JP6734456B1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
JP6734456B1
JP6734456B1 JP2019188811A JP2019188811A JP6734456B1 JP 6734456 B1 JP6734456 B1 JP 6734456B1 JP 2019188811 A JP2019188811 A JP 2019188811A JP 2019188811 A JP2019188811 A JP 2019188811A JP 6734456 B1 JP6734456 B1 JP 6734456B1
Authority
JP
Japan
Prior art keywords
separator
lead
electrode plate
battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019188811A
Other languages
English (en)
Other versions
JP2021064534A (ja
Inventor
洋輔 増田
洋輔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2019188811A priority Critical patent/JP6734456B1/ja
Application granted granted Critical
Publication of JP6734456B1 publication Critical patent/JP6734456B1/ja
Publication of JP2021064534A publication Critical patent/JP2021064534A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】充電受入性能、高率放電性能、および内部短絡抑制効果を兼ね備えた鉛蓄電池を提供する。【解決手段】正極板と負極板と多孔性ポリエチレン製のセパレータとが積層された極板群、および硫酸電解液を、電槽内に有する鉛蓄電池において、セパレータの平均細孔直径が0.05μm以上0.50μm以下であり、かつ硫酸電解液中に20mmol/L以上200mmol/L以下のアルミニウムイオンが含まれていることを特徴とする。【選択図】なし

Description

本発明は、PSOC(Partial state of charge:部分充電状態)で急速充放電を繰り返すハイブリッド車に適した鉛蓄電池に関する。
ハイブリッド車用途において、充電効率改善のため、電解液にアルミニウム等を含有した鉛蓄電池(特許文献1)が提案されている。
特許第4799560号公報
特許文献1に記載された技術は、鉛蓄電池の充電効率改善を目的としたものであり、ハイブリッド車における回生受入性能改善に大きく貢献した。しかし、電解液にアルミニウム等を硫酸塩の形で添加したことにより電解液の粘度が増加し、高率放電性能の低下および急峻な充放電の繰り返しによるデンドライトショートの問題も同時に招く可能性がある。
電解液の粘度が増加すると、電解液がセパレータの細孔内に入りにくくなる。自動車用鉛蓄電池においては、放電電流は、エンジンスタート、オーディオ、ランプ等の車内電装品等の機器により決まるため、当然のことながらセパレータへの電解液の浸透状態とは無関係である。
電解液の高粘度化によりセパレータの一部が電流を通さない状態となると、電気伝導性が確保されている箇所に電流が集中するため、極板全体を均一に使うことができなくなる。特に、高率放電においてその影響が顕著であり、対策が求められている。さらに、急峻な充放電を繰り返した場合、電気伝導性が確保されている箇所にさらに電流が集中するため、活物質の溶解析出形態が少しずつ変化し、負極側において樹枝状の金属鉛(デンドライト)が生成するようになる。
さらに電池の運用が進むと、デンドライトがセパレータを突き破り、正極側と接触するようになる。このため、電解液中にアルミニウムイオンが含まれた液式鉛蓄電池は、充電効率向上の反面、デンドライトショートを起こしやすくなる性質を有する。
また、昨今のアイドリングストップ車あるいはハイブリッド車用鉛蓄電池は、充電受入性能向上および高率放電性能向上の目的のため、セパレータのリブの高さ(突出寸法)を低くして正負極間距離を狭める設計がなされている。正負極間距離が狭まると電池の内部抵抗が下がり、上記性能向上に寄与することができる。
しかしその反面、副反応等で生成した水素ガスあるいは酸素ガスが極板とセパレータの間から抜けにくく、長期使用における電池の内部抵抗上昇に起因する高率放電性能、充電受入性能等の各種性能の悪化を招く可能性が高くなり、改善が求められていた。さらに、電解液中にアルミニウムイオンが硫酸塩の形で加わった場合、液粘度が上がるため、ガスの抜けにくさがさらに顕著になり、上記課題はさらに深刻なものとなっている。
本発明は、以上の事情を鑑みてなされたものであり、充電受入性能、高率放電性能、および内部短絡抑制効果を兼ね備えた鉛蓄電池を提供することを目的とする。
上記の課題を解決するため、本発明者は、液式鉛蓄電池に用いられる多孔性ポリエチレン製セパレータの平均細孔直径、表面親水性、リブ高さ、および電解液中のアルミニウム硫酸塩の関係について詳細な検討を実施した。その結果、本発明者は、各因子を特定のパラメータに設定することで電池性能が飛躍的に上昇することを突き止め、本発明の完成に至った。
本発明に係る鉛蓄電池は、正極板と負極板と多孔性ポリエチレン製のセパレータとが積層された極板群、および硫酸電解液を、電槽内に有する鉛蓄電池において、セパレータの平均細孔直径が0.05μm以上0.50μm以下であり、かつ硫酸電解液中に20mmol/L以上200mmol/L以下のアルミニウムイオンが含まれており、セパレータの表面における硫酸電解液の接触角が45度以上90度以下であることを特徴とする。
本発明によれば、充電受入性能、高率放電性能、および内部短絡抑制効果に優れた鉛蓄電池を提供することが可能となる。
本発明の実施形態(以下、本実施形態)に係る鉛蓄電池は、正極板、負極板、セパレータ、電解液、鉛部品(ストラップ、極柱、セル間溶接部品、外部端子)、電槽、蓋にて構成されている。
鉛蓄電池としては、自動車用液式鉛蓄電池、シール式鉛蓄電池等を例示することができるが、本実施形態は液式鉛蓄電池用セパレータに関する発明であるため、液式のみ適用可能である。
正極板としては、鉛合金製の集電体に鉛活物質を充填・乾燥した、いわゆるペースト式極板が使用され、その構成および作製法は従来の鉛蓄電池用正極板と略同様である。本実施形態においては特に制限はないが、アイドリングストップ車用鉛蓄電池としては、極板および電池の耐久性担保のため、活物質密度を高めに設定した正極板が好適である。
負極板としては、正極板と同様に、鉛合金製の集電体に鉛活物質を充填・乾燥した、いわゆるペースト式極板が使用される。本実施形態においては、特に制限はなく、アイドリングストップ車用鉛蓄電池として一般に用いられている負極板であれば適用可能である。なお、SLIバッテリーと呼ばれる始動用鉛蓄電池の負極板を本実施形態に適用した場合でも本実施形態は一定の効果が認められるが、負極板自体の充電受入性能が著しく悪いため、アイドリングストップ車には適さない。
本実施形態の鉛蓄電池は、多孔性ポリエチレン製で平均細孔直径が0.05μm以上0.50μm以下であるセパレータを有する。一般にセパレータには、電解液を通す機能と、正極板と負極板の接触を防ぐ機能の二つの機能が求められる。
本実施形態では、電解液にアルミニウムイオンが含まれた液式鉛蓄電池のセパレータの平均細孔直径を、従来よりも大きく設定し、かつ、セパレータの表面親水度を電解液の接触角にて規定し、さらにセパレータのリブの高さを規定する。その理由は、従来のセパレータをそのまま、電解液にアルミニウムが添加された鉛蓄電池に適用すると、セパレータ内部へ電解液が浸透しにくくなって、上述した不具合が発生するからである。
なお、セパレータの表面親水度は、セパレータの材質、製造時に使用するオイルの種類ならびに使用量、購入後のセパレータにオイル等の表面改質剤を塗布する等により変化させることが可能である。
電解液としては、液式、シール式の両方において、希硫酸が使用される。なお、実施形態においては、鉛蓄電池の充電効率改善のため、アルミニウムイオンが含まれる。アルミニウムイオンが電解液中に含まれることによる充電効率改善の詳細は、特許文献1(特許第4799560号)に開示されている。特許文献1には、鉛イオンの溶解度の低い充電状態(SOC)70%以上の硫酸濃度の高い領域において、アルミニウムイオンは、その周りに鉛イオンを吸着・捕捉することが可能であり、これにより電解液中の鉛イオン濃度が高まり、酸化還元を容易にすることが充電効率の改善につながっていると述べられている。
なお、電解液(硫酸電解液)中のアルミニウムイオンの濃度は、本実施形態では、20mmol/L以上200mmol/L以下が最適値である。アルミニウムイオンの濃度が20mmol/Lよりも低いと上記効果が薄く、逆に、200mmol/Lよりも高いと液粘度増加に起因する導電性の低下、ならびに活物質細孔への電解液浸透性低下に起因する活物質利用率の低下等の問題が生じる。また、具体的な添加方法は、電解液の主成分が硫酸であることを考慮すると、硫酸アルミニウム(Al(SO))の形で添加するのが望ましい。
鉛部品としては、ストラップ、セル間接続部品(中間極柱)、極柱、ブッシング、外部端子等が挙げられる。ストラップは、各セルの同極性の極板同士を接合する部品であり、主成分は金属鉛である。
ストラップは、極板の耳と呼ばれる極板上部の突起部分を金属鉛で溶接することにより形成される。形成方法としては、バーナー法(以下、「GB法」という)およびキャスト・オン・ストラップ法(以下、「COS法」という)の2種類がある。GB法は、極板の耳を櫛と呼ばれる溶接鋳型に差し込み、溶融した金属鉛を流し込むことにより形成される。COS法は、鋳型中で溶融した鉛の中に極板の耳を浸した後に冷却することで形成される。
中間極柱は、セル間を直列に接続するための部品であり、主成分は金属鉛である。中間極柱は、前述のストラップ形成時に同時に形成される。GB法の場合は、櫛付近に中間極柱部品を置き、耳と中間極柱部品を同時に鉛で溶接する。COS方式の場合は、ストラップと中間極柱部品がつながった形の鋳型を使用することで形成される。
極柱は、極板群と外部端子をつなぐ部品であり、自動車用鉛蓄電池の場合、1セル目の正極側、および6セル目の負極側に1つずつ存在する。極柱の形成方法は上述の中間極柱と同様であり、同一の設備で極柱も形成することができる。
外部端子は、電池から電流を取り出すための部品であり、極柱の先端に形成される。鉛でできたブッシングが予め埋め込まれた蓋と、電槽を合わせる際に、極柱をブッシングの下から差し込み、バーナー溶接を行うことにより柱上部とブッシングの溶接がなされ、外部端子が形成される。
電槽としては、価格が安く、成形性に優れ、かつ電解液として硫酸を使用する関係上、耐薬品性を有する材料が求められる。自動車用液式鉛蓄電池、二輪用シール式鉛蓄電池、産業用大型電池鉛蓄電池の場合、ポリプロピレン樹脂が使用される。また、長寿命が求められる産業用シール式鉛蓄電池においては、ABS樹脂もよく用いられる。
蓋に求められる要件も電槽と同様であり、ポリプロピレン樹脂およびABS樹脂が用いられる。また、上述のように、蓋には外部端子となる部品が埋め込まれており、蓋と電槽を溶着した後でブッシングと極柱との溶接が行われ、外部端子が形成される。
以下に、実施例とともに本発明についてさらに詳しく説明する。なお、本発明は以下の実施例のみに限定されない。
<サンプル1−1>
(1)未化成正極板の作製
正極活物質として、鉛粉、酸化鉛、即ち、リサージ(PbO)などの各種酸化鉛、イオン交換水、続いて比重1.27の希硫酸を加えながら混練して正極用ペーストを作製した。このペーストを鉛−カルシウム合金からなる鋳造基板に充填し、40℃、湿度95%の雰囲気で24時間の熟成・乾燥を行い、未化成正極板を作製した。
(2)未化成負極板の作製
負極活物質として、鉛粉、酸化鉛、即ち、リサージ(PbO)などの各種酸化鉛、導電性カーボン、硫酸バリウムの粉末を添加し乾式混合した。次にこれにリグニンを水溶液として加え、続いてイオン交換水、希硫酸を添加、混練して負極活物質合剤ペーストを調製した。負極活物質合剤ペーストは、鉛−カルシウム系合金から成る鋳造格子基板に充填した後、40℃、湿度95%の雰囲気で24時間の熟成・乾燥を行い、未化成負極板を作製した。
(3)電池組立、電解液の調製と化成
これらの未化成正極板と未化成負極板とを、平均細孔直径0.05μmのポリエチレン製セパレータを介して交互に積層した後、同極性極板の耳群をCOS方式で溶接して極板群とした。セパレータとしては、外側に等間隔で高さ(突出寸法)が0.3mmの縦リブ(電槽の高さ方向に延びる帯状のリブ)を有する袋状セパレータを使用し、袋状セパレータ内に未化成負極板を入れ、袋状セパレータの外側に未化成正極板を配置した。これにより、極板群において、セパレータは、未化成正極板と対向する面にリブを有する状態となっている。
この極板群をポリプロピレン製の電槽に収納し、ヒートシールによって蓋を取り付けた。この時の群の圧迫度は15kPaになるようにスペーサーを入れて調整した。そして、硫酸アルミニウムを添加した電解液を注入して電槽化成を行い、12V、57Ahの電池工業会規格(SBA規格)Q−85相当の液式鉛蓄電池を作製した。
このようにして作製した液式鉛蓄電池における電解液中のアルミニウムイオン濃度は20mmol/Lであり、セパレータ表面における電解液の接触角は0度であった。
なお、セパレータ表面における電解液の接触角は、θ/2法により測定した。詳細には、セパレータ表面に電解液を一滴垂らし、液滴半円の半径(r)とセパレータから液滴の頂点までの距離(h)をそれぞれ測定し、下記計算式(式1)にて接触角を算出した。なお、液滴は時間経過と共にセパレータ側に吸収されてしまい、接触角も同様に時間経過と共に小さくなってしまうため、液滴をセパレータに置いたらすぐに測定を行った。
θ=2×arctan(h/r)・・・(式1)
(4)充放電試験
作製した上記鉛蓄電池の充電受入性能、高率放電性能、およびデンドライトショート抑制効果を評価するため、下記充放電試験を行った。高率放電性能は、SBAS 0101に準拠し測定を行った。すなわち、満充電状態の電池を、−18℃の恒温槽にて24時間静置し、580Aの電流値にて30秒間放電したところ、そのときの電圧は7.42Vであった。
また、充電受入性能もSBA S 0101に準拠し試験を行った。すなわち、25℃の水槽にて満充電後24時間静置し、20時間電流の3.42倍に相当する10.43Aで30分間放電を実施。24時間経過後、200A、14.5Vにて10秒間の充電を実施し、700A・sの充電受入容量を得た。
さらにSBA S 0101記載のアイドリングストップ寿命試験を実施し、36000サイクル経過後に解体を行い、デンドライト発生の有無を確認したところ、デンドライトは発生していなかった。
なお、30秒目電圧が高いこと、充電受入性能(充電受入容量が高いこと)、およびデンドライトが発生しないことの三性能は必須であり、どの性能も欠けることはあってはならない。以後に記載する各表に総合評価として、上記三性能を全て満たした水準を○、その中で特に優れた性能となった水準を◎、満足しない性能が1つある水準を△、満足しない性能が2つ以上、または極端に満足しない性能が1つある水準を×とした。
<サンプル1−2>
平均細孔直径が0.25μmであるセパレータを用いた以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.75V、充電受入容量703A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル1−3>
平均細孔直径が0.50μmであるセパレータを用いた以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.65V、充電受入容量705A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル1−4>
電解液中のアルミニウムイオン濃度が100mmol/Lである以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.35V、充電受入容量721A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル1−5>
電解液中のアルミニウムイオン濃度が200mmol/Lである以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.30V、充電受入容量700A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル1−6>
平均細孔直径が0.03μmであるセパレータを用いた以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.04V、充電受入容量620A・sの結果を得た。なお、寿命試験におけるデンドライトショートが確認された。
<サンプル1−7>
平均細孔直径が1.00μmであるセパレータを用いた以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.56V、充電受入容量715A・sの結果を得た。なお、寿命試験におけるデンドライトショートが確認された。
<サンプル1−8>
硫酸アルミニウム無添加電解液を用いた以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.80V、充電受入容量555A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル1−9>
電解液中のアルミニウムイオン濃度が300mmol/Lである以外、サンプル1−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.12V、充電受入容量580A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
Figure 0006734456
試験結果は、上記表1に示されるように、サンプル1−1から1−5は、高率放電性能、充電受入性能、内部短絡発生度の低さの全てが高いレベルで実現できているのに対し、サンプル1−6から1−9では、上記3つの性能の少なくともひとつが欠けている結果となった。
より詳細には、セパレータの平均細孔直径が小さすぎると高率放電性能の低下および充電受入性能の低下を引き起こす。さらに、電流の一極集中化が進むため、デンドライトショートを起こす可能性も高まる。逆にセパレータの平均細孔直径が大きすぎる場合、高率放電性能および充電受入性能は問題ないが、長期サイクル試験における寿命性能の低下を招く結果となった。
上述のように、セパレータには、電解液を通す機能と、正極板と負極板の接触を防ぐ機能の二つの機能が求められるが、セパレータの平均細孔直径が大きすぎると、正極板表面の活物質の軟化による溶出が起こり、セパレータを介して負極板に接触してしまうことが起こると考えられる。上述のアイドリングストップ試験は、基本的には充電不足状態で行われる試験であるが、急峻な充放電であるため極板上部の使用頻度が高く、部分的に損傷が大きくなる。このため、正極板上部の活物質の軟化が進むことによる内部短絡を引き起こす割合が高くなると推察される。
<サンプル2−1(1−1)>
本サンプルはサンプル1−1と同じであり、比較のために示したものである。本実施例におけるセパレータの平均細孔直径が0.05μm、電解液中のアルミニウムイオン濃度は20mmol/L、セパレータ表面における電解液の接触角が0度、およびセパレータのリブ高さが0.3mmであり、先の評価の結果、30秒目電圧7.42V、充電受入容量700A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル2−2>
上記接触角が45度であるセパレータを用いた以外、サンプル2−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.75V、充電受入容量703A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル2−3>
上記接触角が90度であるセパレータを用いた以外、サンプル2−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.65V、充電受入容量705A・sの結果を得た。なお、寿命試験におけるデンドライトショートは確認されなかった。
<サンプル2−4>
上記接触角が120度であるセパレータを用いた以外、サンプル2−1と同様の方法で鉛蓄電池の作製・評価を行い、30秒目電圧7.04V、充電受入容量620A・sの結果を得た。なお、寿命試験におけるデンドライトショートが確認された。
Figure 0006734456
試験結果は、上記表2に示されるように、サンプル2−1から2−3は、高率放電性能、充電受入性能、内部短絡発生度の低さの全てが高いレベルで実現できているのに対し、サンプル2−4は上記3つの性能の少なくともひとつが欠けている結果となった。
より詳細には、接触角が大きい場合、高率放電性能の低下および充電受入性能の低下を引き起こし、さらに電流の一極集中化が進むため、デンドライトショートを起こす可能性も高まる結果となった。上述のように、セパレータには、電解液を通す機能と、正極板と負極板の接触を防ぐ機能の二つの機能が求められるが、セパレータの親水性が低いとセパレータ細孔内に電解液が入りにくくなり、内部抵抗上昇に起因する各種性能の低下を引き起こしたと推察される。
なお、本現象は、電解液中にアルミニウムイオンが含まれる鉛蓄電池に特有の現象であり、電解液中に金属塩が含まれない通常の電解液を用いる鉛蓄電池では発生しない。電解液にアルミニウムイオンが含まれる鉛蓄電池では、セパレータ表面における電解液の接触角を90度以下にすることが好ましい。
<サンプル3−1(1−1)>
本サンプルはサンプル1−1と同じであり、比較のために示したものである。本実施例におけるセパレータの平均細孔直径が0.05μm、電解液中のアルミニウムイオン濃度は20mmol/L、セパレータ表面における電解液の接触角が0度、およびセパレータのリブ高さが0.3mmである鉛蓄電池を作製した。
作製した上記鉛蓄電池の内部抵抗変化量を評価するため、SBA S 0101記載のアイドリングストップ寿命試験を実施し、試験開始時と18000サイクル経過時の内部抵抗をそれぞれ測定し、試験開始前後の内部抵抗変化量は2.57mΩであった。また、SBAS 0101アイドリングストップ寿命試験の前後で充電受入性試験をそれぞれ実施し、720A・s(試験前)、510A・s(試験後)の結果を得た。
<サンプル3−2>
リブ高さが0.5mmであるセパレータを用いた以外、サンプル3−1と同様の方法で鉛蓄電池の作製・評価を行い、内部抵抗変化量2.21mΩ、充電受入容量706A・s(試験前)、506A・s(試験後)の結果を得た。
<サンプル3−3>
リブ高さが0.7mmであるセパレータを用いた以外、サンプル3−1と同様の方法で鉛蓄電池の作製・評価を行い、内部抵抗変化量2.00mΩ、充電受入容量699A・s(試験前)、500A・s(試験後)の結果を得た。
<サンプル3−4>
リブ高さが0.1mmであるセパレータを用いた以外、サンプル3−1と同様の方法で鉛蓄電池の作製・評価を行い、内部抵抗変化量4.16mΩ、充電受入容量726A・s(試験前)、426A・s(試験後)の結果を得た。
<サンプル3−5>
リブ高さが0.9mmであるセパレータを用いた以外、サンプル3−1と同様の方法で鉛蓄電池の作製・評価を行い、内部抵抗変化量2.03mΩ、充電受入容量677A・s(試験前)、437A・s(試験後)の結果を得た。
Figure 0006734456
試験結果は、上記表3に示されるように、サンプル3−1から3−3は、内部抵抗変化量、充電受入容量、および試験後の充電受入容量の全てが高いレベルで実現できているのに対し、サンプル3−4から3−5は上記3つの性能の少なくともひとつが欠けている結果となった。
より詳細には、リブ高さが小さい場合、ガス抜けの悪さに起因する内部抵抗の上昇が顕著であり、それに伴う試験後の充電受入容量の低下も大きい。一方、リブ高さが大きい場合、ガス抜けが良くなるため内部抵抗の変化が小さくて済むため劣化の進行が遅らせることができる反面、正負極間距離が大きいので内部抵抗が最初から高く、初期の充電受入性能が悪い結果となったと推察される。
以上より、電解液中にアルミニウムイオンが20mmol/L以上200mmol/L以下含まれた鉛蓄電池において、セパレータの平均細孔直径、セパレータの接触角、セパレータのリブ高さを規定の範囲内に設定することにより、回生受入性能と高率放電性能、さらにはデンドライトショート発生による内部短絡防止効果を兼ね備えた鉛蓄電池の提供が可能であることが示され、ハイブリッド車をはじめとした自動車のさらなる性能改善への効果が期待される。

Claims (2)

  1. 正極板と負極板と多孔性ポリエチレン製のセパレータとが積層された極板群、および硫酸電解液を、電槽内に有する鉛蓄電池において、
    前記セパレータの平均細孔直径が0.05μm以上0.50μm以下であり、かつ前記硫酸電解液中に20mmol/L以上200mmol/L以下のアルミニウムイオンが含まれており、
    前記セパレータの表面における前記硫酸電解液の接触角が45度以上90度以下であることを特徴とする鉛蓄電池。
  2. 前記セパレータは、前記正極板と対向する面にリブを有し、
    前記リブの突出寸法が0.3mm以上0.7mm以下であることを特徴とする請求項1記載の鉛蓄電池。
JP2019188811A 2019-10-15 2019-10-15 鉛蓄電池 Active JP6734456B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019188811A JP6734456B1 (ja) 2019-10-15 2019-10-15 鉛蓄電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019188811A JP6734456B1 (ja) 2019-10-15 2019-10-15 鉛蓄電池

Publications (2)

Publication Number Publication Date
JP6734456B1 true JP6734456B1 (ja) 2020-08-05
JP2021064534A JP2021064534A (ja) 2021-04-22

Family

ID=71892285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019188811A Active JP6734456B1 (ja) 2019-10-15 2019-10-15 鉛蓄電池

Country Status (1)

Country Link
JP (1) JP6734456B1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068920A (ja) * 2015-09-28 2017-04-06 日立化成株式会社 鉛蓄電池
JP6458829B2 (ja) * 2017-06-29 2019-01-30 株式会社Gsユアサ 鉛蓄電池
WO2019087686A1 (ja) * 2017-10-31 2019-05-09 株式会社Gsユアサ 鉛蓄電池

Also Published As

Publication number Publication date
JP2021064534A (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
EP2544292A1 (en) Lead storage battery
JP6727965B2 (ja) 鉛蓄電池
JP6660072B2 (ja) 鉛蓄電池用正極板及び該正極板を用いた鉛蓄電池及び該鉛蓄電池用正極板の製造方法
JP6164266B2 (ja) 鉛蓄電池
JPWO2018229875A1 (ja) 液式鉛蓄電池
JP6592215B1 (ja) 鉛蓄電池
JP6525167B2 (ja) 鉛蓄電池
JP6388094B1 (ja) 鉛蓄電池
JP6734456B1 (ja) 鉛蓄電池
WO2011027383A1 (ja) 鉛蓄電池
JP7128482B2 (ja) 鉛蓄電池
JP4356321B2 (ja) 鉛蓄電池
JP6677436B1 (ja) 鉛蓄電池
WO2020066763A1 (ja) 鉛蓄電池
JP6569823B1 (ja) 鉛蓄電池、アイドリングストップ車及びマイクロハイブリッド車
JP2000340252A (ja) 鉛蓄電池及び該製造方法
JP7049739B2 (ja) 鉛蓄電池、鉛蓄電池の正極板の製造方法
JP2019079778A (ja) 鉛蓄電池
JP6900928B2 (ja) リチウムイオン二次電池
JP2023016461A (ja) 液式鉛蓄電池
JP2022166455A (ja) 電極群及び鉛蓄電池
JP2018170303A (ja) 鉛蓄電池
JP2023154163A (ja) 鉛蓄電池
JP2019165012A (ja) 鉛蓄電池、アイドリングストップ車及びマイクロハイブリッド車
JP2013080652A (ja) 二次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191015

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191015

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200709

R150 Certificate of patent or registration of utility model

Ref document number: 6734456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150