JP6759205B2 - 蒸留および回転蒸発装置、機器およびシステム - Google Patents

蒸留および回転蒸発装置、機器およびシステム Download PDF

Info

Publication number
JP6759205B2
JP6759205B2 JP2017528953A JP2017528953A JP6759205B2 JP 6759205 B2 JP6759205 B2 JP 6759205B2 JP 2017528953 A JP2017528953 A JP 2017528953A JP 2017528953 A JP2017528953 A JP 2017528953A JP 6759205 B2 JP6759205 B2 JP 6759205B2
Authority
JP
Japan
Prior art keywords
condenser
distillation apparatus
integrated distillation
rotary evaporator
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017528953A
Other languages
English (en)
Other versions
JP2017535420A5 (ja
JP2017535420A (ja
Inventor
ジョージ アジェーベン
ジョージ アジェーベン
Original Assignee
エコディスト インコーポレイテッド
エコディスト インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エコディスト インコーポレイテッド, エコディスト インコーポレイテッド filed Critical エコディスト インコーポレイテッド
Publication of JP2017535420A publication Critical patent/JP2017535420A/ja
Publication of JP2017535420A5 publication Critical patent/JP2017535420A5/ja
Application granted granted Critical
Publication of JP6759205B2 publication Critical patent/JP6759205B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/08Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
    • B01D3/085Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs using a rotary evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/02Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in boilers or stills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

発明の詳細な説明
[関連出願の相互参照]
本願は、2014年11月25日に出願された米国仮特許出願第62/084,097号の利益および優先権と、2015年1月30日に出願された米国仮特許出願第62/109,993号の利益および優先権とを主張し、それらの開示は、それらの全体が参照によってここに援用される。
[技術分野]
現在開示されている主題は、蒸留および回転蒸発装置、機器およびシステムに関する。現在開示されている主題はまた、そのような蒸留および回転蒸発装置、機器およびシステムの使用に関する。
[背景]
蒸留器とも称される回転蒸発器は、液体または固形物を産出するために有機および無機溶液から溶媒を取り除くために、世界中の実験室で使用されている。一般的に、そのような蒸発器または蒸留器は、溶媒を蒸発させ、次に、収集容器内へ蒸発物を凝縮することにより機能する。そのような蒸発器は、機能的である一方で、対処される必要のある制限および非効率性を有する。
必要とされるのは、コスト効率が良く使いやすい、十分な冷却および凝縮能力を提供する回転蒸発器の設計およびシステムである。さらに、特に、改善された産出および効率が実現され得る場合、完全に一体化され、より使いやすい回転蒸発器の設計が必要とされる。さらに、コンパクトで、小さな設置面積を有する回転蒸発器の設計が必要とされる。そのような利点、およびここに開示されるその他は、本開示により提供される。
[概要]
現在開示されている主題は、より少ないスペースを占める一方で効率的に動作するように構成された、一体化され且つスタンドアロンの蒸留および回転蒸発装置、機器およびシステムを提供する。すなわち、ここに提供されるような蒸留装置は、完全に一体化された単一の蒸留装置、および/または、いくつかの実施形態では、一体化された機械的な冷却/冷凍システムを含む、コンパクト設計で運転に必要なすべての部品と共に構成された回転蒸発器と、を備え得る。
上述され、また、現在開示されている主題により全体または一部が達成される、現在開示されている主題の目的、およびその他の目的は、以下に最も良く説明された付随の例示に関連して説明が進むにつれて明らかになるであろう。
現在開示されている主題は、以下の図を参照することにより、より良く理解され得る。図における部品は、必ずしも縮尺通りではなく、その代わり、現在開示されている主題の原理を(しばしば概略的に)図示することに重点が置かれている。図において、同様の参照数字は、異なる図の全体にわたって対応する部分を指している。現在開示されている主題についてのさらなる理解は、添付図面の説明に記載されている実施形態を参照することにより得ることができる。図示された実施形態は、現在開示されている主題を実行するためのシステムの単なる例示であって、現在開示されている主題の動作の構成および方法の両方と、一般的には、そのさらなる目的および利点とは、図面および以下の説明を参照することによってより容易に理解され得る。図面は、特に、添付の、または後に補正されるような請求項に記載されているこの現在開示されている主題の範囲を限定することを意図されているのではなく、現在開示されている主題を単に明確にし、例示することを意図されている。
現在開示されている主題をより完全に理解するために、ここで以下の図面を参照する。
ここに開示されるような蒸留装置の2つの実施形態の斜視図である。 開示された蒸留装置で使用されるように構成された凝縮器の部品の概略図である。 ここに開示されるような蒸留装置の断面図である。 ここに開示されるような蒸留装置の実施形態の斜視図である。 ここに開示されるような蒸留装置の動作の概略図である。 ここに開示されるような蒸留装置の2つの実施形態の斜視図である。 ここに開示されるような蒸留装置の2つの実施形態の斜視図である。 ここに開示されるような蒸留装置の2つの実施形態の斜視図である。 分解または部品図(図9A)、部分組立図(図9B)、および完全組立図(図9C)を含む回転蒸発器アセンブリの図である。 ここに開示されるような蒸留装置の実施形態の斜視図である。
[詳細な説明]
いくつかの実施形態において蒸留器または蒸留装置とも称される回転蒸発器は、液体または固体物をもたらすために有機および無機溶液から溶媒を除去するために世界中の実験室で使用される。一般的に、そのような蒸発器または蒸留器は、水槽内に置かれた間傾斜して軸上を回転する、(試料フラスコまたは蒸発フラスコと称される)丸底フラスコ、典型的には西洋梨形のフラスコに試料を入れることにより機能する。フラスコは、モータに取り付けられていて、モータは、蒸発された溶媒がジョイント(蒸気ダクト)を通って流れ且つ1つ以上の凝縮器に接触することを可能にする一方、フラスコが回転することを可能にするロータリジョイントを含むことができる。1つまたは複数の凝縮器は、蒸気を冷却することができ、結果として生じる冷却された蒸気(すなわち、液体)は、その後、凝縮器(収集フラスコ)より下のフラスコへ流下し、そこで液体が収集されることができる。
水槽は、溶媒を蒸発させるためにフラスコに十分な熱を供給するために典型的には設けられ得る。典型的には、ロータ、モータ、ロータリジョイント、凝縮器、最初の溶媒を保持するために使用されるフラスコ、および収集される際に凝縮蒸気を保持するために使用するフラスコは、ユニットが運転中は全て接続される。フラスコを水槽から取り出すために、接続された部分を上げ下げするために機械式アームが通常設けられる。
回転蒸発器の凝縮器は、水源に接続することができ、具体的には溶媒が比較的高い沸点を有する場合、関心対象の溶媒を凝縮するのに水が頻繁に受け入れられ得る。しばしば、ユーザは一日中凝縮器を通して水を流したままにするので大量の排水を生じる。さらに、溶媒が特に低い沸点を有している場合、水凝縮器が提供することができるより冷たい温度に蒸気を冷却することは有利となり得る。大量の揮発性の有機溶媒は収集されず、むしろ環境へ入りかねないので、水冷凝縮器を使用するだけでは、環境問題を生じさせる可能性がある。
特に低沸騰溶媒が使用される場合、溶媒の大部分を捕捉するように蒸気の凝縮を改善する努力がなされた。そのような場合、1つの取り組みはドライアイス凝縮器を使用することであり、この凝縮器には、ドライアイスと、任意に、所定温度を維持するためにドライアイスでスラリーを形成する溶媒とが詰められている(例えば、ドライアイス‐アセトンは−78℃の温度を維持する)。しかしながら、ガラスは熱の不良導体であるので、ドライアイス凝縮器の「コールドフィンガ」ガラスは、蒸気が凝縮される−78℃冷却面よりも温かい。また、標準的な実験室の運転温度(周囲温度)では、ドライアイスは非常に速く蒸発するので、ドライアイス凝縮器内のドライアイスを定期的または頻繁に補充する必要がある。これは費用がかかり、面倒であり、生産性に否定的な影響を及ぼす。
ここに提供されているのは蒸留装置であって、回転蒸発器、回転蒸留器、蒸留器、蒸発器等とも称される。より具体的には、ここに提供されているのは、オールインワンまたはスタンドアロンの蒸留装置として構成され、コンパクト設計で構成された蒸留装置である。すなわち、ここに提供されているような蒸留装置は、完全に一体化された単一の蒸留装置および/またはコンパクト設計で動作に必要な全ての部品で構成された回転蒸発器を備え得る。
ここに提供されている蒸留装置は、いくつかの実施形態では、例えば、冷却された凝縮ユニット等の一体化された冷却システムを備え得る。したがって、いくつかの実施形態では、開示された回転蒸発器および/または蒸留装置は、ドライアイストラップ、水の連続的な流れ、および/または再循環冷却器を使用せずに蒸発された溶媒を冷却することが可能であり得る。溶媒蒸発から発生する蒸気を凝縮することができる低温貯留槽を提供するために、機械的に冷却された冷却/冷凍システム、または冷却器を用いることにより、水の連続的な流れによる浪費を避けることができ、また、ドライアイス、および、アセトンおよびイソプロピルアルコール等の互換性を有する溶媒の利用を避けることができ、それらの双方を避けることにより、既存の回転蒸発器のさらに環境に優しい代替を提供する。さらに、特に、多数の部品を備え、且つ実質的により多くの操作空間を必要とする既存の蒸発器と比較して、開示された回転蒸発器および/または蒸留装置の構成および設計は、一体化されたコンパクトな設計で冷凍冷却/熱交換システムの使用を提供する。
回転蒸発器は、いくつかの局面では、ロータリジョイントと一体的に回転される、試料フラスコ等の試料容器を備え得る。試料フラスコは、水槽内、いくつかの実施形態では、加熱された水槽内に浸され得る。試料フラスコは、スリーブを通ってモータのロータによって挿入支持され得る蒸気ダクトを介してロータリジョイントの一端に接続され得る。ロータリジョイントの反対側には、いくつかの実施形態では、試料フラスコから蒸発された蒸気を受けることにより蒸気を凝縮するために蒸気ダクトにより接続された1つ以上の凝縮器が存在し得る。
いくつかの実施形態では、モータの本体は、ステータおよびモータハウジングにより構築され得る。例えば、モータに電流を供給することにより、モータが作動されるので、回転力が、ロータリジョイントを通じて水槽内の試料フラスコに印加され得る。いくつかの実施形態では、ロータリジョイントは、挿入領域においてスリーブにより挿入支持され得る。スリーブは、モータのロータと係合した状態で固定され得る。さらに、スリーブは、ベアリング等によって、その両端でモータ本体によって回転可能に支持され得る。いくつかの局面では、締結部材は、ロータリジョイント(蒸気ダクト)をスリーブに係合および締結するためにスリーブ内に配置され得る。締結部材は、スリーブに係合される締結キャップを備え得る。いくつかの局面では、結合部材は、ロータリジョイントの外周面上に摺動可能に取り付けられた複数のブッシュと、ブッシュ間に配置された弾力変形可能なOリングとを備えてもよく、弾性変形によりロータリジョイントの外周面およびスリーブの内面にOリングがしっかりと接触できるようにブッシュを通じた締結力によりOリングを加圧できる。気密シールが、ロータリジョイントと回転モータとの接合部に形成され得る。
モータのロータの回転は、ロータリジョイントを回転させることにより試料容器または試料フラスコを回転させるためにロータリジョイントに伝達され得る。試料フラスコが、水を加熱した水槽内に少なくとも部分的に沈められると、試料を蒸発させることができ、試料容器内に湯気または蒸気を発生させることができる。この蒸発は、その後、ロータリジョイント(蒸気ダクト)を通って凝縮器へ通過することができる。
一旦、凝縮器では、蒸発物または蒸気を例えば熱交換器等の冷却された表面と接触させることにより蒸発物または蒸気を冷却させ、液体に凝縮させることができる。一旦、液体状態になると、凝縮された試料は、凝縮器の下に位置決めされた収集フラスコ内へ重力によって滴るかまたは落ちる。いくつかの局面では、凝縮器は、凝縮器を収集フラスコに接続するジョイントまたはその他の導管を備え得る。いくつかの実施形態では、凝縮器は、対象の試料または溶媒が真空下で蒸発できるように凝縮器を真空ラインに接続するように構成されたポート、チューブまたはホースも備え得る。いくつかの実施形態では、真空は、蒸気が冷却される最大の機会を提供するために、凝縮器の最上部近くに適用されることができ、それにより、真空ポンプまたは真空トラップ等の真空システムに溶媒蒸気が移ることになる機会を最小限にすることができる。
いくつかの実施形態では、蒸留装置は、熱交換器を備える凝縮器に機械的に接続された冷却器を備える。冷却器は、冷媒が通過できる銅ライン等の冷凍ライン、受入タンク、圧縮器、冷凍凝縮器および乾燥機を含む冷凍システムを備え得る。冷凍ラインは、蒸発物を冷却する凝縮器ユニット内の熱交換器に接続され得る。いくつかの実施形態では、露出されることができ、または、いくつかの実施形態では、チタン(商用の純粋なグレードのチタンを含む)、ステンレス鋼、金属合金、プラスチック、ガラス、ネオプレンゴム等のゴム、および/またはそれらの組合せで作られた、化学的耐性を有する蒸気トラップまたはスリーブ内に収容されることができる冷却コイルは、冷凍ラインに流体的に接続され得る。いくつかの実施形態では、チタンは、その高い耐薬品性によりスリーブ内で使用される。いくつかの実施形態では、凝縮器ユニットは、冷凍ラインにおける冷媒の直接膨張により冷却される冷却コイルチャンバを備え得る。いくつかの実施形態では、熱交換器は、冷却された冷媒が通り、チタンスリーブ内に収容された銅コイルを備え得る。いくつかの実施形態では、熱交換器は、冷却されたコイル上の増加表面積に蒸気が晒されるように、二重ループされ、スリーブ内に収容されないコイルを備え得る。そのような実施形態では、二重コイルは、ステンレス鋼、チタンおよび/またはそれらの組合せを備え得る。いくつかの実施形態では、機械式冷凍システムを含む冷却器は、熱交換器/凝縮器に機械的にリンクおよび固定されることができ、これら2つが1つの単一の機器で提供される。
いくつかの実施形態では、ここに開示されるような蒸留装置は、回転蒸発器アセンブリが冷却器および凝縮器と共に蒸留装置の一体化された部品であるように回転蒸発器アセンブリを保持および位置決めするように構成された取付アームを備え得る。そのような取付アームは、ロータ、モータ、および/または、一端に試料フラスコを有する、蒸気チューブを回転可能に支持し係合させるように構成されたロータリジョイントを備え得る。蒸気チューブの反対端は、ダミー凝縮器または冷却凝縮器ユニットに係合し得る。いくつかの局面では、取付アームは、回転蒸発器アセンブリの動作および機能性を支持および促進し、回転蒸発器アセンブリを単一の蒸留装置に一体化するように構成されている。いくつかの実施形態では、取付アームは、蒸留装置のメインフレームに機械的にリンクされ、いくつかの実施形態では、水槽内に試料フラスコを最適に位置決めする必要に応じて、取付アームおよび取り付けられた回転蒸発器アセンブリを垂直に上昇させたり下降させたりできるように構成された垂直に調整可能な部材を含んでいる。いくつかの実施形態では、垂直に調整可能な部材は、トラックまたはその他の案内部品に沿って取付アームを移動させることにより取付アームを上昇させたり下降させたりするように構成された電動部材を備えている。トラックまたは案内部品は、いくつかの実施形態では、冷却器のメインフレームまたはハウジングの一部へ一体化され得る。
1つの実施形態では、ここに開示されているような蒸留装置は、収集フラスコに対して水槽を上昇させたり下降させたりするために、水槽の下に、および/または水槽内へ一体化された、調整可能なプラットフォームをさらに備え得る。いくつかの局面では、水槽の垂直および/または水平の位置決めを調整できるように、調整可能な水槽は、モータを備え得る。したがって、水槽の位置決めを調整可能であるいくつかの実施形態では、回転蒸発器自体、および回転蒸発器に取り付けられた凝縮器は、固定位置に留まり得る。いくつかの局面では、水槽を移動させることが回転蒸発器を上昇させたり下降させたりすることよりも容易になるように、水槽は、その機器の残りの部分よりも著しく軽量であり得る。
したがって、いくつかの実施形態では、ここに提供された一体化蒸留装置は、試料を蒸発させるように構成された回転蒸発器と、蒸発された試料を凝縮するように構成された凝縮器と、凝縮器を冷却するように構成された冷凍システムと、凝縮物を収集するように構成された収集容器と、蒸発器内に真空を形成するように構成された真空ポンプとを備え、部品の各々は、単一の装置へ一体化されている。さらに、いくつかの実施形態では、一体化蒸留装置は、さらに、回転力を提供するように構成された電動部品と、回転力が印加される電動部品内に挿入支持されたロータリジョイントと、ロータリジョイントの第1端に接続された試料容器と、試料容器内に置かれることができる水槽であって、熱エネルギを試料容器に供給するように構成された水槽と、ロータリジョイントの第2端へ接続された凝縮器であって、凝縮器から凝縮された凝縮蒸気を受ける収集フラスコを受け入れるように構成された凝縮器と、凝縮器に係合するように構成された冷却コイルであって、冷却コイルが冷凍システムから冷却剤を受けるように構成されることにより、凝縮器が、凝縮器と接触する蒸気を凝縮するのに十分に冷たい、冷却コイルとを備え得る。いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、試料容器に係合させるために垂直および/または水平方向に水槽を移動させるように構成された機械式リンクをさらに備え得る。
いくつかの実施形態では、冷凍システムは、凝縮器と冷媒とを備えてもよく、冷凍システムが冷却剤を凝縮器に供給することにより、蒸発器からの蒸気を凝縮する。いくつかの実施形態では、冷却剤は、凝縮器内部の二重コイルに供給され、蒸気は、二重冷却または二重コイルを囲む壁に接触する。冷凍システムは、凝縮器を約周囲温度から約−100℃へ冷却するように構成され得る。
いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、さらに、全ての部品を単一の装置へ一体化するように構成されたフレームを備えてもよく、水槽は、回転蒸発器に対して移動するように構成され、回転蒸発器、冷凍システム、収集容器、凝縮器および真空ポンプは、フレーム内に固定されている。収集容器は、真空弁により分割された第1および第2コンパートメントを備えてもよく、真空弁が蒸発器上の真空を維持し、且つ第2コンパートメントが凝縮物を収集し続けながら、第1コンパートメントは凝縮物を収集するために取り外され得る。凝縮器は、2つ以上の凝縮器を直列に備え得る。
いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、さらに、凝縮器内部に真空シールを備え得る。凝縮器内部の真空シールは、回転蒸発器が凝縮器に係合する箇所で凝縮器内部に組み込まれたOリングを備え得る。Oリングは、内部真空シールを提供し得る。
いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、さらに、凝縮器と回転蒸発器との間に配設された折り畳み可能な部材を備えてもよく、それにより、折り畳み可能な部材は、凝縮器へ接続されたまま回転蒸発器の位置決めの調節をできるように構成されている。
いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、さらに、冷凍システムおよび真空ポンプを収容し、且つ回転蒸発器および凝縮器を構造的に支持するように構成されたフレーム構造を備え得る。フレーム構造は、移動可能な位置に回転蒸発器を支持する一方、固定位置に凝縮器を支持するように構成され得る。
いくつかの実施形態では、ここに提供されるのは一体化蒸留装置であって、一体化蒸留装置は、試料を蒸発させるように構成された回転蒸発器と、蒸発された試料を凝縮するように構成された凝縮器と、凝縮器を冷却するように構成された冷凍システムとを備え、回転蒸発器、凝縮器および冷凍システムは、単一構造に一体化され、回転蒸発機は、移動可能に構造に取り付けられ、位置を垂直方向に変換するように構成され、凝縮器は、構造から延在し、且つ回転蒸発器に隣接したアームによって構造に固定され、冷凍システムは、凝縮器と流体連結している。いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、さらに、回転力を回転蒸発器に供給するように構成された電動部品を備え得る。いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、さらに、回転蒸発器の位置を垂直方向に変換する機械式リンクを備え得る。いくつかの実施形態では、ここに開示されているような一体化蒸留装置は、さらに、回転蒸発器の試料容器を沈めることが可能な、加熱された水槽を備え得る。
いくつかの実施形態では、凝縮器は、冷凍システムと流体連結している冷却コイルを備え得る。凝縮器が冷却コイルを囲むチタンスリーブを備え得ることにより、チタンスリーブが冷却コイルにより冷却され、回転蒸発器からの蒸発物は、チタンスリーブに接触して凝縮する。凝縮器が冷却コイルを囲む合金スリーブを備え得ることにより、合金スリーブが冷却コイルにより冷却され、回転蒸発器からの蒸発物は、合金スリーブと接触して凝縮する。
ここで、図面を参照すると、ここに提供されるような一体型オールインワン蒸留装置の2つの実施形態が、図1Aおよび1Bに図示されている。図1Aおよび1Bで示されるように、完全に一体化されたオールインワン蒸留装置100および102はそれぞれ、冷却器120、回転蒸発器アセンブリ140、および凝縮器180を備え得る。いくつかの実施形態では、図1Aおよび1Bで示されるように、冷却器120、回転蒸発器アセンブリ140、および凝縮器180は、運転エリアおよび/または設置面積を最小限にする一方で、効果的且つ効率的な蒸留システムを提供するような方法で要素をコンパクトに配置するように構成された単一の機器または装置へ一体化されることができる。例えば、蒸留装置100および102の設置面積または運転エリアは、装置の外寸法の長さL、幅W、および/またはそれらの組合せ(例えば平方インチの面積)により定義され得る。あるいは、もしくはさらに、蒸留装置100および102の設置面積または運転エリアは、ハウジング/フレームのベースまたはプラットフォーム寸法の長さX、幅Y、および/またはそれらの組合せ(例えば、平方インチの面積)により定義され得る。
図1Aを続けると、蒸留装置100は冷却器120を備え得る。冷却器120は、いくつかの実施形態では、上ハウジング126が下ハウジング122から略垂直に延在する状態で、下ハウジング122と上ハウジング126とを備え得る。いくつかの実施形態では、冷却器120は、上ハウジング126から略水平に延在し、且つ冷却器120へ凝縮器180を支持し機械的に接続するように構成された凝縮器アーム124を備え得る。冷却器120は、下ハウジング122および上ハウジング126内に収容され、凝縮器180を冷却するために冷却された冷媒を提供するように凝縮器アーム124を通って続いている、一体型冷凍システム(図3参照)を備え得る。いくつかの実施形態において、下ハウジング122は、例えば、受入タンク、圧縮器、冷凍凝縮器および乾燥機(図3参照)等の冷凍システムの部品を(単独で、または上ハウジング126と協同して)収容することができ、これら部品の全てまたは幾つかは、上ハウジング126および凝縮器アーム124を通ることにより冷凍ライン(銅管)により凝縮器180に接続され得る。いくつかの実施形態では、下ハウジング122は、ハウジング122内への、およびハウジング122内に収容された冷凍システムの周りへの気流を許容するように構成された換気格子194を備え得る。
取付アーム154は、上ハウジング126に機械的にリンクされることができ、上ハウジング126から(いくつかの実施形態では略水平に)延在し得る。回転蒸発器アセンブリ140が、冷却器120および凝縮器180と共に蒸留装置100の一体型部品であるように、または取付アーム154に取り付けることにより冷却器120および凝縮器180と共に蒸留装置100の一体型部品になり得るように、取付アーム154は、回転蒸発器アセンブリ140を支持、保持、および/または位置決めするように構成され得る。いくつかの実施形態において、水槽内に試料フラスコを最適に位置決めする必要に応じて取付アーム154および取り付けられた回転蒸発器アセンブリ140を垂直に上昇させたり下降させたりすることができるように構成された垂直に調整可能な部材160により、取付アーム154は上ハウジング126に機械的にリンクされ得る。いくつかの実施形態において、垂直に調整可能な部材160は、トラックまたはその他の案内部品に沿って取付アーム154を移動させることにより取付アーム154を上昇させたり下降させたりするように構成された電動部材を備え得る。垂直に調整可能な部材160のトラックまたは案内部品は、いくつかの実施形態では、例えば上ハウジング126等の冷却器のメインフレームまたはハウジングの一部分へ一体化され得る。
回転蒸発器アセンブリ140は、一端に試料フラスコ142を有するロータリジョイント(蒸気ダクト)150を備えることができるので、試料フラスコ142を、ロータリジョイント150と一体的に回転させることができる。試料フラスコ142は、試料フラスコ142内の試料または溶媒の蒸発を引き起こすために、水槽156、いくつかの実施形態では、加熱された水槽内に、浸したり、入れたり、または沈めたりすることができる。水槽156は、発熱体およびコントローラまたは水槽に入れられた水またはその他の液体/流体を加熱するためのその他の構成を備え得る。試料フラスコ142は、開口部324を通る(およびいくつかの実施形態ではクリップ322により固定された)ロータリジョイント150の一端に接続されることができ、蒸気ダクトは、取付アーム154内に収容されたスリーブを通るモータのロータにより挿入支持され得る。蒸気ダクト/ロータリジョイント150は、試料回転のための軸、および試料から取り出されている蒸気のための真空気密導管としての両方の役目を果たし得る。いくつかの実施形態においては、試料フラスコ142から蒸発した蒸気を受けて蒸気を凝縮するために蒸気ダクト150により接続された1つ以上の凝縮器(凝縮器180および/またはダミー凝縮器144)がロータリジョイント150の反対側に存在し得る。いくつかの実施形態では、ダミー凝縮器144を使用することができ、このダミー凝縮器は、上部分146および下部分148と、取付アーム154に固定された接続アーム328であって、接続アーム328を通ってロータリジョイント150が上部分146内へ入る接続アーム328とを備え得る。
図1Aを続けると、蒸発(試料)フラスコ142は、水槽156に沈められ得る。ロータリジョイント(蒸気ダクト)150により蒸発フラスコ142に伝達されているモータにより提供される回転力で、蒸発フラスコ142を取付アーム154内に収容されたモータを用いて回転させることができる。ロータリジョイント150は、取付アーム154を貫通/連通することができる。ロータリジョイント150は、導管を提供し、この導管を通って、蒸発フラスコ142内の試料または溶媒からの蒸発物(蒸気)が蒸気ダクト150に取り付けられた凝縮器180、または蒸気ダクト150と連通する凝縮器180へ通過することができる。
凝縮器180内に一旦入ると、蒸気を冷却することができるので、導管158経由で蒸気を再度凝縮させて収集フラスコ186内へ落とすことができる。収集フラスコ186は、いくつかの実施形態において、解放可能なジョイント192によって取り外されることができ、このジョイント192は、いくつかの実施形態では、収集フラスコ186が再び取り付けられるまで、凝縮器180および/または回転蒸発器140内の真空を維持するためにバルブを備え得る。(蒸発により)溶媒が取り除かれた後、垂直に調整可能な部材160を介して取付アーム154を上昇させることにより、蒸発フラスコ142を水槽156から取り出すことができ、この調整可能な部材160は、いくつかの実施形態では、トラックおよびモータまたはその他の機械式ユニットを備え得る。
図1Aを続けると、下ハウジング122の上、且つ上ハウジング126に隣接して水槽156を配置することができる。特に、水槽が一体化されず、その代わり、蒸留装置に隣接している表面上に水槽が置かれるかまたは配置されている蒸留システムと比較して、そのような構成は、蒸留装置100の設置面積を最小限にすることができる。さらに、上部ハウジング126上に配置され、垂直に調整可能な取付アーム154によって、水槽156を移動させることを要せずにサンプルフラスコ142を水槽156内に置いたりまたは水槽156から取り出したりすることができるように、回転蒸発器アセンブリ140を上昇させたり下降させたりすることができる。これらの部品を垂直に配向することにより、オールインワンに一体化された蒸留装置100の全体の設置面積は、特に非一体化システムと比較して大幅に縮小される。
クランプ196、または、例えば、ねじ山、ねじ、ボルト、圧力金具等のその他の取付機構により凝縮器180を凝縮器アーム124に取り付けることができる。凝縮器180は、凝縮器コイル182、凝縮器スリーブ198および凝縮器ハウジング184を備え得る。凝縮器コイル182は、熱交換器または「コールドフィンガ」を形成するために凝縮器スリーブ198内側に嵌合または摺動するように構成され得る。凝縮器コイル182は、いくつかの実施形態では、冷却および熱交換のために表面積を増加させるために二重ループとすることができる。凝縮器コイル182を通過する冷却された冷媒が凝縮器スリーブ198上で冷却効果を引き起こすように凝縮器コイル182を冷却器120内の一体化冷凍システムに流体連結することができる。凝縮器ハウジング184に入る回転蒸発器140からの蒸発物または蒸気が、凝縮器スリーブ198の冷たい表面と接触することができることにより、蒸気が収集フラスコ186内に収集される液体に凝縮される。全てまたは略全ての蒸気を捕捉し、環境への影響が低減されるようにこれらの蒸気を凝縮するための効率的なメカニズムを凝縮器180の構成は提供する。
いくつかの実施形態では、凝縮器コイル182は、連続ループを形成することにより、凝縮器180内の熱交換器から冷却器120内の機械式冷凍システムまで流れる冷媒材料または化合物の連続した流れを提供するコイル状の銅ラインを備え得る。いくつかの実施形態では、図1Aで示されるように、蒸発物(蒸気)の直接冷却のために凝縮器コイル182を露出させることができるが、この凝縮器コイル182は、チタン(商用の純粋なグレードのチタンを含む)、ステンレス鋼、金属合金、プラスチック、ガラス、ネオプレンゴム等のゴム、および/またはそれらの組合せで作られた、化学的耐性の蒸気トラップを備えることができる凝縮器スリーブ198により覆われ得る。いくつかの実施形態では、熱交換器は、蒸気が冷却されたコイル上の増大した面積に晒されるように二重ループされスリーブ198に収容されていないコイル182を備え得る。そのような実施形態では、二重コイルは、ステンレス鋼、チタンおよび/またはそれらの組合せを備え得る。図1Aで示されるように、また、スペース利用を最小限にするスタンドアロンで完全に一体化されたシステムを達成するために、機械式冷凍システムを含む冷却器120を、冷却器および熱交換器/凝縮器180の2つが1つの単一機器で提供されるように熱交換器/凝縮器180に機械的にリンクおよび固定することができる。
凝縮器ハウジング184は、凝縮器コイル182および凝縮器スリーブ198を含む熱交換器を取り囲むガラス容器を備え得る。気密シールを形成するためにクランプ196により凝縮器ハウジング184を凝縮器アーム124に取り付けることができる。凝縮器ハウジング184は、回転蒸発器アセンブリ140から蒸発物または蒸気を受け取るためのエントリポート188、およびいくつかの実施形態では第2エントリポート188’を備え得る。真空ポート190を、いくつかの実施形態において、(いくつかの場合において最上部近くに)設けることができ、真空ポンプから真空ラインを受け入れることにより凝縮器ハウジング184の内部環境に真空を生じさせるように真空ポート190を構成することができる。いくつかの実施形態では、真空ポンプおよびコントローラを含む真空システムを、蒸発器システム内の圧力を低減するために、例えば下ハウジング120内を含む、蒸留装置100内に設けることができる。凝縮器180内の熱交換器198と接触することにより液体へ凝縮する蒸発物または蒸気は、導管158を通過することにより収集フラスコ186内に集まることができる。いくつかの実施形態では、ジョイント192は、動作中にシステムの真空を壊すことなく、収集フラスコ(受けフラスコ)186を取り外せるように構成され得る導管158上に位置決めされ得る。そのようなジョイント192は、収集フラスコ186を取り外す間に真空を維持するためにバルブを備え得る。
次に図1Bを参照すると、蒸留装置102は、冷却器120を備え得る。冷却器120は、いくつかの実施形態では、プラットフォーム170上に任意に支持されたメインハウジング132を備え得る。いくつかの実施形態では、冷却器120は、メインハウジング132から、また他のいくつかの実施形態では、メインハウジング132の上部分から略水平に延在し、冷却器120へ凝縮器180を支持し機械的に接続するように構成された凝縮器アーム134を備え得る。メインハウジング132内に収容され、凝縮器180を冷却するために冷却された冷媒を供給するように凝縮器アーム124を通って続いている、一体化冷凍システム(図3参照)を冷却器120は備え得る。いくつかの実施形態において、メインハウジング132は、(単独または凝縮器アーム134と協同して)例えば、受入タンク、圧縮器、冷凍凝縮器および乾燥機(図3参照)等の冷凍システムの部品を収容することができ、これら部品の全てまたはいくつかは、凝縮器アーム134を貫通することにより冷凍ライン(銅管)により凝縮器180に接続されることができる。いくつかの実施形態では、メインハウジング132は、ハウジング132内、およびそこに収容された冷凍システムの周りに気流を流せるように構成された換気格子194を備え得る。
取付アーム154をメインハウジング132に機械的にリンクさせることができ、メインハウジング132から(いくつかの実施形態では略水平に)延在させることができる。回転蒸発器アセンブリ140が、冷却器120および凝縮器180と共に蒸留装置102の一体型部品であるように、または取付アーム154に取り付けることにより冷却器120および凝縮器180と共に蒸留装置102の一体型部品になり得るように、回転蒸発器アセンブリ140を支持、保持、および/または位置決めするように取付アーム154を構成することができる。いくつかの実施形態では、水槽内に試料フラスコを最適に位置決めする必要に応じて取付アーム154および取り付けられた回転蒸発器アセンブリ140を垂直に上昇させたり下降させたりすることができるように構成された垂直に調整可能な部材162により、取付アーム154をメインハウジング132に機械的にリンクさせることができる。いくつかの実施形態では、垂直に調整可能な部材162は、トラック160またはその他の案内部品に沿って取付アーム154を移動させることにより取付アーム154を上昇させたり下降させたりするように構成された電動部材を備え得る。垂直に調整可能な部材162のトラックまたは案内部品は、いくつかの実施形態では、例えばメインハウジング132等の冷却器のメインフレームまたはハウジングの一部分へ一体化され得る。
回転蒸発器アセンブリ140は、一端に試料フラスコ142を有するロータリジョイント(蒸気ダクト)150を備えることができるので、試料フラスコ142をロータリジョイント150と一体的に回転させることができる。試料フラスコ142内の試料または溶媒の蒸発を引き起こすために、試料フラスコ142を水槽156、いくつかの実施形態では、加熱された水槽内に、浸したり、入れたり、または沈めたりすることができる。水槽156は、発熱体およびコントローラまたは水槽156に入れられた水またはその他の液体/流体を加熱するためのその他の構成を備え得る。試料フラスコ142は、取付アーム154内に収容されたスリーブを通ってモータのロータにより挿入支持され得る蒸気ダクトを介してロータリジョイント150の一端に接続され得る。蒸気ダクト/ロータリジョイント150は、試料回転のための軸、および試料から取り出されている蒸気のための真空気密導管としての両方の役割を果たし得る。いくつかの実施形態では、試料フラスコ142から蒸発した蒸気を受けて凝縮するために蒸気ダクト150により接続された1つ以上の凝縮器(凝縮器180および/またはダミー凝縮器144)がロータリジョイント150の反対側に存在し得る。いくつかの実施形態では、ダミー凝縮器144を使用することができ、このダミー凝縮器は、上部分146と下部分148とを備え得る。
図1Bを続けると、蒸発(試料)フラスコ142は、水槽156に沈められ得る。ロータリジョイント(蒸気ダクト)150により蒸発フラスコ142に伝達されているモータにより提供される回転力で、蒸発フラスコ142を取付アーム154内に収容されたモータを用いて回転させることができる。ロータリジョイント150は、取付アーム154を貫通/連通することができる。共に、ロータリジョイント(蒸気ダクト)150は、導管を提供し、この導管を通って、蒸発フラスコ142内の試料または溶媒からの蒸発物(蒸気)が(図4に図示された)蒸気ダクト150に取り付けられた凝縮器180、または蒸気ダクト150と連通する凝縮器180へ通過することができる。凝縮器180内に一旦入ると、蒸気が冷却されることにより、蒸気を再度凝縮させて収集フラスコ186内へ落とすことができる。(蒸発により)溶媒が取り除かれた後、垂直に調整可能な部材162を介して取付アーム154を上昇させることにより、蒸発フラスコ142を水槽156から取り出すことができ、この調整可能な部材は、いくつかの実施形態では、トラックおよびモータまたはその他の機械式ユニットを備え得る。
図1Bを続けると、水槽156は、メインハウジング132の前に配置され得る。特に、水槽が一体化される代わりに、蒸留装置に隣接している表面上に水槽が置かれるかまたは配置されている蒸留システムと比較して、そのような構成は、蒸留装置100の設置面積を最小限にすることができる。さらに、メインハウジング132上に配置され、垂直に調整可能な取付アーム154によって、水槽156を移動させる必要なく、試料フラスコ142を水槽156内に置いたりまたは水槽156から取り出したりすることができるように、回転蒸発器アセンブリ140を上昇させたり下降させたりすることができる。これらの部品を垂直に配向することにより、オールインワンに一体化された蒸留装置102の全体の設置面積が特に非一体化システムと比較して大幅に縮小される。
凝縮器180は、クランプ196、または、例えば、ねじ山、ねじ、ボルト、圧力金具等のその他の取付機構により凝縮器アーム134に取り付けられ得る。凝縮器180は、さもなければ、図1Aに図示された実施形態にあるような図1Bに図示された実施形態と同一である。
図2A−2Eは、開示された蒸留装置の1つ以上の実施形態で使用され得る、いくつかの実施形態での凝縮器装置を図示している。図2Aは、いくつかの実施形態では、銅管材料、ステンレス鋼、あるいはチタン等のその他の適切な合金から作られた凝縮器コイル182を示している。いくつかの実施形態では、凝縮器コイル182は、銅の内部被覆を有するチタン材料を備え得る。凝縮器コイル182は、コイルを通り抜ける冷却された冷却剤または冷媒の流れを受け入れるための入口ライン202と、コイルを通り抜けた後の出て行く冷却剤または冷媒のための導管として構成され、且つ熱交換器として機能している出口ライン204とを有し得る。入口ライン202および出口ライン204は、冷却器120の一体化冷凍システムに接続されるように構成されている。凝縮器コイル182は、いくつかの実施形態において、冷却および熱交換のための表面積を増加させるために二重ループにされ得る。
図2Bは、チタン(商用の純粋なグレードのチタンを含む)、ステンレス鋼、金属合金、プラスチック、ガラス、ネオプレンゴム等のゴム、および/またはそれらの組合せであって、それらに限定されない耐薬品性の材料を備え得る凝縮器スリーブ198を示す。いくつかの実施形態では、チタンはその高い耐薬品性によりスリーブ内で使用される。いくつかの実施形態において、凝縮器スリーブ198は、包囲された下端および開口した上端212を有し、且つ図2Dに図示されるような凝縮器コイル182を受け入れるのに、またはこの凝縮器コイル182と摺動的に係合するのに十分な直径を有するチタンの管状構造を備え得る。凝縮器スリーブ198は、凝縮器スリーブ198の管状構造より大きな直径を有するカラー210を備えることができ、いくつかの実施形態では、例えば、ねじ山、ピン、スロット、ねじおよび/またはその他の取付/固定機構により凝縮器アーム124、134に機械的に係合するように構成され得る。
図2Cは、凝縮器コイル182および凝縮器スリーブ198を含む熱交換器を封入し、またはそうでなければ囲むように構成されたガラス容器をいくつかの実施形態では備えている凝縮器ハウジング184の実施形態を図示している。凝縮器ハウジング184は、気密シールを形成するためにクランプあるいは他の固定機構により凝縮器アーム124、134に取り付けることができ、いくつかの実施形態では、凝縮器スリーブ198のカラー210に当接することができる。凝縮器ハウジング184は、凝縮器スリーブ198および/または凝縮器コイル182を上部開口端214内に受け入れるために十分な直径の略円筒状のガラススリーブを備え得る。
凝縮器ハウジング184は、回転蒸発器アセンブリから蒸発物または蒸気を受け入れるためのエントリポート188、およびいくつかの実施形態では、第2エントリポート188’を備え得る。いくつかの実施形態では、真空ポート190を(いくつかの場合では最上部近くに)設けることができ、真空ポート190は、真空ポンプから真空ラインを受け入れることにより凝縮器ハウジング184の内部環境に真空を生じさせるように構成され得る。凝縮器180内の熱交換器198と接触することにより液体へ凝縮する蒸発物または蒸気は、導管158を通過することにより収集フラスコ186内に集まり得る。いくつかの実施形態では、ジョイント192は、動作中にシステムの真空を壊すことなく、収集フラスコ(受け入れフラスコ)186の取り外しができるように構成され得る導管158上に位置決めされ得る。そのようなジョイント192は、収集フラスコ186を取り外す間に真空を維持するためにバルブを備え得る。いくつかの実施形態では、例えば図2Eに示すように、収集容器CVは、真空弁あるいはジョイント192によって分割された第1コンパートメント187aと第2コンパートメント187bとを備えることができ、真空弁あるいはジョイント192が蒸発器上の真空を維持し且つ第2コンパートメント187bが凝縮物を収集し続けながら、第1コンパートメント187aは凝縮物を収集するために取り外し可能である。凝縮器は、2つ以上の凝縮器を直列に備え得る。
図2Dは、凝縮器スリーブ198であって、熱交換器または「コールドフィンガ」を形成するために凝縮器スリーブ198内に存在している凝縮器コイル182を有する凝縮器スリーブ198の破断図を図示している。同様に、図2Eは、凝縮器ハウジング184であって、凝縮器ハウジング184内に存在している凝縮器スリーブ198を有する凝縮器ハウジング184を図示している(尚、凝縮器スリーブ198内部の凝縮器コイル182の存在を示している凝縮器スリーブ198の開口部212上に延在している凝縮器コイル182の入口ライン202および出口ライン204に留意されたい)。
図3は、ここに開示されるような蒸留装置の断面図である。図示の目的で、図3のみが図1Bに示された実施形態の断面図に最もよく似ているが、図3に示された冷凍システムおよび凝縮器システムの部品は、他の実施形態および構成に等しく適用可能である。図3に図示されているように、蒸留装置102は、凝縮器アーム134により接続された冷却器120と凝縮器180とを備え得る。凝縮器スリーブ198内部の凝縮器コイル182は、冷却器120内の冷凍システムと共に導管408経由で連続的なループを形成する。いくつかの実施形態では、導管408は、銅管を備え、この銅管は、冷凍システムを通る冷却剤または冷媒化合物が凝縮器コイル182内へ流れ、連続的なループ内の冷凍システムを通って戻る流体的な流れを、熱交換器として機能する凝縮器スリーブ198と共に、促進する。冷凍システムは、受入タンク404、圧縮器402、冷凍凝縮器400および乾燥機406を備え得る。冷凍システムの全ての、または略全ての部品は、冷却器120のメインハウジング132内部に収容され得る。
図4は、凝縮器へ接続された一体化回転蒸発器アセンブリを有する蒸留装置の斜視図である。特に、蒸留装置100は、回転蒸発器アセンブリ140と凝縮器180との間で管等の接続部を追加している以外、図1Aに開示された蒸留装置100と類似している。本実施形態では、ダミー凝縮器144は、管240および242により凝縮器180に接続され得る。特に、いくつかの実施形態では、上部分146は、出口332を介して入口188’に接続され得る一方で、下部分148は、出口/導管336介して入口188に接続され得るか、またはその逆もあり得る。いくつかの実施形態では、ダミー凝縮器144の下部分148は、管242を介して接続されないときに閉鎖され得るバルブ244を備える出口またはポートを備え得る。したがって、いくつかの実施形態では、上部分146だけがいずれかの入口188または188’で管240により凝縮器180に接続され得る。あるいは、両方の管240および242が、単一の入口188または188’に接続し得る。
管240および242は、屈曲性を有する管材料であって、回転蒸発器アセンブリ140を凝縮器180に接続できる一方で、凝縮器180を分離することを必要とせずに、水槽156内の試料フラスコ142を沈めるかあるいは取り出す必要に応じて回転蒸発器アセンブリ140を上昇させたり下降させたりできる屈曲性を有する管材料であり得る。ダミー凝縮器144を使用することにより、そのような構成によって、一体化蒸留装置における回転蒸発器アセンブリ140の自由な移動および調整が可能になる。そのような利点はその他のシステムによっては得られない。
さらに、いくつかの実施形態では、真空ライン246は、真空システムまたはポンプ(図示せず)を真空ポート190に接続することができる。いくつかの実施形態では、真空システムまたはポンプは、例えば、ハウジング122内へ一体化されることができ、またはスタンドアロン分離ユニットであることができる。
図5は、例えば回転蒸発器アセンブリから冷却器または冷却システムまで含んでいる、ここに開示されるような蒸留装置での、熱エネルギの流れまたは移動を図示する概略図500である。第1ステップ1において、回転蒸発器アセンブリからの熱は、凝縮器/熱交換器502により捕えられることができ、且つ冷媒化合物介して受入タンク504および圧縮器506を通って導かれることができる。第2ステップ2では、熱は冷凍凝縮器508により冷媒化合物から取り除かれることができる。第3ステップ3では、冷却された冷媒化合物は、乾燥機510を通過することができ、次に第4ステップ4では、この冷媒化合物は、回転蒸発器により発生された熱を捕らえるために凝縮器/熱交換器502へ再循環されることができる。開示された蒸留装置の一体化された設計は、自己内蔵型でコンパクトなシステムにおいて回転蒸発器システムから冷凍システム(冷却システム)への熱エネルギのこの効率的な移動を提供する。
図6Aおよび6Bは、ここに開示された蒸留装置の代替実施形態を図示する。蒸留装置104および106は、図1Aに図示された蒸留装置100と類似しているが、水槽250の構成が異なっている。回転蒸発器アセンブリは、簡単化のために図6Aおよび6Bにおいて示されていないが、ここに記載され、図、例えば、図1Aに示されるように取り付けられ、組み込まれることができることは留意されたい。
図6Aでは、水槽250は下ハウジング122の上側に置かれ、プラットフォーム252上に載っている。プラットフォーム252は、回転蒸発器に位置合わせされる必要に応じて、水槽250の位置を移すために水平方向に移動するように構成され得る。あるいは、またはさらに、プラットフォーム252は、回転蒸発器に位置合わせされる必要に応じて、水槽250の位置を移すために垂直方向および/または垂直ならびに水平方向に移動するように構成され得る。
図6Bでは、水槽250は、下ハウジング122の前、または正面部分上に置かれ、プラットフォーム252上に載っている。プラットフォーム252は、回転蒸発器に位置合わせする必要に応じて、水槽250の位置を上げたり下げたりするために垂直方向に移動するように構成され得る。あるいは、またはさらに、プラットフォーム252は、回転蒸発器に位置合わせする必要に応じて、水槽250の位置を移すために水平方向および/または垂直ならびに水平方向に移動するように構成され得る。
図7Aおよび7Bは、ここに開示された蒸留装置の実施形態を図示する。図7Aおよび7Bにおける蒸留装置108および110はそれぞれ、固定凝縮器アームおよびダミー凝縮器以外、それぞれ蒸留装置100および102と類似している。図7Aおよび7Bに図示されたデザインでは、固定凝縮器アーム(図1Aおよび1Bにおける凝縮器アーム124および134をそれぞれ参照)は、屈曲可能な冷却剤ライン248に置換されている。さらに、図7Aおよび7Bに図示される構成においては、ダミー凝縮器144は必要とされない。
詳細に述べると、図7Aおよび7Bに示されるように、完全に一体化されたオールインワン蒸留装置108および110はそれぞれ、冷却器120、回転蒸発器アセンブリ140、および凝縮器180を備え得る。いくつかの実施形態では、図1Aおよび1Bに示されるように、冷却器120、回転蒸発器アセンブリ140、および凝縮器180は、運転エリアおよび/または設置面積を最小限にする一方で、効果的且つ効率的な蒸留システムを提供するような方法で要素をコンパクトに配置するように構成された単一の機器または装置へ一体化され得る。
図7Aを続けると、蒸留装置100は、冷却器120を備え得る。冷却器120は、いくつかの実施形態では、上ハウジング126が下ハウジング122から略垂直に延在している状態で、下ハウジング122および上ハウジング126を備え得る。いくつかの実施形態では、冷却器120は、凝縮器180を冷却器120に流体的に接続している上ハウジング126から延在している屈曲可能な冷却剤ライン248を備え得る。冷却器120は、下ハウジング122および上ハウジング126内に収容され、凝縮器180を冷却するために冷却された冷媒を提供するように屈曲可能な冷却剤ライン248を通って続いている、一体型冷凍システム(図3参照)を備え得る。いくつかの実施形態では、下ハウジング122は、例えば、受入タンク、圧縮器、冷凍凝縮器および乾燥機(図3参照)等の冷凍システムの部品を(単独で、または上ハウジング126と協同して)収容することができ、これら部品の全てまたはいくつかは、上ハウジング126および屈曲可能な冷却剤ライン248を通ることにより冷凍ライン(銅管)により凝縮器180に接続されることができる。いくつかの実施形態では、下ハウジング122は、ハウジング122内へ、およびハウジング122内に収容された冷凍システムの周りへ気流が流れることができるように構成された換気格子194を備え得る。
取付アーム154は、上ハウジング126に機械的にリンクされることができ、上ハウジング126から(いくつかの実施形態では略水平に)延在することができる。取付アーム154は、回転蒸発器アセンブリ140が、冷却器120および凝縮器180と共に蒸留装置100の一体型部品であるように、または取付アーム154に取り付けることにより冷却器120および凝縮器180と共に蒸留装置100の一体型部品になり得るように、回転蒸発器アセンブリ140を支持、保持、および/または位置決めするように構成され得る。いくつかの実施形態では、取付アーム154は、水槽内に試料フラスコを最適に位置決めする必要に応じて取付アーム154および取り付けられた回転蒸発器アセンブリを垂直に上昇させたり下降させたりすることができるように構成された垂直に調整可能な部材160により、上ハウジングに機械的にリンクされ得る。いくつかの実施形態では、垂直に調整可能な部材160は、トラックまたはその他の案内部品に沿って取付アーム154を移動させることにより取付アーム154を上昇させたり下降させたりするように構成された電動部材を備え得る。垂直に調整可能な部材160のトラックまたは案内部品は、いくつかの実施形態では、例えば上ハウジング126等の冷却器のメインフレームまたはハウジングの一部分へ一体化され得る。
回転蒸発器アセンブリ140が一端に試料フラスコ142を有するロータリジョイント(蒸気ダクト)150を備えることができることにより、試料フラスコ142をロータリジョイント150と一体的に回転させることができる。試料フラスコ142内の試料または溶媒の蒸発を引き起こすために、試料フラスコ142を水槽156、いくつかの実施形態では、加熱された水槽内に、浸したり、入れたり、または沈めたりすることができる。水槽156は、発熱体およびコントローラまたは水槽156に入れられた水またはその他の液体/流体を加熱するためのその他の構成を備え得る。試料フラスコ142は、取付アーム154内に収容されたスリーブを通ってモータのロータにより挿入支持され得る蒸気ダクトを介してロータリジョイントの一端に接続され得る。蒸気ダクト/ロータリジョイント150は、試料回転のための軸、および試料から取り出されている蒸気のための真空気密導管の双方として機能し得る。いくつかの実施形態では、試料フラスコ142から蒸発した蒸気を受けることにより、蒸気を凝縮するために蒸気ダクト150により接続された凝縮器180がロータリジョイント150の反対側にあってもよい。
図7Aを続けると、蒸発(試料)フラスコ142は、水槽156に沈められ得る。ロータリジョイント(蒸気ダクト)150により蒸発フラスコ142に伝達されているモータにより提供される回転力で、蒸発フラスコ142を取付アーム154内に収容されたモータを用いて回転させることができる。ロータリジョイント150は、取付アーム154を貫通/連通し得る。共に、ロータリジョイント150は、導管を提供することができ、導管を通って、蒸発フラスコ142内の試料または溶媒からの蒸発物(蒸気)が蒸気ダクト150に取り付けられた凝縮器180、または蒸気ダクト150と連通する凝縮器180内へ通過し得る。凝縮器180内に一旦入ると、蒸気は冷却されることにより、再度凝縮して、収集フラスコ186内へ落ち得る。(蒸発により)溶媒が取り除かれた後、垂直に調整可能な部材160を介して取付アーム154を上昇させることにより、蒸発フラスコ142を水槽156から取り出すことができ、この調整可能な部材160は、いくつかの実施形態において、トラックおよびモータまたはその他の機械式ユニットを備え得る。
図7Aを続けると、水槽156は、下ハウジング122の上で且つ上ハウジング126に隣接して配置され得る。特に、水槽が一体化されず、その代わりに、蒸留装置に隣接している表面上に水槽が置かれまたは配置されている蒸留システムと比較して、そのような構成は蒸留装置100の設置面積を最小限にすることができる。さらに、上部ハウジング126上に配置され、垂直に調整可能な取付アーム154により、水槽156を移動させることを要せずに試料フラスコ142を水槽156内に置いたりまたは水槽156から取り出すことができるように、回転蒸発器アセンブリ140を上昇させたり下降させたりすることができる。これらの部品を垂直に配向することにより、オールインワンへ一体化された蒸留装置100の全体の設置面積は、特に非一体化システムと比較して大幅に縮小される。
凝縮器180の全ての部品は、図1Aに関してすでに説明された部品と類似し得る。
ここで図7Bを参照すると、蒸留装置102は、冷却器120を備え得る。冷却器120は、いくつかの実施形態では、プラットフォーム170上に任意に支持されたメインハウジング132を備え得る。いくつかの実施形態において、冷却器120は、メインハウジング132から延在している屈曲可能な冷却剤ライン248であって、凝縮器180を冷却器120に流体的に接続するように構成された屈曲可能な冷却剤ライン248を備え得る。冷却器120は、メインハウジング132内に収容され、且つ凝縮器180を冷却するために冷却された冷媒を供給するように屈曲可能な冷却剤ライン248を連通している、一体化冷凍システム(図3参照)を備え得る。いくつかの実施形態では、メインハウジング132は、(単独または凝縮器アーム134と協同して)例えば、受入タンク、圧縮器、冷凍凝縮器および乾燥機(図3参照)等の冷凍システムの部品を収容することができ、これら部品の全てまたはいくつかは、屈曲可能な冷却剤ライン248を貫通することにより冷凍ライン(銅管)により凝縮器180に接続され得る。いくつかの実施形態では、メインハウジング132は、ハウジング132内、およびハウジング132内に収容された冷凍システムの周りに気流を流すことができるように構成された換気格子194を備え得る。
取付アーム154は、メインハウジング132に機械的にリンクされることができ、メインハウジング132から(いくつかの実施形態では略水平に)延在し得る。回転蒸発器アセンブリ140が、冷却器120および凝縮器180と共に蒸留装置102の一体型部品であるように、または取付アーム154に取り付けることにより冷却器120および凝縮器180と共に蒸留装置102の一体型部品になり得るように、回転蒸発器アセンブリを支持、保持、および/または位置決めするように取付アーム154を構成することができる。いくつかの実施形態では、水槽内に試料フラスコを最適に位置決めする必要に応じて取付アーム154および取り付けられた回転蒸発器アセンブリ140を垂直に上昇させたり下降させたりすることができるように構成された垂直に調整可能な部材162により、取付アーム154はメインハウジング132に機械的にリンクされ得る。いくつかの実施形態において、垂直に調整可能な部材162は、トラック160またはその他の案内部品に沿って取付アーム154を移動させることにより取付アーム154を上昇させたり下降させたりするように構成された電動部材を備え得る。垂直に調整可能な部材162のトラックまたは案内部品は、いくつかの実施形態では、例えばメインハウジング132等の冷却器のメインフレームまたはハウジングの一部分へ一体化され得る。
回転蒸発器アセンブリ140は、一端に試料フラスコ142を有するロータリジョイント(蒸気ダクト)150を備えることができるので、試料フラスコ142をロータリジョイント150と一体的に回転させることができる。試料フラスコ142内の試料または溶媒の蒸発を引き起こすために、試料フラスコ142を水槽156内に、いくつかの実施形態では、加熱された水槽内に浸したり、入れたり、または沈めたりすることができる。水槽156は、発熱体およびコントローラまたは水槽156に入れられた水またはその他の液体/流体を加熱するためのその他の構成を備え得る。試料フラスコ142は、取付アーム154内に収容されたスリーブを通ってモータのロータにより挿入支持され得る蒸気ダクトを介してロータリジョイント150の一端に接続され得る。蒸気ダクト/ロータリジョイント150は、試料回転のための軸、および試料から取り出されている蒸気のための真空気密導管の双方として機能することができる。いくつかの実施形態では、試料フラスコ142から蒸発した蒸気を受けることで、蒸気を凝縮するために蒸気ダクト150により接続された凝縮器180がロータリジョイント150の反対側にあってもよい。
図7Bを続けると、蒸発(試料)フラスコ142を水槽156に沈めることができる。ロータリジョイント(蒸気ダクト)150により蒸発フラスコ142に伝達されているモータにより提供される回転力で、蒸発フラスコ142を取付アーム154内に収容されたモータを用いて回転させることができる。ロータリジョイント150は、取付アーム154を貫通/連通することができる。共に、ロータリジョイント150は、導管を提供し、導管を通って、蒸発フラスコ142内の試料または溶媒からの蒸発物(蒸気)が(図4に図示された)蒸気ダクト150に取り付けられた凝縮器180、または蒸気ダクト150と連通する凝縮器180へと通過し得る。凝縮器180内に一旦入ると、蒸気が冷却されることにより蒸気を再度凝縮し、収集フラスコ186内へ落とすことができる。(蒸発により)溶媒が取り除かれた後、垂直に調整可能な部材162を介して取付アーム154を上昇させることにより、蒸発フラスコ142を水槽156から取り出すことができ、この調整可能な部材162は、いくつかの実施形態では、トラックおよびモータまたはその他の機械式ユニットを備え得る。
図7Bを続けると、水槽156はメインハウジング132の前に配置され得る。特に、水槽が一体化されず、その代わりに、蒸留装置に隣接している表面上に水槽が置かれまたは配置されている蒸留システムと比較して、そのような構成は蒸留装置100の設置面積を最小限にすることができる。さらに、水槽156を移動させることを要せずに試料フラスコ142を水槽156内に置いたりまたは水槽156から取り出すことができるように、メインハウジング132上に配置され、垂直に調整可能な取付アーム154によって、回転蒸発器アセンブリ140を上昇させたり下降させたりすることができる。これらの部品を垂直に配向することにより、オールインワンへ一体化された蒸留装置102の全体の設置面積は、特に非一体化システムと比較して大幅に縮小される。
凝縮器180は、さもなければ、図7Aに図示された実施形態にあるような図7Bに図示された実施形態と同一である。
図7Aおよび図7Bの双方において、蒸気ダクト150は、凝縮器180、および特に、凝縮器ハウジング184に直接接続され得る。そういうものとして、回転蒸発器アセンブリ140は、ダミー凝縮器を使用せずに凝縮器180に直接接続される。したがって、取付アーム154が回転蒸発器アセンブリ140を上昇させたり下降させたりするために垂直に移動するときに、凝縮器180は、それに対応して移動する。屈曲可能な冷却剤ライン248によって、冷却器120内の冷凍システムと流体連結を維持しながらそのような動作が可能になる。
図8Aおよび図8Bは、蒸留装置112および114の更なる実施形態をそれぞれ図示している。図8Aおよび図8Bに示されるように、完全に一体化されたオールインワン蒸留装置112および114はそれぞれ、冷却器120、回転蒸発器140、および凝縮器180を備え得る。いくつかの実施形態では、また図8Aおよび図8Bに示されるように、冷却器120、回転蒸発器アセンブリ140、および凝縮器180は、運転エリアおよび/または設置面積を最小限にする一方で、効果的且つ効率的な蒸留システムを提供するような方法で要素をコンパクトに配置するように構成された単一の機器または装置へ一体化され得る。
図8Aを続けると、蒸留装置112は、冷却器120を備え得る。冷却器120は、いくつかの実施形態では、上ハウジング304が下ハウジング122から略垂直に延在している状態で、下ハウジング122および上ハウジング304を備え得る。いくつかの実施形態では、冷却器120は、上ハウジング304から略水平に延在し、冷却器120へ凝縮器180を支持し機械的に接続するように構成された凝縮器アーム124を備え得る。冷却器120は、下ハウジング122および上ハウジング304内に収容され、凝縮器180を冷却するために冷却された冷媒を提供するように凝縮器アーム124を連通している、一体型冷凍システム(図3参照)を備え得る。いくつかの実施形態では、下ハウジング122は、例えば、受入タンク、圧縮器、冷凍凝縮器および乾燥機(図3参照)等の冷凍システムの部品を(単独で、または上ハウジング304と協同して)収容することができ、これら部品の全てまたはいくつかは、上ハウジング304および凝縮器アームを貫通することにより冷凍ライン(銅管)により凝縮器180に接続され得る。いくつかの実施形態では、下ハウジング122は、ハウジング122内へ、およびハウジング122内に収容された冷凍システムの周りへ気流を流すことができるように構成された換気格子194を備え得る。
取付アーム154は、上ハウジング304に機械的にリンクされることができ、上ハウジング304から(いくつかの実施形態では略水平に)延在することができる。取付アーム154は、さもなければ、図1Aに関して上述された取付アームと類似している。さらに、図8Aにおける回転蒸発器アセンブリ140および凝縮器180は、図1Aに関して上述された回転蒸発器アセンブリおよび凝縮器と類似している。
ここで図8Bを参照すると、蒸留装置114は、冷却器120を備え得る。冷却器120は、いくつかの実施形態では、プラットフォーム170上に任意に支持されたメインハウジング132と、上ハウジングとを備え得る。いくつかの実施形態では、冷却器120は、上ハウジング302から、またいくつかの実施形態では上ハウジング302の上部分から略水平に延在し、冷却器120へ凝縮器180を支持し機械的に接続するように構成された凝縮器アーム134を備え得る。冷却器120は、メインハウジング132内に収容され、凝縮器180を冷却するために冷却された冷媒を供給するように凝縮器アーム124を連通している、一体化冷凍システム(図3参照)を備え得る。いくつかの実施形態では、メインハウジング132は、(単独または凝縮器アーム134および/または上ハウジング302と協同して)例えば、受入タンク、圧縮器、冷凍凝縮器および乾燥機(図3参照)等の冷凍システムの部品を収容することができ、これら部品の全てまたはいくつかは、凝縮器アーム134を貫通することにより冷凍ライン(銅管)により凝縮器180に接続され得る。いくつかの実施形態では、メインハウジング132は、ハウジング132内へ、およびハウジング132内に収容された冷凍システムの周りに気流を流すことができるように構成された換気格子194を備え得る。
取付アーム154は、上ハウジング132に機械的にリンクされることができ、メインハウジング132から(いくつかの実施形態では略水平に)延在し得る。取付アーム154は、さもなければ、図1Bに関して上述された取付アームと類似している。さらに、図8Bにおける回転蒸発器アセンブリ140および凝縮器180は、図1Bに関して上述された回転蒸発器アセンブリおよび凝縮器と類似している。
図8Aおよび図8Bに示される実施形態では、蛇腹式要素300が設けられている。蛇腹式要素300は、凝縮器180、特に凝縮器ハウジング184とダミー凝縮器144との間に置かれ、凝縮器180、特に凝縮器ハウジング184とダミー凝縮器144とに結合するように構成され得る。そのような構成においては、蛇腹式要素300は、固定された位置にある凝縮器180への接続を維持しながら、回転蒸発器アセンブリ140を垂直に上昇および下降できるように折り畳み可能および/または伸縮可能に構成され得る。いくつかの実施形態では、ダミー凝縮器144の下部分148は、凝縮液の収集フラスコとして機能することができる。
図9A−9Cは、開示された蒸留装置で利用可能な回転蒸発器アセンブリの部品を図示している。図9Aは、回転蒸発器アセンブリの分解または部品図である。回転蒸発器アセンブリは、ロータリジョイント(蒸気ダクト)150と、図9Bで示されるようにロータリジョイント(蒸気ダクト)150を受けるように構成されたモータアセンブリ320とを備え得る。モータアセンブリ320は、例えば、図1Aおよび図1Bに示されるように、取付アセンブリ154内に収容または取付アセンブリ154に取り付けられるように構成されている。ロータリジョイント(蒸気ダクト)150は、モータアセンブリ320内に収容されたスリーブを通るモータアセンブリ320のロータにより挿入支持され得る。蒸気ダクト/ロータリジョイント150は、試料回転のための軸、および試料フラスコ142内の試料から取り出されている蒸気のための真空気密導管の双方として機能することができる。試料フラスコ142は、例えば、開口部324等を通る(およびいくつかの実施形態では、クリップ322により固定された)ロータリジョイント150の一端に接続されることができるので、図9Cの組み立てられたバージョンで示されるように、試料フラスコ142をロータリジョイント150と一体的に回転させることができる。いくつかの実施形態では、試料フラスコ142から蒸発した蒸気を受けることで蒸気を凝縮する蒸気ダクト150により接続された1つ以上の凝縮器(図9Aに示されるような凝縮器180および/またはダミー凝縮器144)がロータリジョイント150の反対側にあってもよい。いくつかの実施形態では、ダミー凝縮器144を使用することができ、このダミー凝縮器144は、上部分146および下部分148と、取付アーム154および/またはモータアセンブリ320に固定された接続アーム328であって、接続アーム328を通ってロータリジョイント150が上部分146内へ通過する接続アーム328とを備え得る。ファスナも備え得るリップ326は、コネクタアーム328を取付アーム154および/またはモータアセンブリ320に固定するように構成され得る。いくつかの実施形態では、真空シール330は、このジョイントで気密弁座を形成するために使用され得る。ダミー凝縮器144は、出口332、導管344、および出口/導管336を備え得る。
図10は、複数の凝縮器を有する、ここに開示されたような蒸留装置の斜視図である。特に、蒸留装置116は、更なる凝縮器180’を有する以外、図1Bにおける蒸留装置102と同一であり得る。凝縮器180が凝縮器アーム134により固定され得るように、凝縮器180’は凝縮器アーム134’により固定され得る。いくつかの実施形態では、凝縮器180’は、凝縮器180と同様に機能することができ、回転蒸発器からの蒸発物を凝縮するための使用、または冷却が必要な実験室でのその他の使用のための更なる冷却能力を提供することができる。凝縮器180’は、凝縮器180のように、機械式冷凍システムと流体接続され得る。
凝縮器180’は、クランプ196’、または、例えば、ねじ山、ねじ、ボルト、圧力金具等のその他の取付機構により凝縮器アーム134’に取り付けられ得る。凝縮器180’は、凝縮器コイル182’、凝縮器スリーブ198’、および凝縮器ハウジング184’を備え得る。凝縮器コイル182’は、熱交換器または「コールドフィンガ」を形成するために凝縮器スリーブ198’の内側に嵌合または摺動するように構成され得る。凝縮器コイル182’は、いくつかの実施形態では、冷却および熱交換のために表面積を増加させる二重ループとすることができる。凝縮器コイル182’を通過する冷却された冷媒が凝縮器スリーブ198’上で冷却効果を引き起こすように凝縮器コイル182’は冷却器120内の一体化冷凍システムに流体的に接続され得る。凝縮器ハウジング184’に入る回転蒸発器140からの蒸発物または蒸気が凝縮器スリーブ198’の冷たい表面と接触できることにより、蒸気を収集フラスコ186’内に収集される液体に凝縮させる。凝縮器180’の構成は、全てまたは略全ての蒸気を捕捉して、環境への影響が低減されるように蒸気を凝縮するための効率的なメカニズムを提供する。
いくつかの実施形態では、凝縮器コイル182’は、連続ループを形成することにより、凝縮器180’内の熱交換器から冷却器120内の機械式冷凍システムまで流れる冷媒材料または化合物の連続した流れを提供するコイル状の銅ラインを備え得る。いくつかの実施形態では、図10で示されるように、凝縮器コイル182’は、蒸発物(蒸気)の直接冷却のために露出され得るが、この凝縮器コイル182’は、チタン(商用の純粋なグレードのチタンを含む)、ステンレス鋼、金属合金、プラスチック、ガラス、ネオプレンゴム等のゴム、および/またはそれらの組合せで作られた、化学的に耐性の蒸気トラップを備え得る凝縮器スリーブ198’により覆われ得る。図10に示されるように、また、スペース利用を最小限にするスタンドアロンで完全に一体化されたシステムを達成するために、機械式冷凍システムを含む冷却器は、熱交換器/凝縮器180’に機械的にリンクおよび固定されることができ、これら2つが1つの単一の機器で提供される。
凝縮器ハウジング184’は、凝縮器コイル182’および凝縮器スリーブ198’を含む熱交換器を取り囲むガラス容器を備え得る。凝縮器ハウジング184は、気密シールを形成するためにクランプ196’により凝縮器アーム134’に取り付けられ得る。凝縮器ハウジング184’は、回転蒸発器アセンブリ140から蒸発物または蒸気を受け入れるためのエントリポート188’、およびいくつかの実施形態では、第2(またはより多い)エントリポート188’’を備え得る。真空ポート190’が、いくつかの実施形態では、(いくつかの場合では最上部近くに)設けられることができ、真空ポンプから真空ラインを受け入れることにより凝縮器ハウジング184’の内部環境に真空を生じさせるように構成され得る。凝縮器180’内の熱交換器198’と接触することにより液体へ凝縮する蒸発物または蒸気は、導管158’を通過することにより収集フラスコ186’内に集まり得る。いくつかの実施形態では、ジョイント192’は、動作中にシステムの真空を壊すことなく、収集フラスコ(受入フラスコ)186’を取り外すことができるように構成され得る導管158’上に位置決めされ得る。そのようなジョイント192’は、収集フラスコ186’を取り外す間に真空を維持するためにバルブを備え得る。
蒸留装置(図1B/図10)の一実施形態を使用して示されただけであるが、二重または複数の凝縮器を、図1A、図1B、図3、図4、図6A、図6B、図7A、図7B、図8Aおよび図8Bに図示された蒸留装置を含み、それらに限定されない、ここに開示された蒸留装置のすべての構成/実施形態に適用できる。
いくつかの実施形態では、開示された蒸留装置は、動作中にシステムの真空を壊すことなく、受入フラスコの取り外しを可能に構成され得るシステム真空弁をさらに備え得る。
いくつかの局面では、回転は加熱と同期され得る。すなわち、回転が開始し、そして回転が停止する際にスタンバイモードに入るときに、加熱槽は、オンされ得る。そのような構成は、エネルギおよび水を節約することができる。
いくつかの実施形態では、冷却温度範囲は、周囲温度から約−150℃、または約−20℃から約−100℃となり得る。冷凍エンジニアリングおよび冷媒選択を通して達成される所望温度は、そのような極めて低い範囲を達成することができる。
いくつかの実施形態では、蒸留装置は、凝縮器の内部に真空シールを備えることができ、この真空シールは、従来の回転蒸発器と共通して関連する真空漏れに対してさらに保護する内部真空シールを提供することができる。既存の回転蒸発器は、凝縮器を回転ユニットへ取り付けるところに位置する真空シールを有する。冷却ユニット内部の真空シールを有する蒸発器がここに開示されている。そのような構成では、Oリングは、冷却ユニット内部からアクセス可能になり得る。冷却ユニットは、回転ユニットに結合され得る。Oリングは、冷却ユニット内部から組み込まれ得る。これにより、従来の凝縮器と回転ユニットとの間のジョイントを取り除くことができ、ジョイントでの潜在的な真空漏れを排除する利点がある。内部に収容されるOリングシールは、万が一の僅かな真空漏れの場合でも、真空低下がないことをもたらし得る。
凝縮器ユニットを既存のモデル内の回転モータに接続するシールは、それらほど頑丈ではない。ここに提供されるいくつかの実施形態では、一般に漏洩源を減らすために、ジョイントをより少なくしている。いくつかの実施形態では、回転蒸発器は、凝縮器ユニットと回転ユニットとの間に略100%の耐真空シールが設けられている。
可能な限り小さな設置面積または操作エリアを有する、蒸留装置およびシステムを提供することが好ましくなり得る。すなわち、実験室または研究施設での時には制限されたスペースを考慮すると、スペースをできるだけほとんど占めない機器は、非常に好ましくなり得る。したがって、いくつかの局面では、本開示は、従来の蒸留装置およびシステムより少ないスペースを占める、実質的に縮小されあるいはより小さな設置面積を有する蒸留装置およびシステムを提供する。そのようなコンパクト設計は、部品のユニークな構成および一体化により可能になる。いくつかの実施形態では、蒸留装置の設置面積または運転エリアは、装置の外寸法の長さL、幅W、および/またはそれらの組合せ(例えば平方インチの面積)により定義され得る。あるいは、またはさらに、蒸留装置の設置面積または運転エリアは、ハウジング/フレームのベースまたはプラットフォームの寸法の長さX、幅Y、および/またはそれらの組合せ(例えば平方インチの面積)により定義され得る。
一例であって、限定ではないが、従来または既存の回転蒸発器の設置面積は、約300〜約500平方インチであり、いくつかの設計は、約368平方インチの設置面積を有する。対照的に、冷却器、凝縮器および回転蒸発器を含む、現在開示されている蒸留装置は、いくつかの実施形態では、約150平方インチから約350平方インチの総設置面積を含み得る。例えば、加熱槽がベースまたはハウジングの前に配置されている場合、総設置面積は、約350平方インチ(ベースが230平方インチおよび加熱槽が120平方インチ)となり得る。いくつかの局面において、特にコンパクトな設計が、ベースまたはハウジングの最上部上に加熱槽を含む場合、加熱槽の設置面積は除かれる。したがって、開示された蒸留装置のコンパクト設計の総設置面積は、約150平方インチから約230平方インチになり得る。
いくつかの実施形態では、回転スタンドおよび加熱または水槽は、冷却器ハウジングの最上部上に取り付けられ得る。そのような構成は、著しくユニットの全体的な設置面積を減少させることができる。さらにコンパクトな設計は、例えば、約6インチ、約8インチ、または約10インチ等のより低い冷凍圧縮器の高さの利益を活かすことができ、ひいては、(冷却器ハウジング内に収容された)圧縮器の上方に位置決めされる加熱槽および凝縮器の上方の回転スタンドに十分なスペースを提供する。いくつかの局面では、冷凍凝縮器は、約8インチ、または約10インチ、または約12インチの高さを有することができる。
ここに開示されたコンパクト設計を含むいくつかの実施形態では、加熱槽は、水平に移動することができる。同様に、いくつかの局面では、回転スタンドは垂直に移動することができる。冷却コイル、電気スイッチボード、および/または受け入れ等のその他の部品は、縮小された設置面積を確保するように最適に位置決めされ得る。電子制御装置は、例えば、冷却器のハウジングの前に人間工学的に配置され得る。
以下の用語は、当業者によく理解されると考えられているが、以下の定義が現在開示されている主題の説明を容易にするために記載されている。
他に定義されない限り、ここで使用される全ての技術的および科学的用語は、現在開示されている主題が属する当業者に一般的に理解されるのと同じ意味を有する。ここに記載されたものに類似のまたは均等ないかなる方法、機器および材料も、現在開示されている主題の実施または試験で使用されることができるが、代表的な方法、機器および材料をここで記載する。
長年の特許法条約に従い、「a」、「an」、「the」という用語は、請求項を含む本願で使用されるときは「1つ以上」を指す。したがって、例えば、「1つの細胞」の言及は、複数のそのような細胞等を含む。
他に示唆されない限り、本明細書および請求項で使用される構成要素、および反応条件等の量を表現する全ての数字は、全ての例において、「約」という用語により修飾されるものと理解されることになる。したがって、反対の示唆がない限り、本明細書および添付された請求項に記載された数値パラメータは、現在開示されている主題により得られるように求められた所望の特性に応じて変化し得る近似である。
ここで使用されるように、構成要素、量、(例えば、2つ以上のヌクレオチドまたはアミノ酸配列を比較する場合の)配列同一性、質量、重量、温度、時間、体積、濃度、パーセンテージ等の値または量を言及する場合の「約」という用語は、所定量から、ある実施形態では±20%、ある実施形態では±10%、ある実施形態では±5%、ある実施形態では±1%、ある実施形態では±0.5%、およびある実施形態では±0.1%の変動を含むように意味される。その理由は、そのような変動は、開示されている方法を実行し、または開示されている構成要素を採用するのに適切であるからである。
「含む」、「包含する」、「により特徴づけられる」と同意語である「備える」という用語は、包括的またオープンエンドであり、さらなる挙げられていない要素または方法ステップを除外しない。「備える」は、指定された要素が不可欠であることを意味する請求項の文言で使用される技術用語であるが、請求項の範囲内で、他の要素が加えられ且つ構成物をさらに形成することができる。
ここで使用される、「から成る」という句は、請求項で特定されていないあらゆる要素、ステップまたは構成要素を除外する。「から成る」という句が、プリアンブルの直後ではなく、むしろ請求項の本体の節に現われるとき、それは、その節に記載された要素のみを限定し、その他の要素は、全体として請求項から除外されない。
ここに使用されるように、「から本質的に成る」という句は、請求項の範囲を、特定された材料またはステップ、および請求された主題の基本的および新規の特性に実質的に影響を与えない材料またはステップに限定する。
「備える」、「から成る」、「から本質的に成る」という用語に関して、これらの3つの用語のうちの1つがここに使用される場合、現在開示され、且つ請求されている主題は、その他の2つの用語のどちらかの使用を含み得る。
ここに使用されるように、「および/または」という用語は、実体のリストの文脈内で使用されるとき、単独にまたは組合せの中で存在する実体を指す。したがって、例えば、「A,B,Cおよび/またはD」という句は、A、B、CおよびDを個々に含んでいるだけでなく、A、B、CおよびDのあらゆる組合せおよびあらゆる部分的組合せと、全ての組合せおよび全ての部分的組合せとを含んでいる。
現在開示されている主題の様々な詳細が、現在開示されている主題の範囲から逸脱せずに変更されてもよいことは理解されるであろう。さらに、先の説明は、限定の目的ではなく、例示の目的のみのためにある。

Claims (20)

  1. 一体化蒸留装置であって、
    試料を蒸発させるように構成された回転蒸発器と、
    蒸発された試料を凝縮するように構成された凝縮器と、
    前記凝縮器を冷却するように構成された冷凍システムと、
    凝縮物を収集するように構成された収集容器であって、前記収集容器は、真空弁により分割された第1および第2コンパートメントを備え、前記真空弁が前記蒸発器上の前記真空を維持し且つ前記第2コンパートメントが凝縮物を収集し続けながら、前記第1コンパートメントは前記凝縮物を収集するために取り外し可能である、収集容器と、
    前記一体化蒸留装置内に真空を形成するように構成された真空ポンプと、を備え、
    前記回転蒸発器、前記凝縮器、前記冷凍システム、前記収集容器、及び前記真空ポンプの各々は、単一装置へ一体化されている、一体化蒸留装置。
  2. 請求項1に記載の一体化蒸留装置であって、さらに、
    回転力を提供するように構成された電動部品と、
    前記回転力を印加される前記電動部品内に挿入支持されたロータリジョイントと、
    前記ロータリジョイントの第1端に接続された試料容器と、
    前記試料容器が内部に置かれることが可能な水槽であって、熱エネルギを前記試料容器に供給するように構成された水槽と、
    前記凝縮器に取り付き、前記凝縮器から凝縮蒸気を受けるように構成された収集フラスコ
    前記凝縮器に係合するように構成された冷却コイルであって、前記冷凍システムから冷却剤を受けるように構成されることにより、前記凝縮器が、前記凝縮器と接触する蒸気を凝縮するのに十分に冷たい、冷却コイルと
    を備える、一体化蒸留装置。
  3. 請求項2に記載の一体化蒸留装置であって
    前記水槽は、垂直および/または水平方向に移動可能である、一体化蒸留装置。
  4. 請求項2に記載の一体化蒸留装置であって、
    前記冷凍システムは、凝縮器と冷媒とを備える、一体化蒸留装置。
  5. 請求項4に記載の一体化蒸留装置であって、
    前記冷却剤は、前記凝縮器内部の二重コイルに供給され、
    前記蒸気は、前記二重コイルまたは前記二重コイルを囲む壁に接触する、一体化蒸留装置。
  6. 請求項2に記載の一体化蒸留装置であって、さらに、
    全ての部品を単一装置へ一体化するように構成されたハウジングを備え、
    前記水槽は、前記回転蒸発器に対して移動するように構成され、
    前記回転蒸発器、冷凍システム、収集容器、凝縮器および真空ポンプは、前記ハウジング内で固定されている、一体化蒸留装置。
  7. 請求項2に記載の一体化蒸留装置であって、
    前記凝縮器は、2つ以上の凝縮器を直列に備える、一体化蒸留装置。
  8. 請求項2に記載の一体化蒸留装置であって、さらに、
    前記凝縮器内部に真空シールを備え、前記凝縮器内部の前記真空シールは、前記回転蒸発器が前記凝縮器に係合する箇所で前記凝縮器内部に組み込まれたOリングを備える、一体化蒸留装置。
  9. 請求項2に記載の一体化蒸留装置であって、
    前記一体化蒸留装置の設置面積が0.193548平方メートル未満であるように、前記回転蒸発器、前記凝縮器、前記冷凍システム、前記収集容器、及び前記真空ポンプが配置される、一体化蒸留装置。
  10. 請求項2に記載の一体化蒸留装置であって、
    前記凝縮器は、冷却コイルを囲むスリーブを備え、
    前記スリーブは、チタン材料を備える、一体化蒸留装置。
  11. 請求項1に記載の一体化蒸留装置であって、さらに、
    前記冷凍システムおよび真空ポンプを収容し、且つ前記回転蒸発器および凝縮器を構造的に支持するように構成されたハウジングを備える、一体化蒸留装置。
  12. 請求項11に記載の一体化蒸留装置であって、
    前記ハウジングは、移動可能な位置に前記回転蒸発器を支持する一方、固定位置に前記凝縮器を支持するように構成されている、一体化蒸留装置。
  13. 請求項1に記載の一体化蒸留装置であって、
    前記冷凍システムは、圧縮器、冷凍凝縮器、乾燥機、および冷媒を備える、一体化蒸留装置。
  14. 一体化蒸留装置であって、
    試料を蒸発させるように構成された回転蒸発器と、
    蒸発された試料を凝縮するように構成された凝縮器と、
    前記凝縮器を冷却するように構成された冷凍システムであって、圧縮器、冷凍凝縮器、乾燥機、および冷媒を備える、冷凍システムと、
    凝縮物を収集するように構成された収集容器であって、前記収集容器は、真空弁により分割された第1および第2コンパートメントを備え、前記真空弁が前記蒸発器上の前記真空を維持し且つ前記第2コンパートメントが凝縮物を収集し続けながら、前記第1コンパートメントは前記凝縮物を収集するために取り外し可能である、収集容器と
    を備え、
    前記回転蒸発器、凝縮器および冷凍システムは、単一のハウジングへ一体化され、
    前記回転蒸発器は、移動可能に前記ハウジングに取り付けられ、位置を垂直方向に変換可能に構成され、
    前記凝縮器は、前記ハウジングから延在し、且つ前記回転蒸発器に隣接したアームによって前記ハウジングに取り付けられ、
    前記冷凍システムは、前記凝縮器と流体連結している、一体化蒸留装置。
  15. 請求項14に記載の一体化蒸留装置であって、さらに、
    回転力を前記回転蒸発器に供給するように構成されたモータを備える、一体化蒸留装置。
  16. 請求項14に記載の一体化蒸留装置であって、さらに、
    前記回転蒸発器の試料容器を沈めることが可能な、加熱された水槽を備える、一体化蒸留装置。
  17. 請求項14に記載の一体化蒸留装置であって、
    前記凝縮器は、前記冷凍システムと流体連結している冷却コイルを備える、一体化蒸留装置。
  18. 請求項17に記載の一体化蒸留装置であって、
    前記凝縮器が前記冷却コイルを囲むチタンスリーブを備えることにより、前記チタンスリーブが前記冷却コイルにより冷却され、
    前記回転蒸発器からの蒸発物は、前記チタンスリーブに接触して凝縮する、一体化蒸留装置。
  19. 請求項17に記載の一体化蒸留装置であって、
    前記凝縮器が前記冷却コイルを囲む合金スリーブを備えることにより、前記合金スリーブが前記冷却コイルにより冷却され、
    前記回転蒸発器からの蒸発物は、前記合金スリーブと接触して凝縮する、一体化蒸留装置。
  20. 請求項14に記載の一体化蒸留装置であって、
    前記一体化蒸留装置は、0.193548平方メートル未満の設置面積を備える、一体化蒸留装置。
JP2017528953A 2014-11-25 2015-11-25 蒸留および回転蒸発装置、機器およびシステム Active JP6759205B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462084097P 2014-11-25 2014-11-25
US62/084,097 2014-11-25
US201562109993P 2015-01-30 2015-01-30
US62/109,993 2015-01-30
PCT/US2015/062615 WO2016086101A1 (en) 2014-11-25 2015-11-25 Distillation and rotary evaporation apparatuses, devices and systems

Publications (3)

Publication Number Publication Date
JP2017535420A JP2017535420A (ja) 2017-11-30
JP2017535420A5 JP2017535420A5 (ja) 2019-01-10
JP6759205B2 true JP6759205B2 (ja) 2020-09-23

Family

ID=56075025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017528953A Active JP6759205B2 (ja) 2014-11-25 2015-11-25 蒸留および回転蒸発装置、機器およびシステム

Country Status (6)

Country Link
US (3) US10307688B2 (ja)
EP (1) EP3223926B1 (ja)
JP (1) JP6759205B2 (ja)
CN (2) CN106999793B (ja)
CA (2) CA2967420C (ja)
WO (1) WO2016086101A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10898828B2 (en) 2014-11-25 2021-01-26 Ecodyst, Inc. Distillation and rotary evaporation apparatuses, devices and systems
US11047602B2 (en) 2015-06-11 2021-06-29 Ecodyst, Inc. Compact chiller and cooler apparatuses, devices and systems

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD803276S1 (en) 2015-12-04 2017-11-21 Ecodyst, Inc. Compact chiller and condenser
USD862529S1 (en) * 2016-01-07 2019-10-08 Conopco, Inc. Appliance
JP7208970B2 (ja) 2017-04-03 2023-01-19 エコディスト,インク. 大規模独立型チラー、オールインワンロータリ蒸発器及びそれに関連する方法
USD903727S1 (en) 2018-02-19 2020-12-01 Ecodyst, Inc. Large scale chiller
DE102018113118B4 (de) * 2018-06-01 2022-01-05 Ika-Werke Gmbh & Co. Kg Rotationsverdampfer und Verfahren zur Steuerung eines Rotationsverdampfers
US10786750B1 (en) * 2018-09-06 2020-09-29 Ryan Henry Spray-roto distillation device
US11623163B2 (en) 2018-10-31 2023-04-11 Ecodyst, Inc. Falling film evaporator system and methods
USD984581S1 (en) * 2018-11-12 2023-04-25 Lab Society Llc Cold trap insert
USD909606S1 (en) * 2018-11-12 2021-02-02 Lab Society Llc Cold trap insert
CN109646978B (zh) * 2018-12-29 2024-05-17 郑州华辰仪器有限公司 一种高效旋转蒸发器
CN110346192B (zh) * 2019-06-27 2020-04-17 青岛海洋地质研究所 一种海洋可燃冰沉积物易挥发元素测试前处理方法
CN115177966A (zh) * 2021-04-07 2022-10-14 济宁明德环保科技有限公司 一种化工实验室易操作型旋转蒸发器
CN114414724B (zh) * 2022-01-12 2024-02-02 广东省科学院测试分析研究所(中国广州分析测试中心) 一种新型免水定氮仪
CN114748883B (zh) * 2022-04-18 2023-07-21 郑州科达机械仪器设备有限公司 旋转蒸发器
CN115300926A (zh) * 2022-08-11 2022-11-08 一恒生命科学仪器(昆山)有限公司 一种高效冷却冷凝器

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1738953A (en) 1926-11-09 1929-12-10 Jensen Aage Apparatus for treating liquids
US2128784A (en) 1936-12-18 1938-08-30 Westinghouse Electric & Mfg Co Liquid cooler
US2566865A (en) 1946-12-26 1951-09-04 Wingerter Ralph Portable refrigerator
DE2839807C2 (de) 1978-09-13 1986-04-17 Degussa Ag, 6000 Frankfurt Vakuumofen mit Gaskühleinrichtung
USD261890S (en) 1979-10-11 1981-11-17 National Foodline Corporation Housing for a soft ice cream machine
USD265653S (en) 1980-03-10 1982-08-03 Data Packaging Corporation Beverage dispenser
DE3028675A1 (de) 1980-07-29 1982-03-04 Agfa-Gevaert Ag, 5090 Leverkusen Vorrichtung zum entwickeln von fotografischen schichttraegern, insbesondere von filmen
JPS5813458U (ja) 1981-07-20 1983-01-27 三洋電機株式会社 冷却装置
JPS58132502U (ja) * 1982-03-01 1983-09-07 明治乳業株式会社 真空濃縮器用貯溜器
DE3248501A1 (de) 1982-12-29 1984-07-05 Peter W. D. van der 4926 Dörentrup Heijden Kuehlvorrichtung fuer vakuum-destillierapparate und verfahren zur durchfuehrung der destillationskuehlung
USD309395S (en) 1986-10-29 1990-07-24 The Coca-Cola Company Juice dispenser
DE3726669A1 (de) 1987-08-11 1989-02-23 Juergen Nolte Apparatur zur erzeugung von kaelte, vakuum und waerme
JPH0629649Y2 (ja) 1987-09-24 1994-08-10 サンデン株式会社 水槽用温度調節装置
USD317694S (en) 1988-10-24 1991-06-25 Bunn-O-Matic Corporation Tea brewer
USD351965S (en) 1989-06-02 1994-11-01 The Coca-Cola Company Beverage dispenser
USD328995S (en) 1989-08-03 1992-09-01 Verheijen B.V. Coffee maker
US5211808A (en) 1990-11-13 1993-05-18 Savant Instruments Microwave heating in a vacuum centrifugal concentrator
ES2052142T3 (es) * 1990-12-05 1994-07-01 Asea Brown Boveri Condensador refrigerado por agua.
USD332200S (en) 1992-02-05 1993-01-05 The Coca-Cola Company Beverage dispenser
US5340444A (en) 1992-02-27 1994-08-23 Peter W. D. Van Der Heijden Laborbedarf Circulation cooler for vacuum distillation apparatus
USD344527S (en) 1992-06-04 1994-02-22 Carrier Corporation Refrigerant recovery unit
CN2134226Y (zh) * 1992-09-16 1993-05-26 武卫 一种新型液体蒸发器
DE4231458C2 (de) 1992-09-19 2001-06-07 Peter W D Van Der Heijden Kühlvorrichtung für einen Rotationsverdampfer
DE69324032D1 (de) 1992-11-12 1999-04-22 American Sterilizer Co Verfahren zur dekontamination von gefriertrocknungs-vorrichtung
US5365750A (en) 1992-12-18 1994-11-22 California Aquarium Supply Remote refrigerative probe
USD358290S (en) 1993-10-20 1995-05-16 The Coca-Cola Company Beverage dispensing tower
USD365962S (en) 1994-03-14 1996-01-09 Gehl's Gurnsey Farms, Inc. Dispenser
US5584187A (en) 1995-01-13 1996-12-17 Whaley; Glenn E. Quick-chill beverage chiller
USD375650S (en) 1995-04-11 1996-11-19 Sanyo Electric Co., Ltd. Beverage feeding machine
US5916351A (en) 1995-11-13 1999-06-29 Hamilton Beach--Proctor Silex, Inc. Modular beverage brewing system with interlocking assembly
JP3058583B2 (ja) * 1995-12-20 2000-07-04 ヤマト科学株式会社 ロータリエバポレータ
JP3819468B2 (ja) * 1996-01-29 2006-09-06 大陽日酸株式会社 凝縮トラップ
US5816063A (en) 1996-12-10 1998-10-06 Edward R. Schulak Energy transfer system for refrigerator/freezer components
JP2000279703A (ja) * 1999-03-29 2000-10-10 Kusano Kagaku Kikai Seisakusho:Kk 透明ガラス製冷却器及びそれを用いたロータリーエバポレーター
US6461287B1 (en) 1999-07-22 2002-10-08 Thermo Savant Inc. Centrifugal vacuum concentrator and modular structured rotor assembly for use therein
US6658875B2 (en) 2001-04-25 2003-12-09 Gsle Development Corporation Method and apparatus for temperature control in a refrigeration device
DE20300046U1 (de) 2003-01-04 2003-05-22 Heidolph Instr Gmbh & Co Kg Rotationsverdampfer zum automatischen Destillieren
USD503786S1 (en) 2003-07-30 2005-04-05 Smc Kabushiki Kaisha Air dryer
USD503785S1 (en) 2003-07-30 2005-04-05 Smc Kabushiki Kaisha Air dryer
USD503971S1 (en) 2003-07-30 2005-04-12 Smc Kabushiki Kaisha Air dryer
US7291271B2 (en) 2003-12-09 2007-11-06 Separation Design Group, Llc Meso-frequency traveling wave electro-kinetic continuous adsorption system
ITMI20040221U1 (it) 2004-05-13 2004-08-13 Passoni Giovanni Condensatore di vapore per apparecchiature di laboratorio
USD522114S1 (en) 2004-09-01 2006-05-30 Sms Kabushiki Kaisha Air dryer
CN101356659A (zh) * 2005-12-07 2009-01-28 丰田自动车株式会社 热电转换材料及其制造方法
JP2009106819A (ja) * 2007-10-29 2009-05-21 Asahi Seisakusho:Kk 濃縮蒸留装置
USD600492S1 (en) 2008-08-14 2009-09-22 Sunbeam Products, Inc. Coffeemaker
CN100572515C (zh) * 2008-11-16 2009-12-23 兰州大学 一种从苦水玫瑰花中提取玫瑰精油及系列产品的方法
US20110007345A1 (en) * 2009-07-09 2011-01-13 John Thomas Varga Mechanism for Synchronizing Documents for Multi-Print Processing
US9005403B2 (en) * 2009-09-25 2015-04-14 Ecodyst, Inc. Rotary evaporator
USD669154S1 (en) 2011-06-28 2012-10-16 Woongjin Coway Co., Ltd. Water purifier
DE202011106535U1 (de) 2011-10-08 2013-01-09 Knf Neuberger Gmbh Rotationsverdampfer
DE202011106534U1 (de) 2011-10-08 2013-01-09 Knf Neuberger Gmbh Rotationsverdampfer
DE102011121650A1 (de) 2011-12-19 2013-06-20 Hans Heidolph Gmbh & Co. Kg Destillationsvorrichtung
DE102012221887A1 (de) * 2012-11-29 2014-06-05 Hans Heidolph Gmbh & Co. Kg Verfahren und Vorrichtung zur Vakuumdestillation
CN103191795B (zh) * 2013-03-21 2015-08-19 济南盛泰电子科技有限公司 蒸馏仪
EP2810566A1 (en) 2013-06-06 2014-12-10 Nilma S.P.A. Apparatus and method for cooling cooked fluid food products
JP6008046B2 (ja) 2013-07-11 2016-10-19 Smc株式会社 恒温液循環装置
USD760305S1 (en) 2013-10-17 2016-06-28 Ugolini Spa Machine for making ice cream
CN203556155U (zh) 2013-10-22 2014-04-23 郑州长城科工贸有限公司 旋转蒸发仪
CN203816660U (zh) 2014-03-17 2014-09-10 江苏辉腾生物医药科技有限公司 连续进料的旋转蒸发仪
USD735527S1 (en) 2014-04-14 2015-08-04 Sunbeam Products, Inc. Hot beverage maker
JP1537651S (ja) 2014-06-27 2015-11-09
CN204202354U (zh) 2014-07-25 2015-03-11 上海共和真空技术有限公司 用于三重热交换板式冻干机的导热油冷却系统
CA2967420C (en) 2014-11-25 2023-04-04 Ecodyst, Inc. Distillation and rotary evaporation apparatuses, devices and systems
JP6633657B2 (ja) 2015-06-11 2020-01-22 エコディスト インコーポレイテッド チラー、及び、チラーシステム
USD803276S1 (en) 2015-12-04 2017-11-21 Ecodyst, Inc. Compact chiller and condenser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10898828B2 (en) 2014-11-25 2021-01-26 Ecodyst, Inc. Distillation and rotary evaporation apparatuses, devices and systems
US11779857B2 (en) 2014-11-25 2023-10-10 Ecodyst, Inc. Distillation and rotary evaporation apparatuses, devices and systems
US11047602B2 (en) 2015-06-11 2021-06-29 Ecodyst, Inc. Compact chiller and cooler apparatuses, devices and systems
US11927370B2 (en) 2015-06-11 2024-03-12 Ecodyst, Inc. Compact chiller and cooler apparatuses, devices and systems

Also Published As

Publication number Publication date
US20190351348A1 (en) 2019-11-21
CA2967420A1 (en) 2016-06-02
US11779857B2 (en) 2023-10-10
EP3223926B1 (en) 2021-09-08
US10898828B2 (en) 2021-01-26
US20170252668A1 (en) 2017-09-07
US10307688B2 (en) 2019-06-04
US20210236953A1 (en) 2021-08-05
CA3169750A1 (en) 2016-06-02
WO2016086101A1 (en) 2016-06-02
JP2017535420A (ja) 2017-11-30
CA2967420C (en) 2023-04-04
CN106999793A (zh) 2017-08-01
CN106999793B (zh) 2020-10-30
EP3223926A4 (en) 2018-08-01
EP3223926A1 (en) 2017-10-04
CN112221178A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
JP6759205B2 (ja) 蒸留および回転蒸発装置、機器およびシステム
US11927370B2 (en) Compact chiller and cooler apparatuses, devices and systems
JP2017535420A5 (ja)
US9005403B2 (en) Rotary evaporator
US11400388B2 (en) Large scale standalone chillers, all-in-one rotary evaporators and related methods
WO2011112987A2 (en) Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
CN104111181B (zh) 一种用于捕集气体样品的捕集装置
US10589322B2 (en) Device for laminar flow fluid extraction
JPH09209934A (ja) 凝縮トラップ
CN219579898U (zh) 一种检测用蒸馏装置
JP3819467B2 (ja) 凝縮トラップ
JP2661386B2 (ja) 液槽式冷熱衝撃試験装置
Edelman An autonomous dilution micro refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6759205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250