JP6780536B2 - 情報処理装置及び障害情報送信要否判定方法 - Google Patents

情報処理装置及び障害情報送信要否判定方法 Download PDF

Info

Publication number
JP6780536B2
JP6780536B2 JP2017031057A JP2017031057A JP6780536B2 JP 6780536 B2 JP6780536 B2 JP 6780536B2 JP 2017031057 A JP2017031057 A JP 2017031057A JP 2017031057 A JP2017031057 A JP 2017031057A JP 6780536 B2 JP6780536 B2 JP 6780536B2
Authority
JP
Japan
Prior art keywords
failure
channel
node
housing
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017031057A
Other languages
English (en)
Other versions
JP2018137623A (ja
Inventor
貴範 稲垣
貴範 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017031057A priority Critical patent/JP6780536B2/ja
Priority to US15/893,893 priority patent/US10270525B2/en
Publication of JP2018137623A publication Critical patent/JP2018137623A/ja
Application granted granted Critical
Publication of JP6780536B2 publication Critical patent/JP6780536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/035Arrangements for fault recovery using loopbacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • H04B10/43Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/069Management of faults, events, alarms or notifications using logs of notifications; Post-processing of notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications

Description

情報処理装置及び障害情報送信要否判定方法に関する。
多数のノードと呼ばれる計算機を格納する筐体がインターコネクトと呼ばれるネットワークに接続した構成のスーパーコンピュータシステムでは、障害が発生すると、障害情報をシステム全体の障害情報を管理するサーバへ送信する。特に、システム内の筐体で電源即断が発生すると、電源即断が発生した筐体と接続する多数の筐体で障害が検出されるため、多くの障害情報がサーバへ送信される。サーバでは収集した障害情報の処理、例えば障害情報のデータベース化などが発生する。このような構成により、サーバやネットワークには高い負荷がかかってしまう。サーバやネットワークの負荷軽減を実現させる技術が下記の特許文献1及び2に記載されている。
特開平5−95357号公報 特開平7−147574号公報
しかし、特許文献1及び特許文献2に記載の技術によっても、電源即断の際に発生するサーバやネットワークの高負荷を軽減させることができない。
そこで、本発明の1つの側面では、電源即断の際に発生するサーバやネットワークの高負荷を軽減させることを目的とする。
態様の一例では、外部ノードとのノード間通信に障害が発生したことを検出するノード間通信制御部と、ノードを収容する筐体の電源即断時に第1チャンネルで受信した信号を第2チャンネルへ返送する光通信部と、前記ノード間通信制御部による障害発生通知を受信すると、前記第1チャンネルを発光させる制御を前記光通信部へ行い、前記第2チャンネルにおいて光信号が受光できるか判断し、前記判断に基づいて前記外部ノードの電源が落ちているか否かを判定する光通信制御部と、前記外部ノードの電源が落ちていた場合には、障害管理装置への障害通知を選定する障害情報制御部とを、有する。
電源即断の際にもサーバの負荷を軽減させることが可能となる。
実施形態の情報処理装置の機能ブロック図である。 実施形態の情報処理装置を実現するためのハードウェア構成の一例を示す図である。 光モジュールの構造を説明するための図である。 光モジュール制御部及び障害情報送信判定部の処理について説明するための図である。 同一番号のチャネルへ光信号を折り返さない理由について説明するための図である。 受光有無判定回路による受光レベルの大小比較処理を説明するための図である。 Rx−Ch1の受光有無のみで判定をした場合に判定を誤るケースについて説明するための図である。 Rx−Ch0とRx−Ch1の両方の受光素子の受光有無を加味した判定処理フローを示すフローチャートである。 筐体A、筐体B、筐体Cに搭載されたノードのICC同士の接続例を示す図である。 各筐体におけるBMCログ及び収集された障害情報のデータベースを示す図である。 実施形態の情報処理装置における障害情報の送信要否判定フローを示すフローチャートである。 スーパーコンピュータシステムの一例を示す図である。 各筐体に搭載された光モジュールの接続例を示す図である。 筐体内に搭載されたBMCと障害管理サーバとの接続例を示す図である。 各筐体のBMCログと障害情報データベースの一例を示す図である。
以下、本発明を実施するための形態について図面を参照しながら説明する。
まず、実施形態の情報処理装置を実装するスーパーコンピュータについて図12を用いて説明する。スーパーコンピュータ120は、多数のノードと呼ばれる計算機をインターコネクトと呼ばれるネットワークに接続した構成をとる。インターコネクトとは、半導体チップや電子回路間を接続し、信号やデータを相互に送受信できるようにすることを言う。なお、ここでのノードは、例えばCentral Processor Unit(CPU、中央演算処理装置)やメモリが搭載された計算機であり、1つの筐体121に複数のノードが搭載されている。
図12に示す例では、ある筐体121に搭載されたノードのうち4つのノードが丸枠内に示されている。各ノードは自身が搭載された筐体内のノード以外に、自身が搭載された筐体の上下左右に配置された筐体に搭載されたノードともインターコネクトケーブル123を介して信号やデータの送受信を行っている。
スーパーコンピュータ120の物理的な構成としては、例えばラックマウント型の筐体複数台(数十程度)をラック122に搭載し、それぞれの筐体121をインターコネクトケーブル123によって接続するものである。筐体121に搭載されたノード同士はインターコネクトケーブル123を介して信号やデータのやり取りを行う。ノードの接続構造はメッシュ構造に限られるものではなく、光モジュールを介して他のノードと接続されるものであれば他の接続構造であってもよい。
インターコネクトによる通信は、ノード内のInter Connect Controller(ICC)と呼ばれるコントローラによって制御される。ICCは、例えばLarge Scale Integration(LSI、大規模集積回路)などである。
近年ではインターコネクト通信に光モジュールを介した光通信を用いることが主流となりつつある。光モジュールは電気信号から光信号へ、また光信号から電気信号へ変換を行うデバイスである。図13に示すように、筐体Aと筐体Bの光モジュール130(130a、130b)はファイバーケーブル131(例えば、インターコネクトケーブル)により接続される。ファイバーケーブル131は複数のレーン(Lane)を備えている。レーンとは送信方向(Tx)の伝送路と受信方向(Rx)の伝送路の対からなるものであり、図13ではレーン0及びレーン1が示されている。また、複数のレーン(例えば、レーン0とレーン1)から構成されるものをリンク(Link)と言い、このような構成をマルチレーン方式とも言う。
また、光モジュール130には受信(Rx)と送信(Tx)を行う複数のチャネル(Ch)が用意されており、図13ではCh0をレーン0、Ch1をレーン1として使用している。具体的には、送信チャネル(Tx−Ch0)及び受信チャネル(Rx−Ch0)がレーン0を使用し、送信チャネル(Tx−Ch1)及び受信チャネル(Rx−Ch1)がレーン1を使用する。
また、光モジュール130は基盤実装型を想定しており、Vertical Cavity Surface Emitting LASER(VCSEL、垂直共振器面発光レーザ)が使用されるため、光信号は光電気変換回路から垂直方向に照射されミラー133(133a、133b)で反射されることによって方向が変えられている。これにより、光信号はファイバーケーブル131を通じて隣接するノードの光モジュールへ伝送される。
また、光モジュール130はICC132(132a、132b)とケーブルを介して接続されており、ICC132との間ではケーブル内を通る電気信号の送受信により情報の伝達を行っている。なお、図13には不図示のCPU及びメモリと、光モジュール130と、ICC132から構成されるものが上記ノードである。具体的には、不図示のCPU及びメモリと、光モジュール130aと、ICC132aから構成されるものが1つのノードである。
ここで、電源即断について説明する。ノード(計算機)には電源即断と呼ばれる機能が実装されている。電源即断とは、ハードウェアの破壊や火災などを防ぐために、これらを引き起こし得る異常が検出された際、正常時の電源オフのシーケンスを無視して筐体内すべての電源を切断するものである。電源即断が実施されるケースとしては、例えば電源の電圧異常が検出された場合、筐体内デバイスの高温異常が検出された場合、漏水や結露が検出された場合などがある。
ある筐体で電源即断が実施された場合、その筐体に接続されるノードのICCは、突如通信が遮断されたことにより、ハードウェア障害を検出する。通信の遮断を検出したICCはスーパーコンピュータシステム(以下、単にシステムとも言う)への影響を最小限にするため、接続するリンクを無効化、すなわちリンクを使用できないようにする。このとき、光モジュールの発光停止も同時に行われる。無効化以降、無効化されたリンクが使用されることはない。
ハードウェア障害が発生した際の障害情報の収集について説明する。
図14に示すように、ラック140に搭載された筐体141内にはBaseboard Management Controller(BMC)142と呼ばれるコントローラ(サービスプロセッサとも言う)が搭載され、各筐体141のBMC142は障害情報を管理する障害管理サーバ(以下、障害管理装置とも言う)143に接続されている。なお、この例では1つのBMC142が1つの筐体141を管理しているが、1つのBMCが複数の筐体を管理するようにしてもよい。デバイス(BMC)上で動作するファームウェア(以降、BMCファームと言う)によって筐体141内のハードウェア制御やイベント(エラーの発生や電源操作のログなど)の記録が行われる。
筐体141内のデバイス(例えば、ICC、CPU、メモリなど)で障害が発生した場合には、障害を検出したデバイスからBMC142へ障害発生の通知がされる。BMCファームは障害発生を検知すると、障害デバイスのハードウェア情報(エラーステータスレジスタの値や温度情報、電圧・電流値情報など)の採取を実施する。BMCファームは収集した情報をシステム全体の障害情報を管理する障害管理サーバ143に送信する。障害管理サーバ143では送信されてきた障害情報を不図示のデータベースに蓄積し、データベースは障害解析、部品などの交換箇所の判定等に使用される。なお、障害情報の伝達が行われるネットワークを障害管理ネットワークと言う。
各筐体内のBMCファームが記録するログ(BMCログ)と、障害管理サーバが保持する障害情報データベース内の情報の一例を図15に示す。各筐体のBMCログには筐体内で発生した障害のログ情報(下線が引かれた情報)や、電源オン又は電源オフなどの通常のイベントのログ情報(下線が引かれていない情報)が示されている。
筐体内で発生した障害の情報としては、例えば筐体AのBMCログの場合ではIDが0005と0008のログ情報である。IDが0005のログでは筐体A内のCPU#0でCorrectable Error(訂正可能なエラー)が発生したことを示している。障害発生に関するログは、各筐体のBMCファームにより障害管理サーバへ送信され、障害情報データベースに追加される。
障害情報データベースには各筐体のBMCファームから送信された障害情報が蓄積され、図15の例では障害発生時間(Date)の早い順に蓄積され、どの筐体における障害であるかは媒体の記載欄により把握でき、障害内容はErrorの記載欄により把握できる。
システム内のある筐体で電源即断が発生した場合には、当該筐体にインターコネクトで接続される多数の筐体のノードのICCが障害を検出する。その結果、BMCファームにより障害管理サーバに多くの障害情報が送信され、大量の障害情報の送信及び処理によりネットワークや障害管理サーバが高負荷状態となる。
一方で、システムの規模は年々増加傾向にあり、これに伴い障害管理サーバに送信され、処理される障害情報量も増加している。よって、システムのスケーラビリティを確保するにあたり、ネットワークや障害管理サーバの負荷軽減の必要性が今後増すものと考えられ、特に高負荷状態を発生させる要因である電源即断に対する障害情報処理の効率化が重要である。
以下では、電源即断に対する障害情報処理の効率化を図ることを可能とする実施形態について説明する。
BMCファームが障害情報を障害管理サーバへ送信する時点で、障害がICCの故障ではない電源即断によるものであるか判定し、電源即断による場合には電源即断で発生する不要な障害情報の送出を抑制する。そのためには、ICCが障害を検出した時点で、接続先の筐体の電源状態(電源がオンであるかオフであるか)を確認する必要がある。しかし、電源即断の発生時にはICC及び光モジュールに電源の供給がされず動作できない。そのため、インターコネクトを使用する通信はできず、単純には接続先の筐体の電源状態を知ることは困難である。
そこで、実施形態の情報処理装置では、接続先の筐体の電源状態を知るため以下の構成とする。電源オフ状態のときに、光信号をCh0(第1チャネル)からCh1(第2チャネル)へ折り返すことを可能にする光モジュール構造にし、電源即断の発生時には、当該筐体内の光モジュールが受信した光信号をCh0からCh1へ送り返すようにする。さらに、リンクの無効化後に光信号の送信指示及び受信確認を実施する機構(光モジュール制御部)を加える。さらに、Ch0とCh1の光信号の受信状況の組み合わせにより、電源即断による副次的な障害検出と通常のICC障害を区別する機構(障害情報送信判定部)を加える。詳細については後述する。
このような構成により、障害検出の筐体に閉じた範囲で、接続先の筐体の電源状態の判断が可能となり、障害情報の送信の可否を判定することができる。
図1は実施形態の情報処理装置1の構成を示す機能ブロック図である。図2は実施形態の情報処理装置1の各機能ブロックによる処理を実行するハードウェアの構成を示すハードウェア構成図である。情報処理装置1のハードウェア構成は、例えば、CPU20、メモリ21、ICC22、光モジュール23、BMC24、バス25を備えている。CPU20、メモリ21、ICC22、光モジュール23、BMC24はバス25を介して互いに接続されている。
図1に示すように、情報処理装置1は、光通信部10、ノード間通信制御部11、光通信制御部12、光モジュール制御部13、障害情報送信判定部14、障害情報制御部15を有する。なお、情報処理装置1の構成は上記に限定されるものでなく、他の構成を含むものであってもよい。
光通信部10は、電気信号を光信号へ変換し、変換した光信号をインターコネクトケーブルを介して隣接する筐体に搭載されたノードの光モジュールへ伝送する。また、光通信部10は、インターコネクトケーブルを介して隣接する筐体に搭載されたノードの光モジュールから送信された光信号を受信し、受信した光信号を電気信号へ変換する。
また、光通信部10は光モジュール制御部13からの発光指示に基づいて所定の送信チャネル(例えば、レーン0の送信チャネルTx−Ch0)の発光素子を発光させる。また、光通信部10は、自身の筐体の電源即断時に第1チャネル(例えば、レーン0のCh0)で光信号を隣接する筐体に搭載されたノードの光モジュールから受信した場合には、その光信号を第2チャネル(例えば、レーン1のCh1)へ返送する(折り返す)。光通信部10による上記処理は光モジュール23が実行する処理である。
ノード間通信制御部11は、隣接する筐体に搭載されたノード(接続先ノードであって外部ノードとも言う)との通信において障害が発生したことを検出する。このとき、ノード間通信制御部11は検出された障害が電源即断によるものか、接続先ノードのICCの故障などによるものかについてはこの時点ではわからない。
ノード間通信制御部11は、障害の発生を検出すると障害の発生をBMCへ通知する。
また、ノード間通信制御部11は、システムへの影響を最小限に抑えるため、障害が発生した接続先ノードとのリンクを無効化する。ノード間通信制御部11は、障害が発生したことを伝える障害発生の通知(Link無効化完了通知)を光モジュール制御部13へ送信する。このとき、ノード間通信制御部11は光モジュールの発光停止も行う。リンクの無効化により、そのリンクは無効化が解除されるまで使用されることはない。ノード間通信制御部11による上記処理はICC22が実行する処理である。
光通信制御部12は、光モジュール制御部13と障害情報送信判定部14から構成されている。
光モジュール制御部13は、ノード間通信制御部11によるLink無効化完了通知を受信すると、光モジュールのチャネル(例えば、レーン0の送信チャネルTx−Ch0)の発光素子の発光指示を光通信部10へ行う。また、光モジュール制御部13は、上記発光指示をした後に光モジュールのチャネル(例えば、レーン0の受信チャネルRx−Ch0及びレーン1の受信チャネルRx−Ch1)の光受光レベルを取得する。
障害情報送信判定部14は、取得された光受光レベルに基づいて接続先ノードの電源が落ちているか否かを判定する。光モジュール制御部13及び障害情報送信判定部14による処理は上記CPU20が実行する処理である。
障害情報制御部15は、接続先ノードの電源が落ちている場合には障害通知を選定、すなわち電源即断で発生する障害情報を除く障害情報の選定を行う。障害情報制御部15による処理は上記BMC24が実行する処理である。
ここで、光モジュール23の構造の一例について図3を用いて説明する。ここでは筐体Bに搭載されるノードの光モジュール23を例にとって説明するが、他の筐体(例えば、筐体A)に搭載されるノードの光モジュールについても同様の構造である。
光モジュール23の構造として、電源のオフ状態での光信号のループバック(光モジュール23自身に光信号が帰ってくること)を実現するためにKTN結晶30を用いる。KTN結晶30はカリウム(K)、タンタル(Ta)、ニオブ(Nb)からなる光学結晶であって、印加電圧に対する屈折率の変化量が大きい材料で、印加電圧により全反射と透過を制御することが可能である。なお、印加電圧により全反射と透過を制御することができるものであればKTN結晶に限定されるものでなく、また印加電流によって屈折率が変化するものであってもよい。
図3に示すように、筐体B側の光モジュール23内にKTN結晶30(30a、30b)及びミラー31(31a、31b)を配置する。このような配置にすることによって、筐体Bの電源がオフ(印加電圧なし)の場合にはKTN結晶30aの屈折率は低く、筐体Aの光モジュールからの光信号はKTN結晶30aの界面で反射することなく直進する(点線の矢印)。このとき、Rx−Ch0から入射した光信号はミラー31bで反射され、Tx−Ch1へと進む。このときも筐体Bの電源がオフの状態であるため、光信号はKTN結晶30bの界面で反射することなく直進する。
なお、通常のループバックでは同一チャネル番号のTxからRxへ折り返す(例えば、Tx−Ch0からRx−Ch0へ折り返す)が、ここでは異なる番号のチャネルへ光信号を入射させる。このようにする理由、すなわち単順に同一番号のチャネルへは折り返さない理由については後述する。一方、通常運用時(電源のオン状態)ではKTN結晶30に電圧が印加され、光信号はKTN結晶30aの界面で全反射される。このとき光信号は従来の光モジュールの場合と同一の経路(KTN結晶30aから光電気変換を行う回路へ進む経路)を通ることとなる。
このように、隣接する筐体それぞれに搭載された光モジュール間で光信号の伝送を行って隣接する筐体の電源状態を確認するため、隣接しない筐体の電源状態は直接把握することができない。
以下では、光モジュール制御部13及び障害情報送信判定部14の処理について図4を用いて説明する。
ICC22がリンクの無効化を完了すると、ICC22は光モジュール制御部13にリンク無効化完了通知を行う。リンク無効化完了通知を受けた光モジュール制御部13内の発光指示部32は、光モジュール23の送信チャネル(例えば、Tx−Ch0)の発光素子のみを強制的に発光させる。これは光モジュール23内の設定レジスタ34のTx−Ch0発光設定においてTx−Ch0の発光素子の発光有効化を設定することにより実施される。設定レジスタ34とはチャネルの発光素子を発光させるか否かを送信チャネルごとに設定するものである。
もし、隣接する接続先の筐体の電源が落ちていれば上述したループバックにより、光モジュール23のTx−Ch0(チャネル0の発光素子)から送出した光信号が、KTN結晶において透過し、接続先の筐体の光モジュールのCh1に折り返される。そして、折り返された光信号は光モジュール23のRx−Ch1(チャネル1の受光素子)に届くはずであり、チャネル1の受光素子による光信号の受信の有無により接続先の筐体の電源状態の確認が可能となる。すなわち、チャネル1の受光素子による光信号の受信があれば、接続先の筐体の電源はオフであるとわかる。
発光指示部32はTx−Ch0の発光素子の発光指示が完了したら、発光指示完了を受光レベル採取部33に通知する。発光指示完了通知を受けた受光レベル採取部33は、発光指示完了通知から一定期間の経過後、Rx−Ch0とRx−Ch1の受光素子における光信号の受光レベルを採取する。この採取は光モジュール23内のステータス・レジスタ35のRx−Ch0受光レベル及びRx−Ch1受光レベルを読み出すことにより実施される。ステータス・レジスタ35とは受光素子が受光した受光レベルを受信チャネルごとに格納するものである。
ここで、同一番号のチャネルへ光信号を折り返さない理由について説明する。送信チャネルと受信チャネルでチャネル番号を分けているのは、電源即断ではない通常のハードウェア故障によりICCが障害検出した場合にも、電源状態の判定を正しく実施するためである。
Ch0のみを使用する(単純にTx−Ch0からRx−Ch0へ折り返し、かつ光モジュール制御部13でRx−Ch0の光信号の受光レベルを確認する)とした場合を考える。この場合、電源即断ではない通常のICC障害が発生したとき、電源即断ではないため両筐体(筐体Aと筐体B)のICCでTx−Ch0の発光素子の発光が行われる。これにより、ループバックが実施されていないにもかかわらず、例えば筐体Aの光モジュールからの光信号が筐体Bの光モジュールのRx−Ch0へ届いてしまう。筐体Aについても同様に、筐体Bの光モジュールからの光信号が筐体Aの光モジュールのRx−Ch0へ届いてしまう。
Rx−Ch0に光信号が届くということは、図5に示すように、電源のオフによる折り返しの場合とICCによる光モジュールの強制発光の場合が考えられ、光信号の受信の有無で接続先の筐体の電源状態を判定することはできない。
すなわち、接続先の光モジュール23bが搭載された筐体の電源がオフの状態の場合にも光モジュール23aのチャネル0(Ch0)の発光素子からの光信号は折り返されてチャネル0の受光素子で受光される。また、接続先の光モジュール23bが搭載された筐体の電源がオンの状態であるが、ハードウェア故障でICCによって光モジュール23bの発光素子が強制的に発光されることで光モジュール23aのチャネル0の受光素子で光信号が受光される。この場合には光信号の受信の有無で接続先の筐体の電源状態を判定することはできない。
障害情報送信判定部14の処理の説明に戻る。
障害情報送信判定部14はBMC24への障害情報送信の要否の判定を行う。受光レベル採取部33によって採取されたRx−Ch0の受光素子の受光レベル及びRx−Ch1の受光素子の受光レベルの情報は、障害情報送信判定部14の受光有無判定回路37に送られる。受光有無判定回路37は、受信した受光レベルとあらかじめ用意された受光有無判定閾値を比較し、光信号が届いているか否かの判定を行う。具体的には図6に示すように、受光有無判定回路37は、Rx−Ch0の受光素子の受光レベルと、それに対応する受光有無判定閾値との大小を比較し、例えばRx−Ch0の受光素子の受光レベルの方が受光有無判定閾値より大きい場合にRx−Ch0に受光有りと判定する。Rx−Ch1についても同様にして受光の有無の判定を行う。
受光の有無の判定が終了すると、Rx−Ch0及びRx−Ch1の受光有無の判定内容が送信要否判定回路38に送られ、以下に示す障害情報の送信要否の判定が送信要否判定回路38で行われる。
なお、基本的にはRx−Ch1の受光の有無のみで接続先の筐体の電源状態を判断することは可能である。しかし、上述のようにRx−Ch0の受光レベルも加味するのは、ハードウェア故障によって不正にRx−Ch1に光信号が届いた場合に、誤って障害情報の送信を不要(接続先の筐体の電源がオフ)と判定し、必要な障害情報の送信を取りこぼすことを防ぐためである。
Rx−Ch1の受光有無のみで判定をした場合に判定を誤る場合について図7を用いて説明する。判定を誤るケースとして、リンク無効化時の光モジュールに対する発光停止の処理が失敗し、発光が継続してしまう場合がある。光モジュールに対する発光停止の処理はInter-Integrated Circuit(I2C)により、光モジュール内の設定レジスタに設定を行うことで実施される。しかし、光モジュールの故障によりI2Cアクセスが失敗し、発光を停止できない場合が発生する。
図7は筐体B側の光モジュール23bにおいてI2Cアクセスが失敗した場合を示している。この場合には、筐体B側の光モジュール23bのCh0及びCh1の発光素子は光モジュール23aへ発光し続ける。そのため、筐体A側の光モジュール23aのCh1の受光素子にも光信号が届き、筐体Bの電源の状態をオフと判定とすることとなる。しかし、実際には筐体Bの電源はオン状態であるため、この判定は誤った判定となる。
このような誤判定を防ぐため、ここではRx−Ch0とRx−Ch1の両方の受光素子の受光有無を加味した判定を行う。この場合の判定処理のフローの一例を図8に示す。これらの判定処理は障害情報送信判定部14の送信要否判定回路38によって実施される。
まず、送信要否判定回路38は、Rx−Ch1の受光素子による受光が有るか否かを判定する(ステップS801)。Rx−Ch1の受光素子による受光が有りではない場合(ステップS801でNo)、すなわちRx−Ch1で光不通(受光無し)である場合、以下に示すケース1又はケース3に該当する。送信要否判定回路38は障害情報の送信が必要であると判定し、送信要否の判定処理を終了する。
一方、Rx−Ch1の受光素子による受光が有りである場合(ステップS801でYes)、送信要否判定回路38はRx−Ch0の受光素子による受光が有るか否かを判定する(ステップS802)。Rx−Ch0の受光素子による受光が有りではない場合(ステップS802でNo)、すなわちRx−Ch0で光不通である場合、以下に示すケース2に該当する。送信要否判定回路38は障害情報の送信が不要であると判定し、障害情報送信抑止要求をBMC24へ送信する。
一方、Rx−Ch0の受光素子による受光が有りである場合(ステップS802でYes)、すなわちRx−Ch0で光疎通(受光有り)である場合、以下に示すケース4に該当する。送信要否判定回路38は障害情報の送信が必要であると判定し、送信要否の判定処理を終了する。
ケース1はRx−Ch0の受光素子で光疎通、Rx−Ch1の受光素子で光不通の場合である。ケース1ではRx−Ch0の受光素子に光信号が届いているため、KTN結晶30aを光信号が透過しておらず、接続先の筐体の電源がオンである。また、Rx−Ch1の受光素子に光信号が届いていないため、KTN結晶30aを光信号が透過しておらず、接続先の筐体の電源がオンである。よって、接続先の筐体の電源はオンであり、障害管理サーバへの障害情報の送信が必要であると判定される。
ケース2はRx−Ch0の受光素子で光不通、Rx−Ch1の受光素子で光疎通の場合である。ケース2ではRx−Ch0の受光素子に光信号が届いていないため、KTN結晶30aを光信号が透過しており、接続先の筐体の電源がオフである。また、Rx−Ch1の受光素子に光信号が届いているため、KTN結晶30aを光信号が透過しており、接続先の筐体の電源がオフである。よって、接続先の筐体の電源はオフであり、障害管理サーバへの障害情報の送信が不要であると判定される。
ケース3はRx−Ch0の受光素子で光不通、Rx−Ch1の受光素子で光不通の場合である。ケース3ではRx−Ch0の受光素子に光信号が届いていないため、KTN結晶30aを光信号が透過しており、接続先の筐体の電源がオフである。また、Rx−Ch1の受光素子に光信号が届いていないため、KTN結晶30aを光信号が透過しておらず、接続先の筐体の電源がオンである。矛盾する電源状態が発生しているため、ハードウェアの異常が発生していると考えられる。よって、障害管理サーバへの障害情報の送信が必要であると判定される。
ケース4はRx−Ch0の受光素子で光疎通、Rx−Ch1の受光素子で光疎通の場合である。ケース4ではRx−Ch0の受光素子に光信号が届いているため、KTN結晶30aを光信号が透過しておらず、接続先の筐体の電源がオンである。また、Rx−Ch1の受光素子に光信号が届いているため、KTN結晶30aを光信号が透過しており、接続先の筐体の電源がオフである。矛盾する電源状態が発生しているため、ハードウェアの異常が発生していると考えられる。よって、障害管理サーバへの障害情報の送信が必要であると判定される。
上述のように、障害情報の送信を不要と判定した場合には、送信要否判定回路38はBMC24(障害情報送信部)へ障害情報の送信抑止の要求を送信する。これは、送信要否判定回路38がBMC24に送信される障害情報の送信抑止信号をアサートする(有効状態にする)ことにより実施される。これを受けたBMC(BMCファームの障害情報送信部)は障害情報の送信を取りやめる。
ここで、送信抑止される障害情報について図9及び図10を用いて説明する。図9には筐体A、筐体B、筐体Cに搭載された不図示のノードのICC同士の接続例が示されている。この例では筐体に搭載されたノードのICCがOPTを介して隣接する筐体に搭載されたノードのICCと接続されている。OPTは光モジュールを表している。なお、接続例はこれに限定されるものではない。例えば、1つの光モジュールを複数のノードで共有するようにしてもよい。この場合、レーンはノード(ICC)ごとに分ける必要がある。
この接続関係において、筐体Bで電源の電圧異常が検出され、電源即断が発生したとする。これにより、これらを示すログ、すなわちVoltage Error(電圧異常)というイベントのログとForce Power Off(電源即断)というイベントのログが筐体BのBMCログ(それぞれのIDは000aと000b)に記録される(図10を参照)。
筐体Bの電源即断により、筐体Bに接続される筐体AのICC#4から#7、筐体CのICC#0から#3がほぼ同時に通信の遮断を検出する。この通信の遮断により、筐体AのBMCログ及び筐体CのBMCログには通信の遮断を示すログ情報(下線が引かれた情報)が記録される(図10を参照)。従来は、これら電源即断による通信の遮断を示すログ情報を含むすべての障害情報が障害管理サーバに送信され、障害管理サーバやネットワークには高負荷を掛かっていた。しかし、実施形態の情報処理装置1により、これらの障害情報(電源即断による通信の遮断を示すログ情報)の送信が抑止され、障害管理サーバやネットワークの負荷を低減させることが可能となった。
なお、図10に示す障害情報データベースでは電源即断による通信の遮断を示すログ情報は記録されていないが、電源即断によらない通信の遮断を示すログ情報、例えばIDが0001、0004、0007のログ情報は障害管理サーバへの送信の対象であるため記録されている。
次に、実施形態の情報処理装置1における障害情報の送信要否判定フローの一例について図11を用いて説明する。まず、ある筐体のICCが、隣接する接続先の筐体の電源即断であるか、隣接する接続先の筐体におけるハードウェア故障(ICC故障など)であるかはこの時点では不明であるが、何らかの障害(エラー)を検出する(ステップS1101)。ICCは障害の検出によって障害発生通知をBMCへ行う(ステップS1102)。障害発生通知を受信したBMC(BMCファーム)は障害情報、例えばハードウェアのレジスタ情報などを収集する(ステップS1103)。ICCは障害を検出した筐体とのリンクを無効化する(ステップS1104)。このとき、ICCは光モジュールの発光停止の指示も行う。
光モジュール制御部13は、リンクの無効化が完了した旨の通知(リンク無効化完了通知)をICCから受信すると、光モジュールの送信チャネル(例えば、Tx−Ch0)の発光素子の発光指示を光モジュールに対して行う(ステップS1105)。また、光モジュール制御部13は、発光指示の完了から一定期間の経過後に、光モジュールの受信チャネル(Rx−Ch0及びRx−Ch1)の受光素子の受光レベルの情報を光モジュールのステータス・レジスタから取得(採取)する(ステップS1106)。光モジュール制御部13は、取得した受信チャネルの受光素子の受光レベルの情報を障害情報送信判定部14へ転送する(ステップS1107)。
障害情報送信判定部14は、転送された受信チャネルの受光素子の受光レベルの情報と受光有無判定閾値を比較し、隣接する接続先の筐体の電源が落ちているかを判定し、障害情報の送信の要否を判定する(ステップS1108)。例えば、受信チャネル(Rx−Ch0)の受光素子での受光はなく、一方の受信チャネル(Rx−Ch1)の受光素子での受光がある場合には、隣接する接続先の筐体の電源がオフ(電源即断による)であるため、障害情報の送信は不要と判定する。
実施形態の情報処理装置1の1つの側面によれば、電源即断で発生する不要な障害情報の送出を抑止することで、障害管理サーバやネットワークの負荷を軽減することが可能となる。
以上の実施形態に関して、更に以下の付記を開示する。
(付記1)障害情報を障害管理装置へ送信する情報処理装置における前記障害情報の送信要否を判定する障害情報送信要否判定方法において、
外部ノードとのノード間通信に障害が発生したことを検出し、
前記障害の発生を通知する障害発生通知を受信すると、ノードを収容する筐体の電源即断時に第1チャンネルで受信した信号を第2チャンネルへ返送する光通信部の前記第1チャンネルを発光させる制御を前記光通信部へ行い、前記第2チャンネルにおいて光信号が受光できるか判断し、前記判断に基づいて前記外部ノードの電源が落ちているか否かを判定し、
前記外部ノードの電源が落ちていた場合には、前記障害管理装置への障害通知を選定する、
ことを特徴とする障害情報送信要否判定方法。
(付記2)前記第1チャンネルにおける前記光信号の受光も判断し、前記第1チャネルにおける前記光信号の受光判断及び前記第2チャネルにおける前記光信号の受光判断に基づいて、前記外部ノードの電源が落ちているか否かを判定することを特徴とする付記1に記載の障害情報送信要否判定方法。
(付記3)前記第1チャネルにおける前記光信号の受光レベル及び前記第2チャネルにおける前記光信号の受光レベルと、受光の有無を判定する受光有無判定閾値とをそれぞれ比較し、比較結果に基づいて各チャネルにおける前記光信号の受光判断を行うことを特徴とする付記2に記載の障害情報送信要否判定方法。
(付記4)前記光通信部は、KTN結晶を有し、前記KTN結晶への印加電圧をなしとすることにより前記第1チャンネルで受信した信号を前記第2チャンネルへ返送することを特徴とする付記1乃至3のいずれかに記載の障害情報送信要否判定方法。
1 情報処理装置
10 光通信部
11 ノード間通信制御部
12 光通信制御部
13 光モジュール制御部
14 障害情報送信判定部
15 障害情報制御部
20 CPU
21 メモリ
22、132(132a、132b) ICC
23(23a、23b)、130(130a、130b) 光モジュール
24、142 BMC
25 バス
30(30a、30b) KTN結晶
31(31a、31b)、133(133a、133b) ミラー
32 発光指示部
33 受光レベル採取部
34 設定レジスタ
35 ステータス・レジスタ
37 受光有無判定回路
38 送信要否判定回路
120 スーパーコンピュータ
121、141 筐体
122、140 ラック
123 インターコネクトケーブル
131 ファイバーケーブル
143 障害管理サーバ

Claims (5)

  1. 外部ノードとのノード間通信に障害が発生したことを検出するノード間通信制御部と、
    ノードを収容する筐体の電源即断時に第1チャンネルで受信した信号を第2チャンネルへ返送する光通信部と、
    前記ノード間通信制御部による障害発生通知を受信すると、前記第1チャンネルを発光させる制御を前記光通信部へ行い、前記第2チャンネルにおいて光信号が受光できるか判断し、前記判断に基づいて前記外部ノードの電源が落ちているか否かを判定する光通信制御部と、
    前記外部ノードの電源が落ちていた場合には、障害管理装置への障害通知を選定する障害情報制御部とを、
    有することを特徴とする情報処理装置。
  2. 前記光通信制御部は、前記第1チャンネルにおける前記光信号の受光も判断し、前記第1チャネルにおける前記光信号の受光判断及び前記第2チャネルにおける前記光信号の受光判断に基づいて、前記外部ノードの電源が落ちているか否かを判定することを特徴とする請求項1に記載の情報処理装置。
  3. 前記光通信制御部は、前記第1チャネルにおける前記光信号の受光レベル及び前記第2チャネルにおける前記光信号の受光レベルと、受光の有無を判定する受光有無判定閾値とをそれぞれ比較し、比較結果に基づいて各チャネルにおける前記光信号の受光判断を行うことを特徴とする請求項2に記載の情報処理装置。
  4. 前記光通信部は、KTN結晶を有し、前記KTN結晶への印加電圧をなしとすることにより前記第1チャンネルで受信した信号を前記第2チャンネルへ返送することを特徴とする請求項1乃至3のいずれかに記載の情報処理装置。
  5. 障害情報を障害管理装置へ送信する情報処理装置における前記障害情報の送信要否を判定する障害情報送信要否判定方法において、
    外部ノードとのノード間通信に障害が発生したことを検出し、
    前記障害の発生を通知する障害発生通知を受信すると、ノードを収容する筐体の電源即断時に第1チャンネルで受信した信号を第2チャンネルへ返送する光通信部の前記第1チャンネルを発光させる制御を前記光通信部へ行い、前記第2チャンネルにおいて光信号が受光できるか判断し、前記判断に基づいて前記外部ノードの電源が落ちているか否かを判定し、
    前記外部ノードの電源が落ちていた場合には、前記障害管理装置への障害通知を選定する、
    ことを特徴とする障害情報送信要否判定方法。
JP2017031057A 2017-02-22 2017-02-22 情報処理装置及び障害情報送信要否判定方法 Active JP6780536B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017031057A JP6780536B2 (ja) 2017-02-22 2017-02-22 情報処理装置及び障害情報送信要否判定方法
US15/893,893 US10270525B2 (en) 2017-02-22 2018-02-12 Information processing apparatus and a method of determining whether or not to transmit failure information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031057A JP6780536B2 (ja) 2017-02-22 2017-02-22 情報処理装置及び障害情報送信要否判定方法

Publications (2)

Publication Number Publication Date
JP2018137623A JP2018137623A (ja) 2018-08-30
JP6780536B2 true JP6780536B2 (ja) 2020-11-04

Family

ID=63167483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031057A Active JP6780536B2 (ja) 2017-02-22 2017-02-22 情報処理装置及び障害情報送信要否判定方法

Country Status (2)

Country Link
US (1) US10270525B2 (ja)
JP (1) JP6780536B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10536235B2 (en) * 2017-05-04 2020-01-14 Ciena Corporation Logical control seams in optical networks to improve restoration speed or timing for capacity adds
CN114265489B (zh) * 2020-09-16 2023-10-27 富联精密电子(天津)有限公司 电源故障监测方法、装置、电子设备及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213023A (ja) * 1990-01-18 1991-09-18 Fujitsu Ltd 電源断情報転送方式
JPH0595357A (ja) 1991-10-02 1993-04-16 Shikoku Nippon Denki Software Kk 障害情報の待ち合わせによる対象外情報の削除方式
JPH07147574A (ja) 1993-06-18 1995-06-06 Nec Corp 階層的障害報告方式
JP3681634B2 (ja) * 2000-11-30 2005-08-10 株式会社日立インフォメーションテクノロジー 障害通報処理方法および監視装置
JP2003229820A (ja) 2002-02-01 2003-08-15 Sumitomo Electric Ind Ltd 電源断通知機能を有するコンバータ
JP4087179B2 (ja) * 2002-07-29 2008-05-21 富士通株式会社 加入者線端局装置
JP5173153B2 (ja) 2006-06-14 2013-03-27 日本電信電話株式会社 電気光学素子
JP2008147849A (ja) * 2006-12-07 2008-06-26 Mitsubishi Electric Corp 光伝送システムおよび光伝送システムの電源断通知方法
WO2011093012A1 (ja) * 2010-02-01 2011-08-04 パナソニック株式会社 ネットワーク装置
US8830989B2 (en) * 2011-12-06 2014-09-09 Cisco Technology, Inc. Automatic configuration of packet network services over dense wavelength division multiplex communication links using optical transport network frames
WO2013145651A1 (ja) * 2012-03-28 2013-10-03 日本電気株式会社 データ伝送システムにおける通信装置およびその省電力化方法
JP2015095839A (ja) * 2013-11-13 2015-05-18 日本電信電話株式会社 光無線通信システム及び光無線通信方法

Also Published As

Publication number Publication date
JP2018137623A (ja) 2018-08-30
US20180241466A1 (en) 2018-08-23
US10270525B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
EP0455442A2 (en) Fault detection in link-connected systems
US7502669B1 (en) Apparatus and method for graphically displaying disk drive enclosures and cabling in a data storage system
CN100474258C (zh) 计算机可读介质、错误恢复方法和装置、计算机系统
JP6780536B2 (ja) 情報処理装置及び障害情報送信要否判定方法
JP2006178720A (ja) ストレージシステム
KR101179782B1 (ko) 원자력 발전소 안전계통의 안전등급 통신 스위치
JP2008299481A (ja) ストレージシステム及び複数拠点間でのデータコピー方法
CN104598341A (zh) 用于确定在互连/控制器之间的故障的位置的方法和系统
US20140068352A1 (en) Information processing apparatus and fault processing method for information processing apparatus
RU2458471C2 (ru) Устройство и способ магистральной передачи данных, содержащие встроенную в устройство функцию подавления тревоги
JP6820473B2 (ja) 影響範囲特定プログラム、影響範囲特定方法、および影響範囲特定装置
US6625745B1 (en) Network component failure identification with minimal testing
JP2016046702A (ja) 通信システム,異常制御装置および異常制御方法
JP5966181B2 (ja) 二重化装置および電源停止方法
JP2016100843A (ja) 中継装置
CN107888405B (zh) 管理设备和信息处理系统
US20210234613A1 (en) Optical transceiver monitoring system
JP5573118B2 (ja) ディスクアレイ装置の故障診断システム、故障診断方法、故障診断プログラムおよびディスク装置
JP2008176477A (ja) 計算機システム
JP2001060160A (ja) 制御装置のcpu二重化システム
JP2010245589A (ja) 通信システム、通信装置、被疑箇所の特定方法及びプログラム
JP5722167B2 (ja) 障害監視判定装置、障害監視判定方法、及びプログラム
JP2009110218A (ja) 仮想化スイッチおよびそれを用いたコンピュータシステム
JP6582523B2 (ja) ストレージ装置、制御装置、制御プログラム
JP2007266708A (ja) ケーブル誤接続検出装置及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6780536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150