JP6763969B2 - 透明電極部材およびその製造方法、ならびに該透明電極部材を用いた静電容量式センサ - Google Patents

透明電極部材およびその製造方法、ならびに該透明電極部材を用いた静電容量式センサ Download PDF

Info

Publication number
JP6763969B2
JP6763969B2 JP2018553836A JP2018553836A JP6763969B2 JP 6763969 B2 JP6763969 B2 JP 6763969B2 JP 2018553836 A JP2018553836 A JP 2018553836A JP 2018553836 A JP2018553836 A JP 2018553836A JP 6763969 B2 JP6763969 B2 JP 6763969B2
Authority
JP
Japan
Prior art keywords
region
transparent electrode
optical adjustment
layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018553836A
Other languages
English (en)
Other versions
JPWO2018101209A1 (ja
Inventor
知行 山井
知行 山井
駒井 栄一
栄一 駒井
勇太 平木
勇太 平木
学 矢沢
学 矢沢
圭太 田代
圭太 田代
高橋 英明
英明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Alps Alpine Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPWO2018101209A1 publication Critical patent/JPWO2018101209A1/ja
Application granted granted Critical
Publication of JP6763969B2 publication Critical patent/JP6763969B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04804Transparency, e.g. transparent or translucent windows
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、透明電極部材に関する。
静電容量式センサは、画面に表示される映像の視認性を低下させることなく操作体が接触した部分の位置を検知するために、透明電極を有する透明電極部材を備えている。一般に、透明電極部材において、透明電極が設けられたパターン部と透明電極が設けられていない非パターン部(パターン開口部)とが存在する場合には、パターン部と非パターン部とが視覚的に区分される。そして、パターン部の反射率と非パターン部の反射率との間の差が大きくなると、パターン部と非パターン部との違いが視覚的に明らかになる。そうすると、映像を表示する表示素子としての外観の視認性が低下するという問題がある。
特許文献1には、透明基板上に各々予め決まったパターンで積層される第1透明電極層および第2透明電極層と、第1透明電極層と前記第2透明電極層との間に介在された絶縁層と、第1透明電極層と第2透明電極層を電気的に連結するコンタクトホールと、を備えた透明電極積層体が開示されている。特許文献1に記載された透明電極積層体は、透明電極積層体を基準として、透明基板の反対側面にパッシベーション層をさらに備えている。
特許文献2には、基体シートと、前記基体シート上に形成され、導電性ナノファイバーを含み、その導電性ナノファイバーを介して導通可能であり、目視により認識することができない大きさの複数の微小ピンホールを有する導電パターン層と、前記基体シート上の前記導電パターン層が形成されていない部分に形成され、前記導電性ナノファイバーを含み、前記導電パターン層から絶縁された絶縁パターン層とを備えた、導電性ナノファイバーシートが開示されている。特許文献2に記載された導電性ナノファイバーシートにおける前記絶縁パターン層は、目視により認識することができない幅の狭小溝を有し、その狭小溝により、前記導電パターン層から絶縁されると共に複数の島状に形成される。
特表2016−514873号公報 特表2010−157400号公報
しかしながら、特許文献1に記載された透明電極積層体は、位置によって異なる複数の積層構造を有している。例えば、第1透明電極層の上に、第2透明電極層が設けられていたり、絶縁層を介して第2透明電極層が設けられていたりする。そのため、透明基板上には、段差が存在する。段差が透明基板上に存在する場合において、パッシベーション層が段差の部分に設けられると、パッシベーション層の効果はあまり得られない。そのため、パッシベーション層は、透明基板の面であって、第1透明電極層および第2透明電極層が設けられた面とは反対側の面に設けられる必要がある。そのため、第1透明電極層および第2透明電極層のパターン部に対する不可視性の効果は、限定的であるという問題がある。
また、第1透明電極層および第2透明電極層のパターン部の不可視化を図るための一つの手段として、非パターン部の幅や大きさを小さく抑えることが考えられる。しかし、第1パターンと第2パターンとが互いに隣り合う第1透明電極層では、第1パターンおよび第2パターンを作製したり、第1パターンと第2パターンとの間の絶縁性を確保したりする点において限界がある。
本発明は、上記従来の課題を解決するためのものであり、透明電極のパターンの不可視性を向上させることができる透明電極部材およびかかる透明電極部材を備える静電容量式センサを提供することを目的とする。
本発明の透明電極部材は、一態様において、透光性を有する基材と、前記基材の一つの面である第1面に配置され、透光性を有する透明電極と、前記第1面の法線方向からみたときに、前記透明電極が配置された領域の周囲の少なくとも一部に位置する絶縁領域に配置された絶縁層と、を備える透明電極部材であって、前記透明電極は、絶縁材料からなるマトリックスと、前記マトリックス内に分散した導電性ナノワイヤと、を含む分散層を備え、前記透明電極は、前記第1面の法線方向からみたときに、導電部からなる導電領域と光学調整部を有する光学調整領域とを有し、前記導電部は、前記光学調整部よりも導電性が高く、前記光学調整部は、前記分散層における前記導電性ナノワイヤの分散密度が前記導電部よりも低いことを特徴とする透明電極部材である。
かかる透明電極部材では、透明電極が備える分散層において、導電性ナノワイヤがマトリックス内で分散しつつ互いに連結することによって、他の透明導電材料、特に酸化物系の導電性材料に比べて、高い導電性を達成することが実現される。その一方で、導電性ナノワイヤ自体は透光性を有していないため、分散層における導電性ナノワイヤの分散密度が高いことによって、透明電極の反射率が高くなる傾向がある。すなわち、分散層を備える透明電極では、導電性ナノワイヤの分散密度が導電性および反射率の双方に対して影響を及ぼすため、導電性を高めることと反射率を低下させることとがトレードオフの関係にある。そこで、透明電極を、相対的に導電性が高い導電領域と、相対的に反射率が低い光学調整領域と、を有する構成とすることにより、透明電極の導電性を維持しつつ反射率を低減して、透明電極の不可視性を高めることが実現される。
上記の透明電極部材において、前記絶縁領域の反射率は、前記導電領域の反射率よりも低いことが好ましい。この場合には、光学調整部を有することにより、全体的な反射率が低下した透明電極と絶縁領域とにおける反射率の差が、光学調整部を有しない場合よりも低くなる。したがって、透明電極と絶縁領域との境界が視認されにくくなって、透明電極の不可視性を高めることが実現される。
さらに、前記絶縁層が前記マトリックスを含有する場合には、光学調整部の反射率以外の光学特性(例えば屈折率)と絶縁層の光学特性とが近似するため、例えば、透明電極部材100を透過して視認される画像がある場合において、その画像の表示均一性が高まりやすい。したがって、透明電極の不可視性をより安定的に向上させることができる。
上記の透明電極部材において、前記光学調整領域は、前記導電領域内に位置していてもよい。かかる構成の場合には、光学調整領域が絶縁領域に直接的に接する部分を有しないため、導電領域によって透明電極に導電路を適切に形成することが可能となり、透明電極としての導電性が低下することを抑制することができる。
上記の透明電極部材において、前記光学調整領域の面積割合(以下、「調整率」ともいう。)は40%以下であることが好ましい場合がある。前述のように、酸化物系材料からなる透明電極の導電性に比べて、導電性ナノワイヤを含有する分散層を備える透明電極は、その導電性を高めることが容易である。したがって、光学調整部では、反射率を低下させることとのトレードオフとして導電性が相対的に低下する傾向があるが、調整率を40%程度まで高めて、透明電極の不可視性を向上させても、透明電極として求められる導電性を確保することができる。
上記の透明電極部材において、前記光学調整領域は、前記導電領域内に離散的に位置する複数の部分領域を有していることが好ましい。相対的に透光性が異なる光学調整領域と導電領域とが互いに大きなパターンを形成している場合には、そのパターン形状によっては、パターンの視認性が高くなってしまうことが懸念される。また、光学調整部は相対的に導電性が低い領域であるから、これが透明電極内でまとまって位置する場合には、透明電極内を蛇行する導電路が形成されてしまい、透明電極としての導電性が低下してしまうおそれもある。したがって、上記のように、相対的に導電性の低い光学調整領域を導電領域内に離散的に配置することによって、透明電極内に視認されやすいパターンが形成されたり、実質的に導電性を低下したりすることが抑制される。また、後述するように、透明電極が絶縁領域を介して複数配置されている場合には、複数の透明電極の間に位置する絶縁領域の反射率が透明電極の導電部の反射率と相違することに起因して、絶縁領域の視認性が高まってしまうこともある。このような場合であっても、透明電極の導電領域内に相対的に反射率が低い光学調整領域が離散的に配置されていることにより、絶縁領域に少なくとも一部が囲まれた状態にある透明電極の不可視性を向上させることができる。
上記の透明電極部材において、前記複数の部分領域は、互いに30μm以上離間していることが好ましい場合がある。この離間距離は、すなわち、離散配置される光学調整領域の間に位置する導電領域の幅であるから、透明電極における個々の導電路の幅となる。この離間距離が30μm以上であることにより、透明電極としての導電性が低下することが安定的に抑制される。
上記のように光学調整部を有する部分領域が離散的に配置されている場合において、複数の部分領域のそれぞれの形状は円であり、前記円の直径は、10μm以上、100μm以下であってもよい。透明電極の不可視性をより安定的に向上させる観点から、上記の複数の部分領域の形状は、透明電極内で均一であることが好ましい。この部分領域の形状が円であって、その直径が上記の範囲である場合には、調整率を40%以下としつつ、複数の部分領域の離間距離を30μm以上とすることを容易に実現することができる。
前記複数の部分領域のそれぞれの形状を、円に代えて、四角形としてもよい。この場合には、前記四角形の対角線のうちで最長の対角線の長さは、10μm以上、100μm以下であることが、上記の理由と同様の理由により、好ましい。
なお、前記複数の部分領域が前記透明電極の全体にわたって配置される場合には、透明電極内に反射率が異なる領域が位置することに基づく大きなパターンが形成されにくい。したがって、透明電極全体として反射率にばらつきが生じにくいため、透明電極の不可視性が向上しやすく、好ましい。
上記の透明電極部材において、前記透明電極は前記第1面に複数配置され、透光性を有する導電性材料からなる透明配線をさらに有し、前記透明配線は、前記透明電極の複数を電気的に接続していてもよい。この場合には、複数の透明電極における透明配線にて接続されている部分以外は、絶縁領域によって囲われている。すなわち、透明電極部材の第1面上には、透明電極からなる領域、絶縁領域および透明配線からなる領域が存在することになる。このような場合であっても、透明電極の透光性が適切に高められているため、これらの領域に基づくパターンが視認されにくい。
上記の透明電極部材において、前記透明電極は、前記第1面の面内方向の一つである第1方向に沿って並んで配置され、互いに電気的に接続された複数の第1透明電極と、前記第1面の面内方向の別の一つである第2方向に沿って並んで配置され、互いに電気的に接続された複数の第2透明電極と、を有し、前記透明配線は、前記複数の第1透明電極を電気的に接続する第1透明配線と、前記複数の第2透明電極を電気的に接続する第2透明配線と、を有し、前記第1透明配線と前記第2透明配線とは、前記第1面の法線方向に絶縁物を介して重なる部分を有していてもよい。かかる構成を備える場合には、透明電極部材の第1面上には、透明電極からなる領域、絶縁領域および透明配線を含む領域が存在し、透明配線を含む領域には、第1透明配線を含む領域、第2透明配線を含む領域、および2つの透明配線が積層されている領域が存在することになる。このような場合であっても、透明電極の不可視性が適切に高められているため、第1面にパターンが視認されにくい。特に、透明電極が、前述のように、導電領域内に光学調整領域が複数の部分領域として存在している場合には、透明電極からなる領域と透明配線を含む領域と視覚上の識別性がより安定的に低下し、好ましい。
上記の透明電極部材において、前記絶縁層に囲まれ(したがって、前記第1透明電極および前記第2透明電極のいずれとも電気的に非接続である。)透光性を有するダミー領域が、前記第1透明電極と前記第2透明電極との間に設けられていてもよい。この場合には、前記ダミー領域により前記第1透明電極と前記第2透明電極とが離間する離間方向の前記ダミー領域の長さは70μm以上であって、前記ダミー領域は、前記透明電極の前記導電領域と構造が共通するダミー導電領域と、前記透明電極の前記光学調整領域と構造が共通するダミー光学調整領域とを有し、前記絶縁層から最近位に位置する前記ダミー光学調整領域の前記絶縁層からの距離である最小離間距離Dfは、
Df>0
を満たすことが、ダミー領域の不可視性を高める観点から好ましい。最小離間距離Df>0は、絶縁層とダミー光学調整領域とが直接的に接した状態でなく、絶縁層とダミー光学調整領域とが連続した部分を有しないことを意味する。
上記のDf>0を満たす場合において、前記透明電極の前記光学調整領域は、前記透明電極の前記導電領域内に離散的に位置する複数の部分領域を有し、前記複数の部分領域において最近位に位置する2つの領域の離間距離である最近位離間距離D0と、前記最小離間距離Dfとは、
0.5≦Df/D0≦2.5
を満たすことが、ダミー領域の不可視性をより安定的に高める観点から好ましい。
上記のDf>0を満たす場合において、前記透明電極の前記光学調整領域の面積割合AA0と、前記ダミー領域の前記光学調整領域の面積割合AAfとは、
AAf/AA0<1
を満たすことが、ダミー領域の不可視性をより安定的に高める観点から好ましく、
0.3≦AAf/AA0≦0.95
を満たすことが上記観点からより好ましい。
上記のようにダミー領域が設けられている場合において、前記ダミー領域により前記第1透明電極と前記第2透明電極とが離間する離間方向の前記ダミー領域の長さは100μm以下であるときには、前記ダミー領域は、前記透明電極の前記導電領域と構造が共通するダミー導電領域からなることが、ダミー領域の不可視性を高める観点から好ましいことがある。
前記透明電極は、前記透明配線の周囲に位置する領域に、前記光学調整部が設けられていない無調整領域を有することが好ましい場合がある。透明配線が配置されている領域の周囲の領域には、比較的密に絶縁領域が位置しやすい。絶縁領域の反射率が導電部に比べて低い場合には、透明配線の周囲の領域に位置する透明電極の一部を光学調整部としてその領域の透明電極の反射率を積極的に低下させなくても、その領域の反射率は他の領域に比べて低下した状態にある。したがって、透明配線の周囲の領域に無調整領域を有していてもよい。前述のように光学調整部は相対的に導電性が低下するところ、透明配線の周囲の領域は、使用時に電流が高まる傾向がある。このため、無調整領域を設けることによって、電流集中による導電性ナノワイヤの溶断などの不具合が生じる可能性を低減させることができる。
上記の透明電極部材において、前記光学調整部の前記分散層では、絶縁性を示す程度に、前記導電性ナノワイヤの分散密度が低減されていてもよい。かかる構成(以下、「第1構成」ともいう。)の場合には、光学調整部の分散層から導電性ナノワイヤが実質的に除去された状態にあるため、光学調整部の反射率が特に低くなる。したがって、調整率を高めることなく透明電極全体の不可視性を高めることができる。なお、この場合において、絶縁領域に配置される絶縁層が、光学調整部のマトリックスを含有する場合には、絶縁層と光学調整部とは実質的に等しい材料から構成される。このため、透明電極部材は、導電領域の周囲に位置する反射率が低い領域に配置された部材が共通の材料からなる構成となる。かかる構成を備える場合には、透明電極の不可視性が特に向上することもある。
上記の透明電極部材において、前記光学調整部は、前記絶縁層よりも高い導電性を有してもよい。かかる構成(以下、「第2構成」ともいう。)の場合には、透明電極全体の導電性を高くすることができる。また、この場合には光学調整部の分散層における導電性ナノワイヤの分散密度と導電部の分散層における導電性ナノワイヤの分散密度との差が比較的少なくなるため、透明電極において光学調整部と導電部とによって形成されるパターンが視認されにくくなる。
本発明は、他の一態様として、上記の第1構成の透明電極部材の製造方法を提供する。かかる製造方法は、前記マトリックスに銀ナノワイヤが分散された層が前記分散層として前記第1面に積層された第1積層体を用意する工程と、前記第1積層体の前記分散層の一部をレジスト層で覆う工程と、前記分散層における前記レジスト層により覆われていない第1領域をヨウ素液で処理して、前記第1領域に存在する前記銀ナノワイヤの少なくとも一部をヨウ化して銀ヨウ化物とし、前記第1領域に位置する前記分散層を絶縁性とする工程と、前記第1領域をチオ硫酸塩溶液で処理して、前記銀ヨウ化物の少なくとも一部を前記第1領域から除去する工程と、前記レジスト層を除去して、絶縁性の前記光学調整部および前記絶縁層を前記第1領域に備え、前記レジスト層により覆われていた領域に前記導電部を備える部材を得る工程と、を備える。
かかる製造方法を採用することにより、一回のレジストワークで絶縁層と光学調整部とを製造することができる。したがって、透明電極部材を効率的に製造することが可能である。また、絶縁層と光学調整部との光学特性が等しくなるため、透明電極と絶縁領域とによって形成されるパターンが視認されにくくなり、より不可視性が高い透明電極部材が得られる場合がある。
本発明は、別の一態様として、上記の第2構成の透明電極部材の製造方法を提供する。かかる製造方法は、前記マトリックスに銀ナノワイヤが分散された層が前記分散層として前記第1面に積層された第1積層体を用意する工程と、前記第1積層体の前記分散層の一部を第1レジスト層で覆う工程と、前記分散層における前記第1レジスト層により覆われていない第1領域をヨウ素液で処理して、前記第1領域に存在する前記銀ナノワイヤの少なくとも一部をヨウ化して銀ヨウ化物とし、前記第1領域に位置する前記分散層を前記絶縁層とする工程と、前記第1領域をチオ硫酸塩溶液で処理して、前記銀ヨウ化物の少なくとも一部を前記第1領域から除去する工程と、前記第1レジスト層を除去して、前記第1領域に前記絶縁層を備える中間部材を得る工程と、前記中間部材の前記分散層における前記第1レジスト層により覆われていた領域の一部である第2領域を第2レジスト層で覆う工程と、前記第1レジスト層により覆われていた領域であるが前記第2レジスト層により覆われていない領域である第3領域をヨウ素液で処理して、前記第3領域に存在する前記銀ナノワイヤの少なくとも一部をヨウ化して銀ヨウ化物とし、前記第3領域の導電性を前記第2領域の導電性よりも低下させる工程と、前記第3領域をチオ硫酸塩溶液で処理して、前記銀ヨウ化物の少なくとも一部を前記第3領域から除去する工程と、前記第2レジスト層を除去して、前記第1領域に前記絶縁層を備え、前記第2領域に前記導電部を備え、前記絶縁層よりも高く前記導電部よりも低い導電性を有する前記光学調整部を前記第3領域に備える部材を得る工程と、を備える。
かかる製造方法を採用することにより、ある程度の導電性を有する光学調整部を製造することができる。したがって、導電性が高い透明電極を備える透明電極部材を製造することが可能である。また、上記の製造方法を適切に実施すれば、分散層の視認性に最も影響を与える位置に存在する銀ナノワイヤを優先的に除去することが可能である。したがって、反射率が低く導電性が高い光学調整部を形成することも可能である。このような光学調整部を形成した場合には、導電性がより高く、かつ不可視性がより高い透明電極部材が得られることがある。
本発明は、また別の一態様として、上記の透明電極部材と、操作者の指等の操作体と前記透明電極との間に生じる静電容量の変化を検知する検知部と、を備える静電容量式センサを提供する。かかる静電容量式センサでは、透明電極の不可視性が高いため、静電容量式センサを透過して使用者に観察される画像の視認性を高めることが可能であり、表示均一性を高めることも可能である。
本発明によれば、透明電極のパターンの不可視性を向上させることができる透明電極部材を提供することが可能になる。また、本発明によれば、かかる透明電極部材を備える静電容量式センサも提供される。
本発明の一実施形態に係る透明電極部材の構造を概念的に示す平面図である。 図1のV1−V1断面図である。 本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の一例を概念的に示す部分断面図である。 本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の他の一例を概念的に示す部分断面図である。 複数の透明電極を有する透明電極部材の一例の構成を概念的に示す平面図である。 複数の透明電極を有する透明電極部材の他の一例の構成を概念的に示す平面図である。 第1構成の透明電極部材の製造方法のフローチャートである。 第1積層体を用意した状態を概念的に示す断面図である。 レジスト層を第1積層体の上に配置した状態を概念的に示す断面図である。 ヨウ素液による処理が行われた状態を概念的に示す断面図である。 チオ硫酸塩溶液による処理が行われた状態を概念的に示す断面図である。 レジスト層を除去した状態を概念的に示す断面図である。 第2構成の透明電極部材の製造方法のフローチャートである。 第1積層体を用意した状態を概念的に示す断面図である。 第1レジスト層を第1積層体の上に配置した状態を概念的に示す断面図である。 ヨウ素液による処理が行われた状態を概念的に示す断面図である。 チオ硫酸塩溶液による処理が行われた状態を概念的に示す断面図である。 第1レジスト層を除去した状態を概念的に示す断面図である。 第2レジスト層を第1積層体の上に配置した状態を概念的に示す断面図である。 ヨウ素液による処理が行われた状態を概念的に示す断面図である。 チオ硫酸塩溶液による処理が行われた状態を概念的に示す断面図である。 第2レジスト層を除去した状態を概念的に示す断面図である。 本実施形態に係る静電容量式センサを表す平面図である。 図1に表した領域A1を拡大した平面図である。 図2に表した切断面C1−C1における断面図である。 図2に表した切断面C2−C2における断面図である。 本実施形態の第1透明電極および第2透明電極の変形例を表す平面図である。 調整率と配線抵抗との関係の一例を例示するグラフである。 ギャップ幅と調整率との関係の一例を例示するグラフである。 シート抵抗と導通性確保可能ライン幅との関係の一例を例示するグラフである。 本実施形態の間隙(ギャップ)の近傍に光学調整部が設けられたときの視認性を説明する平面図である。 光学調整部の直径を変化させたときの波長と反射率との関係の一例を例示するグラフである。 図10に表したグラフ中の一部を拡大して表したグラフである。 光学調整部の形状を変化させたときの波長と反射率との関係の一例を例示するグラフである。 図12に表したグラフ中の一部を拡大して表したグラフである。 (a)第1構成の透明電極部材の製造方法の変形例においてチオ硫酸塩溶液による処理が行われた状態を示す図、および(b)第1レジスト層を除去して透明電極部材が得られた状態を概念的に示す断面図である。 (a)第2構成の透明電極部材の製造方法の変形例において絶縁層を形成するためのチオ硫酸塩溶液による処理が行われた状態を示す図、および(b)第1レジスト層を除去して中間部材が得られた状態を概念的に示す断面図である。 (a)第2構成の透明電極部材の製造方法の変形例において光学調整部を形成するためのチオ硫酸塩溶液による処理が行われた状態を示す図、および(b)第2レジスト層を除去して透明電極部材が得られた状態を概念的に示す断面図である。 本実施形態の静電容量式センサの他の変形例(第2変形例)の検出領域の一部を表す平面図である。 第2変形例におけるダミー領域を含む領域の部分拡大図である。 実施例1に係る検出領域の部分拡大図である。 実施例2に係る検出領域の部分拡大図である。 実施例3に係る検出領域の部分拡大図である。 比較例1に係る検出領域の部分拡大図である。 比較例2に係る検出領域の部分拡大図である。
以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
図1は、本発明の一実施形態に係る透明電極部材の構造を概念的に示す平面図である。図2は、図1のV1−V1断面図である。図3は、本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の一例を概念的に示す部分断面図である。図4は、本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の他の一例を概念的に示す部分断面図である。
図1および図2に示されるように、本発明の一実施形態に係る透明電極部材100は、透光性を有する基材101を備える。本願明細書において「透明」および「透光性」とは、可視光線透過率が50%以上(好ましくは80%以上)の状態を指す。更に、ヘイズ値が6%以下であることが好適である。本願明細書において「遮光」および「遮光性」とは、可視光線透過率が50%未満(好ましくは20%未満)の状態を指す。基材101は、ポリエチレンテレフタレート(PET)等のフィルム状の透明基材やガラス基材等で形成される。
透明電極部材100は、基材101の一つの面である第1面S1に配置された、透光性を有する透明電極110と絶縁層102とを備える。
絶縁層102は、第1面S1の法線方向からみたときに、透明電極110が配置された領域の周囲の少なくとも一部に位置する絶縁領域IRに配置される。
透明電極110は、図3および図4に示されるように、絶縁材料からなるマトリックスMXと、マトリックスMX内に分散した導電性ナノワイヤNWと、を含む分散層DLを備える。マトリックスMXを構成する絶縁材料の具体例として、ポリエステル樹脂、アクリル樹脂、およびポリウレタン樹脂などが挙げられる。導電性ナノワイヤNWとしては、金ナノワイヤ、銀ナノワイヤ、および銅ナノワイヤよりなる群から選択された少なくとも1つが用いられる。導電性ナノワイヤNWの分散性は、マトリックスMXにより確保されている。複数の導電性ナノワイヤNWが少なくとも一部において互いに接触することにより、透明電極110の面内における導電性が保たれている。
透明電極110は、図1および図2に示されるように、第1面S1の法線方向からみたときに、導電部111からなる領域(導電領域)CRと光学調整部112を有する領域(光学調整領域)ARとを有する。導電部111は、光学調整部112よりも導電性が高く、光学調整部112は、分散層DLにおける導電性ナノワイヤNWの分散密度が導電部111よりも低い。
かかる構造では、透明電極110が備える分散層DLにおいて、導電性ナノワイヤNWがマトリックスMX内で分散しつつ互いに連結することによって、他の透明導電材料、特に酸化物系の導電性材料に比べて、高い導電性を達成することができる。その一方で、導電性ナノワイヤNW自体は透光性を有していないため、分散層DLにおける導電性ナノワイヤNWの分散密度が高いことによって、透明電極110の反射率が高くなる傾向がある。すなわち、分散層DLを備える透明電極110では、導電性ナノワイヤNWの分散密度が導電性および反射率の双方に対して影響を及ぼすため、導電性を高めることと反射率を低下させることがトレードオフの関係にある。そこで、透明電極110を、相対的に導電性が高い導電領域CRと、相対的に反射率が低い光学調整領域ARと、を有する構成とすることにより、透明電極110の導電性を維持しつつ反射率を低減して、透明電極110の不可視性を高めることが実現される。
また、特許文献1や特許文献2に記載されるような、透明電極に貫通孔を有する場合に比べると、反射率以外の光学特性(例えば屈折率)を大きく相違させることなく、光学調整領域ARの反射率を導電領域CRの反射率よりも低くすることができる。したがって、例えば、透明電極部材100を透過して視認される画像がある場合において、その画像の表示均一性を高めることができる。さらに、光学調整領域ARの構成を適切に制御すれば、透明電極110に設けられた貫通孔に比べて光学調整領域ARの導電性を高めることも可能である。この場合には、透明電極110全体としての導電性を高めることが可能であり、透明電極110における光学調整領域ARの面積割合を高めることも可能である。したがって、光学調整領域ARを設けることにより、透明電極110の導電性を高めることと不可視性を高めることとが、貫通孔を設けた場合に比べて、高次に実現されうる。
ここで、絶縁領域IRの反射率は、導電領域CRの反射率よりも低いことが好ましい。この場合には、光学調整領域ARを有することにより、全体的な反射率が低下した透明電極110と絶縁領域IRとにおける反射率の差が、光学調整部112を有しない場合よりも低くなる。したがって、透明電極110と絶縁領域IRとの境界が視認されにくくなって、透明電極110の不可視性を高めることが実現される。
さらに、絶縁領域IRに配置される絶縁層102が分散層DLの構成要素の一つであるマトリックスMXを含有することが好ましい。この場合には、マトリックスMXを共通に含有することに起因して、光学調整部112の反射率以外の光学特性(例えば屈折率)と絶縁層102の光学特性とが近似する。このため、例えば、透明電極部材100を透過して視認される画像がある場合において、その画像の表示均一性が高まりやすくなり、透明電極110の不可視性をより安定的に向上させることができる。
透明電極部材100において、光学調整部112の分散層DLでは、絶縁性を示す程度に、導電性ナノワイヤNWの分散密度が低減されていてもよい。図3はかかる構成(第1構成)の具体例であり、光学調整部112の分散層DLには導電性ナノワイヤNWが実質的に存在せず、分散層DLはマトリックスMXから構成される。この場合には、反射率を高める部材である導電性ナノワイヤNWが実質的に存在しないため、光学調整部112の反射率が特に低くなる。ここで、図3に示されるように、透明電極部材100の絶縁領域IRに配置される絶縁層102は、光学調整部112の分散層DLと同様に、マトリックスMXから構成されている。この場合には、透明電極部材100は、導電領域CRの周囲に位置する反射率が低い領域(絶縁領域IRおよび光学調整領域AR)に配置された部材が共通の材料(マトリックスMX)からなる構成となる。かかる構成を備える場合には、透明電極110全体の反射率が特に低くなって、透明電極110の不可視性がより安定的に向上する。
なお、図3では、絶縁層102および光学調整部112はいずれも、導電性ナノワイヤNWが実質的に存在せず、マトリックスMXから構成される場合が示されているが、これに限定されない。絶縁層102および光学調整部112のいずれについても、この部分の導電性が適切に低下して非導電性となって、絶縁機能を発揮することができれば、導電性ナノワイヤNWまたはこれに基づく物質がマトリックスMXに依然として分散していてもよい。
透明電極部材100において、光学調整部112は、絶縁層102よりも高い導電性を有してもよい。図4はかかる構成(第2構成)の具体例であり、光学調整部112の分散層DLは、基材101に対して遠位な側(使用者に対向する側)では導電性ナノワイヤNWが分散密度が低く、基材101に近位な側(基材101に対向する側)では導電性ナノワイヤNWが分散密度が高くなっている。分散層DLに分散する導電性ナノワイヤNWのうち、露出する導電性ナノワイヤNWが最も視認されやすいところ、光学調整部112の分散層DLが図4に示される構造を有している場合には、光学調整部112の視認性を適切に低下させることができる。しかも、基材101に近位な側に位置する導電性ナノワイヤNWによって、導電部111の分散層DLよりは低いものの、ある程度の導電性を確保することができる。したがって、光学調整部112の分散層DLが図4に示される構造を有している場合には、透明電極110全体の導電性を高くすることができる。また、この場合には光学調整部112の分散層DLにおける導電性ナノワイヤNWの分散密度と導電部111の分散層DLにおける導電性ナノワイヤNWの分散密度との差が比較的少なくなるため、透明電極110において光学調整部112と導電部111とによって形成されるパターンが視認されにくくなる。
なお、図4では、光学調整部112は、第1面S1の法線方向に沿って、導電性ナノワイヤNWの分散密度が変化している場合が示されているが、これに限定されない。絶縁層102および光学調整部112のいずれについても、この部分の導電性が適切に低下して非導電性となって、絶縁機能を発揮することができれば、導電性ナノワイヤNWまたはこれに基づく物質がマトリックスMXに依然として分散していてもよい。
図1に示されるように、透明電極部材100において、光学調整領域ARは、導電領域CR内に位置する。かかる構成の場合には、光学調整領域ARが絶縁領域IRに直接的に接する部分を有しない。このため、導電領域CRによって透明電極110に導電路を適切に形成することが可能となり、透明電極110としての導電性が低下することが抑制される。光学調整領域ARが絶縁領域IRに直接的に接する部分を有すると、透明電極110に形成される導電路が蛇行してしまう場合があり、この場合には透明電極110としての導電性が低下してしまう。また、後述するように、光学調整領域ARが絶縁領域IRに接続する部分を有することにより、不可視性が低下してしまう場合がある。
透明電極部材100において、光学調整領域ARの面積割合(調整率)は限定されない。後述するように、調整率は40%以下であることが好ましい場合がある。光学調整部112では反射率を低下させることとのトレードオフとして導電性が相対的に低下する傾向があるが、本発明の一実施形態に係る透明電極部材100では、調整率を40%程度まで高めて、透明電極110の不可視性を向上させても、透明電極110として求められる導電性を確保することができる場合がある。
本発明の一実施形態に係る透明電極110では、光学調整領域ARは、導電領域CR内に離散的に位置する複数の部分領域を有している。相対的に透光性が異なる光学調整領域ARと導電領域CRとが互いに大きなパターンを形成している場合には、そのパターン形状によっては、パターンの視認性が高くなってしまうことが懸念される。また、光学調整部112は相対的に導電性が低い領域であるから、これが透明電極110内でまとまって位置する場合には、透明電極110内を蛇行する導電路が形成されるおそれがあり、この場合には、透明電極110としての導電性が低下してしまう。したがって、上記のように、相対的に導電性の低い光学調整部112からなる部分領域(すなわち光学調整領域AR)を導電領域CR内に離散的に配置することによって、透明電極110内に視認されやすいパターンが形成されたり、実質的に導電性が低下したりすることが抑制される。また、後述するように、透明電極110が絶縁領域IRを介して複数配置されている場合には、複数の透明電極110の間に位置する絶縁領域IRの反射率が透明電極110の導電部111の反射率と相違することに起因して、絶縁領域IRの視認性が高まってしまうこともある。このような場合であっても、透明電極110の導電領域CR内に光学調整領域ARが離散的に配置されていることにより、絶縁領域に少なくとも一部が囲まれた状態にある透明電極110の不可視性を向上させることができる。
光学調整領域ARを構成する部分領域は、互いに30μm以上離間していることが好ましい場合がある。この離間距離sdは、すなわち、離散配置される光学調整部112の間に位置する導電領域CRの幅であるから、透明電極110における個々の導電路の幅となる。したがって、離間距離sdが30μm以上であることにより、透明電極110としての導電性が低下することが安定的に抑制される。
光学調整領域ARが離散的に配置されている場合において、複数の部分領域(光学調整領域AR)のそれぞれの形状は円であり、円の直径は、10μm以上、100μm以下であってもよい。透明電極110の不可視性をより安定的に向上させる観点から、上記の複数の部分領域(光学調整領域AR)の形状は、透明電極110内で均一であることが好ましい。この部分領域(光学調整領域AR)の形状が円であって、その直径が上記の範囲である場合には、調整率を40%以下としつつ、複数の部分領域(光学調整領域AR)の離間距離を30μm以上とすることを容易に実現することができる。
上記の複数の部分領域(光学調整領域AR)のそれぞれの形状を、円に代えて、四角形としてもよい。この場合には、四角形の対角線のうちで最長の対角線の長さは、10μm以上、100μm以下であることが、上記の理由と同様の理由により、好ましい。
図1に示されるように、複数の部分領域(光学調整領域AR)が透明電極110の全体にわたって配置される場合には、透明電極110全体として反射率にばらつきが生じにくいため、透明電極110の不可視性が向上しやすく、好ましい。
図5は、複数の透明電極を有する透明電極部材の一例の構成を概念的に示す平面図である。図5に示されるように、本発明の一実施形態に係る透明電極部材200は、複数の透明電極110a〜110dを有する。これらの透明電極110a〜110dの周囲の少なくとも一部の領域には絶縁領域IRが位置するため、透明電極110aおよび透明電極110bと、透明電極110cと、透明電極110dとは、電気的に独立している。具体的には、透明電極110aおよび透明電極110bと、透明電極110cとの間には、絶縁領域IRが位置し、透明電極110aおよび透明電極110bと、透明電極110dとの間にも、絶縁領域IRが位置する。その一方で、透明電極110aと透明電極110bとの間には、透光性を有する材料から構成された透明配線130が位置して、透明電極110aと透明電極110bとを電気的に接続している。透明電極部材200では、透明配線130は透明電極110aおよび透明電極110bと同様に分散層DLから形成され、導電領域CRおよび光学調整領域ARを有する。透明電極部材200では、第1面S1上には、透明電極110a〜110dからなる領域、絶縁領域IRおよび透明配線130からなる領域が存在することになる。このような場合であっても、透明電極110の透光性が適切に高められているため、これらの領域に基づくパターンが視認されにくい。なお、図5に示されるように透明配線130に光学調整領域ARが設けられていない場合であっても、透明配線130の面積が適切に小さい場合には、視認性に与える影響を低下させることができる。具体的には、透明配線130の短軸方向の長さ(幅)を、これに接続される透明電極(透明電極110aおよび透明電極110b)のその方向の長さよりも狭くしておくことが好ましい。
図6は、複数の透明電極を有する透明電極部材の他の一例の構成を概念的に示す平面図である。図6に示されるように、透明電極部材300の透明電極110a〜110dは、透明配線130の周囲に位置する領域に、光学調整部112が設けられていない無調整領域NRを有する。透明配線130が配置されている領域の周囲の領域には、比較的密に絶縁領域IRが位置しやすい。絶縁領域IRに位置する絶縁層102はマトリックスMXから構成されるため、絶縁層102の反射率は導電部111の反射率に比べて低い。このため、透明配線130の周囲の領域に位置する透明電極110の一部を光学調整部112としてその領域の透明電極110の反射率を積極的に低下させなくても、その領域の反射率は他の領域に比べて低下した状態にある。したがって、透明配線130の周囲の領域に無調整領域NRを有していてもよい。光学調整部112は相対的に導電性が低下するところ、透明配線130の周囲の領域は、使用時に電荷が集中する傾向がある。このため、無調整領域NRを設けることによって、電荷集中による導電性ナノワイヤNWの溶断などの不具合が生じる可能性を低減させることができる。
本発明の一実施形態に係る透明電極部材の製造方法は限定されない。次に説明する製造方法を採用することにより、本発明の一実施形態に係る透明電極部材を効率的に製造することや、高品質の透明電極部材を製造することが可能となる場合がある。
本発明の一実施形態に係る透明電極部材の製造方法の一例は、上記の第1構成の透明電極部材100の製造方法である。
図7は、第1構成の透明電極部材の製造方法のフローチャートである。図8は、第1積層体を用意した状態を概念的に示す断面図である。図9は、レジスト層を第1積層体の上に配置した状態を概念的に示す断面図である。図10は、ヨウ素液による処理が行われた状態を概念的に示す断面図である。図11は、チオ硫酸塩溶液による処理が行われた状態を概念的に示す断面図である。図12は、レジスト層を除去した状態を概念的に示す断面図である。
まず、図8に示されるように、マトリックスMXに導電性ナノワイヤNWの一種である銀ナノワイヤAgNWが分散された層が分散層DLとして基材101の第1面S1に積層された第1積層体150を用意する(S101)。この分散層DLにおける銀ナノワイヤAgNWの分散密度は、全ての領域において、最終的に得られる透明電極部材100の導電部111における銀ナノワイヤAgNWの分散密度に等しい。
次に、第1積層体150の分散層DLの一部をレジスト層160で覆う(S102)。分散層DLの上にポジ型、あるいは、ネガ型のフォトレジスト、または、フィルムレジストを形成する。フォトレジストはスピンコート法、ロールコート法などの各種方法により膜厚が1μm〜5μm前後となるように形成する。フィルムレジストを使用する場合は膜厚が20μm前後のものが使用される。マスクと露光機を使用して、フォトレジストを部分的に露光する。その後の現像工程で露光された導電層をTMAHなどのアルカリ液で現像することで、図9に示されるように部分的なレジスト層160が残る。
続いて、分散層DLにおけるレジスト層160により覆われていない第1領域R1をヨウ素液で処理する(S103)。この処理により、図10に示されるように、第1領域R1に存在する銀ナノワイヤAgNWの少なくとも一部はヨウ化して銀ヨウ化物SIとなり、第1領域R1に位置する分散層DLは絶縁性となる。
この処理に使用されるヨウ素液はヨウ素ヨウ化塩溶液であり、例えばヨウ素ヨウ化カリウム溶液である。ヨウ素ヨウ化カリウム溶液は、ヨウ化カリウム溶液にヨウ素が溶解しているものであり、ヨウ素が0.05〜1.0質量%、ヨウ化カリウムが0.1〜5.0質量%前後含まれた水溶液が使用される。
レジスト層160が形成された第1積層体150が、ヨウ素ヨウ化カリウム溶液に0.5〜10分間程度浸漬されることで、レジスト層160で覆われていない領域で分散層DLの内部に溶液が浸透し、少なくとも一部の銀ナノワイヤAgNWがヨウ化されて銀ヨウ化物SIに形質変換される。
第1領域R1では銀ナノワイヤAgNWがヨウ化されることで、その領域の分散層DLの面積抵抗率が高くなり、実質的に電気的な絶縁機能を発揮しうる状態となる。
ただし、ヨウ素ヨウ化カリウム溶液で処理が行われると、第1領域R1において、分散層DLにおける銀ナノワイヤAgNWがヨウ化されて白濁しまたは白色化した金属化合物(銀ヨウ化物SIを含む。)が生成される。
そこで、第1領域R1をチオ硫酸塩溶液で処理する(S104)。この処理により、図11に示されるように、銀ヨウ化物SIの少なくとも一部が第1領域R1から除去される。チオ硫酸塩溶液としては濃度が1.0〜25質量%のチオ硫酸ナトリウム溶液が使用される。レジスト層160で覆われた第1積層体150をチオ硫酸ナトリウム溶液に10〜60秒間程度浸漬させることで、第1領域R1の分散層DLに含有される銀ヨウ化物SIなどの金属化合物が除去される。その結果、第1領域R1に位置する分散層DLの透光性が高まる。また、分散層DLの表面に露出している銀ヨウ化物SIは、長時間酸素に曝されると銀に戻ってしまうことがある。このように銀ヨウ化物SIが銀に戻ってしまうと、光学調整部112の反射率が導電部111の反射率と同等になってしまい、光学調整部112が位置する光学調整領域ARの光学調整機能が低下してしまう。さらに、上記のように銀ナノワイヤAgNWがヨウ化する際に白濁しまたは白色化すると、得られた銀ヨウ化物SIは銀ナノワイヤAgNWとの対比で目立ちやすい。したがって、上記のような処理を行って、第1領域R1に位置する分散層DLの表面側に位置する銀ヨウ化物SIなどの金属化合物を除去することが好ましい。
最後に、レジスト剥離液を用いてレジスト層160を除去する(S105)。その結果、図12に示されるように、絶縁性の光学調整部112および絶縁層102を第1領域R1に備え、レジスト層160により覆われていた領域に導電部111を備える透明電極部材100が得られる。
かかる製造方法を採用することにより、一回のレジストワークで絶縁層102と光学調整部112とを製造することができる。したがって、透明電極部材100を効率的に製造することが可能である。また、第1構成の透明電極部材100では、絶縁層102と光学調整部112との光学特性が等しくなる。このため、透明電極110と絶縁領域IRとによって形成されるパターンが視認されにくくなる。したがって、上記の製造方法により製造することにより、不可視性が特に高い透明電極部材100が得られる場合がある。
図36(a)は、第1構成の透明電極部材の製造方法の変形例においてチオ硫酸塩溶液による処理が行われた状態を示す図である。図36(b)は、第1レジスト層を除去して透明電極部材が得られた状態を概念的に示す断面図である。ヨウ素液処理(S103)に続くチオ硫酸塩溶液処理(S104)において、図36(a)に示されるように、第1領域R1に位置する分散層DLのうち、基材101から遠位にある、すなわち分散層DLの表面側の銀ヨウ化物SIなどの金属化合物を除去することが好ましい。チオ硫酸塩溶液による処理時間を相対的に短くする(一例として、5〜30秒間)ことなどにより、このような表面側に位置する銀ヨウ化物SIなどの金属化合物の除去が可能である。その後、第1レジスト層160を除去すること(S105)により、図36(b)に示されるように、光学調整部112において、分散層DLの表面側では銀ヨウ化物SIなどの金属化合物が除去されて分散層DLが実質的にマトリックスMXからなり、基材101に近位な側に位置する銀ヨウ化物SIなどの金属化合物が残留する構造が得られる。
このように、分散層DLの表面側(基材101に遠位側)では銀ヨウ化物SIなどの金属化合物を除去しつつ基材101に近位な側には銀ヨウ化物SIなどの金属化合物を残す構造とすることにより、光学調整部112と導電部111とが視覚的により識別されにくくなる。したがって、透明電極部材100不可視性が向上する。絶縁層102についても光学調整部112と同様の製造方法を実施して同様の構造とすれば、製造工程が簡素される観点から好ましく、また、絶縁層102が導電部111から視認されにくくなる(不可視性が向上する)観点からも好ましい。
本発明の一実施形態に係る透明電極部材の製造方法の他の一例は、上記の第2構成の透明電極部材100の製造方法である。
図13は、第2構成の透明電極部材の製造方法のフローチャートである。図14は、第1積層体を用意した状態を概念的に示す断面図である。図15は、第1レジスト層を第1積層体の上に配置した状態を概念的に示す断面図である。図16は、ヨウ素液による処理が行われた状態を概念的に示す断面図である。図17は、チオ硫酸塩溶液による処理が行われた状態を概念的に示す断面図である。図18は、第1レジスト層を除去した状態を概念的に示す断面図である。図19は、第2レジスト層を第1積層体の上に配置した状態を概念的に示す断面図である。図20は、ヨウ素液による処理が行われた状態を概念的に示す断面図である。図21は、チオ硫酸塩溶液による処理が行われた状態を概念的に示す断面図である。図22は、第2レジスト層を除去した状態を概念的に示す断面図である。
まず、図14に示されるように、マトリックスMXに導電性ナノワイヤNWの一種である銀ナノワイヤAgNWが分散された層が分散層DLとして基材101の第1面S1に積層された第1積層体150を用意する(S201)。この分散層DLにおける銀ナノワイヤAgNWの分散密度は、全ての領域において、最終的に得られる透明電極部材100の導電部111における銀ナノワイヤAgNWの分散密度に等しい。
次に、図15に示されるように、第1積層体150の分散層DLの一部を第1レジスト層161で覆う(S202)。第1レジスト層161および後述する第2レジスト層162の詳細はレジスト層160と共通であるから、説明を省略する。
続いて、分散層DLにおける第1レジスト層161により覆われていない第1領域R1をヨウ素液で処理する(S203)。この処理の詳細は、第1構成の透明電極部材100の製造方法の場合と同様であるから、説明を省略する。この処理により、図16に示されるように、第1領域R1に存在する銀ナノワイヤAgNWの少なくとも一部はヨウ化して銀ヨウ化物SIとなり、第1領域R1に位置する分散層DLは絶縁性となる。
さらに、第1領域R1をチオ硫酸塩溶液で処理する(S204)。この処理の詳細は、第1構成の透明電極部材100の製造方法の場合と同様であるから、説明を省略する。この処理により、図17に示されるように、銀ヨウ化物SIの少なくとも一部が第1領域R1から除去される。その結果、第1領域R1に位置する分散層DLの透光性が高まる。
そして、レジスト剥離液を用いて第1レジスト層161を除去する(S205)。その結果、第1領域R1に絶縁層102を備える中間部材151が得られる。
続いて、この中間部材151の出発部材として、透明電極部材100を製造する。まず、図19に示されるように、分散層DLにおける第1レジスト層161により覆われていた領域の一部である第2領域R2を第2レジスト層162で覆う(S206)。
次に、第1レジスト層161により覆われていた領域であるが第2レジスト層162により覆われていない領域である第3領域R3をヨウ素液で処理する(S207)。この際、第1領域R1もヨウ素液で処理されるが、この領域に位置する分散層DLからはすでに銀ナノワイヤAgNWは適切に除去されているため、このヨウ素液による処理は第1領域R1に対して影響を与えない。この処理により、図20に示されるように、第3領域R3に存在する銀ナノワイヤAgNWの少なくとも一部をヨウ化して銀ヨウ化物SIとし、第3領域R3の導電性を第2領域R2の導電性よりも低下させる。
続いて、第3領域R3をチオ硫酸塩溶液で処理する(S208)。この処理により、図21に示されるように、銀ヨウ化物SIの少なくとも一部が第3領域R3から除去される。その結果、第3領域R3に位置する分散層DLの透光性が高まる。
最後に、第2レジスト層162を除去する(S209)。その結果、図22に示されるように、第1領域R1に絶縁層102を備え、第2領域R2に導電部111を備え、絶縁層102よりも高く導電部111よりも低い導電性を有する光学調整部112を第3領域R3に備える透明電極部材100が得られる。
かかる製造方法を採用することにより、ある程度の導電性を有する光学調整部112を製造することができる。したがって、導電性が高い透明電極110を備える透明電極部材100を製造することが可能である。また、上記の製造方法を適切に実施すれば、分散層DLにおいて基材101から遠位な側に位置する銀ナノワイヤAgNWを優先的に除去することができる。分散層DLにおけるこの部分の銀ナノワイヤAgNWは視認性に最も影響を与えるため、反射率が低く導電性が高い光学調整部112を形成することも可能である。このような光学調整部112を形成した場合には、導電性がより高く、かつ不可視性がより高い透明電極部材100が得られることがある。
図37および図38に示されるように、透明電極部材100の不可視性をさらに高める観点から、絶縁層102や光学調整部112について、表面側(基材101に遠位な側)は銀ヨウ化物SIなどの金属化合物を除去して実質的にマトリックスMXからなり、その下層側(基材101に近位な側)は銀ヨウ化物SIなどの金属化合物がマトリックスMXに分散する構造とすることが好ましい。図37(a)は、第2構成の透明電極部材の製造方法の変形例において絶縁層を形成するためのチオ硫酸塩溶液による処理が行われた状態を示す図である。図37(b)第1レジスト層を除去して中間部材が得られた状態を概念的に示す断面図である。図38(a)は、第2構成の透明電極部材の製造方法の変形例において光学調整部を形成するためのチオ硫酸塩溶液による処理が行われた状態を示す図である。図38(b)は、第2レジスト層を除去して透明電極部材が得られた状態を概念的に示す断面図である。
絶縁層102を形成するためのヨウ素液処理(S203)の終了後、チオ硫酸塩溶液による処理(S204)の処理時間を短くすることなどによって、図37(a)に示されるように、第1領域R1に位置する銀ヨウ化物SIなどの金属化合物(図16参照)のうち表面側の金属化合物のみを除去する。その後、第1レジスト層161を除去(S205)すれば、図18に代えて、図37(b)に示されるような、表面側にマトリックスMXからなる領域が位置し、その下層側(基材101に近位な側)に銀ヨウ化物SIなどの金属化合物が分散した領域が位置する絶縁層102を有する中間部材151を得ることができる。
この中間部材151に対してステップS206を行い、さらに光学調整部112を形成するためのヨウ素液処理(S207)を行った後、チオ硫酸塩溶液による処理(S208)の処理時間を短くすることなどによって、図38(a)に示されるように、第3領域R3に位置する銀ヨウ化物SIなどの金属化合物(図20参照)のうち表面側の金属化合物のみを除去する。最後に、第2レジスト層162を除去(S209)すれば、図22に代えて、図38(b)に示されるような、表面側にマトリックスMXからなる領域が位置し、その下層側(基材101に近位な側)に銀ヨウ化物SIなどの金属化合物が分散した領域が位置し、さらにその下層側に銀ナノワイヤAgNWが分散した領域が位置する光学調整部112を得ることができる。透明電極部材100をこのような構造とすることにより、絶縁層102および光学調整部112と導電部111とが視覚的に特に識別しにくくなる。したがって、透明電極部材100の不可視性がさらに向上する。
上記の本発明の一実施形態に係る透明電極部材100は、静電容量式センサなどのポジションセンサの構成要素として好適に用いることができる。以下、透明電極部材100を備える静電容量式センサについて説明する。
図23は、本実施形態に係る静電容量式センサを表す平面図である。図24は、図23に表した領域A1を拡大した平面図である。図25は、図24に表した切断面C1−C1における断面図である。図26は、図24に表した切断面C2−C2における断面図である。なお、透明電極は透明なので本来は視認できないが、図23および図24では理解を容易にするため透明電極の外形を示している。
図23から図26に表したように、本実施形態に係る静電容量式センサ1は、基材2と、第1透明電極4と、第2透明電極5と、ブリッジ配線部10と、パネル3と、検知部および制御部(いずれも図示していない)と、を備える。ブリッジ配線部10からみて基材2と反対側にパネル3が設けられている。基材2とパネル3との間には、光学透明粘着層(OCA;Optical Clear Adhesive)30が設けられている。基材2とブリッジ配線部10との間には、絶縁部20が設けられている。図25に表したように、ブリッジ配線部10が設けられた部分においては、光学透明粘着層30は、ブリッジ配線部10とパネル3との間に設けられている。
基材2は、透光性を有し、ポリエチレンテレフタレート(PET)等のフィルム状の透明基材やガラス基材等で形成される。基材2の一方の主面2aには、第1透明電極4および第2透明電極5が設けられている。この詳細については、後述する。図25に表したように、パネル3は、ブリッジ配線部10からみて基材2とは反対側に設けられ、透光性を有する。このパネル3側から操作者の指などの操作体が接触または近接されて透明電極部材への操作が行われる。パネル3の材料は、特には限定されないが、パネル3の材料としては、ガラス基材やプラスチック基材が好ましく適用される。パネル3は、基材2とパネル3との間に設けられた光学透明粘着層30を介して基材2と接合されている。光学透明粘着層30は、アクリル系粘着剤や両面粘着テープ等からなる。
図23に表したように、静電容量式センサ1は、パネル3側の面の法線に沿った方向(Z1−Z2方向:図25および図26参照)からみて、検出領域11と非検出領域25とからなる。検出領域11は、指などの操作体により操作を行うことができる領域であり、非検出領域25は、検出領域11の外周側に位置する額縁状の領域である。非検出領域25は、図示しない加飾層によって遮光され、静電容量式センサ1におけるパネル3側の面から基材2側の面への光(外光が例示される。)および基材2側の面からパネル3側の面への光(静電容量式センサ1と組み合わせて使用される表示装置のバックライトからの光が例示される。)は、非検出領域25を透過しにくくなっている。
図23に表したように、基材2の一方の主面2aには、第1電極連結体8と、第2電極連結体12と、が設けられている。第1電極連結体8は、検出領域11に配置され、複数の第1透明電極4を有する。図25および図26に示すように、複数の第1透明電極4は、基材2におけるZ1−Z2方向に沿った方向を法線とする主面のうちZ1側に位置する主面(以下、「おもて面」と略記する場合がある。)2aに設けられている。各第1透明電極4は、細長い連結部7を介してY1−Y2方向(第1の方向)に連結されている。そして、Y1−Y2方向に連結された複数の第1透明電極4を有する第1電極連結体8が、X1−X2方向に間隔を空けて配列されている。連結部7は、第1透明電極4に一体として形成されている。連結部7は、隣り合う2つの第1透明電極4を互いに電気的に接続している。第1電極連結体8および第2電極連結体12の周囲には絶縁領域IRが設けられている。
第1透明電極4および連結部7は、透光性を有し、導電性ナノワイヤを含む材料により形成される。導電性ナノワイヤを含む材料を用いることで、第1透明電極4の高い透光性とともに低電気抵抗化を図ることができる。また、導電性ナノワイヤを含む材料を用いることで、静電容量式センサ1の変形性能を向上させることができる。
図24および図26に表したように、第1透明電極4は複数の第1光学調整領域41を有する。複数の第1光学調整領域41は、互いに離れて配設され、第1透明電極4の全体にわたって設けられている。隣り合う複数の第1光学調整領域41同士の間の距離(第1距離)D1は、一定であり、30μm以上である。つまり、複数の第1光学調整領域41は、第1透明電極4の全体にわたって均一に設けられている。図24に表した例では、第1光学調整領域41の形状は、円である。第1光学調整領域41の円の直径D11は、10μm以上、100μm以下である。第1光学調整領域41に関する寸法の詳細については、後述する。
第2電極連結体12は、検出領域11に配置され、複数の第2透明電極5を有する。図25および図26に示すように、複数の第2透明電極5は、基材2のおもて面2aに設けられている。このように、第2透明電極5は、第1透明電極4と同じ面(基材2のおもて面2a)に設けられている。各第2透明電極5は、細長いブリッジ配線部10を介してX1−X2方向(第2の方向)に連結されている。そして、図23に示すように、X1−X2方向に連結された複数の第2透明電極5を有する第2電極連結体12が、Y1−Y2方向に間隔を空けて配列されている。ブリッジ配線部10は、第2透明電極5とは別体として形成されている。なお、X1−X2方向は、Y1−Y2方向と交差している。例えば、X1−X2方向は、Y1−Y2方向と垂直に交わっている。
第2透明電極5は、透光性を有し、導電性ナノワイヤを含む材料により形成される。導電性ナノワイヤは、第1透明電極4の材料に関して前述した通りである。
図24および図25に表したように、第2透明電極5は複数の第2光学調整領域51を有する。複数の第2光学調整領域51は、互いに離れて配設され、第2透明電極5の全体にわたって設けられている。隣り合う複数の第2光学調整領域51同士の間の距離(第2距離)D2は、一定であり、30μm以上である。つまり、複数の第2光学調整領域51は、第2透明電極5の全体にわたって均一に設けられている。図24に表した例では、第2光学調整領域51の形状は、円である。第2光学調整領域51の円の直径D12は、10μm以上、100μm以下である。第2光学調整領域51に関する寸法の詳細については、第1光学調整領域41に関する寸法とともに後述する。
ブリッジ配線部10は、透光性および導電性を有する酸化物系材料を含む材料により形成される。透光性および導電性を有する酸化物系材料としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、GZO(Gallium-doped Zinc Oxide)、AZO(Aluminum-doped Zinc Oxide)およびFTO(Fluorine-doped Tin Oxide)よりなる群から選択された少なくとも1つが用いられる。
あるいは、ブリッジ配線部10は、ITO等の酸化物系材料を含む第1層と、第1層よりも低抵抗で透明な金属からなる第2層と、を有していてもよい。また、ブリッジ配線部10は、ITO等の酸化物系材料を含む第3層をさらに有していてもよい。ブリッジ配線部10が第1層と第2層との積層構造、あるいは第1層と第2層と第3層との積層構造を有する場合には、ブリッジ配線部10と、第1透明電極4および第2透明電極5と、の間においてエッチング選択性を有することが望ましい。
図24から図26に示すように、各第1透明電極4間を連結する連結部7の表面には、絶縁部20が設けられている。図25に示すように、絶縁部20は、連結部7と第2透明電極5との間の空間を埋め、第2透明電極5の表面にも多少乗り上げている。絶縁部20としては、例えばノボラック樹脂(レジスト)が用いられる。
図25および図26に示すように、ブリッジ配線部10は、絶縁部20の表面20aから絶縁部20のX1−X2方向の両側に位置する各第2透明電極5の表面にかけて設けられている。ブリッジ配線部10は、隣り合う2つの第2透明電極5を互いに電気的に接続している。
図25および図26に示すように、各第1透明電極4間を接続する連結部7の表面には絶縁部20が設けられており、絶縁部20の表面に各第2透明電極5間を接続するブリッジ配線部10が設けられている。このように、連結部7とブリッジ配線部10との間には絶縁部20が介在し、第1透明電極4と第2透明電極5とは互いに電気的に絶縁された状態となっている。本実施形態では、第1透明電極4と第2透明電極5とが同じ面(基材2のおもて面2a)に設けられているため、静電容量式センサ1の薄型化を実現できる。
図24に表したように、第1透明電極4および第2透明電極5は、基材2のおもて面2aにおいて隣り合った状態で並んで配置されている。第1透明電極4および第2透明電極5は、図5や図6における透明電極110a〜110dに対応する。第1透明電極4と第2透明電極5との間には、絶縁層21が設けられている。絶縁層21は、図5、図6、図23における絶縁領域IRに対応する。これにより、第1透明電極4と第2透明電極5とは、互いに電気的に絶縁された状態となっている。なお、絶縁層21は、例えばノボラック樹脂(レジスト)などに絶縁材料により埋められていてもよい。すなわち、第1透明電極4と第2透明電極5との間の絶縁層21には、絶縁材料が介在していてもよい。前述したように、絶縁層21の一部(第1透明電極4の連結部7と、第2透明電極5と、の間)には、絶縁部20が介在している。すなわち、第1透明電極4および第2透明電極5は、絶縁層21の一部および絶縁部20を介して互いに区分された状態で配置されている。絶縁層21の幅D3は、例えば約10μm以上、20μm以下程度である。絶縁層21の幅D3の詳細については、後述する。
なお、図24から図26に表した連結部7は、第1透明電極4に一体として形成され、Y1−Y2方向に延びている。また、図24から図26に表したブリッジ配線部10は、連結部7を覆う絶縁部20の表面20aに第2透明電極5とは別体として形成され、X1−X2方向に延びている。但し、連結部7およびブリッジ配線部10の配置形態は、これだけには限定されない。例えば、連結部7は、第2透明電極5に一体として形成され、X1−X2方向に延びていてもよい。この場合には、連結部7は、隣り合う2つの第2透明電極5を互いに電気的に接続する。ブリッジ配線部10は、連結部7を覆う絶縁部20の表面20aに第1透明電極4とは別体として形成され、Y1−Y2方向に延びていてもよい。この場合には、ブリッジ配線部10は、隣り合う2つの第1透明電極4を互いに電気的に接続する。本実施形態に係る静電容量式センサ1の説明では、ブリッジ配線部10が、連結部7を覆う絶縁部20の表面20aに第2透明電極5とは別体として形成され、X1−X2方向に延びた場合を例に挙げる。
図23に示すように、非検出領域25には、各第1電極連結体8および各第2電極連結体12から引き出された複数本の配線部6が形成されている。第1電極連結体8および第2電極連結体12のそれぞれは、接続配線16を介して配線部6と電気的に接続されている。各配線部6は、図示しないフレキシブルプリント基板と電気的に接続される外部接続部27に接続されている。すなわち、各配線部6は、第1電極連結体8および第2電極連結体12と、外部接続部27と、を電気的に接続している。外部接続部27は、例えば導電ペースト、Cu、Cu合金、CuNi合金、Ni、Ag、Au等の金属を有する材料を介して、図示しないフレキシブルプリント基板と電気的に接続されている。
そして、このフレキシブルプリント基板と接続されたプリント配線板(図示していない)には、操作体と透明電極(主に第1透明電極4および第2透明電極5)との間に生じる静電容量の変化を検知する検知部(図示していない)と、検知部からの信号に基づいて操作体の位置を算出する制御部が搭載されている。なお、詳細な説明は行わないが、検知部や制御部には、集積回路が用いられている。
各配線部6は、Cu、Cu合金、CuNi合金、Ni、Ag、Au等の金属を有する材料により形成される。接続配線16は、ITO、金属ナノワイヤ等の透明導電性材料で形成され、検出領域11から非検出領域25に延出している。配線部6は、接続配線16の上に非検出領域25内で積層され、接続配線16と電気的に接続されている。また、第1透明電極4や第2透明電極5と同じ金属ナノワイヤ(具体例として銀ナノワイヤが挙げられる。)を有する分散層DLが連続して非検出領域25に延出して接続配線16を構成し、非検出領域25においてこの接続配線16と配線部6を構成する金属層とが積層された積層配線構造を有していてもよい。
配線部6は、基材2のおもて面2aにおける非検出領域25に位置する部分に設けられている。外部接続部27も、配線部6と同様に、基材2のおもて面2aにおける非検出領域25に位置する部分に設けられている。
図23では、理解を容易にするために配線部6や外部接続部27が視認されるように表示しているが、実際には、非検出領域25に位置する部分には、遮光性を有する加飾層(図示せず)が設けられている。このため、静電容量式センサ1をパネル3側の面からみると、配線部6および外部接続部27は加飾層によって隠蔽され、視認されない。加飾層を構成する材料は、遮光性を有する限り任意である。加飾層は絶縁性を有していてもよい。
本実施形態に係る静電容量式センサ1では、図25に示すように例えばパネル3の面3a上に操作体の一例として指を接触させると、指と指に近い第1透明電極4との間、および指と指に近い第2透明電極5との間で静電容量が生じる。静電容量式センサ1は、このときの静電容量の変化を検知部により検知し、この静電容量変化に基づいて、指の接触位置を制御部によって算出することが可能である。つまり、静電容量式センサ1は、指と第1電極連結体8との間の静電容量変化に基づいて指の位置のX座標を検知し、指と第2電極連結体12との間の静電容量変化に基づいて指の位置のY座標を検知する(自己容量検出型)。
あるいは、静電容量式センサ1は、相互容量検出型であってもよい。すなわち、静電容量式センサ1は、第1電極連結体8および第2電極連結体12のいずれか一方の電極の一列に駆動電圧を印加し、第1電極連結体8および第2電極連結体12のいずれか他方の電極と指との間の静電容量の変化を検知してもよい。これにより、静電容量式センサ1は、他方の電極により指の位置のY座標を検知し、一方の電極により指の位置のX座標を検知する。
ここで、導電性ナノワイヤを含む導電領域の反射率と、間隙を含む絶縁部の反射率と、の間の差が大きくなると、導電領域と絶縁部との違いが視覚的に明らかになる。そうすると、第1透明電極および第2透明電極がパターンとして視認されやすくなる。静電容量式センサが反射防止層や反射低減層などを備える場合には、導電領域の反射率と絶縁部の反射率との間の差を抑えることができる一方で、反射防止層や反射低減層を形成する設備の追加が必要になったり、静電容量式センサの製造工程が増加したりする。
これに対して、本実施形態に係る静電容量式センサ1では、第1透明電極4は互いに離れて配設された複数の第1光学調整領域41を有する。また、第2透明電極5は互いに離れて配設された複数の第2光学調整領域51を有する。そのため、第1透明電極4および第2透明電極5のうちには、導電性ナノワイヤを含む導電領域と、複数の第1光学調整領域41および複数の第2光学調整領域51により形成された複数の領域(光学調整領域)と、が存在する。そのため、第1透明電極4および第2透明電極5のうちには、導電領域と光学調整領域との間の複数の境界(内部境界)が存在する。一方で、第1透明電極4と絶縁層21との間の境界(外部境界)、および第2透明電極と絶縁層21との間の境界(外部境界)が存在する。
そのため、静電容量式センサ1の平面視において、内部境界および外部境界の両方が視認された場合であっても、外部境界だけが強調されることが抑えられる。そのため、第1透明電極4および第2透明電極5がパターンとして視認され難くなる。これにより、第1透明電極4および第2透明電極5のパターンの不可視性を向上させることができる。
また、第1光学調整領域41は、第1透明電極4の全体にわたって設けられ、第2光学調整領域51は、第2透明電極5の全体にわたって設けられている。これによれば、第1光学調整領域41および第2光学調整領域51が設けられたことで第1透明電極4および第2透明電極5の電気抵抗が過度に高くなることを抑えることができる。また、第1光学調整領域41および第2光学調整領域51が集中し、第1透明電極4および第2透明電極5がパターンとして視認され易くなることを抑えることができる。
また、隣り合う複数の第1光学調整領域41同士の間の第1距離は一定であり、隣り合う複数の第2光学調整領域51同士の間の第2距離は一定である。つまり、複数の第1光学調整領域41は、第1透明電極4において均一に設けられている。複数の第2光学調整領域51は、第2透明電極5において均一に設けられている。そのため、第1透明電極4および第2透明電極5のそれぞれの電気抵抗が位置に応じて異なることを抑え、第1透明電極4および第2透明電極5の電気抵抗が局所的に高くなることを抑えることができる。また、第1光学調整領域41および第2光学調整領域51が集中し、第1透明電極4および第2透明電極5がパターンとして視認され易くなることを抑えることができる。
また、第1透明電極4および第2透明電極5の材料に含まれる導電性ナノワイヤは、金ナノワイヤ、銀ナノワイヤ、および銅ナノワイヤよりなる群から選択された少なくとも1つである。これによれば、第1透明電極4および第2透明電極5の材料として例えばITOなどの酸化物系材料が用いられた場合と比較して、第1光学調整領域41を有する第1透明電極4および第2光学調整領域51を有する第2透明電極5の電気抵抗を低い抵抗に抑えることができる。
図27は、本実施形態の第1透明電極および第2透明電極の変形例(第1変形例)を表す平面図である。図27は、図23に表した領域A1を拡大した平面図に相当する。
本変形例の第1透明電極4Aは複数の第1光学調整領域41Aを有する。第1光学調整領域41Aの形状は、四角形である。四角形の第1光学調整領域41Aの対角線のうちで最長の対角線の長さD13は、10μm以上、100μm以下である。第1光学調整領域41Aに関する寸法の詳細については、後述する。その他の第1透明電極4Aの構造は、図23から図26に関して前述した第1透明電極4の構造と同様である。
本変形例の第2透明電極5Aは複数の第2光学調整領域51Aを有する。第2光学調整領域51Aの形状は、四角形である。四角形の第2光学調整領域51Aの対角線のうちで最長の対角線の長さD14は、10μm以上、100μm以下である。第2光学調整領域51Aに関する寸法の詳細については、第1光学調整領域41Aに関する寸法とともに後述する。その他の第2透明電極5Aの構造は、図23から図26に関して前述した第2透明電極5の構造と同様である。
本変形例において例示したように、第1光学調整領域および第2光学調整領域のそれぞれの形状は、円だけには限定されず、四角形であってもよい。この場合であっても、本発明者の得た知見によれば、第1透明電極4Aおよび第2透明電極5Aのそれぞれの反射率などの光学特性は、図23から図26に関して前述した第1透明電極4および第2透明電極5のそれぞれの反射率などの光学特性と同様である。そのため、静電容量式センサ1の平面視において、内部境界および外部境界の両方が視認された場合であっても、外部境界だけが強調されることが抑えられる。そのため、第1透明電極4Aおよび第2透明電極5Aがパターンとして視認され難くなる。これにより、第1透明電極4Aおよび第2透明電極5Aのパターンの不可視性を向上させることができる。
図28は、調整率と配線抵抗との関係の一例を例示するグラフである。図28に表したグラフの横軸は、調整率(%)を表している。図28に表したグラフの縦軸は、配線抵抗(kΩ)を表している。本明細書において「調整率」とは、単位面積あたりの光学調整領域の面積をいう。
図28に表したグラフのように、調整率が相対的に高いと、配線抵抗は相対的に高い。ここで、本発明者の得た知見によれば、例えばスマートフォンなどの携帯端末のように、画面サイズが約4インチ以上、6インチ以下程度である場合において、静電容量式センサ1の性能を確保するためには、配線抵抗が20kΩ以下であることが好ましい。図28中に20kΩを破線で示した。この場合には、図28に表したグラフより、第1透明電極4における第1光学調整領域41および第2透明電極5における第2光学調整領域51のそれぞれの調整率は、40%以下であることが好ましい。
第1光学調整領域41および第2光学調整領域51のそれぞれの調整率が40%以下である場合には、第1透明電極4および第2透明電極5のパターンの不可視性を向上させつつ、第1透明電極4および第2透明電極5のそれぞれの電気抵抗の上昇を抑えることができ、静電容量式センサ1の性能を確保することができる。
なお、本実施形態に係る静電容量式センサ1が搭載される端末の画面サイズが約4インチ未満程度の場合において、静電容量式センサ1の性能を確保するためには、配線抵抗が30kΩ以下であることが好ましい。この場合には、図28に表したグラフより、第1透明電極4における第1光学調整領域41および第2透明電極5における第2光学調整領域51のそれぞれの調整率は、45%以下であることが好ましい。
図29は、ギャップ幅と調整率との関係の一例を例示するグラフである。
図29に表したグラフの横軸は、ギャップ幅(μm)を表している。図29に表したグラフの縦軸は、調整率(%)を表している。図29に表したギャップ幅は、図24に関して前述した絶縁層21の幅D3に相当する。
本発明者は、ギャップ幅D3および調整率を変化させた場合において、第1透明電極4および第2透明電極5のパターンの不可視性について検討した。本検討において、発明者は、不可視性の判断を目視により行った。目視判断の条件は、以下の通りである。
すなわち、本検討では、光学調整部を有する透明電極が設けられたセンサフィルムに光学透明粘着層を介してガラス基板を貼合した試料が用いられた。試料に光を照射する光源は、3波長型昼光色蛍光灯である。光源の照度は、1300ルクス(lx)である。試料と目視位置との間の距離(検査距離)は、30cmである。センサフィルムまたはガラス基板の表面に対して垂直な直線(法線)と、目線と、の間の角度は、0度以上、45度以下である。試料からみて視点とは反対側(試料裏面側)には、黒板が配置されている。
検討結果の一例は、図29に表した通りである。すなわち、ギャップ幅D3が10μmである場合には、調整率が15%以上であると、第1透明電極4および第2透明電極5のパターンの不可視性が確保される。ギャップ幅D3が15μmである場合には、調整率が30%以上であると、第1透明電極4および第2透明電極5のパターンの不可視性が確保される。ギャップ幅D3が20μmである場合には、調整率が35%以上であると、第1透明電極4および第2透明電極5のパターンの不可視性が確保される。つまり、ギャップ幅D3が相対的に広いと、第1透明電極4および第2透明電極5のパターンの不可視性が確保されるためには、相対的に高い調整率が必要になる。
また、図28に関して前述したように、第1光学調整領域41および第2光学調整領域51のそれぞれの調整率は、40%以下であることが好ましい。図29に表したグラフより、第1透明電極4および第2透明電極5のパターンの不可視性と、配線抵抗の許容限界と、を考慮すると、ギャップ幅D3は、10μm以上、20μm以下であることが好ましい。つまり、図29に表した領域A2は、第1透明電極4および第2透明電極5のパターンの不可視性と、配線抵抗の許容限界と、の両方が満たされる領域である。図29に表したように、第1透明電極4および第2透明電極5のパターンの不可視性と、第1光学調整領域41および第2光学調整領域51のそれぞれの調整率と、の間には、相関関係があることが分かった。
図30は、シート抵抗と導通性確保可能ライン幅との関係の一例を例示するグラフである。図30に表したグラフの横軸は、シート抵抗(Ω/□)を表している。図30に表したグラフの縦軸は、導通性確保可能ライン幅(μm)を表している。導通性確保可能ラインとは、導電体が断線することなく導電性を確保するために必要な導電体の幅をいう。そのため、図30に表したように、シート抵抗が相対的に高いと、導電体が断線することなく導電性を確保するために必要な導電体の幅(導通性確保可能ライン幅)としては相対的に長い幅が必要になる。
図30に表したグラフ中の上側の破線は、銀ナノワイヤを含む材料により形成された透明電極に関して、シート抵抗と導通性確保可能ライン幅との関係を例示している。
本発明者の得た知見によれば、銀ナノワイヤを含む材料により形成された透明電極のシート抵抗の下限値は、約30〜50Ω/□程度である。したがって、図30に表したグラフより、銀ナノワイヤを含む材料により形成された透明電極に関して、導通性確保可能ライン幅は、30μm以上であることが好ましい。
これにより、複数の第1光学調整領域41を有する第1透明電極4の導電領域においては、30μm以上の幅が確保されていることが好ましい。そのため、図24に関して前述したように、隣り合う複数の第1光学調整領域41同士の間の距離D1は、30μm以上であることが好ましい。これは、第2透明電極5についても同様である。つまり、隣り合う複数の第2光学調整領域51同士の間の距離D2は、30μm以上であることが好ましい。
これによれば、複数の第1光学調整領域41が導電性ナノワイヤを含む第1透明電極4に設けられ、複数の第2光学調整領域51が導電性ナノワイヤを含む第2透明電極に設けられていても、導電領域の幅が狭いことで第1透明電極4および第2透明電極5が断線することを抑えることができる。
図31は、本実施形態の絶縁層21の近傍のみに光学調整部が設けられたときの視認性を説明する平面図である。図31においては、説明の便宜上、第1透明電極4と第2透明電極5との間の2つの絶縁層21が上下に並べて表示されている。2つの絶縁層21の間には、第1透明電極4が配置されている。2つの絶縁層21の両側には、第2透明電極5が配置されている。なお、図30に表した透明電極の配置は、説明の便宜上の配置である。そのため、例えば、2つの絶縁層21の間に第2透明電極5が設けられ、2つの絶縁層21の両側に、第1透明電極4が配置されていてもよい。
上側の絶縁層21の幅D3は、下側の絶縁層21の幅D3と同じである。図31に表した2つの絶縁層21のうちで上側の絶縁層21の近傍には、第1光学調整領域41および第2光学調整領域51は、設けられていない。一方で、図31に表した2つの絶縁層21のうちで下側の絶縁層21の近傍には、第1光学調整領域41および第2光学調整領域51が設けられている。
図31に表したように、第1光学調整領域41および第2光学調整領域51が絶縁層21の近傍のみに設けられている場合には、第1光学調整領域41および第2光学調整領域51が絶縁層21の近傍に設けられていない場合と比較すると、第1光学調整領域41および第2光学調整領域51の存在により絶縁層21が強調され目立つことが分かった。具体的には、本来円形である第1光学調整領域41および第2光学調整領域51が半円形状となってストライプ状の絶縁層21と連続しているため、絶縁層21と第1光学調整領域41および第2光学調整領域51とからなる領域による局所的な面積が増大している。その結果、第1透明電極4と第2透明電極との間に位置する絶縁層21のパターンがむしろ強調されてしまっている。この傾向は、図31に示されるように、光学調整領域(第1光学調整領域41、第2光学調整領域51)が絶縁層21の近傍のみに設けられ、透明電極(第1透明電極4および第2透明電極5)における絶縁層21から遠位な領域には光学調整領域が設けられていない場合に顕著となる。それゆえ、複数の第1光学調整領域41は、絶縁層21の近傍に集中することなく、第1透明電極4の全体にわたって均一に設けられていることが好ましい。また、複数の第2光学調整領域51は、絶縁層21の近傍に集中することなく、第2透明電極5の全体にわたって均一に設けられていることが好ましい。この点を別の表現で説明すれば、導電部が位置する領域である導電領域の内部に光学調整部が位置する領域である光学調整領域が位置して、絶縁層が位置する領域である絶縁領域と光学調整領域とは直接的に接していないことが好ましく、光学調整領域は透明電極の全体にわたって配置されていることも好ましい。
図32は、光学調整部の直径を変化させたときの波長と反射率との関係の一例を例示するグラフである。
図33は、図32に表したグラフ中の一部を拡大して表したグラフである。
図33は、図32に表したグラフ中において、波長が500μm以上、600μm以下の範囲を拡大して表したグラフである。
本発明者は、丸形状(円形状)の光学調整部の直径を変化させた場合において、光の波長と反射率との関係について検討した。本検討において、発明者は、紫外可視(UV−vis)分光光度計を用いて透明電極における反射率を測定した。測定方法は、拡張反射である。測定波長は、250nm以上、800nm以下である。試料としては、光学調整部を有する透明電極が設けられたセンサフィルムに光学透明粘着層を介してカバー材を貼合した試料が用いられた。カバー材は、0.5mmの厚さを有するCorning社製のEAGLE XG(登録商標)である。
検討結果の一例は、図32および図33に表した通りである。すなわち、光学調整部の直径が相対的に大きいと、透明電極における反射率は、相対的に低い。図32および図33に表したグラフより、第1光学調整領域41の直径D11(図24参照)および第2光学調整領域51の直径D12(図24参照)は、10μm以上であることが好ましく、20μm以上であることがより好ましい。
一方で、本発明者の得た知見によれば、透明電極の光学調整部の直径が100μmよりも大きい場合には、第1透明電極4および第2透明電極5のパターンの不可視性が低下することが目視により確認された。目視判断の条件は、図29に関して前述した通りである。これにより、第1光学調整領域41の直径D11および第2光学調整領域51の直径D12は、100μm以下であることが好ましく、90μm以下であることがより好ましい。
これによれば、第1光学調整領域41の直径D11および第2光学調整領域51の直径D12が小さすぎることで第1透明電極4および第2透明電極5における反射率が高くなることを抑え、第1透明電極4および第2透明電極5のパターンの不可視性を確保することができる。また、第1光学調整領域41の直径D11および第2光学調整領域の直径D12が大きすぎることで内部境界が見えやすくなることを抑え、第1透明電極4および第2透明電極5のパターンの不可視性を確保することができる。
図34は、光学調整部の形状を変化させたときの波長と反射率との関係の一例を例示するグラフである。
図35は、図34に表したグラフ中の一部を拡大して表したグラフである。図35は、図34に表したグラフ中において、波長が500μm以上、600μm以下の範囲を拡大して表したグラフである。
本発明者は、光学調整部の形状が丸形状(円形状)である場合と四角形状である場合とにおいて、光の波長と反射率との関係について検討した。反射率の測定方法は、図32および図33に関して前述した通りである。
検討結果の一例は、図34および図35に表した通りである。すなわち、光学調整部の形状が丸形状である場合の反射率は、光学調整部の形状が四角形状である場合の反射率と略同じである。これにより、図27に関して前述したように、第1光学調整領域および第2光学調整領域のそれぞれの形状は、円だけには限定されず、四角形であってもよい。図32および図33に関して前述した直径の範囲と同様に、四角形の第1光学調整領域41Aの対角線のうちで最長の対角線の長さD13(図27参照)、および四角形の第2光学調整領域51Aの対角線のうちで最長の対角線の長さD14(図27参照)は、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、対角線の長さD13および対角線の長さD14は、100μm以下であることが好ましく、90μm以下であることがより好ましい。
これによれば、第1光学調整領域41Aの対角線の長さD13および第2光学調整領域51Aの対角線の長さD14が短すぎることで第1透明電極4Aおよび第2透明電極5Aにおける反射率が高くなることを抑え、第1透明電極4Aおよび第2透明電極5Aのパターンの不可視性を確保することができる。また、第1光学調整領域41Aの対角線の長さD13および第2光学調整領域51Aの対角線の長さD14が長すぎることで内部境界が見えやすくなることを抑え、第1透明電極4Aおよび第2透明電極5Aのパターンの不可視性を確保することができる。
図39は、本実施形態の静電容量式センサの他の変形例(第2変形例)の検出領域の一部を表す平面図である。図39は、図23に表した領域A1に対応する領域をさらに拡大した平面図である。
本変形例の第1透明電極4Bが複数のほぼ円形の第1光学調整領域41Bを有し、第2透明電極5Bが複数のほぼ円形の第2光学調整領域51Bを有し、第1透明電極4Bと第2透明電極5Bとの間に絶縁層21を有する点で、図22に示した例と共通する。絶縁部20とブリッジ配線部10とは、説明の都合上、図示を省略している。連結部7を含む領域には第1光学調整領域41Bおよび第2光学調整領域51Bが設けられておらず、この領域は無調整領域NRとなっている。
第1透明電極4Bと第2透明電極5Bとの間は、第1透明電極4Bおよび第2透明電極5Bの双方から絶縁層21により電気的に絶縁されたダミー領域IFが、絶縁層21に囲まれて設けられている。ダミー領域IFは、第1透明電極4Bおよび第2透明電極5Bの導電領域CRと構造が共通する、すなわち、導電性ナノワイヤがマトリックスとなる絶縁材料に分散した構造を有するダミー導電領域CR1を有する。このようなダミー領域IFを設けることにより、第1透明電極4Bと第2透明電極5Bとの間のXY平面内での離間距離を不可視性への影響を抑えて変更することができる。これらの電極の離間距離を変更することにより、電極間の容量を調整することができる。
ダミー領域IFには、ダミー領域IFの視認性を低下させる観点から、第1光学調整領域41Bおよび第2光学調整領域51Bと同様に、ほぼ円形のダミー光学調整領域AR1の複数が、平面視で、ダミー導電領域CR1内に互いに離散して配置されている。ダミー光学調整領域AR1は、第1光学調整領域41Bおよび第2光学調整領域51Bと同様の方法(少なくとも表面部においてマトリックスとなる絶縁材料から導電性ナノワイヤを除去する方法)により形成されたものであり、第1光学調整領域41Bおよび第2光学調整領域51Bと構造が共通する。
次に説明するように、ダミー領域IFにおけるダミー光学調整領域AR1の配置を適切に設定することにより、ダミー領域IFの視認性を低下させることができる。ダミー領域IFにより第1透明電極4Bと第2透明電極5Bとが離間する離間方向のダミー領域IFの長さ、すなわち、ダミー領域IFの幅Wfが70μm以上である場合には、このように、所定の形状(円形、四角形などが例示される。)を有するダミー光学調整領域AR1を配置することが好ましい。ダミー領域IFの幅Wfが80μm以上である場合にダミー光学調整領域AR1を配置することがより好ましく、ダミー領域IFの幅Wfが90μm以上である場合にダミー光学調整領域AR1を配置することがさらに好ましく、ダミー領域IFの幅Wfが100μm以上である場合にダミー光学調整領域AR1を配置することが特に好ましい。
なお、ダミー領域IFの幅Wfが100μm以下の場合には、ダミー領域IFは、ダミー光学調整領域AR1をしない、すなわち、ダミー導電領域CR1からなることが好ましいときがあり、ダミー領域IFの幅Wfが70μm未満、特に60μm以下の場合にはダミー領域IFはダミー導電領域CR1からなることが好ましい。ダミー領域IFの幅Wfの最小値は、静電容量式センサ1を駆動する半導体装置(IC)の設定などにより適宜決められる。限定されない例示をすれば、ダミー領域IFの幅Wfは、30μm以上である場合があり、40μm以上である場合があり、50μm以上である場合がある。
図40は、第2変形例におけるダミー領域を含む領域の部分拡大図である。図39に示されるように、一例として10μm程度の幅Wiの絶縁層21により第1透明電極4Bおよび第2透明電極5Bの双方から隔てられたダミー領域IFには、複数のダミー光学調整領域AR1が設けられている。これらのダミー光学調整領域AR1は絶縁層21に連続した部分を有しない。すなわち、ダミー光学調整領域AR1と絶縁層21との間の平面視での離間距離の最小値(最小離間距離)Dfは、下記式を満たす。
Df>0
このように、絶縁層21とダミー光学調整領域AR1とが直接的に接した状態でないこと、すなわち、ダミー光学調整領域AR1が絶縁層21に連続した部分を有しないことにより、絶縁層21の不可視性を維持することができる。最小離間距離Dfは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることが特に好ましい。最小離間距離Dfが過度に大きくなると、ダミー光学調整領域AR1が設けられていないことに起因してダミー領域IFの不可視性が低下する傾向がみられる場合があるため、最小離間距離Dfは、100μm以下とすることが好ましく、90μm以下とすることがより好ましく、80μm以下とすることがさらに好ましく、70μm以下とすることが特に好ましい。
ダミー領域IFのダミー光学調整領域AR1の配置密度は、第1透明電極4Bおよび第2透明電極5Bに設けられた第1光学調整領域41Bおよび第2光学調整領域51Bの配置密度と関連性を有していることが好ましい。なお、前述のように、第1透明電極4Bにおいて第1光学調整領域41Bは均一に配置され、第2透明電極5Bにおいて第2光学調整領域51Bは均一に配置される。そして、第1透明電極4Bと第2透明電極5Bとが同じような視認性を有するように、第1透明電極4Bにおける第1光学調整領域41Bの配置と、第2透明電極5Bにおける第2光学調整領域51Bの配置とは実質的に等しい。したがって、以下の説明では、第1透明電極4Bにおける第1光学調整領域41Bの配置とダミー領域IFにおけるダミー光学調整領域AR1の配置とを対比する。
第1透明電極4Bに配置される複数の第1光学調整領域41Bのうち、平面視で最近位に位置する2つの離間距離(最近位離間距離)D0は、最近位に位置する2つの第1透明電極4Bの配列ピッチP0と、それぞれの第1透明電極4Bの配列方向の長さL0との差(P0−L0)である。この最近位離間距離D0は、前述の最小離間距離Dfと、次の関係を満たすことが好ましい。
0.5≦Df/D0≦2.5
Df/D0(離間比)が上記の範囲であることにより、ダミー領域IFの不可視性を安定的に確保することができる。ダミー領域IFの不可視性をより安定的に確保する観点から、離間比Df/D0は、0.7以上2.0以下であることが好ましい場合があり、0.7以上1.3以下であることがより好ましい場合がある。
第1透明電極4Bにおける第1光学調整領域41Bからなる領域の面積割合(電極調整割合)AA0(単位:%)と、ダミー領域IFにおけるダミー光学調整領域AR1からなる領域の面積割合(ダミー調整割合)AAf(単位:%)とは、下記式を満たす関係を有することが好ましい。
AAf/AA0<1
すなわち、ダミー調整割合AAfは電極調整割合AA0よりも低いことが好ましい。ダミー領域IFはこれを取り囲むように所定の幅Wiの絶縁層21が位置するため、この影響を考慮して、ダミー調整割合AAfを電極調整割合AA0よりも低めに設定することにより、優れた不可視性を達成することができる。優れた不可視性をより安定的に実現する観点から、AAf/AA0(調整面積比)は、0.3以上0.95以下であることが好ましい場合があり、0.6以上0.9以下であることがより好ましい場合がある。
以下、具体例を示して説明する。
図41から図45は、透明電極(第1透明電極、第2透明電極)とダミー領域とを有する検出領域の部分拡大図である。これらの図では、図の全体が与える印象を確認しやすいように、符号を付すことを省略している。
透明電極(第1透明電極4B、第2透明電極5B)における光学調整領域(第1光学調整領域41B、第2光学調整領域51B)は、いずれも平面視で直径が35μmの円形であって透明電極内に均一に配置されている。具体的には、最近位に並ぶ2つの光学調整部の配列ピッチP0が68μmである。したがって最近位離間距離D0は30である。幅Wiの絶縁層21により透明電極(第1透明電極4B、第2透明電極5B)から隔てられているダミー領域IFの幅Wfは180μmである。目視判断の条件は前述のとおりである。
(実施例1)
図41に示される実施例1に係る検出領域11では、ダミー領域IFの幅方向に位置する2本の絶縁層21のそれぞれとの関係で最小離間距離Dfがいずれも36.6μmである2つの円形(直径:35μm)のダミー光学調整領域AR1が、ダミー領域IFの延在方向に75μmピッチで配置されている。この場合の離間比Df/D0は1.22であって、調整面積比AAf/AA0は0.7である。この場合には、不可視性に特に優れ、検出領域11において、ダミー領域IFが配置されていることは実質的に視認できなかった。
(実施例2)
図42に示される実施例2に係る検出領域11では、ダミー領域IFの幅方向に位置する2本の絶縁層21のそれぞれとの関係で最小離間距離Dfがいずれも65μmである円形(直径:50μm)のダミー光学調整領域AR1が、ダミー領域IFの延在方向に75μmピッチで配置されている。この場合の離間比Df/D0は1.96であって、調整面積比AAf/AA0は0.33である。この場合も、実施例1とほぼ同程度に不可視性に優れ、検出領域11において、ダミー領域IFが配置されていることは実質的に視認できなかった。
(実施例3)
図43に示される実施例3に係る検出領域11では、ダミー領域IFの幅方向に位置する2本の絶縁層21のそれぞれとの関係で最小離間距離Dfがいずれも20μmである2つの円形(直径:60μm)のダミー光学調整領域AR1が、ダミー領域IFの延在方向に75μmピッチで配置されている。この場合の離間比Df/D0は0.6であって、調整面積比AAf/AA0は2.0である。この場合も不可視性に優れるが、実施例1との対比では、ダミー光学調整領域AR1の存在がわずかに視認された。
(比較例1)
図44に示される比較例1に係る検出領域11では、ダミー領域IFの幅方向に位置する2本の絶縁層21のそれぞれに連結されたライン状のダミー光学調整領域AR1(幅:10μm)が、ダミー領域IFの延在方向に50μmピッチで配置されている。この場合の離間比Df/D0は0であって、調整面積比AAf/AA0は1.0である。この場合には、ダミー光学調整領域AR1の絶縁層21との連結部が絶縁層21の存在を際立たせるため、検出領域11において、ダミー領域IFが配置されていることが視認された。
(比較例2)
図45に示される比較例2に係る検出領域11では、ダミー領域IFの幅方向に位置する2本の絶縁層21のそれぞれに連結されたライン状のダミー光学調整領域AR1(幅:10μm)が、ダミー領域IFの延在方向に150μmピッチで配置されている。この場合の離間比Df/D0は0であって、調整面積比AAf/AA0は0.5である。この場合には、調整面積比AAf/AA0は1よりも十分に低いものの、ダミー光学調整領域AR1の絶縁層21との接続部による絶縁層21の顕在化を隠すことができず、検出領域11において、比較例1と同様にダミー領域IFが配置されていることが視認された。
以上、本実施形態およびその適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態またはその適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
100,200,300 透明電極部材
101 基材
S1 第1面
110,110a,110b,110c,110d 透明電極
102 絶縁層
IR 絶縁領域
MX マトリックス
NW 導電性ナノワイヤ
DL 分散層
111 導電部
CR 導電領域
112 光学調整部
AR 光学調整領域
sd 離間距離
130 透明配線
NR 無調整領域
150 第1積層体
AgNW 銀ナノワイヤ
160 レジスト層
161 第1レジスト層
162 第2レジスト層
R1 第1領域
R2 第2領域
R3 第3領域
SI 銀ヨウ化物
151 中間部材
1 静電容量式センサ
2 基材
2a 主面(おもて面)
3 パネル
3a 面
4、4A、4B 第1透明電極
5、5A、5B 第2透明電極
6 配線部
7 連結部
8 第1電極連結体
10 ブリッジ配線部
11 検出領域
12 第2電極連結体
16 接続配線
20 絶縁部
20a 表面
21 絶縁層
25 非検出領域
27 外部接続部
30 光学透明粘着層
41、41A、41B 第1光学調整領域
51、51A、51B 第2光学調整領域
A1、A2 領域
C1、C2、V1 切断面
D1、D2 距離
D11、D12 直径
D13、D14 長さ
D3 絶縁層21の幅(ギャップ幅)
IF ダミー領域
CR1 ダミー導電領域
AR1 ダミー光学調整領域
Wi 絶縁層21の幅
Wf ダミー領域IFの幅
Df 最小離間距離
P0 第1光学調整領域4Bの配列ピッチ
L0 第1光学調整領域4Bの配列方向の長さ
D0 最近位離間距離

Claims (18)

  1. 透光性を有する基材と、
    前記基材の一つの面である第1面に配置され、透光性を有する透明電極と、
    前記第1面の法線方向からみたときに、前記透明電極が配置された領域の周囲の少なくとも一部に位置する絶縁領域に配置された絶縁層と、
    を備える透明電極部材であって、
    前記透明電極は、絶縁材料からなるマトリックスと、前記マトリックス内に分散した導電性ナノワイヤと、を含む分散層を備え、
    前記透明電極は、前記第1面の法線方向からみたときに、導電部からなる導電領域と光学調整部を有する光学調整領域とを有し、
    前記導電部は、前記光学調整部よりも導電性が高く、
    前記光学調整部は、前記分散層における前記導電性ナノワイヤの分散密度が前記導電部よりも低く、
    前記透明電極は前記第1面に複数配置され、
    透光性を有する導電性材料からなる透明配線をさらに有し、
    前記透明配線は、前記透明電極の複数を電気的に接続し、
    前記透明電極は、
    前記第1面の面内方向の一つである第1方向に沿って並んで配置され、互いに電気的に接続された複数の第1透明電極と、
    前記第1面の面内方向の別の一つである第2方向に沿って並んで配置され、互いに電気的に接続された複数の第2透明電極と、
    を有し、
    前記透明配線は、
    前記複数の第1透明電極を電気的に接続する第1透明配線と、
    前記複数の第2透明電極を電気的に接続する第2透明配線と、
    を有し、
    前記第1透明配線と前記第2透明配線とは、前記第1面の法線方向に絶縁物を介して重なる部分を有し、
    前記絶縁層に囲まれ透光性を有するダミー領域が、前記第1透明電極と前記第2透明電極との間に設けられ、
    前記ダミー領域は、前記透明電極の前記導電領域と構造が共通するダミー導電領域と、前記透明電極の前記光学調整領域と構造が共通するダミー光学調整領域とを有し、
    前記透明電極の前記光学調整領域の面積割合AA0と、前記ダミー領域の前記光学調整領域の面積割合AAfとは、
    AAf/AA0<1
    を満たすこと
    を特徴とする透明電極部材。
  2. 前記絶縁領域の反射率は、前記導電領域の反射率よりも低い、請求項1に記載の透明電極部材。
  3. 前記絶縁層は前記マトリックスを含有する、請求項2に記載の透明電極部材。
  4. 前記光学調整領域は、前記導電領域内に位置する、請求項1から3のいずれか一項に記載の透明電極部材。
  5. 前記透明電極における前記光学調整領域の面積割合は40%以下である、請求項1から4のいずれか一項に記載の透明電極部材。
  6. 前記光学調整領域は、前記導電領域内に離散的に位置する複数の部分領域を有する、請求項1から5のいずれか一項に記載の透明電極部材。
  7. 前記複数の部分領域は、互いに30μm以上離間している、請求項6に記載の透明電極部材。
  8. 複数の部分領域のそれぞれの形状は円であり、
    前記円の直径は、10μm以上、100μm以下である、請求項6または7に記載の透明電極部材。
  9. 前記複数の部分領域のそれぞれの形状は四角形であり、
    前記四角形の対角線のうちで最長の対角線の長さは、10μm以上、100μm以下である、請求項6または7に記載の透明電極部材。
  10. 前記複数の部分領域は、前記透明電極の全体にわたって配置される、請求項6から9のいずれか一項に記載の透明電極部材。
  11. 前記ダミー領域により前記第1透明電極と前記第2透明電極とが離間する離間方向の前記ダミー領域の長さは70μm以上であって、
    前記絶縁層から最近位に位置する前記ダミー光学調整領域の前記絶縁層からの距離である最小離間距離Dfは、
    Df>0
    を満たす、請求項1に記載の透明電極部材。
  12. 前記透明電極の前記光学調整領域は、前記透明電極の前記導電領域内に離散的に位置する複数の部分領域を有し、
    前記複数の部分領域において最近位に位置する2つの領域の離間距離である最近位離間距離D0と、前記最小離間距離Dfとは、
    0.5≦Df/D0≦2.5
    を満たす、請求項11に記載の透明電極部材。
  13. 0.3≦AAf/AA0≦0.95
    を満たす、請求項1に記載の透明電極部材。
  14. 前記光学調整部の前記分散層では、絶縁性を示す程度に、前記導電性ナノワイヤの分散密度が低減されている、請求項1から13のいずれか一項に記載の透明電極部材。
  15. 透光性を有する基材と、
    前記基材の一つの面である第1面に配置され、透光性を有する透明電極と、
    前記第1面の法線方向からみたときに、前記透明電極が配置された領域の周囲の少なくとも一部に位置する絶縁領域に配置された絶縁層と、
    を備える透明電極部材であって、
    前記透明電極は、絶縁材料からなるマトリックスと、前記マトリックス内に分散した導電性ナノワイヤと、を含む分散層を備え、
    前記透明電極は、前記第1面の法線方向からみたときに、導電部からなる導電領域と光学調整部を有する光学調整領域とを有し、
    前記導電部は、前記光学調整部よりも導電性が高く、
    前記光学調整部は、前記分散層における前記導電性ナノワイヤの分散密度が前記導電部よりも低く、
    前記光学調整部は、前記絶縁層よりも高い導電性を有することを特徴とする透明電極部材。
  16. 請求項14に記載される透明電極部材の製造方法であって、
    前記マトリックスに銀ナノワイヤが分散された層が前記分散層として前記第1面に積層された第1積層体を用意する工程と、
    前記第1積層体の前記分散層の一部をレジスト層で覆う工程と、
    前記分散層における前記レジスト層により覆われていない第1領域をヨウ素液で処理して、前記第1領域に存在する前記銀ナノワイヤの少なくとも一部をヨウ化して銀ヨウ化物とし、前記第1領域に位置する前記分散層を絶縁性とする工程と、
    前記第1領域をチオ硫酸塩溶液で処理して、前記銀ヨウ化物の少なくとも一部を前記第1領域から除去する工程と、
    前記レジスト層を除去して、絶縁性の前記光学調整部および前記絶縁層を前記第1領域に備え、前記レジスト層により覆われていた領域に前記導電部を備える部材を得る工程と、
    を備えることを特徴とする透明電極部材の製造方法。
  17. 請求項15に記載される透明電極部材の製造方法であって、
    前記マトリックスに銀ナノワイヤが分散された層が前記分散層として前記第1面に積層された第1積層体を用意する工程と、
    前記第1積層体の前記分散層の一部を第1レジスト層で覆う工程と、
    前記分散層における前記第1レジスト層により覆われていない第1領域をヨウ素液で処理して、前記第1領域に存在する前記銀ナノワイヤの少なくとも一部をヨウ化して銀ヨウ化物とし、前記第1領域に位置する前記分散層を前記絶縁層とする工程と、
    前記第1領域をチオ硫酸塩溶液で処理して、前記銀ヨウ化物の少なくとも一部を前記第1領域から除去する工程と、
    前記第1レジスト層を除去して、前記第1領域に前記絶縁層を備える中間部材を得る工程と、
    前記中間部材の前記分散層における前記第1レジスト層により覆われていた領域の一部である第2領域を第2レジスト層で覆う工程と、
    前記第1レジスト層により覆われていた領域であるが前記第2レジスト層により覆われていない領域である第3領域をヨウ素液で処理して、前記第3領域に存在する前記銀ナノワイヤの少なくとも一部をヨウ化して銀ヨウ化物とし、前記第3領域の導電性を前記第2領域の導電性よりも低下させる工程と、
    前記第3領域をチオ硫酸塩溶液で処理して、前記銀ヨウ化物の少なくとも一部を前記第3領域から除去する工程と、
    前記第2レジスト層を除去して、前記第1領域に前記絶縁層を備え、前記第2領域に前記導電部を備え、前記絶縁層よりも高く前記導電部よりも低い導電性を有する前記光学調整部を前記第3領域に備える部材を得る工程と、
    を備えることを特徴とする透明電極部材の製造方法。
  18. 請求項1から15のいずれか一項に記載される透明電極部材と、
    操作者の指等の操作体と透明電極との間に生じる静電容量の変化を検知する検知部と、を備える、静電容量式センサ。
JP2018553836A 2016-12-02 2017-11-27 透明電極部材およびその製造方法、ならびに該透明電極部材を用いた静電容量式センサ Expired - Fee Related JP6763969B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016235395 2016-12-02
JP2016235395 2016-12-02
JP2017224622 2017-11-22
JP2017224622 2017-11-22
PCT/JP2017/042430 WO2018101209A1 (ja) 2016-12-02 2017-11-27 透明電極部材およびその製造方法、ならびに該透明電極部材を用いた静電容量式センサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020002002A Division JP6831930B2 (ja) 2016-12-02 2020-01-09 透明電極部材および静電容量式センサ

Publications (2)

Publication Number Publication Date
JPWO2018101209A1 JPWO2018101209A1 (ja) 2019-10-24
JP6763969B2 true JP6763969B2 (ja) 2020-09-30

Family

ID=62241754

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018553836A Expired - Fee Related JP6763969B2 (ja) 2016-12-02 2017-11-27 透明電極部材およびその製造方法、ならびに該透明電極部材を用いた静電容量式センサ
JP2020002002A Active JP6831930B2 (ja) 2016-12-02 2020-01-09 透明電極部材および静電容量式センサ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020002002A Active JP6831930B2 (ja) 2016-12-02 2020-01-09 透明電極部材および静電容量式センサ

Country Status (7)

Country Link
US (2) US10747383B2 (ja)
EP (2) EP3550410B1 (ja)
JP (2) JP6763969B2 (ja)
KR (2) KR102361068B1 (ja)
CN (2) CN111208922A (ja)
TW (2) TWI683250B (ja)
WO (1) WO2018101209A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11036341B1 (en) * 2018-09-27 2021-06-15 Apple Inc. Conductive components in an insulator layer of a touch sensor stackup
GB201902515D0 (en) * 2019-02-25 2019-04-10 Univ Oxford Innovation Ltd Sensor
JP2022133487A (ja) * 2019-07-30 2022-09-14 アルプスアルパイン株式会社 透明電極部材、静電容量式センサおよび入出力装置
CN113589972B (zh) * 2021-08-19 2023-06-23 业成科技(成都)有限公司 发光二极体屏幕显示器结构及其发光二极体显示单元组
CN113986033B (zh) * 2021-09-16 2023-08-11 广州国显科技有限公司 触控面板和电子装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259368B2 (ja) * 2008-12-15 2013-08-07 日本写真印刷株式会社 導電性ナノファイバーシート及びその製造方法
JP2010157400A (ja) 2008-12-26 2010-07-15 Nissha Printing Co Ltd 導電性ナノファイバーシート及びその製造方法
KR20130100950A (ko) * 2010-07-05 2013-09-12 디아이씨 가부시끼가이샤 투명 도전층 부착 기체 및 그의 제조 방법, 및 터치 패널용 투명 도전막 적층체, 터치 패널
KR20140051117A (ko) * 2011-02-07 2014-04-30 데쿠세리아루즈 가부시키가이샤 투명 도전성 소자, 입력 장치, 전자 기기 및 투명 도전성 소자 제작용 원반
JP2012185770A (ja) * 2011-03-08 2012-09-27 Sony Corp 透明電極素子、情報入力装置、および電子機器
JP2013041471A (ja) * 2011-08-17 2013-02-28 Dainippon Printing Co Ltd タッチパネル部材、タッチパネル付き表示装置およびタッチパネル
JP2013152578A (ja) * 2012-01-24 2013-08-08 Sony Corp 透明導電性素子、入力装置、電子機器および透明導電性素子作製用原盤
JP5869007B2 (ja) * 2012-05-31 2016-02-24 大日本印刷株式会社 静電容量式タッチパネル基板、及び表示装置
KR102056928B1 (ko) * 2013-01-16 2019-12-18 삼성디스플레이 주식회사 터치스크린 패널 및 그의 제조방법
KR101879220B1 (ko) 2013-03-29 2018-07-17 동우 화인켐 주식회사 투명 전극 패턴 적층체 및 이를 구비한 터치 스크린 패널
JP6058141B2 (ja) * 2013-08-05 2017-01-11 アルプス電気株式会社 透光性導電部材およびそのパターニング方法
JP6361106B2 (ja) * 2013-10-08 2018-07-25 大日本印刷株式会社 透明導電膜付き基板、タッチパネル基板、タッチパネル一体型の表示装置用前面保護板、及び表示装置
EP3125086A4 (en) * 2014-03-25 2017-10-25 Toppan Printing Co., Ltd. Transparent conductive laminated body and touch panel provided with transparent conductive laminated body
JP2015201023A (ja) * 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 透明導電膜付き基材と、このパターニング方法及び、これを用いた透明タッチパネル
KR102248460B1 (ko) * 2014-08-08 2021-05-07 삼성디스플레이 주식회사 터치 스크린 패널 및 그 제조 방법
KR102264037B1 (ko) * 2014-12-11 2021-06-11 삼성디스플레이 주식회사 투명 전극 패턴, 그 제조 방법 및 이를 포함한 터치 센서
JP2016197293A (ja) * 2015-04-02 2016-11-24 株式会社ジャパンディスプレイ センサ付き表示装置
JP2016197554A (ja) * 2015-04-03 2016-11-24 パナソニックIpマネジメント株式会社 透明配線部材の製造方法及び透明配線部材
JP7206585B2 (ja) * 2016-09-30 2023-01-18 大日本印刷株式会社 導電性フィルム、タッチパネル、および画像表示装置
CN109426386B (zh) * 2017-08-31 2021-11-30 宸鸿光电科技股份有限公司 触控面板及其制作方法

Also Published As

Publication number Publication date
KR102392231B1 (ko) 2022-04-28
WO2018101209A1 (ja) 2018-06-07
TWI661253B (zh) 2019-06-01
US20200133416A1 (en) 2020-04-30
CN110023888A (zh) 2019-07-16
US11073953B2 (en) 2021-07-27
EP3550410A1 (en) 2019-10-09
JP2020074147A (ja) 2020-05-14
EP3550410A4 (en) 2020-08-12
CN110023888B (zh) 2022-05-10
TWI683250B (zh) 2020-01-21
EP3550410B1 (en) 2022-05-18
US20190235667A1 (en) 2019-08-01
TW201831971A (zh) 2018-09-01
US10747383B2 (en) 2020-08-18
EP3690622A1 (en) 2020-08-05
KR102361068B1 (ko) 2022-02-09
JP6831930B2 (ja) 2021-02-17
TW201921238A (zh) 2019-06-01
KR20200001610A (ko) 2020-01-06
CN111208922A (zh) 2020-05-29
KR20190077456A (ko) 2019-07-03
JPWO2018101209A1 (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6831930B2 (ja) 透明電極部材および静電容量式センサ
KR101608630B1 (ko) 도전 필름
JP6853414B2 (ja) 透明電極部材、積層透明電極部材および静電容量式センサ
JP6826610B2 (ja) 静電容量式センサ
JP6406575B2 (ja) タッチパネルセンサ、タッチパネル装置および表示装置
JP6853412B2 (ja) 透明電極部材、積層透明電極部材および静電容量式センサ
WO2021019823A1 (ja) 透明電極部材、静電容量式センサおよび入出力装置
TWI672626B (zh) 靜電電容式感測器
JP7356578B2 (ja) 静電容量式センサおよび入力装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6763969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees