JP6838352B2 - 永久磁石同期電動機の制御装置、制御方法、および画像形成装置 - Google Patents

永久磁石同期電動機の制御装置、制御方法、および画像形成装置 Download PDF

Info

Publication number
JP6838352B2
JP6838352B2 JP2016212248A JP2016212248A JP6838352B2 JP 6838352 B2 JP6838352 B2 JP 6838352B2 JP 2016212248 A JP2016212248 A JP 2016212248A JP 2016212248 A JP2016212248 A JP 2016212248A JP 6838352 B2 JP6838352 B2 JP 6838352B2
Authority
JP
Japan
Prior art keywords
speed
estimated
unit
angle
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212248A
Other languages
English (en)
Other versions
JP2018074761A (ja
Inventor
恭宏 小出
恭宏 小出
優太 橘
優太 橘
大地 鈴木
大地 鈴木
博之 吉川
博之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2016212248A priority Critical patent/JP6838352B2/ja
Priority to US15/784,347 priority patent/US10141877B2/en
Priority to CN201711019219.6A priority patent/CN108023512A/zh
Publication of JP2018074761A publication Critical patent/JP2018074761A/ja
Application granted granted Critical
Publication of JP6838352B2 publication Critical patent/JP6838352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、永久磁石同期電動機の制御装置、制御方法、および画像形成装置に関する。
一般に、永久磁石同期電動機(PMSM:Permanent Magnet Synchronous Motor)は、捲線を有する固定子と永久磁石を用いた回転子とを有し、捲線に交流電流を流して回転磁界を発生させることにより、回転子をそれに同期して回転させる。交流電流をd−q座標系のベクトルの成分として制御を行うベクトル制御によると、効率よく滑らかに回転させることができる。
近年、センサレス型の永久磁石同期電動機が広く用いられている。センサレス型は、磁極位置を検出するための磁気センサやエンコーダを有していない。このため、センサレス型の永久磁石同期電動機のベクトル制御には、捲線に流れる電流または電圧に基づいて、d−q軸モデルの式などの所定の演算式により回転子の回転速度(角速度)および磁極位置(角度)を推定する方法が用いられる。一般に、回転速度に基づく積分演算により磁極位置が推定される。
回転速度の推定値(推定速度)は、捲線に流れる電流の大きさを決める電流指令値の設定のために用いられる。すなわち、推定速度が目標速度に近づくように、推定速度が目標速度よりも小さいときには電流指令値を増やし、推定速度が目標速度よりも大きくなると電流指令値を減らすという設定が一般に行われる。このような設定に関して、例えば特許文献1には、磁束方向のd軸電流を零とした駆動状態において、推定速度が所定の速度制限範囲を逸脱するときに、回転駆動のトルクを発生させるq軸電流の電流指令値を増減することが記載されている。
磁極位置の推定値(推定角度)は、設定した電流指令値に基づいて永久磁石同期電動機に与える制御信号を生成するための座標変換演算、および捲線に流れる電流の測定値をベクトル制御にフィードバックするための座標変換演算などに一般に用いられる。
磁極位置の推定の精度を高めるための先行技術として、特許文献2に記載の技術がある。特許文献2には、モータにより駆動されるアクチュエータから入力される位置検出信号Saに基づいて回転速度の実際値を算出し、この実際値と推定速度との差分に基づいて推定角度を補正することが記載されている。
特開2012−062909号公報 特開2015−133872号公報
従来、永久磁石同期電動機の制御においては脱調を起こすことがあり、特に回転を加速させる起動時において脱調を起こしやすいという問題があった。
回転が加速しているときには、回転速度を推定してから推定値が駆動に反映されるまでに回転速度が増大する。つまり、回転速度の推定が回転速度の変化に対して遅れる。回転速度の推定の遅れは、推定速度に基づく磁極位置の推定において積算される。このため、磁極位置の推定値である推定角度には大きな遅れが生じやすい。
起動時において、推定角度の遅れが大きくなると、回転子の実際の磁極位置に対してはトルクが減少する。このため、回転速度が低下して脱調が起こる可能性が高くなる。
トルクの減少を補う方法として、捲線に流す電流を大きくする方法がある。しかし、電流の大きさを駆動回路の仕様で決まる設定可能範囲の上限に設定している場合には、それ以上に電流を大きくできない。一般に起動時には、設定可能範囲の上限近くに設定されるので、それ以上に電流を大きくすることはできない。駆動回路の部品を変更して設定可能範囲の上限の高くすると、駆動回路の製造コストが上昇してしまう。
上に述べた特許文献2の技術は、永久磁石同期電動機の外部に設けたセンサから回転子の角度位置に応じた位置検出信号Saを取得して推定角度を補正するものである。つまり、永久磁石同期電動機はセンサレス型であっても、永久磁石同期電動機の制御装置は、回転子の位置を検出するセンサを有することになり、センサレス型の永久磁石同期電動機を用いるコスト削減効果が損なわれる。
なお、脱調を起こす他の要因として、回転速度および磁極位置を推定するための演算に用いる複数のパラメータ値(モータ定数)と実際のパラメータ値とのずれが考えられる。パラメータとして、捲線の抵抗値、捲線のインダクタンス、および誘起電圧定数などがある。永久磁石同期電動機の駆動または周囲温度の変化により捲線や永久磁石の温度が変化すると、推定のためにあらかじめ設定しておいたパラメータ値と実際のパラメータ値とにずれが生じる。そのため、磁極位置および回転速度の推定が正しくできなくなることがある。
パラメータ値のずれに関しては、例えば起動毎に各パラメータ値を測定して演算に用いるパラメータ値を更新する方法がある。ただし、この場合には、各回の起動に要する時間が長くなり、起動指令に対する応答性が低下する。
本発明は、上述の問題に鑑みてなされたもので、磁極の実際の位置と推定した位置とのずれに起因する脱調を防ぐことのできる制御装置および制御方法を提供することを目的とする。
本発明の実施形態に係る制御装置は、電機子に流れる電流による回転磁界によって永久磁石を用いた回転子が回転する永久磁石同期電動機の制御装置であって、前記電機子に電流を流して前記回転子を駆動する駆動部と、前記電機子に流れる電流に基づいて前記回転子の回転速度を推定する速度推定部と、推定された前記回転速度である推定速度に基づいて前記回転子の磁極位置を推定する磁極位置推定部と、前記磁極位置推定部から出力される前記磁極位置の推定値である推定角度に基づいて、入力された速度指令の示す目標速度で回転する前記回転磁界が生成されるよう前記駆動部を制御する制御部と、前記目標速度および前記推定速度に基づいて脱調が起こるか否かを予測する脱調予測部と、前記脱調予測部により脱調が起こると予測された場合に、前記推定角度を補正する補正部と、を有し、前記制御部は、前記補正部により前記推定角度が補正された場合に、補正された前記推定角度である補正済推定角度に基づいて、前記目標速度に応じた前記回転磁界が生成されるよう前記駆動部を制御し、前記脱調予測部は、前記目標速度と前記推定速度との差である速度ずれ量が、前記目標速度とあらかじめ定められた許容下限速度との差であるしきい値よりも大きい場合に、脱調が起こると予測するものであり、前記許容下限速度は、加速時において前記回転子に作用する回転駆動力が負荷によって零になるような遅れ量が生じたとみなす回転速度である想定脱調速度に余裕値を加えた値である。
本発明によると、磁極の実際の位置と推定した位置とのずれに起因する脱調を防ぐことのできる制御装置および制御方法を提供することができる。
本発明の一実施形態に係るモータ制御装置を備えた画像形成装置の構成の概要を示す図である。 ブラシレスモータの構成を模式的に示す図である。 ブラシレスモータのd−q軸モデルを示す図である。 モータ制御装置の機能的構成の一例を示す図である。 モータ制御装置の機能的構成の変形例を示す図である。 モータ駆動部および電流検出部の構成の例を示す図である。 ブラシレスモータの運転パターンの例を示す図である。 推定角度のずれと駆動トルクとの関係を示す図である。 脱調の予測に用いるしきい値の設定の例を示す図である。 推定角度の遅れ量の上限の設定の例を示す図である。 目標速度に応じたしきい値を示すテーブルの例を示す図である。 推定角度の推移の例を示す図である。 速度比に応じた補正角度を示すテーブルの例を示す図である。 速度比に応じた補正速度を示すテーブルの例を示す図である。 推定角度の推移の他の例を示す図である。 モータ制御装置における処理の流れを示す図である。 脱調予測の処理の流れの例を示す図である。 脱調予測の処理の流れの例を示す図である。 角度補正の処理の流れの例を示す図である。
図1には本発明の一実施形態に係るモータ制御装置21を備えた画像形成装置1の構成の概要が、図2にはブラシレスモータ3の構成が模式的に示されている。
図1において、画像形成装置1は、電子写真式のプリンタエンジン1Aを備えたカラープリンタである。プリンタエンジン1Aは4個のイメージングステーション11,12,13,14を有しており、イエロー(Y)、マゼンダ(M)、シアン(C)およびブラック(K)の4色のトナー像を並行して形成する。イメージングステーション11,12,13,14のそれぞれは、筒状の感光体、帯電チャージャ、現像器、クリーナ、および露光用の光源などを有している。
4色のトナー像は中間転写ベルト16に一次転写され、用紙カセット10から給紙ローラ15Aによって引き出されてレジストローラ対15Bを経て搬送されてきた用紙9に二次転写される。二次転写の後、用紙9は定着器17の内部を通って上部の排紙トレイ18へ送り出される。定着器17を通過するとき、加熱および加圧によってトナー像が用紙9に定着する。
画像形成装置1は、定着器17、中間転写ベルト16、給紙ローラ15A、レジストローラ15B、感光体、および現像器のローラなどの回転体を回転させる駆動源として、ブラシレスモータ3を含む複数のブラシレスモータを用いる。つまり、プリンタエンジン1Aは、これらのブラシレスモータにより回転駆動される回転体を用いて用紙9を搬送して当該用紙9に画像を形成する。
ブラシレスモータ3は、例えばイメージングステーション14の近傍に配置されて、レジストローラ対15Bを回転駆動する。このブラシレスモータ3は、モータ制御装置21またはモータ制御装置21bにより制御される。
図2において、ブラシレスモータ3は、センサレス型の永久磁石同期電動機(PMSM:Permanent Magnet Synchronous Motor)である。ブラシレスモータ3は、回転磁界を発生させる電機子としての固定子31と、永久磁石を用いた回転子32とを備えている。固定子31は、120度間隔で配置されたU相、V相、W相のコア36,37,38、およびY結線された3つの捲線(コイル)33,34,35を有している。U相、V相およびW相の3相交流電流を捲線33〜35に流してコア36,37,38を順に励磁することによって回転磁界が生じる。回転子32は、この回転磁界に同期して回転する。
図2に示す例では回転子32の磁極数は2である。ただし、回転子32の磁極数は2に限らず、4、6またはそれ以上であってもよい。回転子32は、アウター式でもよく、インナー式でもよい。また、固定子31のスロット数は3に限らない。いずれにしても、ブラシレスモータ3に対して、d−q座標系を基本とした制御モデルを用いて磁極位置および回転速度の推定を行うベクトル制御(センサレスベクトル制御)が、モータ制御装置21,21bにより行われる。
なお、以下において、回転子32のS極およびN極のうちの黒丸で示すN極の回転角度位置を、回転子32の「磁極位置PS」ということがある。
図3にはブラシレスモータ3のd−q軸モデルが示されている。ブラシレスモータ3のベクトル制御では、ブラシレスモータ3の捲線33〜35に流れる3相の交流電流を、回転子32である永久磁石と同期して回転している2相の捲線に流す直流電流に変換して制御を簡単化する。
永久磁石の磁束方向(N極の方向)をd軸(無効電流軸)とし、d軸から電気角でπ/2[rad](90°)進んだ方向をq軸(有効電流軸)とする。d軸およびq軸はモデル軸である。U相の捲線33を基準とし、これに対するd軸の進み角をθと定義する。この角度θは、U相の捲線33に対する磁極の角度位置(磁極位置PS)を示す。d−q座標系は、U相の捲線33を基準としてこれより角度θだけ進んだ位置にある。
ブラシレスモータ3は回転子32の角度位置(磁極位置)を検出する位置センサを有していないので、モータ制御装置21において回転子32の磁極位置PSを推定する必要がある。その推定した磁極位置を示す推定角度θmに対応してγ軸を定め、γ軸よりも電気角でπ/2進んだ位置をδ軸に定める。γ−δ座標系は、U相の捲線33を基準としてこれより推定角度θmだけ進んだ位置にある。角度θに対する推定角度θmの遅れ量を、Δθと定義する。遅れ量Δθが零のときは、γ−δ座標系はd−q座標系と一致する。
図4にはモータ制御装置21の機能的構成の一例が、図5にはモータ制御装置21の機能的構成の変形例が、図6にはモータ制御装置21,21bにおけるモータ駆動部26および電流検出部27の構成の例が、それぞれ示されている。
図4に示すように、モータ制御装置21は、モータ駆動部26、電流検出部27、ベクトル制御部23、速度推定部24、磁極位置推定部25、座標変換部28、脱調予測部45、および角度補正部46などを有している。これらの要素のうち、脱調予測部45および角度補正部46は、加速時の脱調を防ぐるための処理に関わる。
モータ駆動部26は、ブラシレスモータ3の捲線33〜35に電流を流して回転子32を駆動するためのインバータ回路である。図6のように、モータ駆動部26は、3つのデュアル素子261,262,263、およびプリドライブ回路265などを有する。
各デュアル素子261〜263は、特性の揃った2つのトランジスタ(例えば、電界効果トランジスタ:FET)を直列接続してパッケージに収めた回路部品である。
デュアル素子261〜263によって、直流電源ライン211から接地ラインへ捲線33〜35を介して流れる電流Iが制御される。詳しくは、デュアル素子261のトランジスタQ1,Q2によって、捲線33を流れる電流Iuが制御され、デュアル素子262のトランジスタQ3,Q4によって、捲線34を流れる電流Ivが制御される。そして、デュアル素子263のトランジスタQ5,Q6によって、捲線35を流れる電流Iwが制御される。
図6において、プリドライブ回路265は、ベクトル制御部23から入力される制御信号U+,U−,V+,V−,W+,W−を、各トランジスタQ1〜Q6に適した電圧レベルに変換する。変換後の制御信号U+,U−,V+,V−,W+,W−が、トランジスタQ1〜Q6の制御端子(ゲート)に入力される。
電流検出部27は、U相電流検出部271およびV相電流検出部272を有し、捲線33,34に流れる電流Iu,Ivを検出する。Iu+Iv+Iw=0であるので、検出した電流Iu,Ivの値から計算によって電流Iwを求めることができる。なお、W相電流検出部を有してもよい。
U相電流検出部271およびV相電流検出部272は、電流Iu,Ivの流路に挿入されている抵抗値が小さい値(1/10Ωオーダー)のシャント抵抗による電圧降下を増幅してA/D変換し、電流Iu,Ivの検出値として出力する。すなわち、2シャント方式の検出を行う。
なお、モータ駆動部26と電流検出部27とを一体化した回路部品を用いてモータ制御装置21を構成することができる。
図4に戻って、ベクトル制御部23は、上位制御部20からの速度指令S1の示す目標速度(速度指令値)ω*に応じて、モータ駆動部26を制御する。上位制御部20は、画像形成装置1の全体の制御を受け持つコントローラであり、画像形成装置1をウォームアップするとき、プリントジョブを実行するとき、節電モードに移行するときなどに速度指令S1を発する。
回転駆動の開始を指令する場合に、上位制御部20は、起動指令を含む速度指令S1をベクトル制御部23に与える。その後、後に述べる運転パターンに従って加速するよう速度指令S1の示す目標速度ω*を増大させる。ただし、上位制御部20が起動指令と最終目標速度とをベクトル制御部23に与え、ベクトル制御部23において運転パターンに従う加速のための目標速度ω*を生成するようにしてもよい。
ベクトル制御部23は、磁極位置推定部25から出力される磁極位置PSの推定値である推定角度θmまたはそれを補正した補正済推定角度θmaに基づいて、入力された速度指令S1の示す目標速度ω*で回転する回転磁界が生成されるようモータ駆動部26を制御する。
ベクトル制御部23は、速度制御部41、電流制御部42、および電圧パターン生成部43を有する。
速度制御部41は、上位制御部20からの目標速度ω*と速度推定部24からの推定速度ωmとの差を零に近づける比例積分制御(PI制御)のための演算を行い、γ−δ座標系の電流指令値Iγ*,Iδ*を決定する。推定速度ωmは周期的に入力される。速度制御部41は、推定速度ωmが入力されるごとに、そのときの目標速度ω*に応じて電流指令値Iγ*,Iδ*を決定する。
電流制御部42は、電流指令値Iγ*,Iδ*と座標変換部28から入力される推定電流値Iγ,Iδとの差を零に近づける比例積分制御のための演算を行い、γ−δ座標系の電圧指令値Vγ*,Vδ*を決定する。
電圧パターン生成部43は、角度補正部46から入力される推定角度θmまたは補正済推定角度θmaに基づいて、電圧指令値Vγ*,Vδ*をU相、V相、およびW相の電圧指令値Vu*,Vv*,Vw*に変換する。そして、電圧指令値Vu*,Vv*,Vw*に基づいて制御信号U+,U−,V+,V−,W+,W−のパターンを生成し、モータ駆動部26へ出力する。
速度推定部24は、第1演算部241および第2演算部242などを有し、回転子32の捲線33〜35に流れる電流Iu,Iv,Iwに基づいて回転子32の回転速度を推定する。
第1演算部241は、電圧パターン生成部43により決定された電圧指令値Vu*,Vv*,Vw*に基づいて、γ−δ座標系の電流値Iγb,Iδbを算出する。変形として、電流制御部42により決定された電圧指令値Vγ*,Vδ*に基づいて電流指令値Iγb,Iδbを算出してもよい。いずれにしても、電流指令値Iγb,Iδbの算出に際して、第2演算部242による前回の推定で得られた推定速度ωmを用いる。
第2演算部242は、座標変換部28からの推定電流値Iγ,Iδと第1演算部241による電流値Iγb,Iδbとの差に基づいて、いわゆる電圧電流方程式に従って推定速度(速度推定値)ωmを求める。推定速度ωmは、回転子32の回転速度ωの推定値の例である。推定速度ωmは、速度制御部41、磁極位置推定部25、および脱調予測部45に入力される。
磁極位置推定部25は、推定速度ωmに基づいて回転子32の磁極位置PSを推定する。すなわち、推定速度ωmを積分することにより磁極位置PSの推定値として推定角度θmを算出する。
座標変換部28は、電流検出部27により検出されたU相の電流IuおよびV相の電流Ivの各値からW相の電流Iwの値を算出する。そして、推定角度θmまたは補正済推定角度θmaと3相の電流Iu,Iv,Iwの値とに基づいて、γ−δ座標系の推定電流値Iγ,Iδを算出する。つまり、電流について3相から2相への変換を行う。
脱調予測部45は、目標速度ω*および推定速度ωmに基づいて脱調が起こるか否かを予測する。予測の方法について後に詳述する。
角度補正部46は、補正量設定部461と加算部462とを有し、脱調予測部45により脱調が起こると予測された場合に、磁極位置推定部25から出力された推定角度θmを補正済推定角度θmaに補正する。脱調が起こらないと予測された場合には、推定角度θmを補正しない。
角度補正部46は、補正量設定部461により設定した補正角度dθを加算部462により推定角度θmに加算することによって補正済推定角度θmaを出力する。補正角度dθの値が「0」のとき、加算部462は入力された推定角度θmをそのまま出力する。
図5に示すモータ制御装置21bは、図4のモータ制御装置21における角度補正部46および速度推定部24に代わって、角度補正部46bおよび速度推定部24bを有している。この点を除いて、モータ制御装置21bの構成は、モータ制御装置21の構成と同様である。
図5の角度補正部46bは、脱調予測部45により脱調が起こると予測された場合に、磁極位置推定部25から推定角度θmとして補正済推定角度θmaが出力されるように、速度推定部24bから磁極位置推定部25に入力される推定速度ωmを補正済推定速度ωmaに補正する。補正速度dωの値が「0」のとき、加算部462bは入力された推定速度ωmをそのまま出力する。
角度補正部46bは、補正量設定部461bと加算部462bとを有し、補正量設定部461bにより設定した補正速度dωを加算部462bにおいて推定速度ωmに加算する。これにより、角度補正部46bは、補正済推定角度θmaを算出して磁極位置推定部25に与える。
速度推定部24bは、図4の速度推定部24と同様に、第1演算部241および第2演算部242などを有する。速度推定部24bにおいては、角度補正部46bから出力される推定角度θmaまたは補正済推定角度θmaが第1演算部241に入力される。
さて、本実施形態のモータ制御装置21,21bは、磁極位置の実際の角度θと推定角度θmとのずれに起因する脱調を防ぐ機能を有している。以下、この機能を中心にモータ制御装置21,21bの構成および動作をさらに説明する。
図7にはブラシレスモータ3の運転パターンの例が示されている。時点t0に起動指令がモータ制御装置21,21bに与えられる。起動指令は、最終目標速度ω1までの加速を指令する速度指令S1である。時点t0の以前においてブラシレスモータ3は停止しているものとする。
時点t0から時点t1までの期間に回転速度ωを0から最終目標速度ω1まで増大させる加速制御を行う。このとき、速度指令S1により与えられる目標速度(速度指令値)ω*は、例えば一定の割合で増加するように刻々と更新される。
回転速度ωが最終目標速度ω1になると、回転速度ωを最終目標速度ω1に保つ定速制御を行う。このときの目標速度ω*は、最終目標速度ω1である。時点t2において停止指令が与えられると、回転子32を停止させる停止制御を行う。例えば、ベクトル制御により回転速度ωを低下させ、磁極位置PSの推定が可能な下限速度ω3まで回転速度ωが低下した時点t3で、磁極位置PSを停止位置に引き込む固定励磁に切り替えて、時点t4までに停止させる。
図8には推定角度θmの遅れ量Δθと駆動トルクT1との関係が示されている。
起動時のように回転速度ωを大きく増大させる加速制御では、図8に示すように、推定角度θmによって決定されるδ軸方向またはそれに近い方向の磁界ベクトル85を定める。磁界ベクトル85を定めることは、磁界ベクトル85と同じ向きの電流ベクトル95を定めることに相当する。電流ベクトル95は、回転子32を回転させる磁界を生成するために捲線33〜35に流すべき電流を表わす。電流ベクトル95の大きさは磁界ベクトル85の大きさと比例する。図8では、図示を簡略化するため、磁界ベクトル85と電流ベクトル95とが同じ大きさのベクトルとして示されている。
電流ベクトル95を定めることは、モータ駆動部26を制御するための実際の処理の上では、電流ベクトル95の向きと大きさとを設定することである。電流ベクトル95の向きとして、推定角度θmに対して電気角でπ/2進んだ角度の方向(つまり、δ軸方向)を設定する。そして、電流ベクトル95の大きさとして、電流ベクトル95のγ軸成分(電流指令値Iγ*)およびδ軸成分(電流指令値Iδ*)を設定する。このとき、駆動トルクT1をできるだけ大きくして加速期間を短くするため、ブラシレスモータ3に流す電流Iがモータ駆動部26の仕様で決まる設定可能範囲の上限または上限より少し小さい値になるよう電流指令値Iγ*,Iδ*を設定する。なお、図8のように電流ベクトル95の向きをδ軸方向とする場合には、電流指令値Iγ*の値は零(「0」)である。
図8(A)のように、推定角度θmと実際の磁極位置PSに対応する角度θとが等しいときには、電流ベクトル95により発生可能な範囲内で最も大きい駆動トルクT1が回転子32に作用する。
しかし、図8(B)および(C)のように推定角度θmと角度θとの遅れ量Δθが0〜π/2の範囲で大きくなるにつれて、駆動トルクT1が小さくなってしまう。遅れ量Δθがπ/2になると駆動トルクT1は零になる。この場合にはほぼ確実に脱調が起こる。
加速時には、回転速度ωを推定してから推定速度ωmが駆動に反映されるまでに回転速度ωが増大するので、回転速度ωの推定が回転速度ωの変化に対して遅れる。回転速度ωの推定の遅れは、推定速度ωmに基づく推定角度θmの算出において積算される。したがって、加速時においては、定速制御時と比べて、遅れ量Δθが増大しやすい。
駆動トルクT1が低下すると、回転速度ωが低下する。上に述べたようにベクトル制御では、目標速度ω*と推定速度ωmとの差が小さくなるように電流指令値Iγ*,Iδ*を決定する。しかし、回転速度ωが大幅に低下すると、電流指令値Iγ*,Iδ*の設定を変更しても、回転速度ωの低下を抑えることができなくなり、脱調の起こるおそれが大きくなる。
そこで、モータ制御装置21,21bは、目標速度ω*および推定速度ωmに基づいて脱調が起こると予測した場合に、推定角度θmを補正する。
図9には脱調の予測に用いるしきい値Hωの設定の例が、図10には推定角度θmの遅れ量Δθの上限Δθzの設定の例が、図11には目標速度ω*に応じたしきい値Hωを示すテーブル71の例が、それぞれ示されている。
図9(A)のように、目標速度ω*が増大する加速時について、想定脱調速度ωZおよび許容下限速度ωkを定めておく。
想定脱調速度ωZは、加速時において、回転子32に作用する回転駆動力が零になるような遅れ量Δθが生じたとみなす回転速度ωである。回転駆動力が零になるとは、図10に示すように、駆動トルクT1の大きさの絶対値が、回転を抑えるように作用する負荷トルクT2の大きさの絶対値と等しくなることである。負荷トルクT2には、抵抗負荷と慣性負荷とが関わる。駆動トルクT1の大きさの絶対値(出力設定値)をDT1とし、負荷トルクT2の大きさの絶対値(負荷想定値)をDT2とすると、DT1=DT2となるときの遅れ量Δθである限界遅れ量Δθzは、(1)式で表わされる。
Δθz=−arccos(DT2/DT1) [rad] …(1)
なお、出力設定値DT1は、電機子としての固定子31に流れる電流の値を決める電流設定値の例である。
Δθが「0」の状態のまま360度(2π[rad])で1周する場合の回転速度ωxに対する、ΔθがΔθzであるときの回転速度ωzの比率である限界速度比Rωzは、(2)式で表わされる。
Rωz=ωz/ωx=(2π+Δθz)/2π …(2)
想定脱調速度ωZは、この限界速度比Rωzと目標速度ω*とを用いて、(3)式で表わされる。
ωZ=ω*・Rωz …(3)
例えば、出力設定値DT1を「1」とし、負荷想定値DT2を「0.5」とした場合には、(1)式により、
Δθz=−arccos(0.5/1)=−1.0472[rad](約−60度)となる。
限界速度比Rωzは、(2)式により、
Rωz=(2π−−1.0472)/2π=0.838
となる。
そして、加速中のある時点の目標速度ω*を例えば「500」とすると、想定脱調速度ωZは、(3)式により、
ωZ=500×0.838=419
となる。
図9(A)に示す許容下限速度ωkは、想定脱調速度ωZに余裕値(マージン)を加えた値であり、脱調が起こる時点より前に脱調が起こると予測するために定められている。想定脱調速度ωZが負荷想定値DT2に基づいて算出されるので、許容下限速度ωkは、ブラシレスモータ3の負荷に応じて定められていることになる。
例えば、負荷想定値DT2を大きめにして余裕値を定めることができる。目標速度ω*の取り得る値ごとに、想定脱調速度ωZよりも例えば5〜15%程度大きい値を許容下限速度ωkとすることができる。
図9(B)に示すように、加速時の各時点の目標速度ω*と許容下限速度ωkとの差をしきい値Hωとして定める。そして、図11に示すように、テーブル71により目標速度ω*としきい値Hωとを対応づけて記憶しておく。
図12には推定角度ωmの推移の例が、図13には速度比Rωに応じた補正角度dθを示すテーブル72の例が、図14には速度比Rωに応じた補正速度dωを示すテーブル72bの例が、それぞれ示されている。
図4、5をも参照して、脱調予測部45は、最新の推定速度ωmが入力されると、そのときの目標速度ω*に対応するしきい値Hωをテーブル71から読み出す。そして、目標速度ω*と推定速度ωmとの差である速度ずれ量Δωを算出し、速度ずれ量Δωがしきい値Hωよりも大きい場合に、脱調が起こると予測する。この予測は、推定速度ωmが許容下限速度ωkよりも小さい場合に脱調が起こると予測することに相当する。詳しくは、次の通りである。
図12(A)において、時点t0から加速が始まる。時点t0から時点t11まで、推定速度ωmは目標速度ω*の増加に追従している。時点t11から推定速度ωmが目標速度ω*よりも小さくなり始めている。
時点t11より後の時点t12において、目標速度ω*(t12)と推定速度ωm(t12)とに速度ずれ量Δω(t12)のずれが生じている。この速度ずれ量Δω(t12)は目標速度ω*(t12)に対応するしきい値Hω(t12)よりも小さいので、脱調予測部45は、脱調が起こらないと予測する。この場合には、角度補正部46,46bによる補正は行われない。
図12(B)において、時点t12より後の時点t13において、目標速度ω*(t13)と推定速度ωm(t13)とに速度ずれ量Δω(t13)のずれが生じている。この速度ずれ量Δω(t13)は目標速度ω*(t13)に対応するしきい値Hω(t13)よりも大きい。したがって、脱調予測部45は、脱調が起こると予測する。
脱調が起こると予測されたので、推定角度θmの補正が角度補正部46,46bにより行われる。角度補正部46,46bには、補正指令と共に速度比Rωが脱調予測部45から入力される。
速度比Rωは、目標速度ω*に対する推定速度ωmの比率であり、(4)式で表わされる。
Rω=ωm/ω* …(4)
図4に示した角度補正部46の補正量設定部461は、入力された速度比Rωに対応する補正角度dθを、図13に示すテーブル72から読み出して加算部462に送る。加算部462は、推定角度θmと補正角度dθとを和を補正済推定角度θmaとして出力する。
テーブル72は、あらかじめ作成されて補正量設定部461によるアクセスが可能な不揮発性メモリにより記憶されている。テーブル72において、速度比Rωの取り得る複数の値ごとに補正角度dθが対応づけられている。
補正角度dθは、推定角度θmの遅れΔθに対応する補正量であり、速度比Rωを用いて(5)式で表わされる。
dθ=2π−(2π・Rω) [rad] …(5)
例えば、目標速度ω*が「1000」であるときに推定速度ωmが「900」であったとすると、速度比Rωは、(4)式により、Rω=900/1000=0.90である。補正角度dθは、(5)式により、dθ=2π−( 2π・0.90)=0.6283[rad]≒36.0度である。
補正角度dθを加算することにより推定角度θmは、磁極の実際の角度θまたはそれに近い値に補正される。つまり、推定角度θmを補正済推定角度θmaに補正することにより、補正前と比べて電流ベクトル95による駆動トルクT1が補正前よりも大きい状態(図8(A)参照)に回復する。したがって、実際の回転速度ωが大きくなり、それに伴って図12(B)に一点鎖線で示すように、推定速度ωmが増加する。図12(B)では、運転パターンで想定された時点t1より後の時点t14で推定速度θmが最終目標速度ω1になっている。
なお、脱調予測部45から入力された速度比Rωの値と一致する速度比Rωの値がテーブル72に無い場合には、テーブル72に示される速度比Rωの値のうち、入力された速度比Rωの値に最も近い値に対応づけられている補正角度dθを読み出すようにすればよい。(5)式の演算、または入力された速度比Rωの値に近い複数の値に基づく補間演算により補正角度dθを算出してもよい。
図5に示した角度補正部46bの補正量設定部461bは、入力された速度比Rωに対応する補正速度dωを、図14に示すテーブル72bから読み出して加算部462bに送る。加算部462bは、推定速度ωmと補正速度dωとを和を補正済推定速度ωmaとして磁極位置推定部25に入力する。
これにより、上に述べたように、磁極位置推定部25から補正済推定角度θmaが出力される。つまり、角度補正部46bは、推定角度θmを補正する処理として、目標速度ω*に対する推定速度θmの比率Rωに応じた補正角度dθを推定角度θmに加算する演算に相当する処理を行う。
テーブル72bは、あらかじめ作成されて補正量設定部461bによるアクセスが可能な不揮発性メモリによりが可能に記憶されている。テーブル72bにおいて、速度比Rωの取り得る複数の値ごとに補正速度dωが対応づけられている。補正速度dωの値は、補正角度dθに対応するよう定められている。
次に、脱調予測部45による予測の方法の他の例を図15を参照して説明する。図15には推定角度θmの推移の他の例が示されている。
脱調予測部45は、加速制御時のように固定子31の捲線33〜35に流れる電流Iが設定可能範囲の上限となるようモータ駆動部26が制御されている状態において、推定速度θmが低下した場合に、脱調が起こると予測する。設定可能範囲は、モータ駆動部26の仕様で決まる。
図15において、時点t21から推定速度ωmが目標速度ω*よりも小さくなり始めている。しかし、時点t22まで、推定速度ωmは増加している。時点t22より後の時点t23では、推定速度ωm(t23)が時点t22の推定速度ωm(t22)よりも小さい。
脱調予測部45は、最新の推定速度ωmが入力されるごとに、以前に入力された推定速度ωmと比較する。最新の推定速度ωmが前回の推定速度ωmよりも小さいことが所定回数以上にわたって続いた場合に、または以前の推定速度ωmの最大値よりも今回の値が小さくかつこれらの差がしきい値以上であった場合に、脱調予測部45は、脱調が起こると予測する。
図15に示す例では、時点t23において、脱調が起こると予測され、角度補正部46bによる推定角度θmの補正が行われている。推定角度θmの補正が行われたことにより、一点鎖線で示すように推定速度ωmが減少から増加に転じ、時点t24で最終目標速度ω1になっている。
図16にはモータ制御装置21,21bにおける処理の流れが、図17および図18には脱調予測の処理の流れの例が、図19には角度補正の処理の流れの例が、それぞれ示されている。
図16に示すように、起動指令が上位制御部20から与えられるのを待つ(#101)。起動指令は、回転子32が停止している状態、または停止制御中に発せられる。
起動指令が与えられると(#101でYES)、次第に増加する目標速度ω*に回転を追従させる加速制御を開始し(#102)、加速中に脱調予測の処理を実行する(#103)。
脱調が起こると予測した場合にのみ(#104でYES) 、角度補正の処理を実行する(#105)。加速が完了していない間は(#106でNO) 、加速制御を続行するとともに、脱調予測の処理を実行する(#102、#103)。そして、脱調が起こると予測した場合には、再び角度補正の処理を実行する(#104、#105)。
加速が完了すると、すなわち推定速度ωmが加速時の最終目標速度ω1に達すると(#106でYES) 、加速制御を終了して定速制御を行う(#107)。
その後は、停止指令が上位制御部20から与えられるのを待つ(#108)。停止指令が与えられると(#108でYES)、停止制御を実行する(#109)。
図17に示すように、脱調予測の処理として、最新の目標速度ω*および推定速度ωmを取得し(#311)、速度ずれ量Δωを算出する(#312)。
続いて、速度ずれ量Δωが目標速度ω*に対応するしきい値Hω以上であるか否かを判定する(#313)。速度ずれ量Δωがしきい値Hω以上であると判定した場合には(#313でYES) 、脱調が起こると予測する(#314)。つまり、予測の結果として「脱調が起こる」を記憶する。速度ずれ量Δωがしきい値Hω以上ではないと判定した場合には(#313でNO) 、脱調が起こらないと予測する(#315)。
または、図18に示すように、脱調予測の処理として、最新の推定速度ωmを取得し(#321)、以前に取得した推定速度ωmと比較する(#322)。
続いて、比較の結果に基づいて、推定速度ωmが低下したか否かを判定する(#323)。推定速度ωmが低下したと判定した場合には(#323でYES) 、脱調が起こると予測する(#324)。推定速度ωmが低下していないと判定した場合には(#323でNO) 、脱調が起こらないと予測する(#325)。
図19に示すように、角度補正の処理として、速度比Rωを算出する(#501)。算出した速度比Rωに応じて、補正量として補正角度dθまたは補正速度dωを設定する(#502)。そして、推定角度θmに補正角度dθを加算することにより、または推定角度θmの推定に用いる推定速度ωmに補正速度dωを加算することにより、推定角度θmを補正する。
以上の実施形態によると、磁極の実際の位置と推定した位置とのずれに起因する脱調を防ぐことのできる制御装置および制御方法を提供することができる。例えば、停止状態から定速回転状態に移行させる起動時の加速段階での脱調を防ぐことができる。
上に述べた実施形態においては、補正角度dθを推定角度θmに加算した。しかし、これに限らず、補正角度dθを係数として設定し、推定角度θmと補正角度dθとの積を補正済推定補正角度θmaとして算出してもよい。同様に、補正速度dωを係数として設定し、推定速度ωmと補正速度dωとの積を補正済推定補正速度ωmaとして算出して推定角度θmを補正してもよい。
上に述べた実施形態において、テーブル71,72,72bの構成およびデータ値などは例を示すものであり、図に示した以外の種々の構成またはデータ値とすることができる。
その他、画像形成装置1およびモータ制御装置21のそれぞれの全体または各部の構成、処理の内容、順序、またはタイミングなどは、本発明の趣旨に沿って適宜変更することができる。
1 画像形成装置
3 ブラシレスモータ(永久磁石同期電動機)
9 用紙
15B レジストローラ対(搬送ローラ)
20 上位制御部(速度指令部)
21 モータ制御装置(制御装置)
23 ベクトル制御部(制御部)
24,24b 速度推定部
25 磁極位置推定部
26 モータ駆動部(駆動部)
31 固定子(電機子)
32 回転子
45 脱調予測部
46,46b 角度補正部(補正部)
dθ 補正角度
DT1 出力設定値(電流設定値)
DT2 負荷想定値(負荷)
Hω しきい値
I 電流
Iu,Iv,Iw 電流
PS 磁極位置
Rω 速度比(比率)
S1 速度指令
θm 推定角度
θma 補正済推定角度
ω 回転速度
ω* 目標速度
ωm 推定速度
ωk 許容下限速度
Δω 速度ずれ量

Claims (10)

  1. 電機子に流れる電流による回転磁界によって永久磁石を用いた回転子が回転する永久磁石同期電動機の制御装置であって、
    前記電機子に電流を流して前記回転子を駆動する駆動部と、
    前記電機子に流れる電流に基づいて前記回転子の回転速度を推定する速度推定部と、
    推定された前記回転速度である推定速度に基づいて前記回転子の磁極位置を推定する磁極位置推定部と、
    前記磁極位置推定部から出力される前記磁極位置の推定値である推定角度に基づいて、入力された速度指令の示す目標速度で回転する前記回転磁界が生成されるよう前記駆動部を制御する制御部と、
    前記目標速度および前記推定速度に基づいて脱調が起こるか否かを予測する脱調予測部と、
    前記脱調予測部により脱調が起こると予測された場合に、前記推定角度を補正する補正部と、を有し、
    前記制御部は、前記補正部により前記推定角度が補正された場合に、補正された前記推定角度である補正済推定角度に基づいて、前記目標速度に応じた前記回転磁界が生成されるよう前記駆動部を制御し、
    前記脱調予測部は、前記目標速度と前記推定速度との差である速度ずれ量が、前記目標速度とあらかじめ定められた許容下限速度との差であるしきい値よりも大きい場合に、脱調が起こると予測するものであり、
    前記許容下限速度は、加速時において前記回転子に作用する回転駆動力が負荷によって零になるような遅れ量が生じたとみなす回転速度である想定脱調速度に余裕値を加えた値である、
    ことを特徴とする永久磁石同期電動機の制御装置。
  2. 前記余裕値は、前記想定脱調速度の5〜15%の範囲の値である、
    請求項1記載の永久磁石同期電動機の制御装置。
  3. 前記想定脱調速度は、加速中の前記目標速度に対して次の式で示される値である
    ωZ=ω*×0.838
    但し、ωZは前記想定脱調速度、ω*は前記目標速度である、
    請求項1または2記載の永久磁石同期電動機の制御装置。
  4. 前記補正部は、前記磁極位置推定部から出力された前記推定角度を前記補正済推定角度に補正する、
    請求項1ないし3のいずれかに記載の永久磁石同期電動機の制御装置。
  5. 前記補正部は、前記磁極位置推定部から前記推定角度として前記補正済推定角度が出力されるように、前記速度推定部から前記磁極位置推定部に入力される前記推定速度を補正する、
    請求項1ないし3のいずれかに記載の永久磁石同期電動機の制御装置。
  6. 前記補正部は、前記推定角度を補正する処理として、前記目標速度に対する前記推定速度の比率に応じた補正角度を前記推定角度に加算する演算またはそれに相当する処理を行う、
    請求項1ないし5のいずれかに記載の永久磁石同期電動機の制御装置。
  7. 用紙に画像を形成する画像形成装置であって、
    電機子に流れる電流による回転磁界によって永久磁石を用いた回転子が回転する永久磁
    石同期電動機と、
    前記永久磁石同期電動機により回転駆動されて前記用紙を搬送する搬送ローラと、
    前記永久磁石同期電動機を制御する制御装置と、
    前記制御装置に速度指令を入力する速度指令部と、を有しており、
    前記制御装置は、
    前記電機子に電流を流して前記回転子を駆動する駆動部と、
    前記電機子に流れる電流に基づいて前記回転子の回転速度を推定する速度推定部と、
    推定された前記回転速度である推定速度に基づいて前記回転子の磁極位置を推定する磁極位置推定部と、
    前記磁極位置推定部から出力される前記磁極位置の推定値である推定角度に基づいて、入力された前記速度指令の示す目標速度で回転する前記回転磁界が生成されるよう前記駆動部を制御する制御部と、
    前記目標速度および前記推定速度に基づいて脱調が起こるか否かを予測する脱調予測部と、
    前記脱調予測部により脱調が起こると予測された場合に、前記推定角度を補正する補正部と、を有し、
    前記制御部は、前記補正部により前記推定角度が補正された場合に、補正後の当該推定角度である補正済推定角度に基づいて、前記目標速度に応じた前記回転磁界が生成されるよう前記駆動部を制御し、
    前記脱調予測部は、前記目標速度と前記推定速度との差である速度ずれ量が、前記目標速度とあらかじめ定められた許容下限速度との差であるしきい値よりも大きい場合に、脱調が起こると予測するものであり、
    前記許容下限速度は、加速時において前記回転子に作用する回転駆動力が負荷によって零になるような遅れ量が生じたとみなす回転速度である想定脱調速度に余裕値を加えた値である、
    ことを特徴とする画像形成装置。
  8. 前記余裕値は、前記想定脱調速度の5〜15%の範囲の値である、
    請求項7記載の画像形成装置。
  9. 前記想定脱調速度は、加速中の前記目標速度に対して次の式で示される値である
    ωZ=ω*×0.838
    但し、ωZは前記想定脱調速度、ω*は前記目標速度である、
    請求項7または8記載の画像形成装置。
  10. 電機子に流れる電流による回転磁界によって永久磁石を用いた回転子が回転する永久磁石同期電動機の制御方法であって、
    入力された速度指令の示す目標速度および前記回転子の回転速度の推定値である推定速度に基づいて脱調が起こるか否かを予測し、
    調が起こると予測された場合に、前記回転子の磁極位置の推定値である推定角度を補正し、
    補正後の前記推定角度である補正済推定角度に基づいて、前記目標速度で回転する前記回転磁界が生成されるよう前記電機子に電流を流して前記回転子を駆動するものであり
    前記目標速度と前記推定速度との差である速度ずれ量が、前記目標速度とあらかじめ定められた許容下限速度との差であるしきい値よりも大きい場合に、脱調が起こると予測し、
    前記許容下限速度は、加速時において前記回転子に作用する回転駆動力が負荷によって零になるような遅れ量が生じたとみなす回転速度である想定脱調速度に余裕値を加えた値である、
    ことを特徴とする永久磁石同期電動機の制御方法。
JP2016212248A 2016-10-28 2016-10-28 永久磁石同期電動機の制御装置、制御方法、および画像形成装置 Active JP6838352B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016212248A JP6838352B2 (ja) 2016-10-28 2016-10-28 永久磁石同期電動機の制御装置、制御方法、および画像形成装置
US15/784,347 US10141877B2 (en) 2016-10-28 2017-10-16 Controller for permanent magnet synchronous motor, control method, and image forming apparatus
CN201711019219.6A CN108023512A (zh) 2016-10-28 2017-10-26 永磁同步电机的控制装置、控制方法和图像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212248A JP6838352B2 (ja) 2016-10-28 2016-10-28 永久磁石同期電動機の制御装置、制御方法、および画像形成装置

Publications (2)

Publication Number Publication Date
JP2018074761A JP2018074761A (ja) 2018-05-10
JP6838352B2 true JP6838352B2 (ja) 2021-03-03

Family

ID=62021926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212248A Active JP6838352B2 (ja) 2016-10-28 2016-10-28 永久磁石同期電動機の制御装置、制御方法、および画像形成装置

Country Status (3)

Country Link
US (1) US10141877B2 (ja)
JP (1) JP6838352B2 (ja)
CN (1) CN108023512A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700622B2 (en) * 2016-10-28 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Apparatus for controlling brushless motor and method for controlling brushless motor
JP7154801B2 (ja) * 2018-04-09 2022-10-18 株式会社三共 スロットマシン
JP7074544B2 (ja) * 2018-04-09 2022-05-24 株式会社三共 スロットマシン
JP7074545B2 (ja) * 2018-04-09 2022-05-24 株式会社三共 スロットマシン
CN109060213B (zh) * 2018-07-24 2021-03-19 江苏银河同智新能源科技有限公司 一种电动涡旋压缩机电机转矩的评估方法及测试系统
JP7206679B2 (ja) * 2018-07-31 2023-01-18 株式会社アイシン 電気モータの駆動装置および電動ポンプ装置
CN110350846B (zh) * 2019-07-12 2020-12-22 四川虹美智能科技有限公司 一种电机转速控制方法及装置
CN111711384B (zh) * 2020-06-23 2021-12-24 四川虹美智能科技有限公司 控制电机启动的方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411878B2 (ja) * 2000-03-06 2003-06-03 株式会社日立製作所 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
JP2002112596A (ja) * 2000-09-27 2002-04-12 Sanyo Electric Co Ltd 電動機の制御装置
JP3867518B2 (ja) * 2001-06-06 2007-01-10 株式会社日立製作所 同期電動機のセンサレス制御システム
JP4631368B2 (ja) * 2004-09-16 2011-02-16 株式会社安川電機 リニアモータ駆動装置
JP4198162B2 (ja) * 2006-04-07 2008-12-17 三洋電機株式会社 モータ制御装置
JP4771998B2 (ja) * 2006-09-05 2011-09-14 三菱電機株式会社 電動機の駆動装置
JP5445892B2 (ja) * 2007-04-26 2014-03-19 富士電機株式会社 永久磁石形同期電動機の制御装置
JP5324159B2 (ja) * 2008-08-20 2013-10-23 三洋電機株式会社 モータ制御装置
JP5422435B2 (ja) * 2010-02-18 2014-02-19 三菱重工業株式会社 ブラシレスモータの駆動装置および駆動方法
JP2012060782A (ja) * 2010-09-09 2012-03-22 Hitachi Car Eng Co Ltd ブラシレスモータ制御装置
JP5221612B2 (ja) 2010-09-14 2013-06-26 株式会社日立カーエンジニアリング 電動オイルポンプ用モータ制御装置及び制御方法
WO2012169264A1 (ja) * 2011-06-10 2012-12-13 三菱電機株式会社 回転機の制御装置
CN102545740A (zh) * 2012-01-09 2012-07-04 南京航空航天大学 面贴式永磁同步电机的低速无位置传感器控制方法
KR101961106B1 (ko) * 2012-03-20 2019-03-25 삼성전자 주식회사 센서리스 제어 방법 및 장치
JP5729361B2 (ja) * 2012-08-08 2015-06-03 株式会社リコー モータ制御装置、駆動装置、搬送装置、画像処理装置、モータ制御方法及びモータ制御プログラム
JP5949743B2 (ja) * 2013-12-19 2016-07-13 ダイキン工業株式会社 電動機制御装置及び電動機制御方法
JP2015133872A (ja) * 2014-01-15 2015-07-23 株式会社ケーヒン モータ制御装置及びロータ角度推定方法

Also Published As

Publication number Publication date
JP2018074761A (ja) 2018-05-10
US10141877B2 (en) 2018-11-27
US20180123492A1 (en) 2018-05-03
CN108023512A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP6838352B2 (ja) 永久磁石同期電動機の制御装置、制御方法、および画像形成装置
JP6753291B2 (ja) 永久磁石同期電動機の制御装置、および回転子の初期位置推定のための制御方法
US9929686B2 (en) Controller for permanent magnet synchronous motor, image forming apparatus, and control method
US10734932B2 (en) Motor controller, conveyor, image forming apparatus, and motor control method
US11233471B2 (en) Motor control device, image forming apparatus, and method for estimating initial position of magnetic pole of rotor
JP7188052B2 (ja) モーター制御装置および画像形成装置
US20180076750A1 (en) Controller for permanent magnet synchronous motor, control method, and image forming apparatus
US20180175751A1 (en) Controller for permanent magnet synchronous motor, control method, and image forming apparatus
US10651765B2 (en) Motor controller, image forming apparatus and motor controlling method
US20200295689A1 (en) Motor control device, method of estimating initial position of magnetic pole of rotor, and image forming apparatus
JP6631323B2 (ja) 永久磁石同期電動機の制御装置および制御方法
JP2018098856A (ja) 永久磁石同期電動機の制御装置、画像形成装置、および制御方法
JP2020150656A (ja) モーター制御装置、ローターの磁極の初期位置推定方法、および画像形成装置
JP2022002433A (ja) モーター制御装置、モーターの起動方法、および画像形成装置
JP2018137932A (ja) 電動機制御装置、制御方法、および画像形成装置
JP6834331B2 (ja) 永久磁石同期電動機の制御装置、制御方法、および画像形成装置
JP7052255B2 (ja) 画像形成装置
US10790767B2 (en) Control device of permanent magnet synchronous motor and image forming device
JP2020137321A (ja) モーター制御装置、画像形成装置および初期位置推定方法
JP2022150844A (ja) モータ制御装置及び画像形成装置
JP2021027595A (ja) モータ制御装置およびモータ制御方法
JP2021069175A (ja) モータ制御装置及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6838352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150