JP6728109B2 - Egrクーラバイパスバルブ - Google Patents

Egrクーラバイパスバルブ Download PDF

Info

Publication number
JP6728109B2
JP6728109B2 JP2017125978A JP2017125978A JP6728109B2 JP 6728109 B2 JP6728109 B2 JP 6728109B2 JP 2017125978 A JP2017125978 A JP 2017125978A JP 2017125978 A JP2017125978 A JP 2017125978A JP 6728109 B2 JP6728109 B2 JP 6728109B2
Authority
JP
Japan
Prior art keywords
end portion
shaft end
cooler
valve
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017125978A
Other languages
English (en)
Other versions
JP2019007461A (ja
Inventor
小林 昌弘
昌弘 小林
吉岡 衛
衛 吉岡
満 竹内
満 竹内
武蔵 鈴木
武蔵 鈴木
河井 伸二
伸二 河井
成人 伊東
成人 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2017125978A priority Critical patent/JP6728109B2/ja
Priority to US15/987,411 priority patent/US10408170B2/en
Priority to DE102018209924.3A priority patent/DE102018209924B4/de
Publication of JP2019007461A publication Critical patent/JP2019007461A/ja
Application granted granted Critical
Publication of JP6728109B2 publication Critical patent/JP6728109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Lift Valve (AREA)

Description

この明細書に開示される技術は、EGRガスを冷却するEGRクーラ及びEGRクーラを迂回したバイパス通路と共に使用され、EGRクーラを通過するEGRガス流量とバイパス通路を通過するEGRガス流量とを同時に調節するEGRクーラバイパスバルブに関する。
従来、この種の技術として、例えば、下記の特許文献1に記載される技術(EGR装置のバルブユニット)が知られている。この特許文献1には、EGR通路の途中に設けられる並列フロー式のEGRクーラユニットが記載される。このEGRクーラユニットは、クーラ通路と、クーラ通路を迂回したバイパス通路と、クーラ通路の入口側とバイパス通路の入口側に設けられるガス入口部とを含むクーラケーシングと、クーラ通路の出口側とバイパス通路の出口側に設けられるバルブユニットと、バルブユニットの出口側に設けられるガス出口部とを備える。クーラ通路には、エンジンの冷却水が流れる熱交換器が設けられる。このEGRクーラユニットでは、クーラ通路と熱交換器によってEGRクーラが構成される。ガス入口部とガス出口部は、それぞれEGR通路に接続される。
ここで、このバルブユニットは、EGRクーラと共に使用され、EGRクーラを通過するEGRガス流量と、バイパス通路を通過するEGRガス流量とを同時に調節するために使用される。バルブユニットは、バルブケーシングを備える。バルブケーシングは、クーラ通路に連通するクーラ流路と、バイパス通路に連通するバイパス流路とを含み、クーラ流路とバイパス流路が隔壁を介して仕切られる。クーラ流路には、クーラ弁体が回動可能に設けられ、バイパス流路には、バイパス弁体が回動可能に設けられる。両弁体は、バタフライ式弁体であり、1つの弁軸に対して位相をずらして固定される。そして、クーラ弁体が全閉位置に配置されたときは、バイパス弁体が全開位置に配置され、EGRガスがバイパス通路及びバイパス流路を流れる。一方、クーラ弁体が全開位置に配置されたときは、バイパス弁体が全閉位置に配置され、EGRガスがクーラ通路及びクーラ流路を流れる。ここで、特許文献1に明示はないが、弁軸は、その両軸端部がそれぞれ軸受を介してバルブケーシングに支持されると考えられる。また、一方の軸端部は、被動ギヤ等を含む減速機構を介してDCモータ等のアクチュエータに駆動連結されると考えられる。
特開2009−250096号公報
ところで、特許文献1に記載のバルブユニットにおいて、バイパス流路には、EGRクーラで冷却されない高温のEGRガスが流入する。一方、クーラ流路には、EGRクーラで冷却されたEGRガスが流入するが、そのガス流量が多い場合は、EGRクーラで冷却し切れないEGRガスがクーラ流路に流入することになる。このため、弁軸等に過熱による熱害のおそれがある。例えば、弁軸上には、バルブケーシングとの間に、軸受の他に、軸受を異物や水分から保護するために、樹脂又はゴムを要素として構成されるシール部材が設けられる。弁軸の過熱は、このシール部材の耐熱性や機能に影響を与えるおそれがある。これを対策するために、弁軸からバルブケーシングへの放熱性を向上させたり、シール部材への熱伝達を抑制したりすることが考えられる。また、弁軸の一方の軸端部には、弁軸を回転させるために被動ギヤが固定されることから、その軸端部を精密かつ安定的に回転させる必要がある。被動ギヤと他のギヤとの噛み合いを円滑にして被動ギヤの摩耗を抑制するためである。また、被動ギヤが樹脂製である場合は、その被動ギヤを熱害から保護する必要がある。
この開示技術は、上記事情に鑑みてなされたものであって、その目的は、EGRガスによる熱害に対しシール部材の耐熱性を確保すると共に、弁軸の減速機構に対する精密かつ安定的な駆動連結を確保することを可能としたEGRクーラバイパスバルブを提供することにある。
上記目的を達成するために、請求項1に記載の技術は、EGRガスを冷却するためのEGRクーラ及びEGRクーラを迂回したバイパス通路と共に使用され、EGRクーラを通過するEGRガスの流量とバイパス通路を通過するEGRガスの流量とを同時に調節するEGRクーラバイパスバルブであって、EGRクーラを通過したEGRガスが流れるクーラ流路と、バイパス通路を通過したEGRガスが流れるバイパス流路とを含み、クーラ流路とバイパス流路とが隔壁により仕切られたケーシングと、クーラ流路、バイパス流路及び隔壁を貫通するようにケーシングに配置され、第1軸端部と第2軸端部とを含む弁軸と、クーラ流路に配置され、弁軸と一体に設けられたクーラ弁体と、バイパス流路に配置され、弁軸と一体に設けられたバイパス弁体と、ケーシングと第1軸端部との間に設けられ、第1軸端部を回転可能に支持するための第1軸受と、ケーシングと第2軸端部との間に設けられ、第2軸端部を回転可能に支持するための第2軸受と、第1軸受の近傍にて第1軸端部とケーシングとの間をシールするための第1シール部材と、第2軸受の近傍にて第2軸端部とケーシングとの間をシールするための第2シール部材と、弁軸を回転させるために第1軸端部の先端に固定されると共に、減速機構を構成する被動ギヤとを備え、弁軸を被動ギヤを介して回転させてクーラ弁体とバイパス弁体を開閉させるように構成したEGRクーラバイパスバルブにおいて、クーラ流路及びクーラ弁体が第1軸端部に隣接して配置されると共に、バイパス流路及びバイパス弁体が第2軸端部に隣接して配置されることと、第1軸受は、第1軸端部の回転を精密に支持するために転がり軸受により構成されることと、第2軸受は、第2軸端部からケーシングへの放熱を良好にするために滑り軸受により構成されることとを備えたことを趣旨とする。
上記技術の構成によれば、ケーシングにおいて、EGRクーラを流れて冷却されたEGRガスがクーラ流路を通過し、バイパス通路を流れて冷却されないEGRガスがバイパス流路を通過する。そして、クーラ流路に配置されたクーラ弁体が第1軸端部に隣接して配置され、バイパス流路に配置されたバイパス弁体が第2軸端部に隣接して配置される。従って、クーラ流路を流れるEGRガスから第1軸端部へ伝わる熱量が、バイパス流路を流れるEGRガスから第2軸端部へ伝わる熱量よりも少なくなるので、第1軸端部の温度が相対的に低くなり、第1シール部材の過熱が抑えられる。また、第1軸端部の先端に被動ギヤが固定され、その第1軸端部を支持する第1軸受が転がり軸受により構成される。従って、被動ギヤと共に第1軸端部の回転が第1軸受により精密に支持される。更に、第2軸端部を支持する第2軸受が、放熱性の良好な滑り軸受により構成される。従って、第2軸端部からケーシングへ逃げる熱量が多くなるので、第2軸端部の温度が低くなり、第2シール部材の過熱が抑えられる。
上記目的を達成するために、請求項2に記載の技術は、請求項1に記載の技術において、被動ギヤが樹脂ギヤにより構成され、樹脂ギヤに金属連結部材が一体に設けられ、第1軸端部の先端が金属連結部材を介して樹脂ギヤに連結され、金属連結部材には、第1軸端部から樹脂ギヤへの伝熱を低減するための伝熱低減構造が設けられることを趣旨とする。
上記技術の構成によれば、請求項1に記載の技術の作用に加え、EGRガスから第1軸端部に伝わる熱は、金属連結部材を介して樹脂ギヤに伝わるが、金属連結部材に伝熱低減構造が設けられるので、第1軸端部から樹脂ギヤへ伝わる熱量が少なくなる。
上記目的を達成するために、請求項3に記載の技術は、請求項1に記載の技術において、第1軸端部上には、第1軸受と第1シール部材との間に、第1軸端部からケーシングへの放熱を促進するための放熱促進手段が設けられることを趣旨とする。
上記技術の構成によれば、請求項1に記載の技術の作用に加え、EGRガスから第1軸端部へ伝わる熱は、第1軸受からケーシングへ伝えられるが、第1軸受が転がり軸受より構成されるので、ケーシングへの伝熱量は比較的少なくなる。この構成では、第1軸受と第1シール部材との間の第1軸端部上に、放熱促進手段が設けられるので、第1軸端部からケーシングへの放熱が促進され、その分だけ第1軸端部から樹脂ギヤや第1シール部材へ伝わる熱量が少なくなる。
請求項1に記載の技術によれば、EGRガスによる熱害に対し第1及び第2のシール部材の耐熱性を確保することができると共に、弁軸の減速機構に対する精密かつ安定的な駆動連結を確保することができる。
請求項2に記載の技術によれば、請求項1に記載の技術の効果に加え、EGRガスによる熱害に対し樹脂ギヤよりなる被動ギヤの熱劣化を抑えることができ、被動ギヤの耐熱性を向上させることができる。
請求項3に記載の技術によれば、請求項1に記載の技術の効果に加え、EGRガスによる熱害に対し第1シール部材の熱劣化を更に抑えることができ、その耐熱性を向上させることができる。
第1実施形態に係り、EGRクーラバイパスバルブ(バイパスバルブ)を備えたEGRクーラユニットの概略を示す断面図。 第1実施形態に係り、バイパスバルブを示す断面図。 第1実施形態に係り、クーラケーシングにおけるEGRガスの流れと、バイパスバルブの各弁体の開閉状態との関係を概念的に示す部分断面図。 第1実施形態に係り、クーラケーシングにおけるEGRガスの流れと、バイパスバルブの各弁体の開閉状態との関係を概念的に示す部分断面図。 第2実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 第3実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 第4実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 第5実施形態に係り、メインギヤを示す平面図。 第6実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 第6実施形態に係り、プレートを示す平面図。 第7実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 第8実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 第9実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 第10実施形態に係り、バイパスバルブの主要部を概略的に示す部分断面図。 別の実施形態に係り、バイパスバルブの主要部を示す断面図。 別の実施形態に係り、バイパスバルブの主要部を示す断面図。
<第1実施形態>
以下、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第1実施形態につき図面を参照して詳細に説明する。
[EGRクーラユニットの概要について]
図1に、この実施形態のEGRクーラバイパスバルブ(以下、単に「バイパスバルブ」という。)1を備えた並列フロー式のEGRクーラユニット2の概略を断面図により示す。このEGRクーラユニット2は、EGR通路(図示略)の途中に設けられ、クーラケーシング3と、クーラケーシング3の入口側に設けられた入口パイプ4と、クーラケーシング3の出口側に設けられたバイパスバルブ1及び出口パイプ5とを備える。クーラケーシング3は、クーラ通路6と、クーラ通路6を迂回したバイパス通路7と、クーラ通路6の入口6aとバイパス通路7の入口7aが合流する合流部8とを含む。クーラ通路6とバイパス通路7は互いに並列に配置される。入口パイプ4は合流部8に接続される。バイパスバルブ1は、クーラ通路6の出口6bとバイパス通路7の出口7bに接続される。出口パイプ5は、バイパスバルブ1の出口側に接続される。クーラ通路6には、エンジンの冷却水が流れる熱交換器9が設けられる。クーラ通路6と熱交換器9によりEGRクーラが構成される。入口パイプ4と出口パイプ5は、それぞれEGR通路に接続される。入口パイプ4に流入したEGRガスは、クーラ通路6を通過することで熱交換器9により冷却される。バイパス通路7を通過するEGRガスは冷却されない。
[バイパスバルブについて]
図2に、この実施形態のバイパスバルブ1を断面図により示す。図1、図2に示すように、バイパスバルブ1は、EGRクーラ(クーラ通路6及び熱交換器9)を通過するEGRガスの流量(ガス流量)と、バイパス通路7を通過するガス流量とを同時に調節するようになっている。このバイパスバルブ1は、直列二弁タイプであって、主要な構成要素として、バルブケーシング11、二つの弁体12,13、弁軸14、減速機構15及びDCモータ16を備える。バルブケーシング11は、二つの流路17,18を含むアルミ製の本体ケーシング19と、本体ケーシング19の開口端を閉鎖する合成樹脂製のエンドフレーム20とを含む。二つの弁体12,13、弁軸14及びDCモータ16は、本体ケーシング19に設けられる。減速機構15は、本体ケーシング19とエンドフレーム20との間に設けられる。
本体ケーシング19は、クーラ通路6の出口6bに連通するクーラ流路17と、バイパス通路7の出口7bに連通するバイパス流路18とを含み、クーラ流路17とバイパス流路18とが隔壁21を介して仕切られる。クーラ流路17には、クーラ通路6を通過したEGRガスが流れる。バイパス流路18には、バイパス通路7を通過したEGRガスが流れる。クーラ流路17には、同流路17を開閉するための板状をなすクーラ弁体12が配置される。バイパス流路18には、同流路18を開閉するための板状をなすバイパス弁体13が配置される。この実施形態で、クーラ弁体12及びバイパス弁体13はそれぞれバタフライ式弁体であり、一つの弁軸14に一体に固定される。弁軸14は、本体ケーシング19にて、クーラ流路17、隔壁21及びバイパス流路18を貫通して配置され、二つの軸受22,23を介して回転可能に支持される。クーラ弁体12はクーラ流路17にて弁軸14に固定され、バイパス弁体13はバイパス流路18にて弁軸14に固定される。また、クーラ弁体12とバイパス弁体13は、互いに位相を所定角度ずらした状態で弁軸14に固定される。従って、弁軸14を一方向へ回転させることにより、クーラ弁体12が開方向へ回動すると共にバイパス弁体13が閉方向へ回動する。一方、弁軸14を逆方向へ回転させることにより、クーラ弁体12が閉方向へ回動すると共にバイパス弁体13が開方向へ回動する。図2は、クーラ弁体12が全閉でバイパス弁体13が全開の状態を示す。
図3、図4は、クーラケーシング3におけるEGRガスの流れと、バイパスバルブ1の各弁体12,13の開閉状態との関係を概念的に示す部分断面図である。図3、図4において、クーラケーシング3とバイパスバルブ1は、互いに断面の向きと倍率が異なる。また、バイパスバルブ1では、一部の部材の図示が省略されている(以下に示す他の図においても同様。)。図3は、クーラ弁体12が全閉でバイパス弁体13が全開の状態を示す。この状態では、入口パイプ4に流入したEGRガスが、そのまま冷却されることなくバイパス通路7を経由して、バイパスバルブ1のバイパス流路18へ流れる。一方、図4は、クーラ弁体12が全開でバイパス弁体13が全閉の状態を示す。この状態では、入口パイプ4に流入したEGRガスが、クーラ通路6を経由して、熱交換器9で冷却されてから、バイパスバルブ1のクーラ流路17へ流れる。
図2〜図4に示すように、弁軸14は、二つの軸受22,23を介して本体ケーシング19に回転可能に支持される。弁軸14は、その両端に第1軸端部14aと第2軸端部14bを含む。二つの弁体12,13は、第1軸端部14aと第2軸端部14bとの間にて弁軸14上に固定される。クーラ流路17及びクーラ弁体12は、第1軸端部14aに隣接して配置され、バイパス流路18及びバイパス弁体13は、第2軸端部14bに隣接して配置される。ここで、第1軸端部14aは、クーラ弁体12より外側(弁軸14の一端側)の全範囲を含み、第2軸端部14bは、バイパス弁体13より外側(弁軸14の他端側)の全範囲を含むと定義することができる。本体ケーシング19と第1軸端部14aとの間には、第1軸受22が設けられる。一方、本体ケーシング19と第2軸端部14bとの間には、第2軸受23が設けられる。また、図2に示すように、本体ケーシング19には、第2軸端部14bの先端に対応して、弁軸14の軸方向への位置ずれを防止するためのリテーナ25が設けられる。このリテーナ25と第2軸端部14bとの間には、弁軸14を回転方向へ付勢するためのスプリング(図示略)が設けられる。更に、クーラ弁体12と第1軸受22との間にて、第1軸受22のクーラ弁体12に近い側面には、その側面に隣接して、第1軸端部14aと本体ケーシング19との間をシールするための第1シール部材26が設けられる。また、バイパス弁体13と第2軸受23との間にて、第2軸受23のバイパス弁体13に近い側面には、その側面に隣接して、第2軸端部14bと本体ケーシング19との間をシールするための第2シール部材27が設けられる。両シール部材26,27は、樹脂又はゴムを要素として構成される。これらシール部材26,27として、例えば、「PTFEシール」を採用することができる。第1シール部材26は、クーラ流路17から第1軸端部14aと本体ケーシング19との間への異物や水分の侵入を防止するようになっている。第2シール部材27は、バイパス流路18から第2軸端部14bと本体ケーシング19との間への異物や水分の侵入を防止するようになっている。
図2において、エンドフレーム20は、本体ケーシング19に対し複数のクリップ(図示略)により着脱可能に固定される。エンドフレーム20の内側には、第1軸端部14aの先端に対応して配置され、各弁体12,13の開度(バルブ開度)を検出するための開度センサ31が設けられる。この開度センサ31は、ホールIC等により構成され、弁軸14の回転角度をバルブ開度として検出するように構成される。第1軸端部14aの先端には、被動ギヤであるメインギヤ32が固定される。メインギヤ32は、樹脂より形成され、この開示技術における樹脂ギヤに相当する。ここで、メインギヤ32の中心には、この開示技術における金属連結部材の一例に相当する金属製のレバー28が、インサート成形により一体に設けられる。レバー28の中心には、中心孔28aが形成される。第1軸端部14aの先端が、この中心孔28aに嵌め入れられて溶接される。すなわち、第1軸端部14aの先端がレバー28を介してメインギヤ32に連結され、メインギヤ32と一体回転可能に構成される。また、メインギヤ32と本体ケーシング19との間には、各弁体12,13を閉方向又は開方向へ付勢するためのリターンスプリング33が設けられる。メインギヤ32の表側には、凹部32aが形成される。この凹部32aには、磁石34が収容される。この磁石34は、板ばねよりなる押さえ板35により固定される。従って、メインギヤ32が、各弁体12,13及び弁軸14と一体に回転することにより、磁石34の磁界が変化し、その磁界の変化を開度センサ31がバルブ開度として検出するようになっている。
この実施形態で、DCモータ16は、本体ケーシング19に形成された凹部19aに収容され、その両端が留め材36と板ばね37を介して本体ケーシング19に固定される。図1、図2に示すように、DCモータ16は、各弁体12,13を開閉駆動するために、減速機構15を介して弁軸14に駆動連結される。DCモータ16の出力軸16a上には、モータギヤ38が固定される。モータギヤ38は、中間ギヤ39を介してメインギヤ32に駆動連結される。中間ギヤ39は、大径ギヤ39aと小径ギヤ39bを含む二段ギヤであり、ピンシャフト40を介して本体ケーシング19に回転可能に支持される。大径ギヤ39aには、モータギヤ38が連結され、小径ギヤ39bには、メインギヤ32が連結される。この実施形態では、減速機構15を構成するメインギヤ32と中間ギヤ39が、軽量化のために樹脂より形成される。
上記のように、このバイパスバルブ1は、弁軸14を回転させて各弁体12,13を開閉させることにより、各流路17,18におけるEGRガスの流量を制御するように構成される。従って、例えば、図3に示すように、クーラ弁体12の全閉状態及びバイパス弁体13の全開状態から、DCモータ16が通電により作動し、モータギヤ38が一方向へ回転することにより、その回転が中間ギヤ39により減速されてメインギヤ32に伝達される。これにより、弁軸14及び各弁体12,13が、リターンスプリング33の付勢力に抗して回動され、クーラ流路17が開かれ、バイパス流路18が閉じられる。また、各弁体12,13をある開度に保持するために、DCモータ16に通電により回転力を発生させることにより、その回転力がモータギヤ38、中間ギヤ39及びメインギヤ32を介し保持力として弁軸14及び各弁体12,13に伝達される。この保持力がリターンスプリング33の付勢力に均衡することにより、各弁体12,13がそれぞれある中間開度に保持される。また、図3に示すように、クーラ弁体12が全閉位置に配置されたときは、バイパス弁体13が全開位置に配置され、EGRクーラを迂回した冷却されないEGRガスがバイパス通路7及びバイパス流路18を流れる。また、図4に示すように、クーラ弁体12が全開位置に配置されたときは、バイパス弁体13が全閉位置に配置され、EGRクーラで冷却されたEGRガスがクーラ通路6及びクーラ流路17を流れる。この実施形態で、両弁体12,13はそれぞれ全閉位置と全開位置に切り替え配置されると共に、全閉位置と全開位置との間の任意の中間開度に配置可能となっている。このように両弁体12,13の開度を制御することにより、クーラ流路17を通過するガス流量とバイパス流路18を通過するガス流量をそれぞれ調節し、出口パイプ5から流れ出るEGRガスの温度(ガス出口温度)を任意に制御できるようになっている。
[バイパスバルブの技術的特徴について]
ここで、弁軸14の第1軸端部14aは、メインギヤ32等を含む減速機構15を介してDCモータ16に駆動連結される。また、メインギヤ32には、バルブ開度を検出するための開度センサ31に対応する磁石34が固定される。そのため、第1軸端部14aの回転を精密(リジッド)に支持する必要がある。また、各シール部材26,27は樹脂又はゴムを要素として構成されることから、各流路17,18を流れるEGRガスによる熱害から各シール部材26,27を保護する必要がある。特に、バイパス流路18には、EGRクーラで冷却されない高温(「720℃」前後)のEGRガスが流れることから、第2シール部材27の熱害が特に問題となる。同様に、樹脂製のメインギヤ32もEGRガスによる熱害から保護する必要がある。そこで、この実施形態のバイパスバルブ1は、上記課題に対処するために、次のような技術的特徴を備える。
この実施形態では、クーラ流路17及びクーラ弁体12が、第1軸端部14aに隣接して配置され、バイパス流路18及びバイパス弁体13が、第2軸端部14bに隣接して配置される。また、第1軸受22が、第1軸端部14aの回転を精密に支持するために、高い精度と耐熱性を確保できる転がり軸受(ボールベアリング)により構成される。ここで、転がり軸受は、第1軸端部14aに伝わる熱を本体ケーシング19へ逃がすことはできるが、その伝熱性は滑り軸受に比べて小さい。一方、第2軸受23が、第2軸端部14bから本体ケーシング19への放熱を促進するために滑り軸受により構成される。第2軸端部14bには、バイパス流路18を流れる高温のEGRガスの熱が伝わるので、その熱を本体ケーシング19へ円滑に逃がすために滑り軸受が採用される。加えて、第2軸受23の近傍にて本体ケーシング19には、冷却水が流れる冷却水通路19bが形成される。この冷却水通路19bを流れる冷却水によって、第2軸受23及び第2軸端部14bを冷却するようになっている。
以上説明したこの実施形態のバイパスバルブ1の構成によれば、弁軸14の第1軸端部14aと第2軸端部14bが、それぞれ第1軸受22と第2軸受23を介して本体ケーシング19に回転可能に支持される。また、弁軸14を回転させるために、第1軸端部14aの先端がメインギヤ32を含む減速機構15を介してDCモータ16に駆動連結される。そして、弁軸14を減速機構15等により回転させて各弁体12,13を開閉させることにより、各流路17,18におけるEGRガス流量が調節され、EGRクーラユニット2から流れ出るEGRガスの温度が調節される。
この実施形態の構成によれば、バイパスバルブ1の本体ケーシング19において、EGRクーラ(クーラ通路6及び熱交換器9)を流れて冷却されたEGRガスがクーラ流路17を通過し、バイパス通路7を流れて冷却されないEGRガスがバイパス流路18を通過する。そして、クーラ流路17及びクーラ弁体12が第1軸端部14aに隣接して配置され、バイパス流路18及びバイパス弁体13が第2軸端部14bに隣接して配置される。従って、クーラ流路17を流れるEGRガスから第1軸端部14aへ伝わる熱量が、バイパス流路18を流れるEGRガスから第2軸端部14bへ伝わる熱量よりも少なくなるので、第1軸端部14aの温度が相対的に低くなり、第1シール部材26の過熱が抑えられる。従って、クーラ弁体12から第1軸端部14aへ伝わるEGRガスの熱量が、バイパス弁体13から第2軸端部14bへ伝わる熱量よりも少なくなり、第1軸端部14aの温度が相対的に低くなり、第1シール部材26の過熱が抑えられる。このため、EGRガスによる熱害に対し第1シール部材26の熱劣化を抑えることができ、第1シール部材26の耐熱性を確保することができる。換言すると、第1シール部材26をEGRガスの熱害から保護することができる。また、第1軸端部14aの先端に減速機構15を構成する樹脂製のメインギヤ32が固定され、その第1軸端部14aを支持する第1軸受22が転がり軸受により構成される。従って、メインギヤ32と共に第1軸端部14aの回転が第1軸受22により精密に支持される。このため、弁軸14の減速機構15に対する精密かつ安定的な駆動連結を確保することができる。また、メインギヤ32と中間ギヤ39との噛み合いを円滑にして両ギヤ32,39の摩耗を抑制することができる。更に、弁軸14を精密かつ安定的に回転させることができるので、メインギヤ32と一体に回転する磁石34の磁界変化を開度センサ31によって正確に検出することができ、高い検出精度を確保することができる。更に、第2軸端部14bを支持する第2軸受23が、放熱性の良好な滑り軸受により構成される。従って、第2軸端部14bから本体ケーシング19へ逃げる熱量が多くなるので、第2軸端部14bの温度が低くなり、第2シール部材27の過熱が抑えられる。このため、EGRガスによる熱害に対し第2シール部材27の熱劣化を抑えることができ、第2シール部材27の耐熱性を確保することができる。換言すると、第2シール部材27をEGRガスの熱害から保護することができる。
この実施形態では、第2軸受23の近傍に冷却水通路19bが設けられるので、第2軸受23から本体ケーシング19へ逃げる熱が冷却水通路19bの冷却水へ逃がされる。この意味で、第2軸端部14bを効果的に冷却することができ、第2シール部材27の熱劣化をより効果的に抑えることができる。
<第2実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第2実施形態につき図面を参照して詳細に説明する。
なお、以下の説明において前記第1実施形態と同等の構成要素については同一の符号を付して説明を省略し、異なった点を中心に説明する。
この実施形態では、メインギヤ32に設けられるレバー28の形状の点で第1実施形態と異なる。図5に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図5に示すように、この実施形態のレバー28は、略円板状の底壁28b(中心孔28aを有する)と、その底壁28bの外周にて第1軸受22とは反対方向へ突出する周壁28cとを含む。このレバー28は、その底壁28bが、第1実施形態のレバー28より大径に形成されると共に、メインギヤ32の底面側から露出するようにメインギヤ32と一体に設けられる。また、周壁28cの一部もメインギヤ32から露出しており、その露出部分の外周にリターンスプリング33の一部が接する。このようなレバー28に関する構成は、本開示技術における、第1軸端部14aから樹脂ギヤであるメインギヤ32への伝熱を低減するための伝熱低減構造の一例に相当する。
この実施形態の構成によれば、第1実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態で、レバー28は、第1実施形態よりも大径に形成されると共に、メインギヤ32の底面から露出し、その露出部分にリターンスプリング33が接する。従って、第1軸端部14aからレバー28への伝熱経路が相対的に長くなる。また、第1軸端部14aからレバー28へ伝わる熱が、リターンスプリング33を介して本体ケーシング19及び外部へと逃げる。これにより、第1軸端部14aから樹脂ギヤよりなるメインギヤ32へ伝わる熱量が少なくなり、メインギヤ32の過熱が抑えられる。このため、EGRガスによる熱害に対し樹脂ギヤよりなるメインギヤ32の熱劣化を抑えることができ、メインギヤ32の耐熱性を向上させることができる。
<第3実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第3実施形態につき図面を参照して詳細に説明する。
この実施形態では、第1軸端部14aの形状の点で第2実施形態と異なる。図6に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図6に示すように、この実施形態で、第1軸端部14aには、その先端側から軸方向へ軸穴14cが形成される。その他の構成は、第2実施形態と同じである。この軸穴14cは、本開示技術における伝熱低減構造の一例に相当する。
この実施形態の構成によれば、第2実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態では、第1軸端部14aの軸穴14cがある部分では、伝熱経路の断面積が減少する。これにより、第1軸端部14aからメインギヤ32へ伝わる熱量が更に少なくなり、メインギヤ32の過熱がより一層抑えられる。このため、樹脂ギヤよりなるメインギヤ32の熱劣化を更に抑えることができ、メインギヤ32の耐熱性を更に向上させることができる。
<第4実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第4実施形態につき図面を参照して詳細に説明する。
この実施形態では、メインギヤ32とレバー28の形状の点で第2実施形態と異なる。図7に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図7に示すように、この実施形態では、レバー28の周壁28cの高さ(軸方向の長さ)が、第2実施形態のそれの約2倍となっている。また、この周壁28cの延長に合わせて、メインギヤ32の表側(図7の左側)の端面に、外方へ突出する突部32bが形成される。その他の構成は、第2実施形態と同じである。この突部32bと周壁28cは、本開示技術における伝熱低減構造の一例に相当する。
この実施形態の構成によれば、第2実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態では、レバー28の周壁28cが延長され、それに対応してメインギヤ32に突部32bが設けられるので、樹脂ギヤよりなるメインギヤ32と金属製のレバー28との締結面積が増加する。これにより、第1軸端部14aから樹脂ギヤよりなるメインギヤ32へ伝わる単位面積当たりの熱量が少なくなり、メインギヤ32の過熱がより一層抑えられる。このため、樹脂ギヤよりなるメインギヤ32の熱劣化を更に抑えることができ、メインギヤ32の耐熱性を更に向上させることができる。
<第5実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第5実施形態につき図面を参照して詳細に説明する。
この実施形態では、レバー28の形状の点で第2実施形態と異なる。図8に、メインギヤ32を平面図により示す。図8に示すように、メインギヤ32は、その外周の一部に、中間ギヤ39と噛み合う歯32cを有する。メインギヤ32の凹部32aの中には、レバー28の底壁28bが露出する。この底壁28bの中心には中心孔28aが形成され、その中心孔28aの周囲には、中心孔28aを中心とする多重な円周上に、複数の円弧孔28dが形成される。各円弧孔28dは、周方向及び半径方向にずれるように配置される。その他の構成は、第2実施形態と同じである。このレバー28の円弧孔28dは、本開示技術における伝熱低減構造の一例に相当する。
この実施形態の構成によれば、第2実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態では、レバー28の底壁28bに複数の円弧孔28dが形成されるので、その分だけ底壁28bの表面積が増大し、底壁28bから外部へ逃げる熱量が増大する。また、レバー28の底壁28bにおいて、中心孔28aから外周へ向かう伝熱経路が複数の円弧孔28dにより迷路状に分断され、その部分で伝熱経路の断面積が減少する。これにより、第1軸端部14aから樹脂ギヤよりなるメインギヤ32へ伝わる熱量が少なくなり、メインギヤ32の過熱がより一層抑えられる。このため、樹脂ギヤよりなるメインギヤ32の熱劣化を更に抑えることができ、メインギヤ32の耐熱性を更に向上させることができる。
<第6実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第6実施形態につき図面を参照して詳細に説明する。
この実施形態では、第1軸受22と第1シール部材26との間に、第1軸端部14aから本体ケーシング19への放熱を促進するための放熱促進手段が設けられる点で第1実施形態と異なる。図9に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図10に、後述するプレート51を平面図により示す。図9に示すように、本体ケーシング19において、第1軸受22と第1シール部材26は、所定の距離隔てられて配置される。また、第1シール部材26に隣接する位置にて、第1軸端部14a上には、略円形をなすプレート51が設けられる。図10に示すように、このプレート51には、一部に半径方向へ延びる切り欠き51aが形成される。また、第1軸端部14a上には、その外周に沿って溝部14dが形成される。プレート51は、この溝部14dに切り欠き51aを嵌め込むことで、第1軸端部14a上に接しながら位置決めされる。更に、プレート51と第1軸受22との間には、管状のスペーサ52が配置される。このスペーサ52は、その軸方向一端が第1軸受22の一部に接すると共に軸方向他端がプレート51に接し、その外周が本体ケーシング19に接する。すなわち、第1軸端部14a及び第1軸受22は、プレート51及びスペーサ52を介して本体ケーシング19に接する。このようにプレート51とスペーサ52により本開示技術における放熱促進手段の一例が構成される。
この実施形態の構成によれば、第1実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態では、EGRガスから第1軸端部14aへ伝わる熱は、第1軸受22から本体ケーシング19へ伝えられるが、第1軸受22が転がり軸受より構成されるので、本体ケーシング19への伝熱量は比較的少なくなる。この構成では、第1軸受22と第1シール部材26との間の第1軸端部14a上に、本体ケーシング19に接するプレート51及びスペーサ52が設けられるので、第1軸端部14aから本体ケーシング19への放熱が促進され、その分だけ第1軸端部14aから樹脂ギヤよりなるメインギヤ32や第1シール部材26へ伝わる熱量が少なくなる。このため、EGRガスによる熱害に対し樹脂ギヤよりなるメインギヤ32及び第1シール部材26の熱劣化を更に抑えることができ、それらの耐熱性を向上させることができる。
<第7実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第7実施形態につき図面を参照して詳細に説明する。
図11に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図11に示すように、この実施形態では、第1軸受22を構成する転がり軸受が、複数のボール53に代えて複数のニードル54によって構成される点で第6実施形態と異なる。各ニードル54は、略円筒形をなす。図11の第1軸受22と図9の第1軸受22の違いからわかるように、図11の第1軸受22のニードル54が他の軸受部品と接触する面積は、図9の第1軸受22のボール53が他の軸受部品と接触する面積よりも多くなっている。
この実施形態の構成によれば、第6実施形態の作用及び効果に加え次のような作用及び効果を有する。すなわち、この実施形態では、第1軸受22がニードルベアリングより構成されるので、第1軸端部14aから第1軸受22を介して本体ケーシング19へ逃げる熱量が増える。これにより、第1軸端部14aから本体ケーシング19への放熱が促進され、その分だけ第1軸端部14aから樹脂ギヤよりなるメインギヤ32及び第1シール部材26へ伝わる熱量が更に少なくなる。このため、EGRガスによる熱害に対し樹脂ギヤよりなるメインギヤ32及び第1シール部材26の熱劣化を更に抑えることができ、それらの耐熱性を向上させることができる。
<第8実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第8実施形態につき図面を参照して詳細に説明する。
この実施形態では、放熱促進手段の構成の点で第6及び第7の実施形態と異なる。図12に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図12に示すように、この実施形態では、第1軸受22と第1シール部材26の間に、第6及び第7の実施形態におけるプレート51及びスペーサ52に代わる肉厚スペーサ56が設けられる点で第6及び第7の実施形態と異なる。この肉厚スペーサ56は、管状をなし、上記したスペーサ52よりも肉厚に形成されるが、第1軸端部14aの外周には接していない。すなわち、肉厚スペーサ56と第1軸端部14aの外周との間には、隙間57が設けられる。肉厚スペーサ56は、軸孔の内径が第1軸端部14aの外径より大きい滑り軸受によって構成することができる。ここで、第1軸受22は、矢印で示すように、リターンスプリング33のばね力によって肉厚スペーサ56の方向へ常に付勢され、肉厚スペーサ56と接触している。
この実施形態の構成によれば、第1実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態では、第1軸受22の軸方向における一端面が広い面積で肉厚スペーサ56と常に接する。従って、第1軸端部14aから第1軸受22及び肉厚スペーサ56を介して本体ケーシング19へ逃げる熱量が増える。これにより、第1軸端部14aから本体ケーシング19への放熱が促進され、その分だけ第1軸端部14aから樹脂ギヤよりなるメインギヤ32や第1シール部材26へ伝わる熱量が少なくなる。このため、EGRガスによる熱害に対し樹脂ギヤよりなるメインギヤ32及び第1シール部材26の熱劣化を更に抑えることができ、それらの耐熱性を向上させることができる。
<第9実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第9実施形態につき図面を参照して詳細に説明する。
図13に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図13に示すように、この実施形態では、第1軸受22と第1シール部材26の間に、肉厚スペーサ56に代わる別の肉厚スペーサ58と回転プレート59が設けられる点で第8実施形態と異なる。回転プレート59は、略円環状をなし、第1軸端部14a上に固定される。回転プレート59の軸方向一端は第1軸受22の軸方向一端に接し、回転プレート59の軸方向他端は、別の肉厚スペーサ58の端面に接する。別の肉厚スペーサ58は、軸方向の長さが、第8実施形態のそれよりも短く形成されると共に、第1軸端部14aとの間の隙間57が、第8実施形態のそれよりも大きく設定される。図13に示すように、回転プレート59と別の肉厚スペーサ58との接触面は、一方が凸湾曲面59aをなし、他方が凹湾曲面58aをなしている。ここで、第1軸受22は、矢印で示すように、リターンスプリング33のばね力によって回転プレート59の方向へ常に付勢され、回転プレート59と接触している。
この実施形態の構成によれば、第1実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態では、第1軸端部14aが、第1軸受22、回転プレート59及び肉厚スペーサ58を介して本体ケーシング19と常に接する。従って、第1軸端部14aから第1軸受22、回転プレート59及び別の肉厚スペーサ58を介して本体ケーシング19へ逃げる熱量が増える。これにより、第1軸端部14aから本体ケーシング19への放熱が促進され、その分だけ第1軸端部14aから樹脂ギヤよりなるメインギヤ32や第1シール部材26へ伝わる熱量が少なくなる。このため、EGRガスによる熱害に対し樹脂ギヤよりなるメインギヤ32及び第1シール部材26の熱劣化を更に抑えることができ、それらの耐熱性を向上させることができる。
また、この実施形態では、回転プレート59と肉厚スペーサ58が凸湾曲面59aと凹湾曲面58aを介して接する。このため、仮に、第1軸端部14aが第1軸受22に対し多少傾いたとしても、回転プレート59と肉厚スペーサ58を確実に接触させることができ、両者59,58の間の熱伝達を確保することができる。
<第10実施形態>
次に、EGRクーラバイパスバルブをEGRクーラユニットに具体化した第10実施形態につき図面を参照して詳細に説明する。
この実施形態では、放熱促進手段の構成の点で第6〜第9の実施形態と異なる。図14に、バイパスバルブ1の主要部を概略的な部分断面図により示す。図14に示すように、この実施形態では、第1軸受22と第1シール部材26との間に、板ばね61とラビリンスプレート62が軸方向に接しながら配置される。ラビリンスプレート62は、形状の異なる2種類の複数の環状プレート62a,62bが軸方向に交互に配置されて構成される。板ばね61は、複数の環状プレート62a,62bが軸方向に互いに接するようにラビリンスプレート62を軸方向へ付勢する。2種類の環状プレート62a,62bのうち一方の環状プレート62aは、その内周が第1軸端部14a上に接し、その外周が本体ケーシング19から離間する。他方の環状プレート62bは、その内周が第1軸端部14a上から離間し、その外周が本体ケーシング19に接する。このように構成することで、ラビリンスプレート62は、その内周が部分的に第1軸端部14a上に接し、その外周が部分的に本体ケーシング19に接する。
この実施形態の構成によれば、第1実施形態の作用及び効果に加えて次のような作用及び効果を有する。すなわち、この実施形態では、第1軸端部14aが、第1軸受22の他に、ラビリンスプレート62を介して本体ケーシング19と常に接する。従って、第1軸端部14aからラビリンスプレート62を介して本体ケーシング19へ逃げる熱量が増える。これにより、第1軸端部14aから本体ケーシング19への放熱が促進され、その分だけ第1軸端部14aから樹脂ギヤよりなるメインギヤ32や第1シール部材26へ伝わる熱量が少なくなる。このため、EGRガスによる熱害に対し樹脂ギヤよりなるメインギヤ32及び第1シール部材26の熱劣化を更に抑えることができ、それらの耐熱性をより一層向上させることができる。
なお、この開示技術は前記各実施形態に限定されるものではなく、開示技術の趣旨を逸脱することのない範囲で構成の一部を適宜変更して次のように実施することもできる。
(1)前記各実施形態では、本開示技術におけるバイパスバルブを、並列フロー式のEGRクーラユニット2に設けられる直列二弁タイプのバイパスバルブ1に具体化したが、周知の三方弁タイプのバイパスバルブやUフロー式のEGRクーラユニットに設けられるバイパスバルブに具体化することもできる。例えば、図15、図16に、Uフロー式のEGRクーラユニットに設けられるバイパスバルブ71の主要部を断面図により示す。周知のように、Uフロー式のEGRクーラユニットは、U形のクーラ通路と、そのクーラ通路を迂回するバイパス通路を有するクーラケーシングを備える。クーラ通路の周りには、エンジン冷却水が流れる冷却水通路が設けられる。U形のクーラ通路の一端には、入口と出口が同一平面上にて隣接して設けられる。図15、図16に示すように、バイパスバルブ71は、一つの流路72を有するバルブケーシング73を備える。この流路72は、二つの開口、すなわち第1開口72a(図左側)と第2開口72b(図右側)を有する。第1開口72aは、上記したバイパス通路に連通し、第2開口72bは、上記したクーラ通路の入口と出口に連通する。この流路72には、同流路72を開閉するための板状をなす一つの弁体74が配置される。弁体74はバタフライ式弁体であり、一つの弁軸14に一体に固定される。弁軸14は、流路72を貫通するようにバルブケーシング73に配置され、両軸受22,23を介して回転可能に支持される。弁体74は、流路72の中にて弁軸14に固定される。そして、図15に示すように、第1軸端部14aの先端にはメインギヤ32が固定され、その第1軸端部14aを回転可能に支持する第1軸受22(転がり軸受)に対応して、第2実施形態と同様、伝熱低減構造を設けることができる。あるいは、図16に示すように、第1軸端部14aを回転可能に支持する第1軸受22(転がり軸受)に対応して、第6実施形態と同様、放熱促進手段を設けることができる。
(2)前記第1、第6〜第10の実施形態では、メインギヤ32を樹脂ギヤにより構成したが、このメインギヤを金属ギヤにより構成することもできる。
(3)前記各実施形態におけるバイパスバルブのケーシングや弁体等の各種構成部品の形状は、任意に変更することもできる。
この開示技術は、エンジンに設けられるEGR装置に利用することができる。
1 バイパスバルブ
6 クーラ通路
7 バイパス通路
9 熱交換器
11 バルブケーシング
12 クーラ弁体
13 バイパス弁体
14 弁軸
14a 第1軸端部
14b 第2軸端部
14c 軸穴(伝熱低減手段)
15 減速機構
17 クーラ流路
18 バイパス流路
19 本体ケーシング
21 隔壁
22 第1軸受
23 第2軸受
26 第1シール部材
27 第2シール部材
28 レバー(金属連結部材)
28c 周壁(伝熱低減手段)
28d 円弧孔(伝熱低減手段)
32 メインギヤ(被動ギヤ、樹脂ギヤ)
38 モータギヤ
39 中間ギヤ
51 プレート(放熱促進手段)
52 スペーサ(放熱促進手段)
56 肉厚スペーサ(放熱促進手段)
58 肉厚スペーサ(放熱促進手段)
59 回転プレート(放熱促進手段)
61 板ばね(放熱促進手段)
62 ラビリンスプレート(放熱促進手段)
71 バイパスバルブ
72 流路
73 バルブケーシング
74 弁体

Claims (3)

  1. EGRガスを冷却するためのEGRクーラ及び前記EGRクーラを迂回したバイパス通路と共に使用され、前記EGRクーラを通過するEGRガスの流量と前記バイパス通路を通過するEGRガスの流量とを同時に調節するEGRクーラバイパスバルブであって、
    前記EGRクーラを通過したEGRガスが流れるクーラ流路と、前記バイパス通路を通過したEGRガスが流れるバイパス流路とを含み、前記クーラ流路と前記バイパス流路とが隔壁により仕切られたケーシングと、
    前記クーラ流路、前記バイパス流路及び前記隔壁を貫通するように前記ケーシングに配置され、第1軸端部と第2軸端部とを含む弁軸と、
    前記クーラ流路に配置され、前記弁軸と一体に設けられたクーラ弁体と、
    前記バイパス流路に配置され、前記弁軸と一体に設けられたバイパス弁体と、
    前記ケーシングと前記第1軸端部との間に設けられ、前記第1軸端部を回転可能に支持するための第1軸受と、
    前記ケーシングと前記第2軸端部との間に設けられ、前記第2軸端部を回転可能に支持するための第2軸受と、
    前記第1軸受の近傍にて前記第1軸端部と前記ケーシングとの間をシールするための第1シール部材と、
    前記第2軸受の近傍にて前記第2軸端部と前記ケーシングとの間をシールするための第2シール部材と、
    前記弁軸を回転させるために前記第1軸端部の先端に固定され、減速機構を構成する被動ギヤと
    を備え、前記弁軸を前記被動ギヤを介して回転させて前記クーラ弁体と前記バイパス弁体を開閉させるように構成したEGRクーラバイパスバルブにおいて、
    前記クーラ流路及び前記クーラ弁体が前記第1軸端部に隣接して配置されると共に、前記バイパス流路及び前記バイパス弁体が前記第2軸端部に隣接して配置されることと、
    前記第1軸受は、前記第1軸端部の回転を精密に支持するために転がり軸受により構成されることと、
    前記第2軸受は、前記第2軸端部から前記ケーシングへの放熱を良好にするために滑り軸受により構成されることと
    を備えたことを特徴とするEGRクーラバイパスバルブ。
  2. 請求項1に記載のEGRクーラバイパスバルブにおいて、
    前記被動ギヤが樹脂ギヤにより構成され、前記樹脂ギヤに金属連結部材が一体に設けられ、前記第1軸端部の前記先端が前記金属連結部材を介して前記樹脂ギヤに連結され、
    前記金属連結部材には、前記第1軸端部から前記樹脂ギヤへの伝熱を低減するための伝熱低減構造が設けられる
    ことを特徴とするEGRクーラバイパスバルブ。
  3. 請求項1に記載のEGRクーラバイパスバルブにおいて、
    前記第1軸端部上には、前記第1軸受と前記第1シール部材との間に、前記第1軸端部から前記ケーシングへの放熱を促進するための放熱促進手段が設けられることを特徴とするEGRクーラバイパスバルブ。
JP2017125978A 2017-06-28 2017-06-28 Egrクーラバイパスバルブ Active JP6728109B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017125978A JP6728109B2 (ja) 2017-06-28 2017-06-28 Egrクーラバイパスバルブ
US15/987,411 US10408170B2 (en) 2017-06-28 2018-05-23 EGR cooler bypass valve
DE102018209924.3A DE102018209924B4 (de) 2017-06-28 2018-06-19 AGR-Kühler-Bypassventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017125978A JP6728109B2 (ja) 2017-06-28 2017-06-28 Egrクーラバイパスバルブ

Publications (2)

Publication Number Publication Date
JP2019007461A JP2019007461A (ja) 2019-01-17
JP6728109B2 true JP6728109B2 (ja) 2020-07-22

Family

ID=64662036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017125978A Active JP6728109B2 (ja) 2017-06-28 2017-06-28 Egrクーラバイパスバルブ

Country Status (3)

Country Link
US (1) US10408170B2 (ja)
JP (1) JP6728109B2 (ja)
DE (1) DE102018209924B4 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904897B2 (ja) * 2017-12-25 2021-07-21 愛三工業株式会社 Egrクーラシステム
US10871210B2 (en) * 2018-02-21 2020-12-22 Borgwarner Inc. Gear drive assembly for actuator system
FR3105307B1 (fr) * 2019-12-20 2022-11-04 Valeo Systemes De Controle Moteur Module de recirculation des gaz d’échappement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041579A1 (de) * 2000-08-24 2002-03-07 Siemens Automotive Corp Lp Ventilanordnung mit Doppelklappe und Wärmebrücke für ein Abgasrückführungssystem und Verfahren zu deren Betrieb
JP4431579B2 (ja) * 2004-09-28 2010-03-17 株式会社ティラド Egrクーラ
JP4631715B2 (ja) * 2006-01-18 2011-02-16 トヨタ自動車株式会社 内燃機関の排気還流装置
JP4631718B2 (ja) * 2006-01-19 2011-02-16 トヨタ自動車株式会社 内燃機関の排気還流装置
JP2009250096A (ja) 2008-04-04 2009-10-29 Toyota Motor Corp Egr装置のバルブユニット
JP2010203362A (ja) * 2009-03-04 2010-09-16 Aisan Ind Co Ltd 排気ガス切替弁
JP2012041827A (ja) * 2010-08-16 2012-03-01 Denso Corp 流体制御弁
JP5279968B2 (ja) 2011-03-30 2013-09-04 三菱電機株式会社 バタフライバルブ
JP5440596B2 (ja) * 2011-12-05 2014-03-12 株式会社デンソー 電動アクチュエータ、および電動アクチュエータを備えた制御弁
WO2013169253A1 (en) * 2012-05-10 2013-11-14 International Engine Intellectual Property Company, Llc Modulating bypass valve
JP6354577B2 (ja) * 2014-12-25 2018-07-11 株式会社デンソー バルブ装置
JP6456730B2 (ja) 2015-03-10 2019-01-23 愛三工業株式会社 スロットル装置
CN104775945B (zh) * 2015-04-25 2018-01-19 无锡隆盛科技股份有限公司 汽车发动机用egr阀集成装置
JP2019002303A (ja) * 2017-06-13 2019-01-10 愛三工業株式会社 Egrクーラバイパスバルブ
JP2019007462A (ja) * 2017-06-28 2019-01-17 愛三工業株式会社 排気制御弁

Also Published As

Publication number Publication date
DE102018209924A1 (de) 2019-01-03
US10408170B2 (en) 2019-09-10
JP2019007461A (ja) 2019-01-17
US20190003427A1 (en) 2019-01-03
DE102018209924B4 (de) 2022-05-25

Similar Documents

Publication Publication Date Title
JP6728109B2 (ja) Egrクーラバイパスバルブ
JP5914176B2 (ja) ロータリ式バルブ
JP6447461B2 (ja) シールリング
JP6099677B2 (ja) 機械式のクーラントポンプ
US20140252259A1 (en) Butterfly valve
JP6698419B2 (ja) 排気還流弁
JP2016121663A (ja) バルブ装置
JP6051634B2 (ja) 弁装置および給湯装置
JP6242869B2 (ja) 特に自動車用の流体循環バルブおよび該バルブを備える温度調整デバイス
JP6354724B2 (ja) 吸気制御装置
JP2019127843A (ja) 電動egrクーラバイパスバルブ
JP6808578B2 (ja) 流量制御弁
JP2019007462A (ja) 排気制御弁
JP2019094845A (ja) Egrクーラバイパスバルブ及びその制御装置
JP2008524527A5 (ja)
JP6904897B2 (ja) Egrクーラシステム
US9574523B2 (en) Fluid flow valve, particularly for a motor vehicle, and a temperature regulation device including one such valve
JP6869834B2 (ja) 排気制御弁
JP2020180572A (ja) Egrクーラバイパスバルブ
JP2012072678A (ja) 排気ガス再循環バルブ
JP6107611B2 (ja) Egrバルブ装置
CN202181967U (zh) 用于内燃机的调节装置
JP2009002325A (ja) 流体制御弁
JP7240216B2 (ja) Egrクーラバイパスバルブ及びその制御装置
KR20150010984A (ko) 유체 순환 밸브

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200701

R150 Certificate of patent or registration of utility model

Ref document number: 6728109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250