JP6784016B2 - 光ファイバ用母材の製造方法 - Google Patents

光ファイバ用母材の製造方法 Download PDF

Info

Publication number
JP6784016B2
JP6784016B2 JP2015234945A JP2015234945A JP6784016B2 JP 6784016 B2 JP6784016 B2 JP 6784016B2 JP 2015234945 A JP2015234945 A JP 2015234945A JP 2015234945 A JP2015234945 A JP 2015234945A JP 6784016 B2 JP6784016 B2 JP 6784016B2
Authority
JP
Japan
Prior art keywords
flow rate
glass fine
burner
length
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015234945A
Other languages
English (en)
Other versions
JP2017100910A (ja
Inventor
木村 達也
達也 木村
川崎 希一郎
希一郎 川崎
英孝 原
英孝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015234945A priority Critical patent/JP6784016B2/ja
Publication of JP2017100910A publication Critical patent/JP2017100910A/ja
Application granted granted Critical
Publication of JP6784016B2 publication Critical patent/JP6784016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、光ファイバ用母材の製造方法に関する。
特許文献1は、光ファイバ母材の製造方法に関する発明であって、複数のガラス合成用バーナを用い、合成するガラス微粒子体を複数のガラス合成用バーナに対して移動させつつ、ガラス微粒子体をVAD法によって成長させる方法が開示されている。
また、特許文献2は、ガラス母材の製造方法に関する発明であって、ガラス微粒子の堆積開始時は出発基材に嵩密度の大きいガラス微粒子を堆積させる必要があるとの記載がある。
特開2001−261360号公報 特開2014−24693号公報
特許文献1に記載の方法においては、中心コア層の成長を終えた後も外周層の成長を継続し、外周層が中心コア層の先端部近傍まで成長された時点で、外周用バーナを停止して外周層の成長を終了することとしている。そのため、ガラス微粒子の堆積終了時には外側のガラス合成用バーナでガラス微粒子体の終了端における径方向中心付近まで堆積させることになるため、この終了端の中心近傍の嵩密度が低くなりやすく、ガラス微粒子体の割れの起点となりやすかった。
また、特許文献2には、ガラス微粒子堆積体の堆積開始端側で嵩密度を大きくすることは記載されているが、ガラス微粒子堆積体の堆積終了端側については何ら記載がない。仮に、終了端を有効部と同程度の固さ(嵩密度)とすると、終了端が割れの起点となることが考えられる。
本発明は、割れ等の製品不良の発生を防止可能な光ファイバ用母材の製造方法を提供することを目的とする。
本発明の光ファイバ用母材の製造方法は、
バーナにガラス原料および火炎形成ガスを投入してガラス微粒子を合成し、種棒の軸方向にガラス微粒子多孔質体を堆積させて引き上げる光ファイバ用母材の製造方法であって、
前記ガラス微粒子多孔質体の引き上げ長が、所定の長さに到達してから、あらかじめ設定した最終の長さまでの間で、前記ガラス微粒子多孔質体の堆積面の温度を上げるように前記バーナのガス流量を変化させる。
本発明によれば、割れ等の製品不良の発生を防止可能な光ファイバ用母材の製造方法を提供することができる。
(a)〜(c)は、本発明の光ファイバ用母材の製造方法の一例を示す概略構成図である。 光ファイバ用母材の脱水焼結を行うための炉心管を用いた脱水焼結炉の概略構成図である。 (a)〜(e)は、比較例1〜5に係る流量変化の各条件を示すグラフである。 (a)〜(f)は、実施例1〜6に係る流量変化の各条件を示すグラフである。
<本発明の実施形態の概要>
最初に本発明の実施形態の概要を説明する。
本実施形態にかかる光ファイバ用母材の製造方法は、
(1)バーナにガラス原料および火炎形成ガスを投入してガラス微粒子を合成し、種棒の軸方向にガラス微粒子多孔質体を堆積させて引き上げる光ファイバ用母材の製造方法であって、
前記ガラス微粒子多孔質体の引き上げ長が、所定の長さに到達してから、あらかじめ設定した最終の長さまでの間で、前記ガラス微粒子多孔質体の堆積面の温度を上げるように前記バーナのガス流量を変化させる。
この構成によれば、ガラス微粒子多孔質体を堆積させる際のバーナのガス流量を制御することで、スス割れ等の製品不良の発生を防止することができる。
(2)前記ガス流量の変化を、前記バーナに供給する水素流量を増加させるか、および前記バーナに供給する酸素流量を減少させるかのいずれか、または両方により行うことが好ましい。
この構成によれば、ガス流量を適切に変化させることができる。
(3)前記水素流量の増加量は、前記水素流量を変化させる前の前記ガス流量の0.02倍から0.10倍であることが好ましい。
水素流量の増加量を上記範囲とすることで、ガラス微粒子多孔質体の終了端を適切な固さにすることができる。
(4)前記酸素流量の減少量は、前記酸素流量を変化させる前の前記ガス流量の0.02倍から0.10倍であることが好ましい。
酸素流量の減少量を上記範囲とすることで、ガラス微粒子多孔質体の終了端を適切な固さにすることができる。
(5)前記ガス流量を、前記ガラス微粒子多孔質体の引き上げ長が前記所定の長さに到達してから前記最終の長さの間で、直線的に変化させることが好ましい。
この構成によれば、嵩密度をなだらかに変化させることができるため、嵩密度の急激な変化による内部気泡の残留を防止することができる。
(6)前記ガス流量を変化させる工程は、前記ガラス微粒子多孔質体の引き上げ長が前記所定の長さに到達した後で前記ガス流量を瞬間的に変化させる工程と、変化後のガス流量を維持する工程とを、含むことが好ましい。
この構成によれば、ガラス微粒子多孔質体の終了端において有効部よりも嵩密度が高く固い部分を多く確保することができる。
(7)前記ガス流量を変化し始める位置は、前記最終の長さよりも50mmから150mm手前の位置であることが好ましい。
ガラス微粒子多孔質体におけるガス流量の変化の開始位置を上記範囲とすることで、ガラス微粒子多孔質体の有効部の特性に影響を与えることなく終了端を適切な固さにすることができる。
(8)前記ガス流量を変化させる工程は、
コア用バーナで前記ガラス微粒子を合成して前記ガラス微粒子多孔質体のコア層を形成する工程と、
クラッド用バーナで前記ガラス微粒子を合成して前記コア層の外周に堆積されるクラッド層を形成する工程と、
前記引き上げ長が所定の長さに到達してから、あらかじめ設定した最終の長さまでの間で、前記クラッド層の堆積面の温度を上げるように前記クラッド用バーナのガス流量を変化させる工程と、を含む。
この構成によれば、クラッド層を形成するためにクラッド用バーナのガス流量を制御して、クラッド層の終了端付近のみを固くするようにしているため、有効部におけるコア層とクラッド層との嵩密度の差を極力少なくできる。これによりコア層での内部気泡の残留防止と、クラッド層の終了端付近のクラックの発生防止を両立させることができる。
<本発明の実施形態の詳細>
以下、本発明に係る光ファイバ用母材の製造方法の実施の形態の例を、図面を参照して説明する。
図1(a)〜(c)は、光ファイバ用母材の製造方法の一実施形態について概略的に示す側面図である。この製造方法においては、複数のガラス合成用バーナを用いたVAD法によるスス付けによって、複数の層を有するガラス微粒子多孔質体(スス体)が合成される。なお、図1(a)〜(c)においては、説明のため、ガラス微粒子多孔質体をその中心軸を含む垂直断面構造によって図示している。
図1(a)〜(c)に示すように、本実施形態では、コア用バーナ1およびクラッド用バーナ2の2本のガラス合成用バーナが設置されている。コア用バーナ1およびクラッド用バーナ2には、それぞれ所定のガラス原料ガス、および火炎を形成するための燃料ガスおよび助燃性ガスが供給される。コア用バーナ1およびクラッド用バーナ2は、それぞれ燃焼性ガスと助燃性ガスにより火炎を形成し、火炎中でガラス原料ガスを火炎加水分解反応させてガラス微粒子を生成する。上記のガラス原料ガスとしては、例えばSiClを用いる。また、燃焼性ガスとしては、例えば水素ガス(H)を用いる。また、助燃性ガスとしては、例えば酸素ガス(O)を用いる。
コア用バーナ1およびクラッド用バーナ2から供給された火炎内で生成されたガラス微粒子(スス)が、回転されつつ所定の引き上げ速度で引き上げられている種棒10の下方に堆積される。そして、種棒10に伴って回転しつつ、所定の引き上げ速度で成長しながら引き上げられるガラス微粒子多孔質体20の下方に継続的にススがさらに堆積されることによって、コア用バーナ1に対応するコア層21、およびクラッド用バーナ2に対応しコア層21の外周に堆積されるクラッド層22が長手方向に成長される。
以上の構成において、コア用バーナ1からの火炎によって、ガラス微粒子多孔質体20の中心軸となる種棒10の回転軸を含むコア層21が成長される。そして、コア層21の外周上に、クラッド用バーナ2からの火炎によってクラッド層22が成長されて、ガラス微粒子多孔質体20の全体が合成される。
コア層21およびクラッド層22の成長が進み、成長開始位置(種棒10の下端)から成長の先端部までのコア層21の長さがあらかじめ設定された目標長L1に到達したら、図1(a)に示すように、コア用バーナ1へのガスの供給を停止してコア層21の成長を終了する。そして、図1(b)に示すように、クラッド用バーナ2は停止させず、ガラス微粒子多孔質体20を引き上げつつ、クラッド層22の長手方向への成長をさらに継続する。そして、図1(c)に示すように、クラッド層22をコア層21の先端部を覆うように堆積させ、成長開始位置からの引き上げ長が最終の目標長L2に到達したときに、クラッド用バーナ2へのガスの供給を停止する。
ガラス微粒子の堆積工程においては、燃焼性ガスである水素ガスと助燃性ガスである酸素ガスとの流量バランスにより、ガラス微粒子多孔質体20の嵩密度が変化することが知られている。水素ガスの流量を多くする、あるいは酸素ガスの流量を少なくすると火炎の温度が上がるため嵩密度は高くなる。一方、水素ガスの流量を少なくする、あるいは酸素ガスの流量を多くすると火炎の温度が下がるため嵩密度は低くなる。このことを利用して、水素ガスおよび/または酸素ガスの流量を制御することにより、形成されるガラス微粒子多孔質体20の嵩密度を調整することができる。
本実施形態においては、上記のガラス微粒子多孔質体20の製造工程において、ガラス微粒子多孔質体20の引き上げ長がコア層の終了端である所定の長さ(図1の長さL1)に到達してから、あらかじめ設定した最終の引き上げ長(図1の長さL2)までの間で、クラッド層22の堆積面の温度を上げるようにクラッド用バーナ2のガス流量を変化させる。具体的には、ガラス微粒子多孔質体20の最終の引き上げ長から手前側の一定の範囲(長さL1と長さL2の間)において、クラッド用バーナ2に供給する水素流量を増加させる。あるいは、最終の引き上げ長から手前側の一定の範囲(長さL1と長さL2の間)において、クラッド用バーナ2に供給する酸素流量を減少させる。なお、クラッド用バーナ2に供給する水素流量を増加させるとともに、酸素流量を減少させても良い。このように、ガラス微粒子多孔質体20のクラッド層22を堆積させる際のクラッド用バーナ2のガス流量を終了端22A付近で変化させることで、終了端22A付近の嵩密度をそれ以外の部分の嵩密度よりも高くする、すなわちガラス微粒子多孔質体20の有効部よりも終了端22A付近を固くすることができる。
最終の引き上げ長から手前側の一定の範囲における水素流量の増加量は、水素流量を変化させる前のガス流量の0.02倍から0.10倍とすることが好ましい。水素流量の増加量が変化前のガス流量の0.02倍よりも少ないと、終了端22A付近のクラッド層22を十分に固くすることができない。一方、水素流量の増加量が変化前のガス流量の0.10倍よりも多いと、終了端22A付近のクラッド層22が固くなりすぎて、後工程である脱水焼結工程においてガラス微粒子多孔質体20の内部に発生する気泡が外部へ放出されにくくなり、終了端22A付近の内部に気泡が残留してしまう可能性が高くなる。ガラス微粒子多孔質体20の先端に気泡が残留すると、後工程で当該先端部にダミー棒を接続することが難しくなってしまう。
また、最終の引き上げ長から手前側の一定の範囲における酸素流量の減少量は、酸素流量を変化させる前のガス流量の0.02倍から0.10倍とすることが好ましい。酸素流量の減少量が変化前のガス流量の0.02倍よりも少ないと、終了端22A付近のクラッド層22を十分に固くすることができない。一方、酸素流量の減少量が変化前のガス流量の0.10倍よりも多いと、終了端22A付近のクラッド層22が固くなりすぎて、脱水焼結工程においてガラス微粒子多孔質体20の終了端22A付近に気泡が残留する可能性が高くなる。
なお、ガス流量を変化させる際には、所定の引き上げ長L1に到達してから最終の引き上げ長L2の間で、ガス流量を直線的に変化させるか、あるいは、長さL1から長さL2の間の所定位置においてガス流量を一気に変化させ、その後は変化後のガス流量を維持するようにしてもよい。
ガス流量を直線的に変化させると、クラッド層22の嵩密度がなだらかに変化するため、嵩密度の急激な変化を防止することができる。一方、終了端22A付近の所定位置においてガス流量を一気に変化させる方法だと、クラッド層22のススを固くする部分を多く確保することができる。
また、ガス流量を変化させ始める位置は、最終の引き上げ長L2よりも50mmから150mm手前の位置であることが好ましい。変化させる位置が最終の引き上げ長L2から150mm手前よりさらに手前の位置であると、ガラス微粒子多孔質体20の有効部の特性に影響が出てしまう。一方、変化させる位置が最終の引き上げ長L2から50mm手前の位置よりも最終の引き上げ長L2に近い位置であると、クラッド層22の固くなる部分が短すぎてスス割れ対策の効果が期待できない。
以上のようにして得られたガラス微粒子多孔質体20に対して、次に図2に示す脱水焼結工程が実施される。
図2に示すように、ガラス微粒子多孔質体20を加熱炉100内に挿入する。そして、ガラス微粒子多孔質体20を挿入した加熱炉100内にHeなどの不活性ガスに加えてSiCl、Clなどの腐食性ガスを含む導入ガスをガス導入路110から導入して、ヒータ120を加熱させて脱水処理をする。その後、ヒータ120をさらに加熱させて焼結温度に上昇させて、ガラス微粒子多孔質体20を焼結させることにより透明ガラス化して、透明ガラス体を得る。
上記の脱水焼結工程においては、ヒータ120の間を通るように上から下に向かってガラス微粒子多孔質体20が移動されながら、脱水焼結が行われる。このとき、ヒータ120によるヒートショック等により、ガラス微粒子多孔質体20の終了端22A付近を起点としてクラックが入り、スス割れが生じてしまう場合がある。このスス割れを防止するための対策としては、ガラス微粒子多孔質体20の外周層であるクラッド層22を固くするために、スス付け時にクラッド層22の嵩密度を上げることが考えられる。しかし、スス付け時にガラス微粒子多孔質体20の全域にわたってクラッド層22の嵩密度を上げると、コア層21とクラッド層22との嵩密度の差が大きくなる。脱水焼結工程においては、ガラス微粒子多孔質体20の内部のガスが外部に放出されることでガラス微粒子多孔質体20の透明ガラス化が進むが、コア層21とクラッド層22との嵩密度の差が大きいと、嵩密度の高いクラッド層22が嵩密度の低いコア層21よりも早く透明ガラス化されることとなり、コア層21の内部に発生したガス(気泡)がクラッド層22から外部に放出されず、内部気泡の残留を招いてしまうおそれがある。
これに対して、本実施形態においては、図1(a)〜(c)に示すガラス微粒子堆積工程において、ガラス微粒子多孔質体20の引き上げ長が所定の長さL1に到達してから、あらかじめ設定した最終の引き上げ長L2までの間で、クラッド層22の堆積面の温度を上げるようにクラッド用バーナ2のガス流量を変化させる。このように、クラッド層22を形成するためにガラス微粒子を堆積させる際のクラッド用バーナ2のガス流量をクラッド層22の終了端22Aで変化させて、終了端22A付近のみ嵩密度を高くするようにしている。これにより、コア層21とクラッド層22との嵩密度の差を極力小さくして内部気泡の残留を防止できるとともに、クラッド層22の終了端22A付近を固くすることによりスス割れ(クラック発生)を防ぐことができる。
本実施形態において、クラッド層22の終了端22A付近におけるガス流量の変化は、クラッド用バーナ2に供給する水素流量を増加させるか、クラッド用バーナ2に供給する酸素流量を減少させるかのいずれか、または両方により行う。この構成によれば、クラッド用バーナ2のガス流量を適切に変化させることができる。
また、本実施形態においては、水素流量の増加量が最大で水素流量を変化させる前のガス流量の0.02倍から0.10倍となるように、ガス流量を調整している。水素流量の増加量を上記範囲とすることで、クラッド層22の終了端22A付近を適切な固さにすることができる。
また、本実施形態においては、酸素流量の減少量が最大で酸素流量を変化させる前のガス流量の0.02倍から0.10倍となるように、ガス流量を調整している。酸素流量の減少量を上記範囲とすることで、クラッド層22の終了端22A付近を適切な固さにすることができる。
また、本実施形態においては、ガラス微粒子多孔質体20の引き上げ長が所定の長さL1に到達してから最終の引き上げ長L2になるまでの間に、ガス流量を直線的に変化させる方法か、引き上げ長が所定の長さL1に到達した後でガス流量を一気(瞬間的)に変化させ、その後は変化後のガス流量を維持する方法のいずれかを採用することができる。ガス流量を直線的に変化させる方法では、嵩密度の急激な変化による内部気泡の残留等を防止することができる。一方、ガス流量を一気に変化させる方法では、クラッド層22の終了端22A付近において有効部よりも固い部分を多くすることができる。
また、本実施形態においては、ガス流量を変化し始める位置は、最終の引き上げ長L2よりも50mmから150mm手前の位置であることが好ましい。クラッド層22におけるガス流量の変化の開始位置を上記範囲とすることで、ガラス微粒子多孔質体20の有効部の特性に影響を与えることなく、終了端22A付近のクラッド層22を適切な固さにすることができる。
(実施例)
以下の条件で、それぞれ50本ずつガラス微粒子堆積体の作製(いわゆる、スス付け)を行い、スス割れ発生率の比較を実施した。流量変化の条件およびスス割れ発生率、気泡残留の有無を以下の表1に示す。
Figure 0006784016
(例1(比較例1))
図3(a)に示すように、水素および酸素の流量を変化させずにスス付けを行った。
その結果、スス割れ発生率は6%であった。
(例2(比較例2))
図3(b)に示すように、水素流量を、最終の引き上げ長(スス付け終了位置)よりも100m手前で、水素流量を変化させる前の0.01倍、一気(瞬間的)に増加させて、スス付けを行った。
その結果、スス割れ発生率は4%であった。
(例3(比較例3))
図3(c)に示すように、水素流量を、最終の引き上げ長よりも100m手前で、水素流量を変化させる前の0.30倍、一気(瞬間的)に増加させて、スス付けを行った。
その結果、スス割れ発生率は0%であったが、作製されたガラス微粒子多孔質体の先端に気泡が残留してしまった。
(例4(比較例4))
図3(d)に示すように、水素流量を、最終の引き上げ長よりも200m手前で、水素流量を変化させる前の0.05倍、一気(瞬間的)に増加させて、スス付けを行った。
その結果、スス割れ発生率は0%であったが、コア層の内部に気泡が残留してしまった。
(例5(比較例5))
図3(e)に示すように、水素流量を、最終の引き上げ長より20m手前で、水素流量を変化させる前の0.05倍、一気(瞬間的)に増加させて、スス付けを行った。
その結果、スス割れ発生率は4%であった。
(例6(実施例1))
図4(a)に示すように、水素流量を、最終の引き上げ長より100m手前で、水素流量を変化させる前の0.05倍、一気(瞬間的)に増加させて、スス付けを行った。
その結果、スス割れ発生率は0%で、気泡残留もなかった。
(例7(実施例2))
図4(b)に示すように、水素流量を、最終の引き上げ長より100m手前から増加させ始め、最終の引き上げ長より50mm手前で水素流量を変化させる前の0.05倍増加した流量となるように直線的に変化させて、スス付けを行った。
その結果、スス割れ発生率は0%で、気泡残留もなかった。
(例8(実施例3))
図4(c)に示すように、酸素流量を、最終の引き上げ長より100m手前で、酸素流量を変化させる前の0.05倍、一気(瞬間的)に減少させて、スス付けを行った。
その結果、スス割れ発生率は0%で、気泡残留もなかった。
(例9(実施例4))
図4(d)に示すように、酸素流量を、最終の引き上げ長より100m手前から減少させ始め、最終の引き上げ長より50mm手前で酸素流量を変化させる前の0.05倍減少した流量となるように直線的に変化させて、スス付けを行った。
その結果、スス割れ発生率は0%で、気泡残留もなかった。
(例10(実施例5))
図4(e)に示すように、最終の引き上げ長より100m手前で、水素流量を変化させる前の0.025倍、一気(瞬間的)に増加させるとともに、酸素流量を変化させる前の0.025倍、一気(瞬間的)に減少させて、スス付けを行った。
その結果、スス割れ発生率は0%で、気泡残留もなかった。
(例11(実施例6))
図4(f)に示すように、最終の引き上げ長より100m手前から、水素流量を、最終の引き上げ長より50mm手前で水素流量を変化させる前の0.025倍、一気(瞬間的)に増加させるとともに、酸素流量を、最終の引き上げ長より50mm手前で酸素流量を変化させる前の0.025倍、一気(瞬間的)に減少させて、スス付けを行った。
その結果、スス割れ発生率は0%で、気泡残留もなかった。
以上の結果より、比較例1〜5の条件ではスス割れ発生率が4%〜6%であるか、またはガラス微粒子多孔質体を焼結したときの焼結体の先端やコア層内部に気泡が残留してしまうのに対し、実施例1〜6の条件ではスス割れや気泡等の製品不良が発生することがなく各条件が有効であることを確認できた。
以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。
上記の実施形態においては、コア用バーナ1へのガスの供給を停止した後もクラッド用バーナ2からの火炎の供給を継続し、クラッド層22をコア層21の先端部を覆うように堆積させて、クラッド層22の成長された先端部がコア層21を完全に覆ってから、クラッド用バーナ2を停止する構成としているが、この例に限られない。例えば、ガラス微粒子多孔質体を作製する際に、コア層の先端(終了端)をクラッド層で覆わずに、図1(a)に示すように、コア層の終了端がクラッド層から露出した状態でコア用バーナおよびクラッド用バーナを停止する構成としても良い。この場合、クラッド層の終了端だけではなく、コア層の終了端を固くするために、コア用バーナの水素流量の増加量および/酸素流量の減少量を上記の実施形態のクラッド用バーナと同様に調整することが望ましい。これにより、クラッド層から露出されているコア層の終了端におけるクラックの発生を防ぐことができる。
1:コア用バーナ
2:クラッド用バーナ
10:種棒
20:ガラス微粒子多孔質体(光ファイバ用母材の一例)
21:コア層
22:クラッド層
100:加熱炉
110:ガス導入路
120:ヒータ

Claims (3)

  1. バーナにガラス原料および火炎形成ガスを投入してガラス微粒子を合成し、種棒の軸方向にガラス微粒子多孔質体を堆積させて引き上げる光ファイバ用母材の製造方法であって、
    コア用バーナで前記ガラス微粒子を合成して前記ガラス微粒子多孔質体のコア層を形成する工程と、
    クラッド用バーナで前記ガラス微粒子を合成して前記コア層の外周に堆積されるクラッド層を形成する工程と、
    前記ガラス微粒子多孔質体の引き上げ長が、所定の長さに到達してから、あらかじめ設定した最終の長さまでの間で、前記クラッド層の堆積面の温度を上げるように前記クラッド用バーナのガス流量を変化させ、前記コア層の先端部を前記クラッド層が覆うように堆積させる工程と、
    を含み、
    前記ガス流量を変化し始める位置は、前記最終の長さよりも50mmから100mm手前の位置であり、
    前記ガス流量の変化を、前記バーナに供給する水素流量を増加させるか、および前記バーナに供給する酸素流量を減少させるかのいずれか、または両方により行い、
    前記水素流量の増加量は、前記水素流量を変化させる前の前記ガス流量の0.02倍から0.05倍であり、
    前記酸素流量の減少量は、前記酸素流量を変化させる前の前記ガス流量の0.02倍から0.05倍である、光ファイバ用母材の製造方法。
  2. 前記ガス流量を、前記ガラス微粒子多孔質体の引き上げ長が前記所定の長さに到達してから前記最終の長さの間で、直線的に変化させる、請求項1に記載の光ファイバ用母材の製造方法。
  3. 前記ガス流量を変化させる工程は、前記ガラス微粒子多孔質体の引き上げ長が前記所定の長さに到達した後で前記ガス流量を瞬間的に変化させる工程と、変化後のガス流量を維持する工程とを、含む、請求項1に記載の光ファイバ用母材の製造方法。
JP2015234945A 2015-12-01 2015-12-01 光ファイバ用母材の製造方法 Active JP6784016B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015234945A JP6784016B2 (ja) 2015-12-01 2015-12-01 光ファイバ用母材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234945A JP6784016B2 (ja) 2015-12-01 2015-12-01 光ファイバ用母材の製造方法

Publications (2)

Publication Number Publication Date
JP2017100910A JP2017100910A (ja) 2017-06-08
JP6784016B2 true JP6784016B2 (ja) 2020-11-11

Family

ID=59016208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234945A Active JP6784016B2 (ja) 2015-12-01 2015-12-01 光ファイバ用母材の製造方法

Country Status (1)

Country Link
JP (1) JP6784016B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115095B2 (ja) * 2018-07-20 2022-08-09 住友電気工業株式会社 光ファイバ用母材の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2999095B2 (ja) * 1993-07-05 2000-01-17 株式会社フジクラ スートプリフォームの製法
JP3562545B2 (ja) * 1995-12-04 2004-09-08 住友電気工業株式会社 光ファイバ用ガラス母材の製造方法
TW371650B (en) * 1995-12-04 1999-10-11 Sumitomo Electric Industries Method for producing an optical fiber quartz glass preform
JP2001253727A (ja) * 2000-03-09 2001-09-18 Sumitomo Electric Ind Ltd 光ファイバ用多孔質母材の製造方法
JP4472308B2 (ja) * 2003-11-11 2010-06-02 株式会社フジクラ 石英多孔質母材の製造方法

Also Published As

Publication number Publication date
JP2017100910A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
CN100371275C (zh) 在外部气相沉积法中制备光纤预制棒的方法和设备
JP6505188B1 (ja) 光ファイバ用多孔質ガラス母材の製造方法および製造装置
JP6784016B2 (ja) 光ファイバ用母材の製造方法
JP4614782B2 (ja) 光ファイバ用石英ガラス母材の製造方法
WO2011136324A1 (ja) ガラス母材製造方法
JP7115095B2 (ja) 光ファイバ用母材の製造方法
JP5904967B2 (ja) 多孔質ガラス母材製造用のバーナ
JP2007210856A (ja) 光ファイバ母材の製造方法
JP6545925B2 (ja) 光ファイバ用ガラス母材の製造方法
JP6006186B2 (ja) 光ファイバ用多孔質ガラス堆積体の製造方法
JP5533205B2 (ja) ガラス母材製造方法
JP6839558B2 (ja) 光ファイバ多孔質母材の製造方法及び製造装置
JP2018177611A (ja) 光ファイバ用多孔質母材の製造方法、光ファイバ用多孔質母材及び光ファイバの製造方法
JP6597177B2 (ja) 光ファイバ用母材の製造方法
JP5459241B2 (ja) ガラス母材製造方法
JP5778895B2 (ja) ガラス母材製造方法
CN111377605B (zh) 光纤用母材的制造方法
JP7024489B2 (ja) 光ファイバ用母材の製造方法
JP4252871B2 (ja) 光ファイバ母材の製造方法
JP4404214B2 (ja) 光ファイバ用ガラス母材の製造方法
JP2770103B2 (ja) 光ファイバ母材の製造方法
JP5907565B2 (ja) 多孔質ガラス母材製造用のバーナ
JP2011230985A (ja) ガラス母材製造方法
JP2001180959A (ja) 光ファイバ母材の製造方法
JP5087929B2 (ja) ガラス微粒子堆積体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6784016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250