JP6796142B2 - 可変レーザビームプロファイルのための光ファイバ構造および方法 - Google Patents

可変レーザビームプロファイルのための光ファイバ構造および方法 Download PDF

Info

Publication number
JP6796142B2
JP6796142B2 JP2018550824A JP2018550824A JP6796142B2 JP 6796142 B2 JP6796142 B2 JP 6796142B2 JP 2018550824 A JP2018550824 A JP 2018550824A JP 2018550824 A JP2018550824 A JP 2018550824A JP 6796142 B2 JP6796142 B2 JP 6796142B2
Authority
JP
Japan
Prior art keywords
refractive index
laser beam
input
cladding
input laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018550824A
Other languages
English (en)
Other versions
JP2019510276A (ja
Inventor
ワン−ロン ジョウ,
ワン−ロン ジョウ,
フランシスコ ヴィラリアル−ソーセド,
フランシスコ ヴィラリアル−ソーセド,
パービッツ タエバティ,
パービッツ タエバティ,
ビエン チャン,
ビエン チャン,
Original Assignee
テラダイオード, インコーポレーテッド
テラダイオード, インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テラダイオード, インコーポレーテッド, テラダイオード, インコーポレーテッド filed Critical テラダイオード, インコーポレーテッド
Publication of JP2019510276A publication Critical patent/JP2019510276A/ja
Application granted granted Critical
Publication of JP6796142B2 publication Critical patent/JP6796142B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12104Mirror; Reflectors or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12121Laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/20Lasers with a special output beam profile or cross-section, e.g. non-Gaussian
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Description

(関連出願)
本願は、2016年4月6日に出願された米国仮特許出願第62/318,959号の利益および優先権を主張し、これにより、その開示全体が、参照によって本明細書に援用される。
(技術分野)
種々の実施形態では、本発明は、レーザシステムに関し、具体的には、制御可能ビームプロファイル、例えば、可変ビームパラメータ積を伴うレーザシステムに関する。
(背景)
高パワーレーザシステムが、溶接、切断、穿孔、および材料処理等の異なる用途の集合のために利用される。そのようなレーザシステムは、典型的には、レーザエミッタであって、それからのレーザ光が光ファイバ(または単に「ファイバ」)の中に結合されるレーザエミッタと、ファイバからのレーザ光を処理されるべきワークピース上に集束させる光学システムとを含む。光学システムは、典型的には、最高品質レーザビーム、または言い換えると、最低ビームパラメータ積(BPP)を伴うビームを生成するように設計される。BPPは、レーザビームの発散角(半角)と、その最狭点(すなわち、ビームウェスト、最小スポットサイズ)におけるビームの半径との積である。すなわち、BPP=NA×D/2であり、式中、Dは、集束スポット(ウェスト)直径であり、NAは、開口数である。したがって、BPPは、NAおよび/またはDを変動させることによって変動させられ得る。BPPは、レーザビームの品質、および、レーザビームがどの程度良好に小さなスポットに集束され得るかを定量化し、典型的には、ミリメートル−ミリラジアン(mm−mrad)の単位で表される。ガウスビームは、πによって除算されるレーザ光の波長によって求められる最低可能BPPを有する。同一波長における実際のビームのBPPと理想的ガウスビームのBPPとの比率は、Mとして示され、これは、ビーム品質の波長独立測定値である。
多くのレーザ処理用途では、所望のビームスポットサイズ、発散、およびビーム品質は、例えば、処理のタイプおよび/または処理されている材料のタイプに依存して変動し得る。これは、特に、材料処理用途における産業レーザに当てはまる。例えば、より低いBPP値、すなわち、より良好なビーム品質が、薄い金属を切断するために好ましくあり得る一方、より大きいBPP(すなわち、より粗悪なビーム品質)が、より厚い金属を通して切断するために好ましくあり得る。そのような変更をレーザシステムのBPPに行うために、頻繁に、出力光学システムまたは光ファイバが、他の構成要素と交換および/または再整合されなければならず、時間がかかり、かつ高価なプロセスとなり、これはさらに、レーザシステムの脆弱な光学構成要素の不注意な損傷につながり得る。したがって、光ファイバの出力におけるレーザビームまたは光学システムに対するそのような調節を伴わない、レーザシステムのBPPを変動させるための代替技法の必要性が存在する。
(概要)
本発明の種々の実施形態は、システム(すなわち、その出力レーザビーム)のBPPが、光学パワー損失を最小限にまたは実質的に排除しながら、レーザシステムの開口数(NA)およびスポットサイズ(D)の操作を介して変動される、レーザシステムを提供する。本発明の実施形態は、本明細書で「ステップクラッドファイバ」と称されるマルチクラッド光ファイバにレーザビームを結合することを伴う。1つの例示的ステップクラッドファイバは、中心コアと、中心コアの周囲に配置される第1のクラッディングと、第1のクラッディングの周囲に配置される第1の環状コアと、第1の環状コアの周囲に配置される第2のクラッディングとを含むか、それらから本質的に成るか、またはそれらから成る。本発明の実施形態によるステップクラッドファイバは、単一環状コアおよび2つのクラッディングのみを有するものに限定されず、1つまたは複数の付加的環状コアおよび関連付けられたクラッディングが、第2のクラッディングの周囲に配置されてもよい。本明細書で利用される場合、用語「環状コア」は、それに隣接する内側層および外側層の両方より高い屈折率を有するリング形状の領域として定義される。中心コアおよび環状コア(単数または複数)以外の層は、典型的には、ステップクラッドファイバ内のクラッディングである。そのようなクラッディングは、それに隣接する少なくとも1つの層より低い屈折率を有する。
従来の光ファイバがレーザシステム内で利用されるとき、レーザパワーは、典型的には、コアの中にのみ結合されることが意図される。クラッディング上の任意のパワー「オーバースプレー」は、パワーの損失をもたらし、かつ/または、ファイバの下流の光学部への有害な要因となる。対照的に、本発明の実施形態によるステップクラッドファイバを利用するレーザシステムは、意図的に、部分的または全部のレーザパワーを少なくとも第1のクラッディングの中に結合させ、第1のクラッディングは、具体的には、従来のマルチクラッドファイバの内部クラッディング層のものより高い屈折率およびより大きい直径を伴って設計される。例えば、従来の標準的またはマルチクラッド100−μm−コア光ファイバに関するわずか110μm〜120μmと比較して、本発明の実施形態による第1のクラッディングの直径は、100μmの中心コア直径を有するファイバに関して、約140μm〜約180μmに及び得る。種々の実施形態では、第1のクラッディング層の厚さは、例えば、約40μm〜約100μm、または、約40〜約80μmに及び得る。
本発明の実施形態では、ステップクラッドファイバの利用は、コアの直径およびコア内のパワー比率だけではなく、第1のクラッディングの厚さおよび屈折率ならびに第1のクラッディング(および/または存在する場合、付加的クラッディング)内のパワー比率にも基づいて、レーザシステムBPPの変動を可能にする。ステップクラッドファイバの第1のクラッディングの中に結合されるレーザパワーは、第1の環状コアによって閉じ込められ、高度なBPP変動を可能にする。さらに、本発明の実施形態による、環状コア(単数または複数)の中への結合は、「間隙」または低レーザパワーもしくは無レーザパワーのエリアをその中に伴わずに、均一プロファイルを有する出力ビームの形成を可能にする。対照的に、クラッディング層の中への結合が不可能でありかつ/または能動的に回避される従来の技法は、概して、出力ビームプロファイル内に間隙(例えば、環状間隙)を有する出力ビームをもたらす。本発明の実施形態は、半径または直径の関数として変動する出力ビームプロファイルを生成するために利用され得るが、高強度エリア間のエリアでさえ、典型的には、レーザビーム強度を含み(したがって、非「空」であり)、かつ/または任意の低強度もしくは空領域は、特に、従来の技法によって生成された出力ビームと比較して、空間範囲内で非常に限定される。
本発明の実施形態はさらに、実質的に、パワーがステップクラッドファイバの1つまたは複数の環状コア領域の中に結合されない変形例を含む。本発明の実施形態は、典型的には、出力スポットサイズDおよびNAの両方の変動を介して、レーザシステムのBPPを変動させ、したがって、従来の技法より大きい範囲のBPP変動を提供する。所与のBPP変動範囲に関して、本発明の実施形態は、従来のシステムにおいて必要とされるものよりはるかに小さい直径の第1の環状コアを有するステップクラッドファイバの使用を可能にする。したがって、本発明の実施形態は、希釈されるパワー密度がはるかに少ない、はるかにより小さいスポットサイズの高BPPレーザビームを発生させる。すなわち、スポットサイズDにおけるより小さい変化が、本発明の実施形態によると、BPPを変動させるために必要とされ(NAもまた、同時に、変動され得るため)、それによって、パワー密度のより少ない希釈につながる。例えば、本発明の実施形態による、第1の環状コアの直径は、約300μm〜約400μm(例えば、約360μm)に及び得る。種々の実施形態による、第1の環状コアの厚さは、例えば、約60μm〜約150μm、約80μm〜約120μm、約90μm〜約110μm、または約100μmであり得る。
本明細書では、「光学要素」は、レンズ、ミラー、プリズム、格子、および同等物のいずれかを指し得、これは、別様に示されない限り、電磁放射を再指向する、反射する、屈曲させる、または任意の他の様式において光学的に操作する。本明細書では、ビームエミッタ、エミッタ、またはレーザエミッタ、またはレーザは、半導体要素等の任意の電磁ビーム発生デバイスを含み、これは、電磁ビームを発生させるが、自己共振してもよいし、または自己共振しなくてもよい。これらはまた、ファイバレーザ、ディスクレーザ、非ソリッドステートレーザ等を含む。概して、各エミッタは、背面反射表面と、少なくとも1つの光学利得媒体と、正面反射表面とを含む。光学利得媒体は、電磁スペクトルの任意の特定の部分に限定されないが、可視光、赤外光、および/または紫外光であり得る電磁放射の利得を増加させる。エミッタは、複数のビームを放出するように構成されるダイオードバー等の複数のビームエミッタを含み得るか、またはそれから本質的に成り得る。本明細書における実施形態において受信される入力ビームは、単波長または当技術分野において公知の種々の技法を使用して組み合わせられる複数波長ビームであってもよい。
本発明の実施形態は、複数波長ビームを形成するように分散要素を使用して組み合わせられる、1つまたは複数のダイオードバー等の複数のエミッタを含む波長ビーム結合(WBC)システムとともに利用されてもよい。WBCシステム内の各エミッタは、個別に共振し、ビーム結合次元に沿って分散要素によってフィルタリングされる、共通部分反射出力結合器からの波長特異的フィードバックを通して安定させられる。例示的WBCシステムは、2000年2月4日に出願された米国特許第6,192,062号、1998年9月8日に出願された米国特許第6,208,679号、2011年8月25日に出願された米国特許第8,670,180号、および2011年3月7日に出願された米国特許第8,559,107号で詳述され、これらのそれぞれの開示全体が参照によって本明細書に援用される。WBCシステムの複数波長出力ビームが、例えば、BPP制御のために、本発明の実施形態と併せて、入力ビームとして利用されてもよい。
ある側面では、本発明の実施形態は、入力レーザビームの放出のためのビーム源と、入力端部および入力端部と反対の出力端部を有するステップクラッド光ファイバと、内部結合機構と、コントローラとを含むか、それらから本質的に成るか、またはそれらから成るレーザシステムを特徴とする。ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを含むか、それらから本質的に成るか、またはそれらから成る。第1の屈折率は、第4の屈折率より大きい。第3の屈折率は、第4の屈折率より大きい。第2の屈折率は、第1の屈折率より小さく、かつ、第4の屈折率より大きい。内部結合機構は、入力レーザビームを受信し、入力レーザビームをステップクラッド光ファイバの入力端部に向かって指向し、それによって、入力レーザビームは、ステップクラッド光ファイバの中に内部結合され、ステップクラッド光ファイバの出力端部から出力ビームとして放出される。コントローラは、入力レーザビームをステップクラッド光ファイバの入力端部上の1つまたは複数の内部結合場所上に指向するように内部結合機構を制御し、それによって、出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、1つまたは複数の内部結合場所によって決定される。
本発明の実施形態は、以下の種々の組み合わせのいずれかのうちの1つまたは複数のものを含んでもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、中心コアに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に第1のクラッディングに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、環状コアに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、第2のクラッディングに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、中心コア、第1のクラッディング、環状コア、または第2のクラッディングのうちの2つまたはそれより多いものに重複してもよい。内部結合機構は、入力レーザビームをステップクラッド光ファイバの入力端部に向かって集束させるための光学要素を含み得るか、それから本質的に成り得るか、またはそれから成り得る。光学要素は、コントローラに応答して、(i)入力レーザビームの伝搬方向と略平行な軸、および/または(ii)入力レーザビームの伝搬方向と略垂直な1つまたは複数の軸に沿って移動可能(例えば、平行移動可能、回転可能、および/または傾斜可能)であってもよい。内部結合機構は、入力レーザビームを受信し、入力レーザビームをステップクラッド光ファイバに向かって反射するための反射体を含み得るか、それから本質的に成り得るか、またはそれから成り得る。光学要素は、1つまたは複数のレンズ、1つまたは複数のミラー、および/または、1つまたは複数のプリズムを含み得るか、それらから本質的に成り得るか、またはそれらから成り得る。内部結合機構は、入力レーザビームを受信し、入力レーザビームをステップクラッド光ファイバに向かって反射するための反射体を含み得るか、それから本質的に成り得るか、またはそれから成り得、反射体は、コントローラに応答して回転可能である。内部結合機構は、入力レーザビームを反射体から受信し、入力レーザビームをステップクラッド光ファイバに向かって集束させるための光学要素を含んでもよい。光学要素は、コントローラに応答して、(i)入力レーザビームの伝搬方向と略平行な軸、および/または(ii)入力レーザビームの伝搬方向と略垂直な1つまたは複数の軸に沿って移動可能(例えば、平行移動可能、回転可能、および/または傾斜可能)であってもよい。光学要素は、1つまたは複数のレンズ、1つまたは複数のミラー、および/または、1つまたは複数のプリズムを含み得るか、それらから本質的に成り得るか、またはそれらから成り得る。
ビーム源は、コントローラに応答してもよい。コントローラは、入力レーザビームが異なる内部結合場所間に指向されるときに入力レーザビームの出力パワーを変調する(例えば、強度を変調する、またはオフに切り替える)ことなく、入力レーザビームを複数の異なる内部結合場所上に指向するように構成されてもよい。コントローラは、入力レーザビームを少なくとも部分的に第1のクラッディングに重複する少なくとも1つの内部結合場所上に指向するように構成されてもよく、それによって、第1のクラッディングの中に内部結合されるビームエネルギーは、出力ビームの少なくとも一部を形成する。第1のクラッディングの中に内部結合されるビームエネルギーは、環状コアと第2のクラッディングとの間の界面においてステップクラッド光ファイバ内に閉じ込められてもよい。第2の屈折率は、第3の屈折率より小さくてもよい。第2の屈折率は、第3の屈折率とほぼ等しくてもよい。第3の屈折率は、第1の屈折率より小さくてもよい。第3の屈折率は、第1の屈折率より大きくてもよい。ビーム源は、(それぞれおよび/または集合的に)複数の別個のビームを放出する、1つまたは複数のビームエミッタと、集束光学部と、分散要素と、部分反射出力結合器とを含み得るか、それらから本質的に成り得るか、またはそれらから成り得る。別個のビームはそれぞれ、異なる波長を有してもよい。集束光学部は、複数のビームを分散要素上に集束させてもよい。分散要素は、受信された集束されたビームを受信し、分散(すなわち、波長分散)させてもよい。部分反射出力結合器は、分散されたビームを受信し、分散されたビームの一部をそれを通して入力レーザビームとして伝送し、分散されたビームの第2の部分を分散要素に向かって反射するように位置付けられてもよい。入力レーザビームは、複数の波長から構成されてもよい。分散要素は、1つまたは複数の回折格子(例えば、透過格子および/または反射格子)を含んでもよい。
別の側面では、本発明の実施形態は、レーザビームのビームパラメータ積および/または開口数を調節する方法を特徴とする。入力端部および入力端部と反対の出力端部を有するステップクラッド光ファイバが、提供される。ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを含むか、それらから本質的に成るか、またはそれらから成る。第1の屈折率は、第4の屈折率より大きい。第3の屈折率は、第4の屈折率より大きい。第2の屈折率は、第1の屈折率より小さく、かつ、第4の屈折率より大きい。入力レーザビームは、ステップクラッド光ファイバの入力端部上の1つまたは複数の内部結合場所上に指向され、それによって、(i)入力レーザビームは、ステップクラッド光ファイバの中に内部結合され、ステップクラッド光ファイバの出力端部から出力ビームとして放出され、(ii)出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、1つまたは複数の内部結合場所によって決定される。
本発明の実施形態は、以下の種々の組み合わせのいずれかのうちの1つまたは複数のものを含んでもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、中心コアに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に第1のクラッディングに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、環状コアに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、第2のクラッディングに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、中心コア、第1のクラッディング、環状コア、または第2のクラッディングのうちの2つまたはそれより多いものに重複してもよい。入力レーザビームは、複数の異なる内部結合場所上に指向され、異なる開口数および/またはビームパラメータ積を有する単一出力ビームまたは複数の出力ビームを生成してもよい。入力レーザビームの出力パワーは、入力レーザビームが異なる内部結合場所間に指向されるときに、変調されなくてもよい(例えば、減少させられなくてもよく、またはオフに切り替えられなくてもよい)。内部結合場所のうちの少なくとも1つは、少なくとも部分的に第1のクラッディングに重複してもよく、それによって、第1のクラッディングの中に内部結合されるビームエネルギーは、出力ビームの少なくとも一部を形成する。第1のクラッディングの中に内部結合されるビームエネルギーは、環状コアと第2のクラッディングとの間の界面においてステップクラッド光ファイバ内に閉じ込められてもよい。第2の屈折率は、第3の屈折率より小さくてもよい。第2の屈折率は、第3の屈折率とほぼ等しくてもよい。第3の屈折率は、第1の屈折率より小さくてもよい。第3の屈折率は、第1の屈折率より大きくてもよい。入力レーザビームは、ビーム源によって放出されてもよい。ビーム源は、(それぞれおよび/または集合的に)複数の別個のビームを放出する1つまたは複数のビームエミッタと、集束光学部と、分散要素と、部分反射出力結合器とを含み得るか、それらから本質的に成り得るか、またはそれらから成り得る。別個のビームはそれぞれ、異なる波長を有してもよい。集束光学部は、複数のビームを分散要素上に集束させてもよい。分散要素は、受信された集束されたビームを受信し、分散(すなわち、波長分散)させてもよい。部分反射出力結合器は、分散されたビームを受信し、分散されたビームの一部をそれを通して入力レーザビームとして伝送し、分散されたビームの第2の部分を分散要素に向かって反射するように位置付けられてもよい。入力レーザビームは、複数の波長から構成されてもよい。分散要素は、1つまたは複数の回折格子(例えば、透過格子および/または反射格子)を含んでもよい。
さらに別の側面では、本発明の実施形態は、レーザビームのビームパラメータ積または開口数のうちの少なくとも1つを調節する方法を特徴とする。入力端部および入力端部と反対の出力端部を有するステップクラッド光ファイバが、提供される。ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを含むか、それらから本質的に成るか、またはそれらから成る。第3の屈折率は、第4の屈折率より大きい。第3の屈折率は、第2の屈折率より大きい。入力レーザビームは、ステップクラッド光ファイバの入力端部上の1つまたは複数の内部結合場所上に指向され、それによって、(i)入力レーザビームは、ステップクラッド光ファイバの中に内部結合され、ステップクラッド光ファイバの出力端部から出力ビームとして放出され、(ii)出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、1つまたは複数の内部結合場所によって決定される。内部結合場所のうちの少なくとも1つは、少なくとも部分的に第1のクラッディングに重複し、それによって、第1のクラッディングの中に内部結合されるビームエネルギーは、出力ビームの少なくとも一部を形成する。
本発明の実施形態は、以下の種々の組み合わせのいずれかのうちの1つまたは複数のものを含んでもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、中心コアに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、環状コアに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、第2のクラッディングに重複してもよい。内部結合場所のうちの少なくとも1つは、少なくとも部分的に、中心コア、第1のクラッディング、環状コア、または第2のクラッディングのうちの2つまたはそれより多いものに重複してもよい。入力レーザビームは、複数の異なる内部結合場所上に指向され、異なる開口数および/またはビームパラメータ積を有する単一出力ビームもしくは複数の出力ビームを生成してもよい。入力レーザビームの出力パワーは、入力レーザビームが異なる内部結合場所間に指向されるときに、変調されなくてもよい(例えば、減少させられなくてもよく、またはオフに切り替えられなくてもよい)。入力レーザビームは、ビーム源によって放出されてもよい。ビーム源は、(それぞれおよび/または集合的に)複数の別個のビームを放出する1つまたは複数のビームエミッタと、集束光学部と、分散要素と、部分反射出力結合器とを含み得るか、それらから本質的に成り得るか、またはそれらから成り得る。別個のビームはそれぞれ、異なる波長を有してもよい。集束光学部は、複数のビームを分散要素上に集束させてもよい。分散要素は、受信された集束されたビームを受信し、分散(すなわち、波長分散)させてもよい。部分反射出力結合器は、分散されたビームを受信し、分散されたビームの一部をそれを通して入力レーザビームとして伝送し、分散されたビームの第2の部分を分散要素に向かって反射するように位置付けられてもよい。入力レーザビームは、複数の波長から構成されてもよい。分散要素は、1つまたは複数の回折格子(例えば、透過格子および/または反射格子)を含んでもよい。
これらおよび他の目的は、本明細書に開示される本発明の利点ならびに特徴とともに、以下の説明、添付図面、および特許請求の範囲の参照を通して、より明白となる。さらに、本明細書に説明される種々の実施形態の特徴は、相互排他的ではなく、種々の組み合わせおよび順列で存在し得ることを理解されたい。本明細書で使用される場合、「実質的に」という用語は、±10%、いくつかの実施形態では、±5%を意味する。「本質的に〜から成る」という用語は、本明細書で別様に定義されない限り、機能に寄与する他の材料を除外することを意味する。それでもなお、そのような他の材料が、集合的または個別に、微量で存在し得る。本明細書では、「放射線」および「光」という用語は、別様に指示されない限り、同義的に利用される。本明細書で、「下流」または「光学的に下流」は、第1の要素に衝突後に光ビームが当たる第2の要素の相対的場所を示すために利用され、第1の要素は、第2の要素の「上流」または「光学的に上流」にある。本明細書では、2つの構成要素間の「光学距離」は、光ビームによって実際に進行される、2つの構成要素間の距離であり、光学距離は、2つの構成要素間の物理的距離と等しくてもよいが、例えば、構成要素のうちの一方から他方に進行する光によって被られる、ミラーからの反射または伝搬方向における他の変化に起因して、必ずしもそうではなくてもよい。
本発明は、例えば、以下を提供する。
(項目1)
レーザシステムであって、
入力レーザビームの放出のためのビーム源と、
入力端部および前記入力端部と反対の出力端部を有するステップクラッド光ファイバであって、前記ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)前記中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)前記第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)前記環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを備え、(i)前記第1の屈折率は、前記第4の屈折率より大きく、(ii)前記第3の屈折率は、前記第4の屈折率より大きく、(iii)前記第2の屈折率は、前記第1の屈折率より小さく、かつ、前記第4の屈折率より大きい、ステップクラッド光ファイバと、
前記入力レーザビームを受信し、前記入力レーザビームを前記ステップクラッド光ファイバの前記入力端部に向かって指向するための内部結合機構であって、それによって、前記入力レーザビームは、前記ステップクラッド光ファイバの中に内部結合され、前記ステップクラッド光ファイバの前記出力端部から出力ビームとして放出される、内部結合機構と、
前記入力レーザビームを前記ステップクラッド光ファイバの前記入力端部上の1つまたは複数の内部結合場所上に指向するために前記内部結合機構を制御するためのコントローラであって、それによって、前記出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、前記1つまたは複数の内部結合場所によって決定される、コントローラと
を備える、レーザシステム。
(項目2)
前記内部結合機構は、前記入力レーザビームを前記ステップクラッド光ファイバの前記入力端部に向かって集束させるための光学要素を備え、前記光学要素は、前記コントローラに応答して、(i)前記入力レーザビームの伝搬方向と略平行な軸または(ii)前記入力レーザビームの前記伝搬方向と略垂直な1つまたは複数の軸のうちの少なくとも1つに沿って移動可能である、項目1に記載のレーザシステム。
(項目3)
前記内部結合機構は、前記入力レーザビームを受信し、前記入力レーザビームを前記ステップクラッド光ファイバに向かって反射するための反射体を備える、項目2に記載のレーザシステム。
(項目4)
前記光学要素は、1つまたは複数のレンズ、1つまたは複数のミラー、および/または1つまたは複数のプリズムを備える、項目2に記載のレーザシステム。
(項目5)
前記内部結合機構は、前記入力レーザビームを受信し、前記入力レーザビームを前記ステップクラッド光ファイバに向かって反射するための反射体を備え、前記反射体は、前記コントローラに応答して回転可能である、項目1に記載のレーザシステム。
(項目6)
前記内部結合機構は、前記入力レーザビームを前記反射体から受信し、前記入力レーザビームを前記ステップクラッド光ファイバに向かって集束させるための光学要素を備える、項目5に記載のレーザシステム。
(項目7)
前記光学要素は、前記コントローラに応答して、(i)前記入力レーザビームの伝搬方向と略平行な軸または(ii)前記入力レーザビームの前記伝搬方向と略垂直な1つまたは複数の軸のうちの少なくとも1つに沿って移動可能である、項目6に記載のレーザシステム。
(項目8)
前記光学要素は、1つまたは複数のレンズ、1つまたは複数のミラー、および/または1つまたは複数のプリズムを備える、項目6に記載のレーザシステム。
(項目9)
前記ビーム源は、前記コントローラに応答し、
前記コントローラは、前記入力レーザビームが複数の異なる内部結合場所間に指向されるときに前記入力レーザビームの出力パワーを変調することなく、前記入力レーザビームを前記複数の異なる内部結合場所上に指向するように構成される、
項目1に記載のレーザシステム。
(項目10)
前記コントローラは、前記入力レーザビームを少なくとも部分的に前記第1のクラッディングに重複する少なくとも1つの内部結合場所上に指向するように構成され、それによって、前記第1のクラッディングの中に内部結合されるビームエネルギーは、前記出力ビームの少なくとも一部を形成する、項目1に記載のレーザシステム。
(項目11)
前記第2の屈折率は、前記第3の屈折率より小さい、項目1に記載のレーザシステム。
(項目12)
前記第2の屈折率は、前記第3の屈折率とほぼ等しい、項目1に記載のレーザシステム。
(項目13)
前記第3の屈折率は、前記第1の屈折率より小さい、項目1に記載のレーザシステム。
(項目14)
前記第3の屈折率は、前記第1の屈折率より大きい、項目1に記載のレーザシステム。
(項目15)
前記ビーム源は、
複数の別個のビームを放出する1つまたは複数のビームエミッタと、
前記複数のビームを分散要素上に集束させるための集束光学部と、
集束されたビームを受信し、前記受信された集束されたビームを分散させるための分散要素と、
部分反射出力結合器であって、前記部分反射出力結合器は、前記分散されたビームを受信し、前記分散されたビームの一部をそれを通して前記入力レーザビームとして伝送し、前記分散されたビームの第2の部分を前記分散要素に向かって反射するように位置付けられている、部分反射出力結合器と
を備え、前記入力レーザビームは、複数の波長から構成されている、項目1に記載のレーザシステム。
(項目16)
前記分散要素は、回折格子を備える、項目15に記載のレーザシステム。
(項目17)
レーザビームのビームパラメータ積または開口数のうちの少なくとも1つを調節する方法であって、前記方法は、
入力端部および前記入力端部と反対の出力端部を有するステップクラッド光ファイバを提供することであって、前記ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)前記中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)前記第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)前記環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを備え、(i)前記第1の屈折率は、前記第4の屈折率より大きく、(ii)前記第3の屈折率は、前記第4の屈折率より大きく、(iii)前記第2の屈折率は、前記第1の屈折率より小さく、かつ、前記第4の屈折率より大きい、ことと、
入力レーザビームを前記ステップクラッド光ファイバの前記入力端部上の1つまたは複数の内部結合場所上に指向することであって、それによって、(i)前記入力レーザビームは、前記ステップクラッド光ファイバの中に内部結合され、前記ステップクラッド光ファイバの前記出力端部から出力ビームとして放出され、(ii)前記出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、前記1つまたは複数の内部結合場所によって決定される、ことと
を含む、方法。
(項目18)
前記入力レーザビームは、複数の異なる内部結合場所上に指向される、項目17に記載の方法。
(項目19)
前記入力レーザビームの出力パワーは、前記入力レーザビームが前記異なる内部結合場所間に指向されるときに変調されない、項目18に記載の方法。
(項目20)
前記内部結合場所のうちの少なくとも1つは、少なくとも部分的に前記第1のクラッディングに重複し、それによって、前記第1のクラッディングの中に内部結合されるビームエネルギーは、前記出力ビームの少なくとも一部を形成する、項目17に記載の方法。
(項目21)
前記第2の屈折率は、前記第3の屈折率より小さい、項目17に記載の方法。
(項目22)
前記第2の屈折率は、前記第3の屈折率とほぼ等しい、項目17に記載の方法。
(項目23)
前記第3の屈折率は、前記第1の屈折率より小さい、項目17に記載の方法。
(項目24)
前記第3の屈折率は、前記第1の屈折率より大きい、項目17に記載の方法。
(項目25)
前記入力レーザビームは、ビーム源によって放出され、前記ビーム源は、
複数の別個のビームを放出する1つまたは複数のビームエミッタと、
前記複数のビームを分散要素上に集束させるための集束光学部と、
集束されたビームを受信し、前記受信された集束されたビームを分散させるための分散要素と、
部分反射出力結合器であって、前記部分反射出力結合器は、前記分散されたビームを受信し、前記分散されたビームの一部をそれを通して前記入力レーザビームとして伝送し、前記分散されたビームの第2の部分を前記分散要素に向かって反射するように位置付けられている、部分反射出力結合器と
を備え、前記入力レーザビームは、複数の波長から構成されている、項目17に記載の方法。
(項目26)
前記分散要素は、回折格子を備える、項目25に記載の方法。
(項目27)
レーザビームのビームパラメータ積または開口数のうちの少なくとも1つを調節する方法であって、前記方法は、
入力端部および前記入力端部と反対の出力端部を有するステップクラッド光ファイバを提供することであって、前記ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)前記中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)前記第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)前記環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを備え、(i)前記第3の屈折率は、前記第4の屈折率より大きく、(ii)前記第3の屈折率は、前記第2の屈折率より大きい、ことと、
入力レーザビームを前記ステップクラッド光ファイバの前記入力端部上の1つまたは複数の内部結合場所上に指向することであって、それによって、(i)前記入力レーザビームは、前記ステップクラッド光ファイバの中に内部結合され、前記ステップクラッド光ファイバの前記出力端部から出力ビームとして放出され、(ii)前記出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、前記1つまたは複数の内部結合場所によって決定される、ことと
を含み、前記内部結合場所のうちの少なくとも1つは、少なくとも部分的に前記第1のクラッディングに重複し、それによって、前記第1のクラッディングの中に内部結合されるビームエネルギーは、前記出力ビームの少なくとも一部を形成する、方法。
(項目28)
前記入力レーザビームは、複数の異なる内部結合場所上に指向される、項目27に記載の方法。
(項目29)
前記入力レーザビームの出力パワーは、前記入力レーザビームが前記異なる内部結合場所間に指向されるときに変調されない、項目28に記載の方法。
(項目30)
前記入力レーザビームは、ビーム源によって放出され、前記ビーム源は、
複数の別個のビームを放出する1つまたは複数のビームエミッタと、
前記複数のビームを分散要素上に集束させるための集束光学部と、
集束されたビームを受信し、前記受信された集束されたビームを分散させるための分散要素と、
部分反射出力結合器であって、前記部分反射出力結合器は、前記分散されたビームを受信し、前記分散されたビームの一部をそれを通して前記入力レーザビームとして伝送し、前記分散されたビームの第2の部分を前記分散要素に向かって反射するように位置付けられている、部分反射出力結合器と
を備え、前記入力レーザビームは、複数の波長から構成されている、項目27に記載の方法。
(項目31)
前記分散要素は、回折格子を備える、項目30に記載の方法。
図面中、同様の参照文字は、概して、異なる図全体を通して、同一の部品を指す。また、図面は、必ずしも、正確な縮尺ではなく、代わりに、概して、本発明の原理を図示する際に強調が置かれる。以下の説明では、本発明の種々の実施形態が、以下の図面を参照して説明される。
図1Aは、従来の二重クラッドファイバと、コアおよびそのクラッディングの中に伝送される光学光線の概略図である。図1Bは、図1Aのファイバの種々の層の屈折率の概略図である。図1Cは、図1Aのファイバから発出する典型的レーザビームの平面図である。 図2Aは、本発明の種々の実施形態による、ステップクラッドファイバと、中心コアおよびその第1のクラッディングの中に伝送される光学光線の概略図である。図2Bは、本発明の実施形態による、図2Aのステップクラッドファイバの種々の層の屈折率の概略図である。図2Cは、本発明の実施形態による、図2Aのステップクラッドファイバから発出するレーザビームの平面図である。 図3Aは、本発明の種々の実施形態による、ステップクラッドファイバの概略図である。図3Bは、本発明の実施形態による、図3Aのステップクラッドファイバの種々の層の屈折率の概略図である。 図4Aは、本発明の実施形態による、ステップクラッドファイバを利用するレーザシステムの一部の概略図である。 図4Bは、本発明の実施形態による、図4Aのレーザシステムに関する反射体傾斜の関数としての出力BPPの変動のグラフである。 図4Cは、本発明の実施形態による、図4Aのレーザシステムに関する反射体傾斜の関数としての出力NAの変動のグラフである。 図5および図6は、本発明の実施形態による、ステップクラッドファイバおよび調節可能レンズを利用するレーザシステムの一部の概略図である。 図5および図6は、本発明の実施形態による、ステップクラッドファイバおよび調節可能レンズを利用するレーザシステムの一部の概略図である。 図7は、本発明の種々の実施形態による、レーザシステムのための入力ビームを供給するために利用され得る、波長ビーム組み合わせレーザシステムの概略図である。
(詳細な説明)
図1Aは、中心コア105と、内部クラッディング110と、環状コア115と、外部クラッディング120とを有する、従来の二重クラッドファイバ100を示す。ファイバ100の各層(コアまたはクラッディング)の半径は、図1Bに示されるように、R、R、R、またはRによって表される。従来の二重クラッドファイバ100では、2つのコア105、115は、図1Bに示されるように、典型的には、同一のより高い屈折率Nを有し、2つのクラッディング110、120は、典型的には、同一のより低い屈折率Nを有し、したがって、2つのコア105、115は、sqrt(N −N )という同一NAを有する。
図1Aはまた、ファイバ100内の3つの代表的光線の伝送を描写する。光線125は、中心コア105の中に結合され、中心コア105によって閉じ込められ、中心コア105に入射したものと同一角度において中心コア105から出射する。光線130および光線135は、内部クラッディング110の中に伝送され、ファイバエリア全体内に伝搬し、外部クラッディング120によって閉じ込められる。出射表面(図1Aでは、ファイバ100の右縁)は、2つの異なる屈折率を有する領域を含むため、内部クラッディング(低屈折率を有する)の中に結合されかつ出射表面における低屈折率領域から出射する光線130は、典型的には、入力角度と等しい出射角度を有する。内部クラッディングの中に結合されかつ出射表面におけるより高屈折率領域から出射する光線135は、典型的には、図1Aに示されるように、入力角度より大きい、出射角度を有する。
図1Cは、レーザビームが中心コア105および内部クラッディング110の両方の中に伝送されるときの従来の二重クラッドファイバ100の出射表面からのある距離において観察される、出力プロファイル140の画像である。示されるように、出力プロファイル140は、丸い中心エリア145および外側リングエリア150のビーム強度の2つの明確に分離されたエリアを含む。エリア145、150は、上記に詳述されるようなファイバ100からの出射角度の2つの集団に属する、2つの光線群の集合に対応する。光線125および光線130に類似する光線は、その入力角度と等しい角度において出射し、中心の丸いエリア145に寄与する一方、光線135に類似する光線は、その入力角度より大きい角度において出射し、したがって、外側リングエリア150を形成する。ごく大雑把には、ファイバ屈曲および非均一性に起因する任意のNA劣化を考慮しない場合、中心の丸いエリアビームのNAは、典型的には、レーザ入力NAと同一である。しかしながら、sqrt(NA +NAIN )によって計算される、外側リングビーム150のNAは、入力NA(NAIN)より実質的に大きく、また、ファイバNA(NA)よりも大きく、NA=sqrt(N −N )である。
二重クラッドファイバ100の内部クラッディング100は、比較的に薄く、レーザエネルギーの内部結合のために意図されていない。100μm−コアの従来の二重クラッドファイバ100に関して、第1のクラッディングの直径は、通常、約110〜120μmの範囲内、すなわち、層厚約5〜10μmである。しかしながら、図1Aにおいて光線130、135によって表されるようなファイバ100の内部クラッディングに入射するビームパワーは、必然的に、外側クラッディング120にわたって拡散し、典型的には、モードストリッパによって除去されるか、または、大部分が図1Cに示される外側リングエリア150を形成するようにファイバ100を通して伝送されるかのいずれかである。前者は、モードストリッパおよびファイバ100を焼失させる大きなリスクを呈し得、後者は、外側リングビーム150の大きなNAに起因して、ファイバ100の下流の光学部を損傷させ得る。
本発明の実施形態は、図2Aに図示されるように、ステップクラッド光ファイバを利用するレーザシステムを含む。種々の実施形態によると、ステップクラッドファイバ200は、中心コア205と、第1のクラッディング210と、環状コア215と、第2のクラッディング220とを含むか、それらから本質的に成るか、または、それらから成る。有利には、第1のクラッディング210の種々の性質は、少なくとも部分的に、第1のクラッディング210の中に結合されるパワーに基づいて、BPP変動を可能にする。図2Cは、ステップクラッドファイバ200の中に結合されるレーザビームエネルギーに関する例示的出力プロファイル225を描写する。示されるように、出力プロファイル225は、ファイバ200からのある距離において観察される場合、中心の丸いエリア230と、外側リングエリア235とを含む。しかしながら、図2Cに示される外側リングエリア235は、典型的には、図1Cに描写される対応するエリア150よりはるかに小さいNAを有する。したがって、エリア235内のエネルギーは、ファイバ200の下流の光学部によって安全に受け取られ得る。例えば、外側リングエリア235は、0.1の入力レーザNAに関して、0.18未満、0.17未満、0.16未満、または0.15よりもさらに小さいNAを有し得る。対照的に、対応するエリア150は、0.1の入力レーザNAに関して、少なくとも0.24のNAを有し得る。種々の実施形態では、任意の外側リングエリア235のNAは、入力レーザのNAの約180%未満、入力レーザのNAの約170%未満、入力レーザのNAの約160%未満、または入力レーザのNAの約150%よりもさらに小さくあり得る。種々の実施形態では、任意の外側リングエリアのNAと入力レーザのNAとの間の差異は、約0.08未満、約0.07未満、約0.06未満、または約0.05よりもさらに小さくあり得る。種々の実施形態では、任意の外側リングエリアのNAと入力レーザのNAとの間の差異は、少なくとも約0.005または少なくとも約0.01でさえあり得る。種々の実施形態では、任意の外側リングエリアのNAとステップクラッドファイバのNAとの間の差異は、0.04未満、0.03未満、0.02未満、または0.01未満であり得る。種々の実施形態では、任意の外側リングエリアのNAとステップクラッドファイバのNAとの間の差異は、少なくとも0.001または少なくとも0.005でさえあり得る。
図2Aに描写されるように、中心コア205の中に伝送される光線240は、典型的には、中心コア205によって閉じ込められる。第1のクラッディング210の中に伝送される光線245、250は、概して、第1の環状コア215によって閉じ込められる。光線240、245は、典型的には、その対応する入力角度と等しい角度において出射し、図2Cに示される中心の丸いエリア230を形成する一方、光線250は、その対応する入力角度より若干大きい角度において出射し、外側リングエリア235を形成する。上記に説明されるファイバ100と全く対照的に、第1のクラッディング210の中に放出される光線は、概して、外側クラッディング220に到達せず、したがって、ファイバ200またはその関連付けられた光学部を損傷(例えば、焼失)させるリスクを呈さない。本発明の種々の実施形態では、ステップクラッドファイバ200は、第1のクラッディング210の中への入力レーザパワーの全部または一部の内部結合のために構成される。そのような内部結合されるパワーは、損失されない、またはファイバ200を損傷させるリスクを呈さない。むしろ、出力ビームのBPP変動に対する主要な寄与となり得る。
図2Bは、ステップクラッドファイバ200の各層の屈折率および半径を描写する。図1Bに示されるファイバ100の屈折率と対照的に、ファイバ200の第1のクラッディング210の屈折率(N)は、高屈折率N(必ずしも、図1Bの高屈折率ではない)と低屈折率N(必ずしも、図1Bの低屈折率ではない)との間の値を有し、その結果、中心コア205が、sqrt(N −N )によって与えられる環状コア215のNAよりも小さい、sqrt(N −N )によって与えられるNAを有する。図2Bは、中心コア205および環状コア215の屈折率が相互にほぼ等しいように描写するが、種々の実施形態では、環状コア215の屈折率は、中心コア205の屈折率と異なり得る(すなわち、それ未満かまたはそれより大きいかのいずれかであり得る)。しかしながら、一般に、環状コア215の屈折率は、第1のクラッディング210の屈折率より大きいままである。
所与のレーザ入力NA(NAIN)に関して、屈折率NとNとの間の差異は、少なくとも部分的に、図2Cに示される外側リングビーム235のNAを画定し、このNAは、sqrt(N −N +NAIN )によって与えられる。NとNとの間の屈折率差が小さいほど、外側リングNAは小さくなる。しかしながら、NとNとの間の屈折率差を低減することは、典型的には、中心コア205のNAもまた減少させ、したがって、中心コア205から逃散するより多くの光線をもたらし得る。そのような光線は、環状コア215によって閉じ込められるが、中心コア205から逃散する光線は、最良可能BPPを劣化させ得る、すなわち、出力ビームのためのより高い初期BPP値をもたらし得る。
種々の実施形態では、ステップクラッドファイバ200の中心コア205のNAは、約0.07〜約0.17、または、約0.09〜約0.14にさえ及ぶ。種々の実施形態では、第1のクラッディング210の有効NAは、約0.09より大きい、または、約0.12よりさらに大きい。種々の実施形態では、第1の環状コア215の屈折率は、中心コア205の屈折率と等しいまたはそれより小さい。
種々の実施形態では、第1の環状コアは、図3Aおよび図3Bに示されるように、第1のクラッディングと同一屈折率を有し、図3Aおよび図3Bにおいて、図2Aからの第1の環状コアは、第1のクラッディングの中に融合している。示されるように、そのようなステップクラッドファイバ300は、中心コア305と、第1のクラッディング310と、第2のクラッディング315とを含むか、それらから本質的に成るか、またはそれらから成る。図3Bに示されるように、第1のクラッディング310の屈折率(N)は、中心コア(N)の屈折率と第2のクラッディング(N)の屈折率との間にある。(全ての屈折率値は、必ずしも、図1Bおよび図2Bに描写される値と同一ではない。)種々の実施形態では、ステップクラッドファイバ300の中心コア305のNAは、約0.07〜約0.17、または、約0.09〜約0.14にさえ及ぶ。種々の実施形態では、ステップクラッドファイバ300の第1のクラッディング310のNAは、約0.09より大きい、または、約0.12よりさらに大きい。
本明細書に述べられる場合、本発明の実施形態によるステップクラッドファイバは、第1のクラッディングの中に結合されるレーザパワーの実質的に全てまたは全てを有し得る。第1のクラッディングの中に結合されるパワーが多いほど、概して、より大きいBPPにつながる。種々の実施形態では、第1のクラッディングと中心コアの直径比率は、1.2より大きい、例えば、1.2〜3、または、1.3〜2でさえある。
本発明の実施形態によるステップクラッドファイバを用いて取得可能な最大BPPは、第1の環状コアの直径(または第1の環状コアが存在しない場合、第1のクラッディングの直径)に依存し得る。したがって、種々の実施形態では、第1の環状コア(または第1の環状コアが存在しない場合、第1のクラッディング)と中心コアの直径比率は、約1.5〜約6.5、または、約2〜約5にさえ及ぶ。
構造的に、本発明の実施形態による光ファイバは、本発明の原理を改変することなく、高屈折率および/または低屈折率の1つまたは複数の層を第2のクラッディングを越えて(すなわち、その外側に)含んでもよい。そのような付加的層はまたも、クラッディングおよび環状コアと称され得るが、光を誘導しなくてもよい。そのような変形は、本発明の範囲内である。本発明の種々の実施形態によると、ステップクラッドファイバの種々のコアおよびクラッディング層は、実質的に純粋な溶融シリカ、ならびに/または、フッ素、チタン、ゲルマニウム、および/またはホウ素でドープされた溶融シリカ等のガラスを含み得るか、それらから本質的に成り得るか、またはそれらから成り得る。
本発明の実施形態による、ステップクラッドファイバ200を使用してBPPを変動させるための例示的レーザシステム400が、図4に描写される。(そのようなシステムは、代替として、本発明の実施形態による、ステップクラッドファイバ300を利用してもよい。)示されるように、レーザシステム400は、調節可能反射体405(例えば、先端傾斜調節可能ミラー)を含み、入射する入力レーザビーム410をファイバ結合光学要素415(例えば、1つまたは複数のレンズ)に再指向し、ファイバ結合光学要素415は、ビーム410をステップクラッドファイバ200に向かって集束させる。示されるように、ビーム410が内部結合される、ステップクラッドファイバ200の入力面の領域は、少なくとも部分的に、反射体405の構成(例えば、位置および/または角度)によって画定される。最良開始ビーム品質(すなわち、最小BPP)に関して、ステップクラッドファイバ200は、典型的には、光学要素415の焦点スポットに位置する。
反射体405の構成は、反射体405に作用可能に接続されるコントローラ420および/または1つまたは複数のアクチュエータ(図示せず)を介して、制御されてもよい。したがって、反射体405および/または1つまたは複数のアクチュエータは、コントローラ420に応答してもよい。コントローラ420は、所望の標的放射パワー分布および/またはビーム品質のBPPもしくは他の尺度(例えば、ユーザによる入力、および/または、ワークピースまでの距離、ワークピースの組成物、ワークピースのトポグラフィ等の処理されるべきワークピースの1つまたは複数の性質に基づく入力)に応答し、ステップクラッドファイバ200から出力される出力ビームが標的放射パワー分布またはビーム品質を有するように、反射体405を角度付け、ビーム410をステップクラッドファイバ200の入力面に当てるように構成されてもよい。このように生成された出力ビームは、焼鈍、切断、溶接、穿孔等のプロセスのために、ワークピースに指向されてもよい。コントローラ420は、本明細書に詳述されるように、特定の反射体傾斜を介して、所望のパワー分布および/または出力BPPおよび/またはビーム品質を達成するようにプログラムされてもよい。
コントローラ420は、ソフトウェア、ハードウェア、またはそれらのある組み合わせのいずれかとして提供されてもよい。例えば、システムは、Intel Corporation(Santa Clara, Calif.)製Pentium(登録商標)、またはCeleronファミリーのプロセッサ、Motorola Corporation(Schaumburg, Ill.)製680x0およびPOWER PCファミリーのプロセッサ、ならびに/またはAdvanced Micro Devices, Inc.(Sunnyvale, Calif.)製ATHLONラインのプロセッサ等の1つまた複数のプロセッサを含むCPU基板を有するPC等の1つまたは複数の従来のサーバクラスコンピュータ上で実装されてもよい。プロセッサはまた、本明細書に説明される方法に関連するプログラムおよび/またはデータを記憶するためのメインメモリユニットを含んでもよい。メモリは、1つまたは複数の特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、電気的に消去可能なプログラマブル読取専用メモリ(EEPROM)、プログラマブル読取専用メモリ(PROM)、プログラマブル論理デバイス(PLD)、もしくは読取専用メモリデバイス(ROM)等の一般に利用可能なハードウェア上に存在するランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、および/またはFLASHメモリを含んでもよい。いくつかの実施形態では、プログラムは、光ディスク、磁気ディスク、ならびに他の一般的に使用される記憶デバイス等の外部RAMおよび/またはROMを使用して提供されてもよい。機能が1つまたは複数のソフトウェアプログラムとして提供される実施形態に関して、プログラムは、FORTRAN、PASCAL、JAVA(登録商標)、C、C++、C#、BASIC、種々のスクリプト言語、および/またはHTML等のいくつかの高レベル言語のうちのいずれかで書かれてもよい。加えて、ソフトウェアは、標的コンピュータ上に存在するマイクロプロセッサに指向されるアセンブリ言語で実装されてもよく、例えば、ソフトウェアは、IBM PCまたはPCクローン上で作動するように構成される場合、Intel 80x86アセンブリ言語で実装されてもよい。ソフトウェアは、フロッピー(登録商標)ディスク、ジャンプドライブ、ハードディスク、光ディスク、磁気テープ、PROM、EPROM、EEPROM、フィールドプログラマブルゲートアレイ、またはCD−ROMを含むが、それらに限定されない、製造品上に組み込まれてもよい。
レーザシステム400の出力BPPおよびNAのシミュレーション結果が、それぞれ、図4Bおよび図4Cに描写される。図4Bおよび図4Cでは、光学要素415は、30mm焦点距離を有し、ステップクラッドファイバ200は、中心コア、第1のクラッディング、第1の環状コア、および第2のクラッディングそれぞれに関して、100μm、160μm、360μm、および400μmの直径を有する。中心コアおよび第1の環状コアのNAは、それぞれ、0.12および0.22である。図4Bに示されるように、BPPは、約1.2mradの反射体傾斜において、約4mm−mradから始まり、最大約20mm−mradに到達する。BPP変動は、出力スポットサイズ(D)変化およびNA変化の組み合わせられた結果である。反射体傾斜が、その初期ゼロ位置から徐々に増加するにつれて、より多くのパワーが、第1のクラッディングの中に結合され、これは、出力スポットサイズ(D)およびNA、したがって、BPPを効果的に拡大する。反射体傾斜のさらなる増加(約1.2mradより大きい)は、本実施例では、第1のクラッディングの中に結合される減少されたパワーに起因して、より小さいNAをもたらす。図4Cは、反射体傾斜が、約2.2mradより大きいとき(その時点で全てのパワーが第1の環状コアの中に結合される)、出力NAがその初期最小NA(0反射体傾斜において得られる)に戻って減少することを示す。図4Bおよび4Cから明白であるように、第1のクラッディングの中に結合されるパワーは、損失されず、代わりに、BPP変動において主要な役割を果たす。
加えて、本例示的実施形態に関する約20mm−mradの最大BPPは、第1の環状コアの直径が360μmである、ステップクラッドファイバを用いて得られる。同一BPP範囲に関して、従来の技法は、500μmの第1の環状コア直径を有する、二重クラッドファイバを要求し、これは、レーザ焦点スポットにおいて本発明の例示的実施形態におけるものよりほぼ2倍低いパワー密度をもたらす。したがって、示されるように、本発明の実施形態は、有利には、増加されたNAを伴って、より大きいBPPを発生させ、これは、概して、(例えば、出力ビームのより高いパワー密度を発生および維持する)大きなBPP用途に望ましい。
図5は、本発明の実施形態による、ステップクラッドファイバ(51)を有するレーザシステム500を描写する。レーザシステム500では、コントローラ420は、光学要素415を直接制御し、光学要素415は、入力ビーム410の入力伝搬方向(すなわち、図5に示されるz)に直交する方向(すなわち、図5に示されるxおよびy)において調節可能(すなわち、平行移動可能)である。例えば、コントローラ420は、レンズ操作システム(例えば、2次元または3次元において移動可能な1つまたは複数のモータ式ステージまたはアクチュエータ)を制御することにより、光学要素415の移動を制御し、それによって、ステップクラッドファイバ200の入力表面上の入力ビーム410の内部結合位置(を調節し、したがって、ステップクラッドファイバ200から発出する出力ビームのBPP)を調節してもよい。レーザシステム400と同様に、ステップクラッドファイバ200の種々の領域の中に結合される、入力ビーム400の相対的量は、出力ビームの制御可能可変BPPおよび/またはNAをもたらす。図6は、類似レーザシステム600を描写し、光学要素415は、例えば、1つまたは複数のモータ式ステージまたはアクチュエータを介して、入力ビーム410の入力伝搬方向と平行な方向(すなわち、図6に示されるz)に調節可能である。ステップクラッドファイバ200に対する光学要素415の平行移動は、ステップクラッドファイバ200の種々の領域に伝搬しかつその中に内部結合されるビームの量を偏光する。レーザシステム400と同様に、レーザシステム500、600は、ステップクラッドファイバ200に加え、またはステップクラッドファイバ200の代わりに、ステップクラッドファイバ300を用いて利用されてもよい。本発明の実施形態によるレーザシステムはまた、光学要素415の平行移動(図5および図6におけるように)と反射体405の調節(図4におけるように)を組み合わせ、ステップクラッドファイバからのビーム出力のBPPおよび/またはNAを制御可能に調節してもよい。
レーザシステム400、500、600は、ビームの異なる部分がファイバの異なる領域の中に内部結合されるように、ビームがステップクラッドファイバの入力面にわたって掃引されるときに、入力レーザビームをパワーダウン(すなわち、スイッチオフ)する必要なく、連続方式においてレーザビームのBPPおよび/またはNAを変更するために利用されてもよい。ステップクラッドファイバ200、300は、クラッディング領域(例えば、第1のクラッディング)に伝搬するビームエネルギーが閉じ込められ、ファイバまたはファイバと関連付けられた光学部(例えば、光学要素)の損傷につながらないように構成されるため、入力ビームは、入力ビームまたはその一部がステップクラッドファイバのクラッディング(単数または複数)に当たるときに、オフに切り替えられる必要がない。
本発明の実施形態はまた、2015年2月26日に出願された米国特許出願第14/632,283号、2015年6月23日に出願された米国特許出願第14/747,073号、2015年9月14日に出願された米国特許出願第14/852,939号、および2016年6月21日に出願された米国特許出願第15/188,076号に説明されるようなBPP変動のシステムおよび技法を利用してもよく、それぞれの開示全体は、参照によって本明細書に援用される。
本発明の実施形態による、本明細書に詳述される、レーザシステムおよびレーザ送達システムは、WBCレーザシステム内および/またはWBCレーザシステムとともに利用されてもよい。具体的には、本発明の種々の実施形態では、WBCレーザシステムの複数波長出力ビームが、本明細書に詳述されるように、BPPの変動のために、レーザビーム送達システムのための入力ビームとして利用されてもよい。図7は、1つまたは複数のレーザ705を利用する、例示的WBCレーザシステム700を描写する。図7の実施例では、レーザ705は、ビーム710を放出する4つのビームエミッタを有するダイオードバーを含む(拡大された入力ビュー715参照)が、本発明の実施形態は、任意の数の個々のビームを放出するダイオードバーもしくは2次元アレイ、または、ダイオードまたはダイオードバーのスタックを利用してもよい。ビュー715では、各ビーム710は、線によって示され、線の長さまたはより長い寸法は、ビームの低速発散寸法を表し、高さまたはより短い寸法は、高速発散寸法を表す。コリメート光学部720が、各ビーム710を高速寸法に沿ってコリメートするために使用されてもよい。1つまたは複数のシリンドリカルレンズまたは球形レンズおよび/またはミラーを含み得るか、またははそれらから本質的に成り得る変形光学部(単数または複数)725が、各ビーム710をWBC方向730に沿って組み合わせるために使用される。変形光学部725は、次いで、組み合わせられたビームを分散要素735(例えば、反射または透過回折格子、分散プリズム、グリズム(プリズム/格子)、透過格子、またはエシェル格子を含み得るか、またはそれらからなり得るか、またはそれらから本質的に成り得る)上に重複させ、組み合わせられたビームは、次いで、単一出力プロファイルとして出力結合器740上に伝送される。出力結合器740は、次いで、組み合わせられたビーム745を、示されるように、出力正面ビュー750上に伝送する。出力結合器740は、典型的には、部分的に反射性であり、この外部キャビティシステム700内の全レーザ要素のために共通正面ファセットとして作用する。外部キャビティは、レージングシステムであり、二次ミラーが、各レーザエミッタの放出開口またはファセットから離れる方向にある距離だけ変位される。いくつかの実施形態では、付加的光学部が、放出開口またはファセットと出力結合器または部分的反射表面との間に設置される。出力ビーム745は、したがって、複数波長ビーム(個々のビーム710の波長を組み合わせる)であり、本明細書に詳述されるレーザビーム送達システム内の入力ビームとして利用されてもよく、かつ/または本明細書に詳述されるようなステップクラッド光ファイバの中に結合されてもよい。
本明細書で採用される用語および表現は、限定ではなく、説明の観点として使用され、そのような用語ならびに表現の使用において、図示および説明される特徴またはその一部の均等物のいずれかを除外する意図はなく、種々の修正が、請求される本発明の範囲内で可能であることを認識されたい。

Claims (30)

  1. レーザシステムであって、
    入力レーザビームの放出のためのビーム源と、
    入力端部および前記入力端部と反対の出力端部を有するステップクラッド光ファイバであって、前記ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)前記中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)前記第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)前記環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを備え、(i)前記第1の屈折率は、前記第4の屈折率より大きく、(ii)前記第3の屈折率は、前記第4の屈折率より大きく、(iii)前記第2の屈折率は、前記第1の屈折率より小さく、かつ、前記第4の屈折率より大きい、ステップクラッド光ファイバと、
    前記入力レーザビームを受信し、前記入力レーザビームを前記ステップクラッド光ファイバの前記入力端部に向かって指向するための内部結合機構であって、それによって、前記入力レーザビームは、前記ステップクラッド光ファイバの中に内部結合され、前記ステップクラッド光ファイバの前記出力端部から出力ビームとして放出される、内部結合機構と、
    前記入力レーザビームを前記ステップクラッド光ファイバの前記入力端部上の1つまたは複数の内部結合場所上に指向するために前記内部結合機構を制御するためのコントローラであって、それによって、前記出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、前記1つまたは複数の内部結合場所によって決定される、コントローラと
    を備え、前記ビーム源は、前記コントローラに応答し、
    前記コントローラは、前記入力レーザビームが複数の異なる内部結合場所間に指向されるときに前記入力レーザビームの出力パワーを変調することなく、前記入力レーザビームを前記複数の異なる内部結合場所上に指向するように構成される、レーザシステム。
  2. 前記内部結合機構は、前記入力レーザビームを前記ステップクラッド光ファイバの前記入力端部に向かって集束させるための光学要素を備え、前記光学要素は、前記コントローラに応答して、(i)前記入力レーザビームの伝搬方向と略平行な軸または(ii)前記入力レーザビームの前記伝搬方向と略垂直な1つまたは複数の軸のうちの少なくとも1つに沿って移動可能である、請求項1に記載のレーザシステム。
  3. 前記内部結合機構は、前記入力レーザビームを受信し、前記入力レーザビームを前記ステップクラッド光ファイバに向かって反射するための反射体を備える、請求項2に記載のレーザシステム。
  4. 前記光学要素は、1つまたは複数のレンズ、1つまたは複数のミラー、および/または1つまたは複数のプリズムを備える、請求項2に記載のレーザシステム。
  5. 前記内部結合機構は、前記入力レーザビームを受信し、前記入力レーザビームを前記ステップクラッド光ファイバに向かって反射するための反射体を備え、前記反射体は、前記コントローラに応答して回転可能である、請求項1に記載のレーザシステム。
  6. 前記内部結合機構は、前記入力レーザビームを前記反射体から受信し、前記入力レーザビームを前記ステップクラッド光ファイバに向かって集束させるための光学要素を備える、請求項5に記載のレーザシステム。
  7. 前記光学要素は、前記コントローラに応答して、(i)前記入力レーザビームの伝搬方向と略平行な軸または(ii)前記入力レーザビームの前記伝搬方向と略垂直な1つまたは複数の軸のうちの少なくとも1つに沿って移動可能である、請求項6に記載のレーザシステム。
  8. 前記光学要素は、1つまたは複数のレンズ、1つまたは複数のミラー、および/または1つまたは複数のプリズムを備える、請求項6に記載のレーザシステム。
  9. 前記コントローラは、前記入力レーザビームを少なくとも部分的に前記第1のクラッディングに重複する少なくとも1つの内部結合場所上に指向するように構成され、それによって、前記第1のクラッディングの中に内部結合されるビームエネルギーは、前記出力ビームの少なくとも一部を形成する、請求項1に記載のレーザシステム。
  10. 前記第2の屈折率は、前記第3の屈折率より小さい、請求項1に記載のレーザシステム。
  11. 前記第2の屈折率は、前記第3の屈折率とほぼ等しい、請求項1に記載のレーザシステム。
  12. 前記第3の屈折率は、前記第1の屈折率より小さい、請求項1に記載のレーザシステム。
  13. 前記第3の屈折率は、前記第1の屈折率より大きい、請求項1に記載のレーザシステム。
  14. 前記ビーム源は、
    複数の別個のビームを放出する1つまたは複数のビームエミッタと、
    前記複数のビームを分散要素上に集束させるための集束光学部と、
    集束されたビームを受信し、前記受信された集束されたビームを分散させるための分散要素と、
    部分反射出力結合器であって、前記部分反射出力結合器は、前記分散されたビームを受信し、前記分散されたビームの一部をそれを通して前記入力レーザビームとして伝送し、前記分散されたビームの第2の部分を前記分散要素に向かって反射するように位置付けられている、部分反射出力結合器と
    を備え、前記入力レーザビームは、複数の波長から構成されている、請求項1に記載のレーザシステム。
  15. 前記分散要素は、回折格子を備える、請求項14に記載のレーザシステム。
  16. レーザビームのビームパラメータ積または開口数のうちの少なくとも1つを調節する方法であって、前記方法は、
    入力端部および前記入力端部と反対の出力端部を有するステップクラッド光ファイバを提供することであって、前記ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)前記中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)前記第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)前記環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを備え、(i)前記第1の屈折率は、前記第4の屈折率より大きく、(ii)前記第3の屈折率は、前記第4の屈折率より大きく、(iii)前記第2の屈折率は、前記第1の屈折率より小さく、かつ、前記第4の屈折率より大きい、ことと、
    コントローラによって制御される内部結合機構によって、入力レーザビームを前記ステップクラッド光ファイバの前記入力端部上の1つまたは複数の内部結合場所上に指向することであって、それによって、(i)前記入力レーザビームは、前記ステップクラッド光ファイバの中に内部結合され、前記ステップクラッド光ファイバの前記出力端部から出力ビームとして放出され、(ii)前記出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、前記1つまたは複数の内部結合場所によって決定される、ことと
    を含み、前記入力レーザビームは、ビーム源によって放出され、前記ビーム源は、前記コントローラに応答し、
    前記入力レーザビームは、複数の異なる内部結合場所上に指向され、前記入力レーザビームの出力パワーは、前記入力レーザビームが前記異なる内部結合場所間に指向されるときに変調されない、方法。
  17. 前記内部結合場所のうちの少なくとも1つは、少なくとも部分的に前記第1のクラッディングに重複し、それによって、前記第1のクラッディングの中に内部結合されるビームエネルギーは、前記出力ビームの少なくとも一部を形成する、請求項16に記載の方法。
  18. 前記第2の屈折率は、前記第3の屈折率より小さい、請求項16に記載の方法。
  19. 前記第2の屈折率は、前記第3の屈折率とほぼ等しい、請求項16に記載の方法。
  20. 前記第3の屈折率は、前記第1の屈折率より小さい、請求項16に記載の方法。
  21. 前記第3の屈折率は、前記第1の屈折率より大きい、請求項16に記載の方法。
  22. 前記ビーム源は、
    複数の別個のビームを放出する1つまたは複数のビームエミッタと、
    前記複数のビームを分散要素上に集束させるための集束光学部と、
    集束されたビームを受信し、前記受信された集束されたビームを分散させるための分散要素と、
    部分反射出力結合器であって、前記部分反射出力結合器は、前記分散されたビームを受信し、前記分散されたビームの一部をそれを通して前記入力レーザビームとして伝送し、前記分散されたビームの第2の部分を前記分散要素に向かって反射するように位置付けられている、部分反射出力結合器と
    を備え、前記入力レーザビームは、複数の波長から構成されている、請求項16に記載の方法。
  23. 前記分散要素は、回折格子を備える、請求項22に記載の方法。
  24. レーザビームのビームパラメータ積または開口数のうちの少なくとも1つを調節する方法であって、前記方法は、
    入力端部および前記入力端部と反対の出力端部を有するステップクラッド光ファイバを提供することであって、前記ステップクラッド光ファイバは、(i)第1の屈折率を有する中心コアと、(ii)前記中心コアを囲繞し、第2の屈折率を有する第1のクラッディングと、(iii)前記第1のクラッディングを囲繞し、第3の屈折率を有する環状コアと、(iv)前記環状コアを囲繞し、第4の屈折率を有する第2のクラッディングとを備え、(i)前記第3の屈折率は、前記第4の屈折率より大きく、(ii)前記第3の屈折率は、前記第2の屈折率より大きい、ことと、
    コントローラによって制御される内部結合機構によって、入力レーザビームを前記ステップクラッド光ファイバの前記入力端部上の1つまたは複数の内部結合場所上に指向することであって、それによって、(i)前記入力レーザビームは、前記ステップクラッド光ファイバの中に内部結合され、前記ステップクラッド光ファイバの前記出力端部から出力ビームとして放出され、(ii)前記出力ビームのビームパラメータ積または開口数のうちの少なくとも1つが、少なくとも部分的に、前記1つまたは複数の内部結合場所によって決定される、ことと
    を含み、前記内部結合場所のうちの少なくとも1つは、少なくとも部分的に前記第1のクラッディングに重複し、それによって、前記第1のクラッディングの中に内部結合されるビームエネルギーは、前記出力ビームの少なくとも一部を形成し、前記入力レーザビームは、ビーム源によって放出され、前記ビーム源は、前記コントローラに応答し、
    前記入力レーザビームは、複数の異なる内部結合場所上に指向され、前記入力レーザビームの出力パワーは、前記入力レーザビームが前記異なる内部結合場所間に指向されるときに変調されない、方法。
  25. 前記ビーム源は、
    複数の別個のビームを放出する1つまたは複数のビームエミッタと、
    前記複数のビームを分散要素上に集束させるための集束光学部と、
    集束されたビームを受信し、前記受信された集束されたビームを分散させるための分散要素と、
    部分反射出力結合器であって、前記部分反射出力結合器は、前記分散されたビームを受信し、前記分散されたビームの一部をそれを通して前記入力レーザビームとして伝送し、前記分散されたビームの第2の部分を前記分散要素に向かって反射するように位置付けられている、部分反射出力結合器と
    を備え、前記入力レーザビームは、複数の波長から構成されている、請求項24に記載の方法。
  26. 前記分散要素は、回折格子を備える、請求項25に記載の方法。
  27. 前記入力レーザビームは、前記ステップクラッド光ファイバの前記入力端部にわたって掃引される、請求項1に記載のレーザシステム。
  28. 前記入力レーザビームは、前記ステップクラッド光ファイバの前記入力端部にわたって掃引される、請求項16または請求項24に記載の方法。
  29. 前記1つまたは複数の内部結合場所のうちの少なくとも1つは、前記第1のクラッディング内にある、請求項1に記載のレーザシステム。
  30. 前記1つまたは複数の内部結合場所のうちの少なくとも1つは、前記第1のクラッディング内にある、請求項16または請求項24に記載の方法。
JP2018550824A 2016-04-06 2017-04-05 可変レーザビームプロファイルのための光ファイバ構造および方法 Active JP6796142B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662318959P 2016-04-06 2016-04-06
US62/318,959 2016-04-06
PCT/US2017/026103 WO2017176862A1 (en) 2016-04-06 2017-04-05 Optical fiber structures and methods for varying laser beam profile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020189390A Division JP7066807B2 (ja) 2016-04-06 2020-11-13 可変レーザビームプロファイルのための光ファイバ構造および方法

Publications (2)

Publication Number Publication Date
JP2019510276A JP2019510276A (ja) 2019-04-11
JP6796142B2 true JP6796142B2 (ja) 2020-12-02

Family

ID=59998053

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018550824A Active JP6796142B2 (ja) 2016-04-06 2017-04-05 可変レーザビームプロファイルのための光ファイバ構造および方法
JP2020189390A Active JP7066807B2 (ja) 2016-04-06 2020-11-13 可変レーザビームプロファイルのための光ファイバ構造および方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020189390A Active JP7066807B2 (ja) 2016-04-06 2020-11-13 可変レーザビームプロファイルのための光ファイバ構造および方法

Country Status (5)

Country Link
US (5) US10088632B2 (ja)
JP (2) JP6796142B2 (ja)
CN (1) CN108780189B (ja)
DE (1) DE112017001892T5 (ja)
WO (1) WO2017176862A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505776A (ja) * 2017-01-26 2020-02-20 テラダイオード, インコーポレーテッド ビーム成形のためのセルラコア光ファイバ利用するレーザシステム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914902B2 (en) 2014-02-26 2021-02-09 TeraDiode, Inc. Methods for altering properties of a radiation beam
US10069271B2 (en) 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
CN105720463B (zh) 2014-08-01 2021-05-14 恩耐公司 光纤和光纤传输的激光器中的背向反射保护与监控
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10520671B2 (en) * 2015-07-08 2019-12-31 Nlight, Inc. Fiber with depressed central index for increased beam parameter product
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
CN108367389B (zh) 2015-11-23 2020-07-28 恩耐公司 激光加工方法和装置
CN108780189B (zh) 2016-04-06 2021-11-19 特拉迪欧德公司 用于改变激光束轮廓的光纤结构和方法
US10732439B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Fiber-coupled device for varying beam characteristics
CN109791252B (zh) 2016-09-29 2021-06-29 恩耐公司 可调整的光束特性
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
CN109997285A (zh) 2016-12-02 2019-07-09 特拉迪欧德公司 利用用于功率输送和光束切换的光纤束的激光系统
WO2019224600A2 (en) 2018-05-22 2019-11-28 Panasonic Intellectual Property Management Co. Ltd. Power and spectral monitoring in wavelength beam combining laser systems
WO2019224601A2 (en) * 2018-05-24 2019-11-28 Panasonic intellectual property Management co., Ltd Exchangeable laser resonator modules with angular adjustment
JP2020060725A (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 レーザ発振器及びそれを用いたレーザ加工装置
US11435538B2 (en) * 2018-11-12 2022-09-06 Panasonic Intellectual Property Management Co., Ltd. Optical fiber structures and methods for beam shaping
JP7186071B2 (ja) * 2018-11-22 2022-12-08 株式会社アマダ レーザ発振器及びレーザ加工機
KR20210095688A (ko) * 2018-12-03 2021-08-02 아이피지 포토닉스 코포레이션 제어 가능한 출력 빔 강도 프로파일을 갖는 초고 광섬유 레이저 시스템
JP7236560B2 (ja) * 2019-03-28 2023-03-09 パナソニックIpマネジメント株式会社 高周波数ビーム成形を用いた材料処理
JP7382552B2 (ja) * 2019-05-29 2023-11-17 パナソニックIpマネジメント株式会社 レーザ加工装置及びそれを用いたレーザ加工方法
DE102019125103A1 (de) * 2019-09-18 2021-03-18 Bystronic Laser Ag Bearbeitungsvorrichtung zur Laserbearbeitung eines Werkstücks, Verfahren zur Laserbearbeitung eines Werkstücks
JP2021086838A (ja) * 2019-11-25 2021-06-03 株式会社フジクラ レーザ装置
JP7437745B2 (ja) 2020-03-13 2024-02-26 パナソニックIpマネジメント株式会社 レーザ発振器及びレーザ加工装置
DE102020116268A1 (de) 2020-06-19 2021-12-23 Ii-Vi Delaware, Inc. Fasergekoppelter laser mit variablem strahlparameterprodukt
US20220009036A1 (en) * 2020-07-07 2022-01-13 Panasonic Intellectual Property Management Co. Ltd Laser systems and techniques for workpiece processing utilizing optical fibers and multiple beams
WO2023061831A1 (de) * 2021-10-15 2023-04-20 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zur laserbearbeitung eines werkstücks mit verringerter intensitätslücke
CN114603251A (zh) * 2022-03-15 2022-06-10 广东国志激光技术有限公司 通过多阶梯光纤改变光束参数积的光学搅拌器及方法
DE102022110078A1 (de) 2022-04-26 2023-10-26 Trumpf Laser Gmbh Vorrichtung und Verfahren zur Modifikation des Strahlprofils eines Laserstrahls
US20230402807A1 (en) * 2022-06-10 2023-12-14 Panasonic Intellectual Property Management Co., Ltd. Fiber-coupled laser systems with controllable beam shapes
CN116106862B (zh) * 2023-04-10 2023-08-04 深圳市速腾聚创科技有限公司 光芯片、激光雷达、自动驾驶系统及可移动设备

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2410400A (en) 1945-06-15 1946-10-29 Singer Mfg Co Thread controlling device
US4715679A (en) * 1981-12-07 1987-12-29 Corning Glass Works Low dispersion, low-loss single-mode optical waveguide
JP3531199B2 (ja) * 1994-02-22 2004-05-24 三菱電機株式会社 光伝送装置
GB2310506B (en) * 1996-02-22 2000-10-25 Hitachi Cable Rare earth element-doped multiple-core optical fiber and optical systems using them
GB9625231D0 (en) * 1996-12-04 1997-01-22 Univ Southampton Optical amplifiers & lasers
EP0851247A3 (en) * 1996-12-27 2000-06-14 Sumitomo Electric Industries, Ltd Dispersion-shifted optical fibre and method of manufacturing the same
JP3404296B2 (ja) 1998-09-04 2003-05-06 三菱電機株式会社 レーザ発振装置
US6192062B1 (en) 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
US6208679B1 (en) 1998-09-08 2001-03-27 Massachusetts Institute Of Technology High-power multi-wavelength external cavity laser
ID29527A (id) * 1998-11-26 2001-09-06 Sumitomo Electric Industries Serat optik dan sistem transmisi optik yang mencakup serat optik yang sama
US20020164140A1 (en) * 2000-01-12 2002-11-07 Michael Lysiansky Few-mode fiber profile
JP2003029062A (ja) * 2001-07-13 2003-01-29 Sumitomo Electric Ind Ltd グレーティング内蔵光ファイバおよびグレーティング形成用光ファイバ
EP1280247B1 (en) * 2001-07-23 2003-10-01 Alcatel Optical fiber amplifier device and communications system using the optical fiber amplifier device
AU2003235180A1 (en) * 2002-04-16 2003-10-27 Sumitomo Electric Industries, Ltd. Optical fiber preform producing method, optical fiber producing method, and optical fiber
KR100427446B1 (ko) * 2002-05-13 2004-04-17 엘지전선 주식회사 광증폭기용 광섬유 및 제조방법
FR2841994B1 (fr) * 2002-07-08 2004-09-24 Cit Alcatel Filtre optique
US7085463B2 (en) * 2002-12-18 2006-08-01 The Furukawa Electric Co., Ltd. Optical fiber and optical transmission line
EP1586144B1 (en) * 2003-01-24 2016-05-11 Trumpf, Inc. Fiber laser
US6990277B2 (en) * 2003-04-04 2006-01-24 Fitel Usa Corp. Enhanced multimode fiber
KR20050051118A (ko) * 2003-11-27 2005-06-01 삼성전자주식회사 플라스틱 광섬유, 플라스틱 광섬유용 모재 및 그제조방법
GB0328370D0 (en) 2003-12-05 2004-01-14 Southampton Photonics Ltd Apparatus for providing optical radiation
JP4226497B2 (ja) * 2004-03-08 2009-02-18 富士フイルム株式会社 マルチステップインデックス光ファイバ
FI20045308A (fi) * 2004-08-26 2006-02-27 Corelase Oy Optinen kuituvahvistin, jossa on vahvistuksen muotoerottelu
US7400807B2 (en) * 2005-11-03 2008-07-15 Aculight Corporation Apparatus and method for a waveguide with an index profile manifesting a central dip for better energy extraction
US7835609B2 (en) * 2006-09-14 2010-11-16 Fujikura Ltd. Optical fiber and optical fiber preform
WO2008106033A2 (en) * 2007-02-28 2008-09-04 Corning Incorporated Optical fiber with large effective area
US7339721B1 (en) 2007-02-28 2008-03-04 Corning Incorporated Optical fiber light source based on third-harmonic generation
JP2008251864A (ja) * 2007-03-30 2008-10-16 Konica Minolta Opto Inc レーザ装置
US8374472B2 (en) * 2007-06-15 2013-02-12 Ofs Fitel, Llc Bend insensitivity in single mode optical fibers
JP5469064B2 (ja) * 2007-07-20 2014-04-09 コーニング インコーポレイテッド 大モード面積光ファイバ
WO2009089608A1 (en) * 2008-01-17 2009-07-23 Institut National D'optique Multi-cladding fiber
JP5440183B2 (ja) * 2008-02-22 2014-03-12 住友電気工業株式会社 光ファイバおよび光ケーブル
US9063289B1 (en) * 2008-06-30 2015-06-23 Nlight Photonics Corporation Multimode fiber combiners
US7899096B1 (en) * 2009-10-30 2011-03-01 Corning Incorporated Methods and circuits for controlling drive mechanisms
JP5740654B2 (ja) * 2010-01-22 2015-06-24 トゥー−シックス レイザー エンタープライズ ゲーエムベーハー 遠視野ファイバ結合放射の均質化
WO2011109760A2 (en) 2010-03-05 2011-09-09 TeraDiode, Inc. Wavelength beam combining system and method
US8670180B2 (en) 2010-03-05 2014-03-11 TeraDiode, Inc. Wavelength beam combining laser with multiple outputs
DE102010003750A1 (de) 2010-04-08 2011-10-13 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Anordnung zum Verändern der Strahlprofilcharakteristik eines Laserstrahls mittels einer Mehrfachclad-Faser
DE102011009242B4 (de) * 2010-11-04 2020-09-03 J-Plasma Gmbh Lichtwellenleiter und Halbzeug zur Herstellung eines Lichtwellenleiters mit biegeoptimierten Eigenschaften
US20140185130A1 (en) * 2010-12-07 2014-07-03 Laser Light Engines, Inc. Despeckling Red Laser Light
WO2012102138A1 (ja) * 2011-01-24 2012-08-02 ミヤチテクノス株式会社 光ファイバ、及びそれを備えたレーザ加工装置
JP5862131B2 (ja) * 2011-09-09 2016-02-16 富士通株式会社 光増幅装置
US9093003B2 (en) * 2011-10-11 2015-07-28 Corning Incorporated Manipulation of color illumination using light diffusing fiber
EP2788803B1 (en) * 2011-12-09 2020-05-27 Lumentum Operations LLC Varying beam parameter product of a laser beam
US9339890B2 (en) * 2011-12-13 2016-05-17 Hypertherm, Inc. Optimization and control of beam quality for material processing
JP2013178497A (ja) * 2012-01-30 2013-09-09 Sumitomo Electric Ind Ltd 光ファイバ、及びレーザ加工装置
JP2013180295A (ja) 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 加工装置及び加工方法
US8971682B2 (en) * 2012-03-01 2015-03-03 Corning Incorporated Few mode optical fibers
JP2013218247A (ja) * 2012-04-12 2013-10-24 Shin Etsu Chem Co Ltd 光ファイバ
US9816102B2 (en) 2012-09-13 2017-11-14 Indiana University Research And Technology Corporation Compositions and systems for conferring disease resistance in plants and methods of use thereof
KR20140147502A (ko) * 2013-06-20 2014-12-30 삼성전자주식회사 복수의 서브 코어 영역을 포함한 광섬유
US9880355B2 (en) * 2013-08-07 2018-01-30 Coractive High-Tech Inc. Spatially modulated cladding mode stripper and optical fiber therewith
US9366887B2 (en) * 2014-02-26 2016-06-14 TeraDiode, Inc. Systems and methods for laser systems with variable beam parameter product utilizing thermo-optic effects
DE112015000994B4 (de) * 2014-02-26 2024-01-18 Panasonic Corporation of North America (n.d.Ges.d. Staates Delaware) Systeme für Mehrstrahl-Laseranordnungen mit veränderbarem Strahlparameterprodukt
JP6151660B2 (ja) 2014-03-27 2017-06-21 プライムアースEvエナジー株式会社 レーザ溶接装置及びレーザ溶接方法
WO2015157351A1 (en) * 2014-04-09 2015-10-15 Robin Huang Integrated wavelength beam combining laser systems
JP6420163B2 (ja) * 2014-07-16 2018-11-07 三菱電線工業株式会社 光ファイバ心線及びそれを備えたレーザ伝送部品
TWI584017B (zh) * 2015-02-03 2017-05-21 先進光電科技股份有限公司 光學成像系統(四)
CN105334587B (zh) * 2015-11-05 2017-06-23 武汉凌云光电科技有限责任公司 一种固体激光光纤耦合对准方法及装置
CN108780189B (zh) 2016-04-06 2021-11-19 特拉迪欧德公司 用于改变激光束轮廓的光纤结构和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505776A (ja) * 2017-01-26 2020-02-20 テラダイオード, インコーポレーテッド ビーム成形のためのセルラコア光ファイバ利用するレーザシステム
JP7123061B2 (ja) 2017-01-26 2022-08-22 テラダイオード, インコーポレーテッド ビーム成形のためのセルラコア光ファイバ利用するレーザシステム

Also Published As

Publication number Publication date
US20170293084A1 (en) 2017-10-12
US10768373B2 (en) 2020-09-08
DE112017001892T5 (de) 2018-12-13
US20230161108A1 (en) 2023-05-25
US20190113688A1 (en) 2019-04-18
JP2019510276A (ja) 2019-04-11
JP2021039372A (ja) 2021-03-11
US10088632B2 (en) 2018-10-02
CN108780189A (zh) 2018-11-09
WO2017176862A1 (en) 2017-10-12
US20180372959A1 (en) 2018-12-27
JP7066807B2 (ja) 2022-05-13
US11567265B2 (en) 2023-01-31
US20210141155A1 (en) 2021-05-13
CN108780189B (zh) 2021-11-19
US10845545B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP7066807B2 (ja) 可変レーザビームプロファイルのための光ファイバ構造および方法
US11855408B2 (en) Laser systems utilizing fiber bundles for power delivery and beam switching
JP7123061B2 (ja) ビーム成形のためのセルラコア光ファイバ利用するレーザシステム
US11435538B2 (en) Optical fiber structures and methods for beam shaping
US11719897B2 (en) Material processing utilizing high-frequency beam shaping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6796142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350