JP6811914B2 - 障害物検知装置 - Google Patents

障害物検知装置 Download PDF

Info

Publication number
JP6811914B2
JP6811914B2 JP2020552064A JP2020552064A JP6811914B2 JP 6811914 B2 JP6811914 B2 JP 6811914B2 JP 2020552064 A JP2020552064 A JP 2020552064A JP 2020552064 A JP2020552064 A JP 2020552064A JP 6811914 B2 JP6811914 B2 JP 6811914B2
Authority
JP
Japan
Prior art keywords
wave
exploration
ultrasonic sensor
frequency
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2020552064A
Other languages
English (en)
Other versions
JPWO2020105167A1 (ja
Inventor
裕 小野寺
裕 小野寺
亘 辻田
亘 辻田
井上 悟
井上  悟
元気 山下
元気 山下
努 朝比奈
努 朝比奈
侑己 浦川
侑己 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6811914B2 publication Critical patent/JP6811914B2/ja
Publication of JPWO2020105167A1 publication Critical patent/JPWO2020105167A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/62Sense-of-movement determination

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

この発明は、車両周辺の障害物を検知する障害物検知装置に関するものである。
特許文献1に係る歩行支援装置は、周波数の異なる2つの信号を送信し、その反射信号から得られた2つのドップラ信号の位相差を用いて、障害物までの距離を検出する。また、上記歩行支援装置は、上記2つのドップラ信号のいずれかを用いて、ドップラ周波数から障害物の相対速度を検出する。
特開2018−47071号公報
従来の障害物検知装置は以上のように構成されているので、ドップラ周波数を解析する機能が必要となり、演算負荷が大きくなる、及び装置コストが高くなるという課題があった。
この発明は、上記のような課題を解決するためになされたもので、周波数解析を実施することなく、簡易な構成で、障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを判定することを目的とする。
この発明に係る障害物検知装置は、車両に設けられた超音波センサの共振周波数をまたぐ2つの異なる周波数の探査波、又は共振周波数と同じ周波数を含む2つの異なる周波数の探査波を、超音波センサから送信させる探査波送信部と、探査波送信部が超音波センサから送信させる探査波の2つの異なる周波数を制御する探査波制御部と、探査波が障害物で反射して超音波センサにより受信された反射波を受信信号に変換する反射波受信部と、2つの異なる周波数の探査波に対応する2つの受信信号の各受信強度を算出する反射波解析部と、反射波解析部により算出された受信強度の比に基づいて、障害物が車両に対して相対的に静止、接近、又は離反のいずれであるかを判定する動態判定部とを備えるものである。
この発明によれば、周波数解析を実施することなく、簡易な構成で、障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを判定することができる。
実施の形態1に係る障害物検知装置の構成例を示すブロック図である。 実施の形態1における探査波の周波数スペクトルと超音波センサの周波数特性とを示すグラフである。 実施の形態1における受信信号の周波数スペクトルと超音波センサの周波数特性とを示すグラフであり、図3Aは障害物が自車に対して相対的に静止している例、図3Bは障害物が自車に対して相対的に接近している例、図3Cは障害物が自車に対して相対的に離反している例である。 実施の形態1の動態判定部による判定処理を説明するグラフである。 実施の形態1に係る障害物検知装置の動作例を示すフローチャートである。 実施の形態2に係る障害物検知装置の構成例を示すブロック図である。 図7A及び図7Bは、実施の形態2における低周波数側の探査波の周波数スペクトルと超音波センサの周波数特性とを示すグラフである。 図8A及び図8Bは、実施の形態2における高周波数側の探査波の周波数スペクトルと超音波センサの周波数特性とを示すグラフである。 実施の形態3に係る障害物検知装置の構成例を示すブロック図である。 実施の形態3における超音波センサの車両取付例を示し、図10Aは側面図、図10Bは平面図である。 図11Aは、実施の形態3における探査波の周波数スペクトルと超音波センサの周波数特性とを示すグラフである。図11Bは、実施の形態3における探査波の伝搬経路を説明する図である。 図12A及び図12Bは、実施の形態3において障害物が自車に対して相対的に静止している場合の受信信号を説明するグラフである。 図13A及び図13Bは、実施の形態3において障害物が自車に対して相対的に接近している場合の受信信号を説明するグラフである。 各実施の形態に係る障害物検知装置のハードウェア構成図である。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る障害物検知装置1の構成例を示すブロック図である。車両には、障害物検知装置1、及び1個以上の超音波センサ2が搭載されている。障害物検知装置1には、超音波センサ2が接続されている。
障害物検知装置1は、探査波制御部11、探査波送信部12、反射波受信部13、反射波解析部14、及び動態判定部15を備える。動態判定部15は、同一物体判定部16を有する。
探査波制御部11は、探査波の送信タイミング及び送信方法を、探査波送信部12へ指示する。また、探査波制御部11は、探査波の周波数を制御する。
探査波送信部12は、探査波制御部11から指示された送信タイミング及び送信方法に従って、探査波制御部11により制御される周波数の探査信号を生成し、超音波センサ2へ出力する。
超音波センサ2は、探査波送信部12からの探査信号を、探査波として空間へ送信する。超音波センサ2が送信した探査波は、車両周辺の障害物で反射し、反射波として超音波センサ2により受信される。
図2は、実施の形態1における探査波21,22の周波数スペクトルと超音波センサ2の周波数特性とを示すグラフである。グラフの横軸は探査波の周波数、縦軸は探査波の送信強度である。図2の例では、探査波送信部12が、超音波センサ2の共振周波数f0より低い周波数f1をもつ探査波21と、共振周波数f0より高い周波数f2をもつ探査波22とを生成する。図2に示されるように、超音波センサ2から送信される探査波21の周波数f1と探査波22の周波数f2とは、超音波センサ2の共振周波数f0に対して線対称である。また、図2に曲線で示された超音波センサ2の周波数特性は、共振周波数f0に対して線対称である。そのため、探査波21と探査波22とは、同じ強度で空間へ送信される。
ここで、探査波の送信方法について説明する。
送信方法は、時分割送信方法、周波数多重送信方法、又は変調信号送信方法がある。探査波制御部11は、これらの送信方法のうちの1つを選択して探査波送信部12に指示する。時分割送信方法は、探査波21と探査波22とを切り替えながら超音波センサ2から送信するものである。周波数多重送信方法は、探査波21と探査波22とを合成して超音波センサ2から同時に送信するものである。変調信号送信方法は、チャープ変調若しくはFSK(Frequency Shift Keying)変調等の周波数変調、又はPSK(Phase Shift Keying)変調等の位相変調により広帯域化した信号を探査波として超音波センサ2から送信するものである。
反射波受信部13は、超音波センサ2により受信された反射波を受信信号に変換し、変換した受信信号を反射波解析部14へ出力する。
反射波解析部14は、反射波受信部13からの受信信号のうち、周波数f1をもつ探査波21に対応する受信信号成分(以下、「受信信号31」と称する)の受信強度と、周波数f2をもつ探査波22に対応する受信信号成分(以下、「受信信号32」と称する)の受信強度とを算出する。
探査波の送信方法が時分割送信方法である場合、反射波解析部14は、超音波センサ2が探査波21を送信したときの受信信号を受信信号31とみなしてその受信強度を算出し、超音波センサ2が探査波22を送信したときの受信信号を受信信号32とみなしてその受信強度を算出する。
探査波の送信方法が周波数多重送信方法又は変調信号送信方法である場合、反射波解析部14は、共振周波数f0より低い周波数帯域が通過するフィルタを用いて、受信信号から受信信号31を分離する。また、反射波解析部14は、共振周波数f0より高い周波数帯域が通過するフィルタを用いて、受信信号から受信信号32を分離する。そして、反射波解析部14は、分離後の受信信号31の受信強度と、分離後の受信信号32の受信強度を算出する。
なお、共振周波数f0より低い周波数帯域が通過するフィルタは、周波数f1が通過するのはもちろんのこと、周波数f1が高周波数側又は低周波数側にドップラシフトした周波数も通過するように設計される。同様に、共振周波数f0より高い周波数帯域が通過するフィルタは、周波数f2が通過するのはもちろんのこと、周波数f2が高周波数側又は低周波数側にドップラシフトした周波数も通過するように設計される。
また、反射波解析部14は、受信信号31を用いて、超音波センサ2が探査波を送信してから反射波を受信するまでの伝搬遅延時間ΔTを算出する。そして、反射波解析部14は、探査波の伝搬速度Vと伝搬遅延時間ΔTとを用いて、式(1)を計算し、超音波センサ2から障害物までの距離Lを求める。同様に、反射波解析部14は、受信信号32を用いて式(1)を計算し、障害物までの距離Lを求める。そして、反射波解析部14は、受信信号31の受信強度、受信信号32の受信強度、及び障害物までの距離を、動態判定部15へ出力する。
L=(V×ΔT)/2 (1)
同一物体判定部16は、受信信号31と受信信号32とが同一の障害物で反射したものであるか否かを判定する。
探査波の送信方法が時分割送信方法である場合、同一物体判定部16は、反射波解析部14が受信信号31を用いて算出した障害物までの距離と、受信信号31を受信した時点から受信信号32を受信した時点までの自車の移動距離とを用いて、受信信号32を受信した時点で障害物が存在するであろう距離範囲を予測する。そして、同一物体判定部16は、反射波解析部14が受信信号32を用いて算出した障害物までの距離が、予測した距離範囲内にある場合、受信信号31と受信信号32とが同一の障害物で反射したものであると判定する。
探査波の送信方法が周波数多重送信方法又は変調信号送信方法である場合、同一物体判定部16は、反射波解析部14が受信信号31を用いて算出した障害物までの距離と、反射波解析部14が受信信号32を用いて算出した障害物までの距離とを比較する、そして、同一物体判定部16は、両者が同一である場合、受信信号31と受信信号32とが同一の障害物で反射したものであると判定する。
動態判定部15は、同一物体判定部16により同一の障害物で反射したと判定された受信信号31と受信信号32との受信強度比を算出する。そして、動態判定部15は、受信強度比と、予め定められた2つ以上の閾値とを比較することにより、障害物の動態、すなわち障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを判定する。
図3は、実施の形態1における受信信号31,32の周波数スペクトルと超音波センサ2の周波数特性とを示すグラフであり、図3Aは障害物が自車に対して相対的に静止している例、図3Bは障害物が自車に対して相対的に接近している例、図3Cは障害物が自車に対して相対的に離反している例である。各グラフの横軸は周波数、縦軸は受信信号の受信強度である。ここでは、図2に示される周波数f1をもつ探査波21と、周波数f2をもつ探査波22とが超音波センサ2から送信されたものとする。
超音波センサ2が反射波を受信する際に、超音波センサ2の周波数特性自身がバンドパスフィルタとして動作する。そのため、図3Aのように、自車に対して相対的に静止している障害物、すなわち相対速度がゼロの障害物で反射した反射波は、ドップラシフトが生じていないので、探査波21に対応する受信信号31の受信強度と、探査波22に対応する受信信号32の受信強度とは、ほぼ同一となる。
障害物が自車に対して相対的に接近している場合、この障害物で反射した反射波の周波数は、ドップラシフトにより周波数シフト量fdだけ高周波数側へシフトする。このため、周波数f1+fdをもつ反射波の超音波センサ2の通過損失は、周波数f2+fdをもつ反射波の超音波センサ2の通過損失と比較して小さくなる。したがって、図3Bのように、探査波21に対応する受信信号31の受信強度は、探査波22に対応する受信信号32の受信強度と比較して大きくなる。
障害物が自車に対して相対的に離反している場合、この障害物で反射した反射波の周波数は、ドップラシフトにより周波数シフト量fdだけ低周波数側へシフトする。このため、周波数f2+fdをもつ反射波の超音波センサ2の通過損失は、周波数f1+fdをもつ反射波の超音波センサ2の通過損失と比較して小さくなる。したがって、図3Cのように、探査波22に対応する受信信号32の受信強度は、探査波21に対応する受信信号31の受信強度と比較して大きくなる。
このように、反射波のドップラシフトは、超音波センサ2自身の周波数特性を利用することにより、受信信号の受信強度の変化として検知可能である。
図4は、実施の形態1の動態判定部15による判定処理を説明するグラフである。グラフの横軸は自車と障害物の相対速度であり、縦軸は受信強度比Pである。ここでの受信強度比Pは、受信信号32の受信強度に対する受信信号31の受信強度の比、すなわち(受信信号31の受信強度)/(受信信号32の受信強度)である。動態判定部15は、2つの閾値Th1,Th2と受信強度比Pとの比較により、障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを判定する。具体的には、図4の例において、動態判定部15は、Th1<P<Th2である場合に障害物が自車に対して相対的に静止していると判定する。また、動態判定部15は、Th2≦Pである場合に障害物が自車に対して相対的に接近していると判定する。また、動態判定部15は、Th1≧Pである場合に障害物が自車に対して相対的に離反していると判定する。
さらに、動態判定部15は、閾値Th1,Th2に加えて閾値Th3,Th4を用いて、接近する障害物がゆっくり接近するのか急接近するのか、及び離反する障害物がゆっくり離反するのか急離反するのかを判定してもよい。具体的には、図4の例において、動態判定部15は、Th3≦Pである場合に障害物が自車に対して相対的に急接近していると判定し、Th2≦P<Th3である場合にゆっくり接近していると判定する。また、動態判定部15は、Th4≧Pである場合に障害物が自車に対して相対的に急離反していると判定し、Th4<P≦Th1である場合にゆっくり離反していると判定する。
図5は、実施の形態1に係る障害物検知装置1の動作例を示すフローチャートである。障害物検知装置1は、図5のフローチャートに示される動作を繰り返す。
探査波送信部12は、探査波制御部11から指示された送信タイミングで周波数f1,f2をもつ探査波21,22を超音波センサ2から送信させる(ステップST1)。反射波受信部13は、超音波センサ2が反射波を受信した場合(ステップST2“YES”)、反射波を受信信号に変換して反射波解析部14へ出力する。反射波解析部14は、探査波21,22に対応する受信信号31,32の各受信強度を算出すると共に、受信信号31,32を用いて障害物までの距離を算出する(ステップST3)。同一物体判定部16は、障害物までの距離を用いて、受信信号31,32が同一の障害物で反射したものであるか否かを判定する(ステップST4)。動態判定部15は、受信信号31,32が同一の障害物で反射したものである場合(ステップST4“YES”)、受信信号31,32の受信強度比と2つ以上の閾値とを比較することにより、障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを判定する(ステップST5)。
なお、超音波センサ2が反射波を受信しなかった場合(ステップST2“NO”)、又は、受信信号31,32が同一の障害物で反射したものでなかった場合(ステップST4“NO”)、処理は、ステップST1へ戻る。
以上のように、実施の形態1に係る障害物検知装置1は、探査波送信部12と、探査波制御部11と、反射波受信部13と、反射波解析部14と、動態判定部15とを備える。探査波送信部12は、車両に設けられた超音波センサ2の共振周波数f0をまたぐ2つの異なる周波数f1,f2の探査波21,22を、超音波センサ2から送信させる。探査波制御部11は、探査波送信部12が超音波センサ2から送信させる探査波21,22の周波数f1,f2を制御する。反射波受信部13は、探査波21,22が障害物で反射して超音波センサ2により受信された反射波を受信信号に変換する。反射波解析部14は、探査波21,22に対応する受信信号31,32の各受信強度を算出する。動態判定部15は、反射波解析部14により算出された受信強度の比に基づいて、障害物が車両に対して相対的に静止、接近、又は離反のいずれであるかを判定する。この構成により、障害物検知装置1は、従来のような周波数解析を実施することなく、簡易な構成で、障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを判定することができる。また、障害物検知装置1は、探査波の送受信を繰り返して障害物の相対速度を判定するのではなく、より少ない探査回数で障害物の相対速度を判定することができるので、車両制御装置が車両を自動制御する際の距離余裕を長くすることができる。
また、実施の形態1では、探査波21の周波数f1と探査波22の周波数f2とが、超音波センサ2の共振周波数f0に対して線対称である。これにより、動態判定部15は、図4に示されるように、プラス側の相対速度とマイナス側の相対速度の両方を判定できるので、接近と離反の両方を判定できる。
また、実施の形態1の探査波送信部12は、2つの異なる周波数f1,f2の探査波21,22を合成し、超音波センサ2から同時に送信させてもよい。周波数多重送信方法の場合、時分割送信方法の場合に比べ、より短時間で障害物の動態を判定できる。
実施の形態2.
実施の形態1では、周波数f1と周波数f2とが、超音波センサ2の共振周波数f0に対して線対称である例を説明した。実施の形態2では、周波数f1と周波数f2とが、超音波センサ2の共振周波数f0に対して非線対称である例を説明する。
図6は、実施の形態2に係る障害物検知装置1の構成例を示すブロック図である。実施の形態2に係る障害物検知装置1は、図1に示された実施の形態1の障害物検知装置1における探査波制御部11、探査波送信部12、及び動態判定部15に代えて、探査波制御部11a、探査波送信部12a、及び動態判定部15aを備える構成である。なお、図6において図1と同一又は相当する部分は、同一の符号を付し説明を省略する。
図7A及び図7Bは、実施の形態2における低周波数側の探査波21,22の周波数スペクトルと超音波センサ2の周波数特性とを示すグラフである。
障害物が自車に対して相対的に静止又は接近のいずれであるかを判定したい場合、探査波制御部11aは、自車と障害物との接近速度をより高速度域まで判定できるような周波数f1,f2を設定して探査波送信部12aへ指示する。この場合、探査波制御部11aは、共振周波数f0をまたぐ2つの周波数f1,f2を、図2に示された周波数f1,f2よりも低周波数側にシフトさせ、図7Aに示される値に設定する。または、探査波制御部11aは、図7Bに示されるように、周波数f1を超音波センサ2の共振周波数f0より低く設定し、周波数f2を超音波センサ2の共振周波数f0に設定してもよい。周波数f1,f2が図7A及び図7Bのように設定された場合、自車と障害物との接近速度が速くなりドップラ効果による周波数シフト量fdが大きくなっても、反射波の周波数f2+fd,f2+fdが超音波センサ2の受信周波数帯域内に収まるため、超音波センサ2での受信が可能である。
図8A及び図8Bは、実施の形態2における高周波数側の探査波21,22の周波数スペクトルと超音波センサ2の周波数特性とを示すグラフである。
障害物が自車に対して相対的に静止又は離反のいずれであるかを判定したい場合、探査波制御部11aは、自車と障害物との離反速度をより高速度域まで判定できるような周波数f1,f2を設定して探査波送信部12aへ指示する。この場合、探査波制御部11aは、共振周波数f0をまたぐ2つの周波数f1,f2を、図2に示された周波数f1,f2よりも高周波数側にシフトさせ、図8Aに示される値に設定する。または、探査波制御部11aは、図8Bに示されるように、周波数f1を超音波センサ2の共振周波数f0に設定し、周波数f2を超音波センサ2の共振周波数f0より高く設定してもよい。周波数f1,f2が図8A及び図8Bのように設定された場合、自車と障害物との離反速度が速くなりドップラ効果による周波数シフト量fdが大きくなっても、反射波の周波数f1−fd,f2−fdが超音波センサ2の受信周波数帯域内に収まるため、超音波センサ2での受信が可能である。
図2で示されるように、周波数f1,f2が共振周波数f0に対して線対称である場合、探査波21の送信強度と探査波22の送信強度とが同じである。そのため、図3に示されるように、障害物が自車に対して相対的に静止している場合に受信信号31と受信信号32の受信強度比が「1」になる。これに対し、図7A、図7B、図8A、及び図8Bに示されるように、周波数f1,f2が共振周波数f0に対して非線対称である場合、探査波21の送信強度と探査波22の送信強度とが異なる。そのため、障害物が自車に対して相対的に静止している場合に受信信号31と受信信号32の受信強度比が「1」にならない。したがって、受信強度比と閾値Th1〜Th4との比較により、障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを正しく判定できない。
そこで、周波数f1,f2が共振周波数f0に対して非線対称である場合、探査波制御部11aは、探査波21,22の送信強度を同じにするように探査波送信部12aに指示する。この指示を受けた探査波送信部12aは、超音波センサ2から送信させる探査波21の送信強度と探査波22の送信強度とが同じになるように、探査波21の送信強度又は探査波22の送信強度の少なくとも一方を補正する。例えば、図7Bのように探査波21の送信強度と探査波22の送信強度との比が「1:2」である場合、探査波制御部11aは、探査波21の送信強度を2倍に補正するように探査波送信部12aに指示する。
または、探査波制御部11aは、探査波21と探査波22の送信強度比に応じて、受信信号31の受信強度又は受信信号32の受信強度の少なくとも一方を補正するように動態判定部15aに指示する。この指示を受けた動態判定部15aは、受信信号31の受信強度又は受信信号32の受信強度の少なくとも一方を補正する。例えば、図7Bのように探査波21の送信強度と探査波22の送信強度との比が「1:2」である場合、探査波制御部11aは、受信信号31の受信強度を2倍に補正するように動態判定部15aに指示する。
なお、超音波センサ2を駆動する回路(例えば、後述する図14の送受信アナログ回路101)の特性、又は超音波センサ2のQ値等に起因して超音波センサ2の周波数特性が共振周波数f0に対して非線対称である場合、周波数f1,f2が共振周波数f0に対して線対称であったとしても、探査波21の送信強度と探査波22の送信強度が異なる。この場合には、上記同様、探査波送信部12aが、探査波21の送信強度又は探査波22の送信強度の少なくとも一方を補正すればよい。または、動態判定部15aが、受信信号31の受信強度又は受信信号32の受信強度の少なくとも一方を補正してもよい。
以上のように、実施の形態2の探査波送信部12aは、図7Bのように、車両に設けられた超音波センサ2の共振周波数f0と同じ周波数f2を含む2つの異なる周波数f1,f2の探査波21,22を、超音波センサ2から送信させる。この構成により、障害物検知装置1は、車両と障害物との接近速度をより高速度域まで判定することができる。また、実施の形態2の探査波送信部12aは、図8Bのように、車両に設けられた超音波センサ2の共振周波数f0と同じ周波数f1を含む2つの異なる周波数f1,f2の探査波21,22を、超音波センサ2から送信させてもよい。この構成により、障害物検知装置1は、自車と障害物との離反速度をより高速度域まで判定することができる。
また、実施の形態2では、図7Aのように、探査波21の周波数f1と探査波22の周波数f2とが、超音波センサ2の共振周波数f0に対して低周波数側にシフトしていてもよい。この構成により、障害物検知装置1は、自車と障害物との接近速度をより高速度域まで判定することができる。
また、実施の形態2では、図8Aのように、探査波21の周波数f1と探査波22の周波数f2とが、超音波センサ2の共振周波数f0に対して高周波数側にシフトしていてもよい。この構成により、障害物検知装置1は、自車と障害物との離反速度をより高速度域まで判定することができる。
また、実施の形態2では、探査波送信部12aが探査波21,22の送信強度を補正する、又は動態判定部15aが受信信号31,32の受信強度を補正する。この構成により、障害物検知装置1は、探査波21の周波数f1と探査波22の周波数f2とが超音波センサ2の共振周波数f0に対して非線対称である場合にも、障害物が自車に対して相対的に静止、接近、又は離反のいずれであるかを精度よく判定することができる。
なお、実施の形態2では、探査波送信部12aが探査波21,22の送信強度を補正する、又は動態判定部15aが受信信号31,32の受信強度を補正する構成であったが、動態判定部15aが探査波21と探査波22との送信強度比に基づいて閾値Th1〜Th4を補正する構成であってもよい。
実施の形態3.
実施の形態1,2では、1個の超音波センサ2を用いて例を説明した。実施の形態3では、複数の超音波センサ2を連携させて受信した直接波と間接波を用いて、障害物の動態を判定する。
ここで、直接波とは、探査波を送信した超音波センサで、その探査波が障害物で反射した反射波を受信する伝搬経路の波のことである。
間接波とは、探査波を送信した超音波センサ以外の異なる超音波センサで、その探査波が障害物で反射した反射波を受信する伝搬経路の波のことである。
図9は、実施の形態3に係る障害物検知装置1の構成例を示すブロック図である。実施の形態3に係る障害物検知装置1は、図1に示された実施の形態1の障害物検知装置1における動態判定部15に代えて、動態判定部15bを備える構成である。また、超音波センサ2は、N個(Nは2以上の任意の整数)の超音波センサ2−1〜2−Nにより構成される。なお、図9において図1と同一又は相当する部分は、同一の符号を付し説明を省略する。
図10は、実施の形態3における超音波センサ2−1〜2−12の車両取付例を示し、図10Aは側面図、図10Bは平面図である。この例では、車両の前側に6個の超音波センサ2−1〜2−6が取り付けられ、車両の後ろ側にも6個の超音波センサ2−7〜2−12が取り付けられている。なお、図10A及び図10Bの車両取付例では、超音波センサ2−1〜2−12のすべてが同じ高さに取り付けられているが、異なる高さに取り付けられていてもよい。
以下では、超音波センサ2−1を「第1の超音波センサ」、超音波センサ2−2を「第2の超音波センサ」として用いる例を説明する。なお、超音波センサ2−1〜2−12のうち、第1の超音波センサ及び第2の超音波センサとして用いる超音波センサの組み合わせは、任意でよい。
図11Aは、実施の形態3における探査波21,22の周波数スペクトルと超音波センサ2−1,2−2の周波数特性とを示すグラフである。グラフの横軸は探査波の周波数、縦軸は探査波の送信強度である。この例では、周波数f1,f2が共振周波数f0に対して非線対称であるため、周波数f1をもつ探査波21の送信強度と周波数f2をもつ探査波22の送信強度とが同じになるよう、探査波送信部12により補正されているものとする。図11Bは、実施の形態3における探査波21,22の伝搬経路を説明する図である。探査波送信部12は、周波数f1の探査波21を、超音波センサ2−1から送信させる。また、探査波送信部12は、周波数f2の探査波22を、超音波センサ2−2から送信させる。探査波21は、障害物40で反射し、超音波センサ2−2により間接波として受信される。探査波22は、障害物40で反射し、超音波センサ2−2により直接波として受信される。
反射波解析部14は、探査波21に対応する間接波の受信信号31を用いて、受信強度及び障害物40までの距離を算出する。また、反射波解析部14は、探査波22に対応する直接波の受信信号32を用いて、受信強度及び障害物40までの距離を算出する。同一物体判定部16は、超音波センサ2−1と超音波センサ2−2の各車両取付位置を焦点とし、受信信号31から算出された距離を用いた楕円を算出する。また、同一物体判定部16は、超音波センサ2−2の車両取付位置を中心とし、受信信号32から算出された距離を半径とした円を算出する。そして、同一物体判定部16は、楕円と円との交点を算出し、算出した交点の位置を障害物40の位置とする。
動態判定部15bは、探査波21に対応する間接波の受信信号31の受信強度と、探査波22に対応する直接波の受信信号32の受信強度との比を、予め定められた2つ以上の閾値と比較することにより、障害物40の動態を判定する。
図12は、実施の形態3において障害物40が自車に対して相対的に静止している場合の受信信号31,32を説明するグラフである。図12Aは、図11に示される探査波21,22が超音波センサ2−1,2−2から送信された場合の、受信信号31,32の周波数スペクトルと超音波センサ2−1,2−2の周波数特性とを示すグラフである。グラフの横軸は周波数であり、縦軸は受信強度である。図12Bは、図11に示される探査波21,22が超音波センサ2−1,2−2から送信された場合の受信信号31,32の波形を示すグラフである。グラフの横軸は伝搬時間であり、縦軸は受信強度である。
図13は、実施の形態3において障害物40が自車に対して相対的に接近している場合の受信信号31,32を説明するグラフである。図13Aは、図11に示される探査波21,22が超音波センサ2−1,2−2から送信された場合の、受信信号31,32の周波数スペクトルと超音波センサ2−1,2−2の周波数特性とを示すグラフである。グラフの横軸は周波数であり、縦軸は受信強度である。図13Bは、図11に示される探査波21,22が超音波センサ2−1,2−2から送信された場合の受信信号31,32の波形を示すグラフである。グラフの横軸は伝搬時間であり、縦軸は受信強度である。
図11Bに示されるように、間接波である探査波21の伝搬距離は、直接波である探査波22の伝搬距離より長い。そのため、図12B及び図13Bに示されるように、間接波である受信信号31の伝搬時間は、直接波である受信信号32の伝搬時間より長い。超音波センサ2が送信する探査波は、伝搬距離が長いほど減衰量が大きくなるため、探査波21,22の送信強度が同じであっても、間接波である受信信号31の受信強度は直接波である受信信号32の受信強度より小さくなる。このように、直接波と間接波とは空間伝搬の減衰量が異なるため、障害物40が自車に対して相対的に静止している場合に受信信号31と受信信号32との受信強度比が「1」にならない。したがって、受信強度比と閾値Th1〜Th4との比較により、障害物40が自車に対して相対的に静止、接近、又は離反のいずれであるかを正しく判定できない。
そこで、動態判定部15bは、反射波解析部14により算出された間接波である受信信号31の受信強度と直接波である受信信号32の受信強度との比を算出するときに、空間伝搬による減衰分を補正する。例えば、空間伝搬による減衰分を補正するための、伝搬時間ごとの補正係数が、動態判定部15bに予め与えられている。動態判定部15bは、受信信号31の伝搬時間に対応する補正係数を用いて、受信信号31の受信強度を補正すると共に、受信信号32の伝搬時間に対応する補正係数を用いて、受信信号32の受信強度を補正する。これにより、動態判定部15bは、直接波と間接波の受信強度比を用いて、障害物40の動態を正しく判定することができる。
以上のように、実施の形態3の探査波送信部12は、周波数f1の探査波21を、第1の超音波センサである超音波センサ2−1から送信させる。また、探査波送信部12は、周波数f2の探査波22を、第2の超音波センサである超音波センサ2−2から送信させる。反射波受信部13は、超音波センサ2−1から送信された探査波21が障害物40で反射して超音波センサ2−2により受信された間接波と、超音波センサ2−2から送信された探査波22が障害物40で反射して超音波センサ2−2により受信された直接波とを受信信号に変換する。反射波解析部14は、間接波の受信信号31及び直接波の受信信号32の各受信強度を算出する。動態判定部15bは、反射波解析部14により算出された間接波の受信信号31と直接波の受信信号32との受信強度比を算出するときに空間伝搬による減衰分を補正する。この構成により、障害物検知装置1は、直接波及び間接波を用いる場合に受信強度比を精度よく算出することができる。
なお、実施の形態3では、動態判定部15bが受信信号31,32の受信強度を補正する構成であったが、動態判定部15bが受信信号31,32の伝搬時間に基づいて閾値Th1〜Th4を補正する構成であってもよい。
また、実施の形態3において探査波21の周波数f1と探査波22の周波数f2とが超音波センサ2の共振周波数f0に対して非線対称である場合、実施の形態2と同様に、探査波送信部12が探査波21,22の送信強度を補正する、又は動態判定部15bが受信信号31,32の受信強度を補正すればよい。
また、実施の形態3において、反射波解析部14による直接波と間接波の分離性能を高めるために、探査波送信部12は、探査波21と探査波22を異なる符号で変調して相互干渉を抑圧してもよい。
実施の形態4.
実施の形態4に係る障害物検知装置1の構成は、実施の形態1〜3の図1、図6又は図9に示された構成と図面上は同一であるため、以下では図1を援用する。
実施の形態4では、周囲温度の変動による超音波センサ2の共振周波数f0の変化を補正して、より高精度に障害物の動態を判定する。
探査波制御部11は、温度センサから周囲温度を取得する。温度センサは、例えば、超音波センサ2を駆動する回路(例えば、後述する図14の送受信アナログ回路101)に実装されている。探査波制御部11は、事前に作成された温度補正テーブルを用いて、温度センサが測定した周囲温度に対応する周波数f1,f2を決定し、探査波送信部12へ指示する。具体的には、探査波制御部11は、周囲温度が高い場合、低い場合に比して周波数f1,f2を低周波数側にシフトさせる。探査波送信部12は、探査波制御部11に指示された周波数f1,f2の探査波21,22を超音波センサ2から送信させる。
以上のように、実施の形態4の探査波制御部11は、周囲温度が高い場合、低い場合に比して周波数f1,f2を低周波数側にシフトさせる。この構成により、障害物検知装置1は、より高精度に障害物の動態を判定することができる。
最後に、各実施の形態に係る障害物検知装置1のハードウェア構成例を説明する。
図14は、各実施の形態に係る障害物検知装置1のハードウェア構成図である。障害物検知装置1における探査波制御部11、反射波解析部14、動態判定部15、及び同一物体判定部16は、デジタル信号処理回路104である。探査波送信部12は、送受信アナログ回路101とDAC(Digital to Analog Converter)102とにより構成される。反射波受信部13は、送受信アナログ回路101とADC(Analog to Digital Converter)103とにより構成される。
デジタル信号処理回路104は、周波数f1,f2の探査信号を生成し、DAC102を介して送受信アナログ回路101へ出力する。送受信アナログ回路101は、所定の電力まで探査信号を増幅し、超音波センサ2へ出力する。また、送受信アナログ回路101は、超音波センサ2が受信した反射波を増幅しノイズを除去する。ADC103は、送受信アナログ回路101で増幅及びノイズ除去された反射波を受信信号に変換する。デジタル信号処理回路104は、受信信号を用いて受信強度及び障害物までの距離を算出し、受信強度比を閾値判定して障害物の動態を判定する。
通信IF(Interface)105は、障害物までの距離及び動態の情報を、車両に搭載されている他の車載機器へ伝送する。車載機器は、例えば、衝突回避装置、車両側方物体検知装置、コーナセンサ、自動駐車装置、又は車両制御装置である。
なお、送受信アナログ回路101は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。
デジタル信号処理回路104は、メモリと、メモリに格納されたプログラムを実行するプロセッサとで構成される。探査波制御部11、反射波解析部14、動態判定部15、及び同一物体判定部16の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリに格納される。プロセッサは、メモリに格納されたプログラムを読みだして実行することにより、各部の機能を実現する。即ち、デジタル信号処理回路104は、プロセッサにより実行されるときに、図5のフローチャートで示されるステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。また、このプログラムは、探査波制御部11、反射波解析部14、動態判定部15、及び同一物体判定部16の手順又は方法をコンピュータに実行させるものであるとも言える。
なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。
この発明に係る障害物検知装置は、例えば、周辺監視、衝突回避、又は駐車支援に係る制御に応用することができる。
1 障害物検知装置、2,2−1〜2−12,2−N 超音波センサ、11,11a 探査波制御部、12,12a 探査波送信部、13 反射波受信部、14 反射波解析部、15,15a,15b 動態判定部、16 同一物体判定部、21,22 探査波、31,32 受信信号、40 障害物、101 送受信アナログ回路、102 DAC、103 ADC、104 デジタル信号処理回路、105 通信IF、f0 共振周波数、f1,f2 周波数、Th1〜Th4 閾値。

Claims (8)

  1. 車両に設けられた超音波センサの共振周波数をまたぐ2つの異なる周波数の探査波、又は前記共振周波数と同じ周波数を含む2つの異なる周波数の探査波を、前記超音波センサから送信させる探査波送信部と、
    前記探査波送信部が前記超音波センサから送信させる前記探査波の前記2つの異なる周波数を制御する探査波制御部と、
    前記探査波が障害物で反射して前記超音波センサにより受信された反射波を受信信号に変換する反射波受信部と、
    前記2つの異なる周波数の探査波に対応する2つの前記受信信号の各受信強度を算出する反射波解析部と、
    前記反射波解析部により算出された前記受信強度の比に基づいて、前記障害物が前記車両に対して相対的に静止、接近、又は離反のいずれであるかを判定する動態判定部とを備える障害物検知装置。
  2. 前記探査波制御部は、周囲温度が高い場合、低い場合に比して前記2つの異なる周波数を低周波数側にシフトさせることを特徴とする請求項1記載の障害物検知装置。
  3. 前記探査波送信部は、前記2つの異なる周波数の探査波を合成し、前記超音波センサから同時に送信させることを特徴とする請求項1記載の障害物検知装置。
  4. 前記探査波送信部は、前記2つの異なる周波数のいずれか一方の周波数の探査波を前記車両に設けられた第1の超音波センサから送信させ、もう一方の周波数の探査波を前記車両に設けられた第2の超音波センサから送信させ、
    前記反射波受信部は、前記第1の超音波センサから送信された前記一方の周波数の探査波が前記障害物で反射して前記第2の超音波センサにより受信された間接波と、前記第2の超音波センサから送信された前記もう一方の周波数の探査波が前記障害物で反射して前記第2の超音波センサにより受信された直接波とを受信信号に変換し、
    前記反射波解析部は、前記直接波の受信信号及び前記間接波の受信信号の各受信強度を算出し、
    前記動態判定部は、前記反射波解析部により算出された前記直接波の受信強度と前記間接波の受信強度との比を算出するときに空間伝搬による減衰分を補正することを特徴とする請求項1記載の障害物検知装置。
  5. 前記2つの異なる周波数は、前記超音波センサの共振周波数に対して線対称であることを特徴とする請求項1記載の障害物検知装置。
  6. 前記2つの異なる周波数が前記超音波センサの共振周波数に対して非線対称である場合、前記探査波送信部が前記探査波の送信強度を補正する、又は前記動態判定部が前記受信信号の受信強度を補正することを特徴とする請求項1記載の障害物検知装置。
  7. 前記2つの異なる周波数は、前記超音波センサの共振周波数に対して低周波数側にシフトしていることを特徴とする請求項6記載の障害物検知装置。
  8. 前記2つの異なる周波数は、前記超音波センサの共振周波数に対して高周波数側にシフトしていることを特徴とする請求項6記載の障害物検知装置。
JP2020552064A 2018-11-22 2018-11-22 障害物検知装置 Expired - Fee Related JP6811914B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043154 WO2020105167A1 (ja) 2018-11-22 2018-11-22 障害物検知装置

Publications (2)

Publication Number Publication Date
JP6811914B2 true JP6811914B2 (ja) 2021-01-13
JPWO2020105167A1 JPWO2020105167A1 (ja) 2021-02-15

Family

ID=70773889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020552064A Expired - Fee Related JP6811914B2 (ja) 2018-11-22 2018-11-22 障害物検知装置

Country Status (2)

Country Link
JP (1) JP6811914B2 (ja)
WO (1) WO2020105167A1 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921869A (ja) * 1995-07-06 1997-01-21 Matsushita Electric Ind Co Ltd 超音波距離センサシステム
JP2000105274A (ja) * 1998-09-30 2000-04-11 Honda Motor Co Ltd 接近車両検出装置およびその方法
JP2004170269A (ja) * 2002-11-20 2004-06-17 Matsushita Electric Works Ltd 物体の角度方向検出手段、及びレーダ装置
JP2004317143A (ja) * 2003-04-11 2004-11-11 Yupiteru Ind Co Ltd 物体状態判定装置
JP2004361355A (ja) * 2003-06-06 2004-12-24 Yupiteru Ind Co Ltd 物体状態判定装置
JP2007047064A (ja) * 2005-08-11 2007-02-22 Micro Precision Kk 状態検出システムおよび状態検出装置
US8576664B2 (en) * 2006-11-20 2013-11-05 Panasonic Corporation Moving object detection system
JP4936162B2 (ja) * 2006-12-08 2012-05-23 パナソニック株式会社 移動物体検出装置
JP2010179701A (ja) * 2009-02-03 2010-08-19 Toyota Motor Corp 物体検出装置
JP5206579B2 (ja) * 2009-05-12 2013-06-12 トヨタ自動車株式会社 物体検出装置
CN110612458A (zh) * 2017-05-16 2019-12-24 三菱电机株式会社 超声波传感器装置以及障碍物检测装置

Also Published As

Publication number Publication date
WO2020105167A1 (ja) 2020-05-28
JPWO2020105167A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP5798150B2 (ja) 物体検出装置
CN108291966B (zh) 物体检测装置以及物体检测方法
CN110366689B (zh) 雷达装置
KR101505044B1 (ko) 레이더 장치 및 그의 근거리 음영지역 제거방법
JP6888506B2 (ja) 物体検知装置
JP4197033B2 (ja) レーダ
JP2012255667A (ja) 物体検出装置
JP2004004120A (ja) Fmcwレーダ装置
JP2016109675A (ja) 物体検出装置、速度検出装置及び車両
WO2018062120A1 (ja) 検出装置、検出方法、および検出プログラム
KR102159350B1 (ko) 차량용 초음파 센서의 감지 성능 향상 장치 및 방법
KR20180070761A (ko) 초음파 거리 측정 시스템, 그 동작방법 및 이를 이용하는 차량주행보조 시스템
US20190212444A1 (en) Detection device, detection method, and recording medium
JP6265149B2 (ja) 検出装置
JP5637756B2 (ja) レーダ装置、位置速度検出方法、及びプログラム
JP6811914B2 (ja) 障害物検知装置
KR101419733B1 (ko) 레이더 및 그의 신호처리방법
JP6970307B2 (ja) レーダ信号を補正する方法および装置ならびにレーダ装置
JP5564244B2 (ja) 観測信号処理装置
JP2006317161A (ja) 追尾システム
JP2013221893A (ja) レーダ制御装置
US20210330197A1 (en) Biological information detection device
JP7230619B2 (ja) 物体検出装置
JP2014232072A (ja) 物体検出装置及び車両
KR20220020082A (ko) 센서 데이터의 cfar 처리 방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200925

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201215

R150 Certificate of patent or registration of utility model

Ref document number: 6811914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees