却水の流量を制御する冷却水制御弁装置(10)であって、
    前記メイン流路を流れる冷却水の流量を制御可能なバルブ(41)と、
    前記バルブを迂回して前記エンジン側から前記メイン流路側に接続する迂回通路(Pd)と、
    前記バルブとは別に独立して作動し前記迂回通路を開閉可能な弁本体(51)、および、冷却水の温度に基づき前記弁本体を作動させて前記迂回通路を開閉可能とする温度検知媒体(52)を有するフェールセーフバルブ(50)と、を備え、
    前記弁本体は、前記温度検知媒体に接続する軸部(511)、および、前記軸部の前記温度検知媒体とは反対側に設けられた弁部(512)を有し、
    前記エンジンからの冷却水が流入する流入口(Oin)から前記迂回通路側に向かって、前記バイパス流路への入口であるバイパス流路開口部(Ob)、前記温度検知媒体の順に並んでおり、
    前記弁部は、前記弁本体が前記迂回通路を開くとき、前記温度検知媒体に対し前記バイパス流路開口部とは反対側へ移動し、
    前記温度検知媒体は、前記弁本体が前記迂回通路を開くときにおいても、前記迂回通路に対し前記バイパス流路開口部側に突出することなく、全体が前記迂回通路に収容されており、
    前記バルブは、筒状に形成され、
    前記流入口は、前記バルブの軸上に形成されている冷却水制御弁装置。
  4. エンジン(2)からラジエータ(11)への冷却水が流れるメイン流路(Rm)と、前記ラジエータをバイパスして前記エンジンに接続し前記エンジンから流出した冷却水を前記エンジンに戻すバイパス流路(Rb)とを備えるエンジン冷却システム(1)の前記メイン流路を流れる冷却水の流量を制御する冷却水制御弁装置(10)であって、
    バルブ(41)と、
    前記エンジンと前記メイン流路および前記バイパス流路との間に設けられ、前記エンジンに接続し前記エンジンからの冷却水が流入する流入口(Oin)、前記メイン流路に接続し前記メイン流路への冷却水が流れるメイン流路開口部(Om)、前記バイパス流路に接続し前記バイパス流路への冷却水が流れるバイパス流路開口部(Ob)、前記流入口と前記メイン流路開口部とを接続するメイン通路(Pm)、前記流入口と前記バイパス流路開口部とを接続するバイパス通路(Pb)、および、前記バルブを迂回して前記バイパス通路から前記メイン流路に接続する迂回通路(Pd)を有するハウジング(20)と、
    前記バルブとは別に独立して作動し前記迂回通路を開閉可能な弁本体(51)、および、冷却水の温度に基づき前記弁本体を作動させて前記迂回通路を開閉可能とする温度検知媒体(52)を有するフェールセーフバルブ(50)と、を備え、
    前記バルブは、前記ハウジングに収容され、前記流入口から前記メイン流路に流れる冷却水の流量を制御可能であり、
    前記弁本体は、前記温度検知媒体に接続する軸部(511)、および、前記軸部の前記温度検知媒体とは反対側に設けられた弁部(512)を有し、
    前記弁部は、前記弁本体が前記迂回通路を開くとき、前記温度検知媒体に対し前記バイパス通路とは反対側へ移動し、
    前記温度検知媒体は、前記弁本体が前記迂回通路を開くときにおいても、前記バイパス通路に突出することなく、全体が前記迂回通路に収容されており、
    前記バルブは、筒状に形成され、
    前記流入口は、前記バルブの軸上に形成されている冷却水制御弁装置。
  5. 前記温度検知媒体は、前記流入口から前記バイパス流路開口部に向かう経路(Pb)とは異なり、かつ、前記流入口と前記バイパス流路開口部とに連通可能な位置(Pos)に設けられている請求項4に記載の冷却水制御弁装置。
  6. 前記流入口から前記バイパス通路および前記迂回通路を経由して前記メイン流路に向かう経路において、前記バイパス流路開口部は、前記温度検知媒体に対し前記流入口側に位置している請求項4または5に記載の冷却水制御弁装置。
  7. 前記温度検知媒体は、前記流入口と前記バイパス流路開口部とを最短で結ぶ経路である前記バイパス通路から所定距離以上離れた位置(Pos)に設けられている請求項4〜6のいずれか一項に記載の冷却水制御弁装置。
  8. 前記温度検知媒体は、内部にワックスを封入した感温部(521)を有している請求項1〜7のいずれか一項に記載の冷却水制御弁装置。
  9. 前記バルブは、有底筒状に形成され、底部とは反対側の開口部が前記流入口を向くよう設けられている請求項1〜8のいずれか一項に記載の冷却水制御弁装置。
  10. 前記フェールセーフバルブは、前記バルブの径方向外側に設けられている請求項1〜9のいずれか一項に記載の冷却水制御弁装置。
JP2017093162A 2017-05-09 2017-05-09 冷却水制御弁装置 Active JP6838485B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017093162A JP6838485B2 (ja) 2017-05-09 2017-05-09 冷却水制御弁装置
PCT/JP2018/017658 WO2018207740A1 (ja) 2017-05-09 2018-05-07 冷却水制御弁装置
DE112018002388.5T DE112018002388T5 (de) 2017-05-09 2018-05-07 Kühlwassersteuerventilvorrichtung
CN201880013568.3A CN110325720B (zh) 2017-05-09 2018-05-07 冷却水控制阀装置
US16/676,094 US10900408B2 (en) 2017-05-09 2019-11-06 Cooling water control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017093162A JP6838485B2 (ja) 2017-05-09 2017-05-09 冷却水制御弁装置

Publications (3)

Publication Number Publication Date
JP2018189041A JP2018189041A (ja) 2018-11-29
JP2018189041A5 JP2018189041A5 (ja) 2019-08-15
JP6838485B2 true JP6838485B2 (ja) 2021-03-03

Family

ID=64104713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093162A Active JP6838485B2 (ja) 2017-05-09 2017-05-09 冷却水制御弁装置

Country Status (5)

Country Link
US (1) US10900408B2 (ja)
JP (1) JP6838485B2 (ja)
CN (1) CN110325720B (ja)
DE (1) DE112018002388T5 (ja)
WO (1) WO2018207740A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614023B2 (en) * 2019-03-29 2023-03-28 Hitachi Astemo, Ltd. Control valve
JP2022175443A (ja) * 2021-05-13 2022-11-25 マツダ株式会社 エンジンの冷却システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126810A (ja) 1983-12-13 1985-07-06 日立コンデンサ株式会社 ケ−ス入り電子部品の製造方法
JPS60126810U (ja) * 1984-01-31 1985-08-26 日産自動車株式会社 ワツクス型サ−モスタツト
JP3859307B2 (ja) * 1997-05-16 2006-12-20 日本サーモスタット株式会社 内燃機関の冷却制御装置
JP5925456B2 (ja) 2011-09-22 2016-05-25 株式会社ミクニ 冷却水制御バルブ装置
JP6050952B2 (ja) * 2012-05-15 2016-12-21 株式会社ミクニ 冷却水制御バルブ装置
JP5918440B2 (ja) * 2013-03-21 2016-05-18 日立オートモティブシステムズ株式会社 流量制御弁
FR3015613B1 (fr) 2013-12-19 2016-06-10 Valeo Systemes Thermiques Vanne de commande pour un circuit de circulation de fluide, notamment pour vehicule automobile
US10428721B2 (en) * 2014-04-25 2019-10-01 Hitachi Automotive Systems, Ltd. Cooling control device, flow rate control valve and cooling control method
KR101567434B1 (ko) * 2014-07-31 2015-11-12 인지컨트롤스 주식회사 페일 세이프티 냉각수조절밸브
JP6004018B2 (ja) * 2015-01-09 2016-10-05 マツダ株式会社 エンジンの冷却装置
JP6571179B2 (ja) * 2015-06-05 2019-09-04 日立オートモティブシステムズ株式会社 流量制御弁
JP6501641B2 (ja) * 2015-06-15 2019-04-17 日立オートモティブシステムズ株式会社 流量制御弁
JP6616142B2 (ja) * 2015-09-28 2019-12-04 日立オートモティブシステムズ株式会社 流量制御弁
JP6536364B2 (ja) 2015-11-10 2019-07-03 富士通株式会社 受電器
KR101720568B1 (ko) * 2016-05-04 2017-03-29 엔브이에이치코리아(주) 통합 유량 제어밸브
KR102463203B1 (ko) * 2017-11-29 2022-11-03 현대자동차 주식회사 냉각수 제어 밸브유닛, 및 이를 구비한 엔진 냉각 시스템

Also Published As

Publication number Publication date
CN110325720B (zh) 2021-07-20
CN110325720A (zh) 2019-10-11
DE112018002388T5 (de) 2020-01-16
US10900408B2 (en) 2021-01-26
JP2018189041A (ja) 2018-11-29
WO2018207740A1 (ja) 2018-11-15
US20200072117A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP5919031B2 (ja) 冷却水制御バルブ装置
JP6330768B2 (ja) エンジン冷却装置
JP4431501B2 (ja) エンジン冷却装置内の流量の熱的制御
JP5925456B2 (ja) 冷却水制御バルブ装置
JP2008231942A (ja) 内燃機関の冷却装置
JPH10317967A (ja) 内燃機関の冷却制御装置
WO2001083961A1 (fr) Dispositif a thermostat
JP2009209913A (ja) 排気熱回収装置
KR20100043107A (ko) 차량의 냉각 장치
JP6838485B2 (ja) 冷却水制御弁装置
JP2002327621A (ja) サーモスタット装置
JP3218460B2 (ja) サーモスタット装置のボトムバイパス構造
JP4921955B2 (ja) サーモスタット装置
JP2006161806A (ja) 液冷式内燃機関の冷却装置
JP6572879B2 (ja) 内燃機関の冷却装置
JP2014025381A (ja) エンジン冷却装置
JP2010121455A (ja) 熱応動弁装置
JP2018105185A (ja) 内燃機関の冷却装置
JP5034949B2 (ja) サーモスタット装置および関連する方法
JP2018189041A5 (ja)
JP2014145326A (ja) 内燃機関
JP2017008753A (ja) 車両用内燃機関の冷却水制御装置及びこれに使用するサーモ弁装置
JP2017155672A (ja) 車両の液体循環システム
WO2022176871A1 (ja) サーモスタット装置
JP2009097351A (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R151 Written notification of patent or utility model registration

Ref document number: 6838485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250