JP6714877B2 - ポリカーボネート樹脂組成物、およびその成形体 - Google Patents

ポリカーボネート樹脂組成物、およびその成形体 Download PDF

Info

Publication number
JP6714877B2
JP6714877B2 JP2017543527A JP2017543527A JP6714877B2 JP 6714877 B2 JP6714877 B2 JP 6714877B2 JP 2017543527 A JP2017543527 A JP 2017543527A JP 2017543527 A JP2017543527 A JP 2017543527A JP 6714877 B2 JP6714877 B2 JP 6714877B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
compound
group
resin composition
polyrotaxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017543527A
Other languages
English (en)
Other versions
JPWO2017057521A1 (ja
Inventor
安藤 正人
正人 安藤
田中 智彦
智彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2017057521A1 publication Critical patent/JPWO2017057521A1/ja
Application granted granted Critical
Publication of JP6714877B2 publication Critical patent/JP6714877B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、透明性に優れ、耐衝撃性や引張伸びなどの機械特性、および耐湿熱性とのバランスの優れたポリカーボネート樹脂組成物、その製造方法、及び該樹脂組成物を成形してなる成形体に関する。
ビスフェノールA等に由来する構造を含む従来の芳香族ポリカーボネート樹脂や、近年、研究開発が進んでいるバイオマス資源から得られるジヒドロキシ化合物であるイソソルビド(ISB)を用いた新規ポリカーボネート樹脂は、耐衝撃性等の機械特性、耐熱性、透明性等に優れ、各種機械部品、光学用ディスク、自動車部品等の用途に広く用いられている。
例えば、自動車部品用途に用いられる場合、寒冷地のような極低温下や夏場の直射日光の当たる高温下などでの使用を想定した幅広い温度範囲や劣悪な環境下でも耐え得る物性が要求される。前述の通り、ポリカーボネート樹脂は常温下では耐衝撃性等の機械特性に極めて優れるのに対して、高温下では熱老化によって常温下に比べて引張り伸びといった機械特性が劣る。また、低温下では常温下に比べて耐衝撃性といった機械特性に劣る。この改善方法としては常温下での機械特性を向上させることで、広範な温度範囲や劣悪な環境下で物性変化しても基準を許容させる方法が挙げられる。
特に、イソソルビドのようなジヒドロキシ化合物から得られるポリカーボネート樹脂は、光学特性に優れるだけでなく、従来の芳香族ポリカーボネート樹脂に比べて耐候性や表面硬度に極めて優れるのに対して、引張伸びあるいは応力が集中する部分での耐衝撃性などの機械特性のさらなる改善が求められている。かかる課題に対して、耐衝撃性を改善する手法としてポリカーボネート樹脂にコア・シェル型エラストマーを含有させることで耐衝撃性が改良されることが知られている(例えば、特許文献1参照。)。
一方、近年、衝撃強度等の機械特性を改善する材料の一つとしてポリロタキサンが注目されており、例えば、ポリメチルメタクリレート(PMMA)、ポリロタキサンおよび着色剤を含有する自動車部材向けの着色プラスチックが開発されている(例えば、特許文献2参照。)。
また、ポリロタキサンの環状分子の外周部に不飽和カルボン酸無水物から誘導される官能基を付与し、不飽和カルボン酸無水物により変性されたポリオレフィンとポリロタキサンとを結合させることでポリオレフィンに応力緩和能を付与させて耐衝撃性を改良できることが知られている(例えば、特許文献3参照。)。
しかしながら、これまで、ポリカーボネート樹脂にポリロタキサンを使用した機械特性の改善例については、知られていない。
日本国特開2012−214666号公報 日本国特開2007−106860号公報 日本国特開2013−209460号公報
本発明者らの検討によれば、前記特許文献1のように、イソソルビドをモノマーとして用いたポリカーボネート樹脂にコア・シェル型エラストマーを含有させた樹脂組成物は、優れた耐衝撃性を得られる。しかしながら、前記樹脂組成物は高温高湿環境下での樹脂の透明性、色調変化が顕著であり、高温高湿環境下での長期使用に際し、さらなる改善が求められていた。
本発明は、かかる背景に鑑みてなされたものであり、ポリカーボネート樹脂の欠点を補う、具体的には透明性、耐湿熱性を維持したまま、引張伸び、耐衝撃性等の機械特性を向上させたポリカーボネート樹脂組成物、その製造方法、及びポリカーボネート樹脂組成物の成形体を提供しようとするものである。
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、ポリカーボネート樹脂(A)とポリロタキサン(B)とを含むポリカーボネート樹脂組成物が、引張伸びあるいは耐衝撃性等の機械特性を高いレベルで改善できることを見出し、本発明に至った。即ち、本発明の要旨は、下記の[1]〜[9]に存する。
[1]
少なくとも下記式(1)で表される化合物に由来する構成単位を有するポリカーボネート樹脂(A)と、ポリロタキサン(B)とを含有するポリカーボネート樹脂組成物。
Figure 0006714877
[2]
前記ポリカーボネート樹脂(A)の有する構成単位のうち、全ジヒドロキシ化合物に由来する構成単位100モル%に対する前記式(1)で表される化合物に由来する構成単位の割合が30モル%を超える、[1]に記載のポリカーボネート樹脂組成物。
[3]
前記ポリカーボネート樹脂(A)と前記ポリロタキサン(B)との合計量100重量部に対して前記ポリロタキサン(B)を0.1重量部以上20重量部未満含有する、[1]または[2]に記載のポリカーボネート樹脂組成物。
[4]
前記ポリロタキサン(B)が、ポリエチレングリコールおよびシクロデキストリン分子を含んでなる、[1]〜[3]のいずれか1つに記載のポリカーボネート樹脂組成物。
[5]
さらに、長周期型周期表第1族の金属の化合物および長周期型周期表第2族の金属の化合物から選択される少なくとも1種の化合物(C)を含有する、[1]〜[4]のいずれか1つに記載のポリカーボネート樹脂組成物。
[6]
前記ポリカーボネート樹脂組成物中の前記ポリカーボネート樹脂(A)と前記ポリロタキサン(B)との合計量100重量部に対する前記化合物(C)の含有量が、該化合物(C)中の金属量で0.5重量ppm以上1000重量ppm以下である、[5]に記載のポリカーボネート樹脂組成物。
[7]
前記化合物(C)が、無機塩(炭酸塩を含む)、カルボン酸塩、フェノラート、ハロゲン化合物、および水酸化物からなる群より選ばれる少なくとも1種である、[5]または[6]に記載のポリカーボネート樹脂組成物。
[8]
前記化合物(C)が、ナトリウム化合物、カリウム化合物、マグネシウム化合物、カルシウム化合物およびセシウム化合物からなる群より選ばれる少なくとも1種である、[5]〜[7]のいずれか1つに記載のポリカーボネート樹脂組成物。
[9]
[1]〜[8]のいずれか1つに記載のポリカーボネート樹脂組成物を成形して得られた成形体。
本発明のポリカーボネート樹脂組成物及びその成形体は、透明性に優れると共に、生物起源物資含有率、耐熱性、耐湿熱性、及び耐衝撃性を高いレベルでバランスよく兼ね備える。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
[ポリカーボネート樹脂(A)]
本発明におけるポリカーボネート樹脂(A)は、ジヒドロキシ化合物に由来する構成単位をカーボネートで結合した樹脂である。本発明におけるジヒドロキシ化合物に由来する構造単位とは、ジヒドロキシ化合物の有する水酸基から水素原子を除いたものである。ジヒドロキシ化合物に由来する構成単位の由来となるジヒドロキシ化合物としては、以下に詳述する通り、脂肪族炭化水素のジヒドロキシ化合物、ヘテロ原子を有する非芳香族性ジヒドロキシ化合物、芳香族ジヒドロキシ化合物があげられる。中でも、本発明に用いるポリカーボネート樹脂(A)は、少なくとも下記式(1)で表されるジヒドロキシ化合物を構成単位として有することを特徴としている。
Figure 0006714877
また、さらに、下記列記したジヒドロキシ化合物の群より選ばれるジヒドロキシ化合物に由来する構成単位を含むポリカーボネート樹脂であるのが好ましい。下記ジヒドロキシ化合物の組み合わせ方は、ポリカーボネート樹脂に要求される特性に応じて適宜選択することができ、下記ジヒドロキシ化合物は、1種のみを用いてもよく、複数種を併用した共重合ポリカーボネート樹脂としてもよい。
脂肪族炭化水素のジヒドロキシ化合物が有する脂肪族炭化水素としては、鎖状炭化水素であっても、脂環式炭化水素であっても構わない。ヘテロ原子を有する非芳香族性ジヒドロキシ化合物としては、エーテル基含有ジヒドロキシ化合物等があげられる。また、芳香族ジヒドロキシ化合物が有する芳香族性を有する構造部分としては、ベンゼン環、ナフタレン環等に代表される芳香族性炭化水素があげられるが、芳香族性を有するものであれば、ピリジン環などのヘテロ原子を有する構造部分であっても構わない。
(脂肪族炭化水素のジヒドロキシ化合物)
脂肪族炭化水素のジヒドロキシ化合物としては、特に限定されないが、脂肪族炭化水素が鎖状炭化水素であっても脂環式炭化水素であっても構わない。好ましくは炭素数が1〜20、さらに好ましくは炭素数が2〜13、特に好ましくは、炭素数が3〜12のアルキレン基を有するジヒドロキシ化合物が挙げられ、例えば、以下のジヒドロキシ化合物を採用することができる。エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−ドデカンジオール等の直鎖脂肪族ジヒドロキシ化合物;1,3−ブタンジオール、1,2−ブタンジオール、ネオペンチルグリコール、ヘキシレングリコール等の分岐鎖を有する脂肪族ジヒドロキシ化合物があげられる。
脂環式炭化水素のジヒドロキシ化合物としては、特に限定はされないが、ポリカーボネート樹脂としたときの機械特性が良好であるという点から、4〜6員環の少なくとも一つの構造を含むジヒドロキシ化合物、中でも、5員環構造又は6員環構造を含む化合物が挙げられる。また、6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。脂環式ジヒドロキシ化合物が5員環構造、6員環構造であることにより、得られるポリカーボネートの耐熱性を高くすることができる。脂環式ジヒドロキシ化合物に含まれる炭素原子数は通常70以下であり、好ましくは50以下、さらに好ましくは30以下、特に好ましくは13以下である。この値が大きくなるほど、耐熱性が高くなるが、合成が困難になったり、精製が困難になったり、価格が高くなったりする。炭素原子数が小さくなるほど、精製しやすく、入手しやすくなる。例えば、以下のジヒドロキシ化合物を採用することができる。1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール、リモネン等の、テルペン化合物から誘導されるジヒドロキシ化合物等に例示される、脂環式炭化水素の1級アルコールであるジヒドロキシ化合物;1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,3−アダマンタンジオール、水添ビスフェノールA、2,2,4,4−テトラメチル−1,3−シクロブタンジオール等に例示される、脂環式炭化水素の2級アルコール又は3級アルコールであるジヒドロキシ化合物。
(ヘテロ原子を有する非芳香族性ジヒドロキシ化合物)
ヘテロ原子を有する非芳香族性ジヒドロキシ化合物としては、例えばエーテル基含有ジヒドロキシ化合物があげられる。
エーテル基含有ジヒドロキシ化合物としては、分子内にエーテル構造を含有していれば特に限定されないが、具体的にはオキシアルキレングリコール類、下記式(1)で表されるジヒドロキシ化合物、アセタール環を含有するジヒドロキシ化合物等が挙げられる。中でも、耐熱性の観点から、本発明に用いるポリカーボネート樹脂(A)は、少なくとも下記式(1)で表されるジヒドロキシ化合物を構成単位として有することを特徴としている。
オキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール及びポリプロピレングリコール等を採用することができる。
Figure 0006714877
前記式(1)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド(ISB)、イソマンニド、およびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
前記式(1)で表されるジヒドロキシ化合物の中でも、植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビド(ISB)が、入手及び製造のし易さ、耐候性、光学特性、成形性、耐熱性及びカーボンニュートラルの面から最も好ましい。
なお、前記式(1)で表されるジヒドロキシ化合物は、酸素によって徐々に酸化されやすい。したがって、保管中又は製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが好ましい。
アセタール環を含有するジヒドロキシ化合物としては、例えば、下記構造式(2)で表されるスピログリコールや、下記構造式(3)で表されるジオキサングリコール等を採用することができる。
Figure 0006714877
Figure 0006714877
(芳香族ジヒドロキシ化合物)
芳香族ジヒドロキシ化合物としては、分子内に芳香族性を有する基を有しているものであればよいが、例えば以下のジヒドロキシ化合物を採用することができる。
下記一般式(4)で表される芳香族ジヒドロキシ化合物が挙げられる。
Figure 0006714877
(但し、上記一般式(4)中のR〜Rは、それぞれ独立に、水素原子または置換基を示す。Yは、単結合または2価基を示す。)
上記一般式(4)中のR〜Rの置換基としては、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、ハロゲン基、炭素数1〜10のハロゲン化アルキル基、または置換基を有していてもよい炭素数6〜20の芳香族基示す。これらの中でも、置換基を有していてもよい炭素数1〜10のアルキル基、または置換基を有していてもよい炭素数6〜20の芳香族基が好ましい。上記一般式(4)中のYの2価基としては、置換基を有していてもよい炭素数1〜6の鎖状構造のアルキレン基、置換基を有していてもよい炭素数1〜6の鎖状構造のアルキリデン基、置換基を有していてもよい炭素数3〜6の環状構造のアルキレン基、置換基を有していてもよい炭素数3〜6の環状構造のアルキリデン基、−O−、−S−、−CO−または−SO−があげられる。ここで、置換基としては、本発明の効果を阻害されない限り、特に限定されないが、通常、分子量が200以下のものである。また、炭素数1〜6の鎖状構造のアルキレン基が有する置換基としては、アリール基が好ましく、特にはフェニル基が好ましい。
本発明でいうジヒドロキシ化合物に由来する構造単位は、前記の通りジヒドロキシ化合物の水酸基から水素原子を除いたものである。芳香族ジヒドロキシ化合物に由来する構造単位に対応する、芳香族ジヒドロキシ化合物の具体例としては、下記のものがあげられる。
4,4’−ビフェノール、2,4’−ビフェノール、3,3’−ジメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジメチル−2,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ−(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラ−(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、2,2’,3,3’,5,5’−ヘキサメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル等のビフェニル化合物。
ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス−(4−ヒドロキシフェニル)エタン、1,1−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシフェニル)ブタン、2,2−ビス−(4−ヒドロキシフェニル)ペンタン、2,2−ビス−(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス−(4−ヒドロキシフェニル)ヘキサン、2,2−ビス−(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス−(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス−(4−ヒドロキシフェニル)シクロヘキサン、ビス−(3−フェニル−4−ヒドロキシフェニル)メタン、1,1−ビス−(3−フェニル−4−ヒドロキシフェニル)エタン、1,1−ビス−(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−フェニル−4−ヒドロキシフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3−メチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−3−エチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−sec−ブチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3,6−ジメチルフェニル)エタン、ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)メタン、1,1−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)プロパン、ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルエタン、1,1−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)シクロヘキサン、ビス−(4−ヒドロキシフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス−(4−ヒドロキシフェニル)ジフェニルメタン、ビス−(4−ヒドロキシフェニル)ジベンジルメタン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[フェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[フェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[2,6−ジメチルフェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[2,6−ジメチルフェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[2,3,6−トリメチルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[2,3,6−トリメチルフェノール]、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビス−[2,3,6−トリメチルフェノール]、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルフィド、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルエーテル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルホン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフィド、フェノールフタルレイン、4,4’−[1,4−フェニレンビス(1−メチルビニリデン)]ビスフェノール、4,4’−[1,4−フェニレンビス(1−メチルビニリデン)]ビス[2−メチルフェノール]、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、(2−ヒドロキシ−5−メチルフェニル)(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)エタン、2,2−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパン、1,1−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパンなどのビスフェノール化合物。
2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)プロパンなどのハロゲン化ビスフェノール化合物。
これらの中で好ましいジヒドロキシ化合物は、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス−(4−ヒドロキシフェニル)エタン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシフェニル)シクロヘキサン、ビス−(4−ヒドロキシフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス−(4−ヒドロキシフェニル)ジフェニルメタン、2−ヒドロキシフェニル(4−ヒドロキシフェニル)メタン、2,2−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパン、があげられる。
これらの中でも特に、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシフェニル)シクロヘキサン、が好ましい。
本発明に用いるポリカーボネート樹脂(A)は、上記式(1)で表されるジヒドロキシ化合物を構成単位として有することを特徴としている。また、上述の通り、さらに、上記列記したジヒドロキシ化合物の群より選ばれるジヒドロキシ化合物に由来する構成単位を含むポリカーボネート樹脂であるのが好ましい。前記ジヒドロキシ化合物の組み合わせ方は、ポリカーボネート樹脂に要求される特性に応じて適宜選択することができ、前記ジヒドロキシ化合物は、1種のみを用いてもよく、複数種を併用した共重合ポリカーボネート樹脂としてもよい。地球環境に優しい植物由来物質を使用する、また、上述の通り、耐熱性が良好なポリカーボネート樹脂が得られるという観点からは、ポリカーボネート樹脂(A)が、前記式(1)で表されるジヒドロキシ化合物に由来する構成単位(これを、適宜「構成単位(a)」という。)を含有することを特徴とし、さらに、その他の構成単位として、構成単位(a)とは異なるものであって、上述の脂肪族炭化水素のジヒドロキシ化合物、ヘテロ原子を有する非芳香族性ジヒドロキシ化合物、および芳香族基を含有するジヒドロキシ化合物からなる群より選ばれる1種以上のジヒドロキシ化合物に由来する構成単位(これを、適宜「構成単位(b)」という。)を含む共重合ポリカーボネート樹脂であることが好ましい。これら構成単位(b)のジヒドロキシ化合物は、柔軟な分子構造を有するため、これらのジヒドロキシ化合物を原料として用いることにより、得られるポリカーボネート樹脂の靭性を向上させることや耐熱性の向上や成形性の改善ができる。ただし、これら構成単位(b)のジヒドロキシ化合物としては、ポリカーボネート樹脂の機械特性、耐候性や色調の観点から、分構造内に芳香環構造を有しないジヒドロキシ化合物、なかでも、脂肪族ジヒドロキシ化合物及び脂環式ジヒドロキシ化合物からなる群より選ばれる少なくとも1種の化合物を用いることが好ましい。
これら構成単位(b)のジヒドロキシ化合物の中でも、耐候性および靭性を向上させる効果の大きい脂肪族炭化水素のジヒドロキシ化合物を用いることが好ましく、脂環式炭化水素のジヒドロキシ化合物を用いることがより好ましい。
前記ポリカーボネート樹脂(A)において、上記の複数のジヒドロキシ化合物を併用した共重合ポリカーボネート樹脂とするときの構成比は特に限定されない。前記式(1)で使用されるジヒドロキシ化合物を使用するときは、全ジヒドロキシ化合物に由来する構成単位100モル%に対する前記構成単位(a)の含有割合は、30モル%を超えることが好ましく、55モル%以上95モル%以下であることがより好ましく、60モル%以上90モル%以下であることがさらに好ましく、65モル%以上85モル%以下であることが特に好ましい。これらの場合には、生物起源物質含有率をより高めることができ、耐熱性をより向上させることができる。なお、ポリカーボネート樹脂(A)における構成単位(a)の含有割合は100モル%でもよいが、分子量をより高めるという観点及び耐衝撃性をより向上させるという観点からは、構成単位(a)以外の構成単位が共重合されていることが好ましい。
ただし、前記式(1)で表されるジヒドロキシ化合物に由来する構成単位を含有するポリカーボネート樹脂(A)に芳香族ジヒドロキシ化合物に由来する構成単位が多く含まれる場合には、前述の理由により高い分子量のポリカーボネート樹脂が得られなくなり、耐衝撃性の向上効果が低下するおそれがある。したがって、耐衝撃性をより向上させるという観点からは、全ジヒドロキシ化合物に由来する構成単位100モル%に対して、芳香族基を含有するジヒドロキシ化合物に由来する構成単位の含有割合は、10モル%以下であることが好ましく、5モル%以下であることがより好ましい。
前記式(1)で表されるジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤又は熱安定剤等の安定剤を含んでいてもよい。特に、前記式(1)で表されるジヒドロキシ化合物は、酸性状態において変質しやすい性質を有する。したがって、ポリカーボネート樹脂(A)の合成過程において塩基性安定剤を使用することにより、前記式(1)で表されるジヒドロキシ化合物の変質を抑制することができ、ひいては得られるポリカーボネート樹脂組成物の品質をより向上させることができる。
塩基性安定剤としては、例えば、以下の化合物を採用することができる。ここで、本明細書中において長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における第1族の金属、第2族の金属を単に「1族の金属」、「2族の金属」のように表記する。また、第1族の金属の化合物、第2族の金属の化合物を「1族の金属の化合物」、「2族の金属の化合物」のように表記する。具体的な1族の金属の化合物または2族の金属の化合物としては、1族の金属または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩及び脂肪酸塩;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド及びブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物;ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、3−アミノ−1−プロパノール、エチレンジアミン、N−メチルジエタノールアミン、ジエチルエタノールアミン、ジエタノールアミン、トリエタノールアミン、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール及びアミノキノリン等のアミン系化合物、並びにジ−(tert−ブチル)アミン及び2,2,6,6−テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。
前記式(1)で表されるジヒドロキシ化合物中における前記塩基性安定剤の含有量に特に制限はないが、前記式(1)で表されるジヒドロキシ化合物は酸性状態では不安定であるため、塩基性安定剤を含むジヒドロキシ化合物の水溶液のpHが7付近となるように塩基性安定剤の含有量を設定することが好ましい。
前記式(1)で表されるジヒドロキシ化合物に対する塩基性安定剤の含有量は、0.0001〜1重量%であることが好ましい。この場合には、前記式(1)で表されるジヒドロキシ化合物の変質を防止する効果が十分に得られる。この効果をさらに高めるという観点から、塩基性安定剤の含有量は0.001〜0.1重量%であることがより好ましい。
[ポリカーボネート樹脂(A)の製造方法]
本発明のポリカーボネート樹脂は、一般に用いられる重合方法で製造することができ、その重合方法は、ホスゲンを用いた溶液重合法、炭酸ジエステルと反応させる溶融重合法のいずれの方法でもよいが、ポリカーボネート樹脂中に溶媒残渣が残留することのない溶融重合法が好ましい。
詳しくは、例えば、日本国特開2008−24919号公報または日本国特開2011−246628号公報に記載の方法が挙げられる。
ポリカーボネート樹脂(A)は、前述のジヒドロキシ化合物と、炭酸ジエステルとを、重合触媒の存在下、エステル交換反応により重縮合させることによって得るのが好ましい。
前記ポリカーボネート樹脂(A)の原料に用いる炭酸ジエステルとしては、通常、下記一般式(7)で表される化合物を採用することができる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を併用してもよい。
Figure 0006714877
前記一般式(7)において、A及びAは、それぞれ置換もしくは無置換の炭素数1〜18の脂肪族炭化水素基又は置換もしくは無置換の芳香族炭化水素基であり、AとAとは同一であっても異なっていてもよい。A及びAとしては、置換もしくは無置換の芳香族炭化水素基を採用することが好ましく、無置換の芳香族炭化水素基を採用することがより好ましい。
前記一般式(7)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(DPC)及びジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート並びにジ−tert−ブチルカーボネート等を採用することができる。これらの炭酸ジエステルの中でも、ジフェニルカーボネート又は置換ジフェニルカーボネートを用いることが好ましく、ジフェニルカーボネートを用いることが特に好ましい。なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、不純物が重縮合反応を阻害したり、得られるポリカーボネート樹脂の色調を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
ポリカーボネート樹脂(A)は、上述したジヒドロキシ化合物と炭酸ジエステルをエステル交換反応により重縮合させることにより合成できる。より詳細には、重縮合と共に、エステル交換反応において副生するモノヒドロキシ化合物等を系外に除去することによって得ることができる。
前記エステル交換反応は、エステル交換反応触媒(以下、エステル交換反応触媒を「重合触媒」と言う。)の存在下で進行する。重合触媒の種類は、エステル交換反応の反応速度及び得られるポリカーボネート樹脂(A)の品質に非常に大きな影響を与え得る。
重合触媒としては、得られるポリカーボネート樹脂(A)の透明性、色調、耐熱性、耐候性、及び機械的強度を満足させ得るものであれば限定されない。重合触媒としては、例えば、第1族、第2族の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物及びアミン系化合物等の塩基性化合物を使用することができ、中でも1族の金属化合物及び/又は2族の金属化合物が好ましく、2族の金属化合物が特に好ましい。
前記の1族の金属化合物としては、例えば、以下の化合物を採用することができる。水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩及び2セシウム塩等。
1族の金属化合物としては、重合活性と得られるポリカーボネート樹脂の色調の観点から、リチウム化合物が好ましい。
前記の2族の金属化合物としては、例えば、以下の化合物を採用することができる。水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム及びステアリン酸ストロンチウム等。
2族の金属化合物としては、マグネシウム化合物、カルシウム化合物又はバリウム化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色調の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましい。
なお、前記の1族の金属化合物及び/又は2族の金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族の金属化合物及び/又は2族の金属化合物のみを使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば、以下の化合物を採用することができる。トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン及び四級ホスホニウム塩等。
前記の塩基性アンモニウム化合物としては、例えば、以下の化合物を採用することができる。テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド及びブチルトリフェニルアンモニウムヒドロキシド等。
前記のアミン系化合物としては、例えば、以下の化合物を採用することができる。4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン及びグアニジン等。
前記重合触媒の使用量は、反応に使用した全ジヒドロキシ化合物1mol当たり0.1〜300μmolであることが好ましく、0.5〜100μmolであることがより好ましく、1〜50μmolであることが特に好ましい。
重合触媒として、2族の金属及びリチウムからなる群より選ばれた少なくとも1種の金属を含む化合物を用いる場合、例えば、マグネシウム化合物、カルシウム化合物又はバリウム化合物を用いる場合、特にマグネシウム化合物及び/又はカルシウム化合物を用いる場合は、重合触媒の使用量は、該金属を含む化合物の金属原子量として、反応に使用した全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、0.3μmol以上がより好ましく、0.5μmol以上が特に好ましい。また上限としては、10μmol以下が好ましく、5μmol以下がより好ましく、3μmol以下が特に好ましい。
重合触媒の使用量を上述の範囲に調整することにより、重合速度を高めることができるため、重合温度を必ずしも高くすることなく所望の分子量のポリカーボネート樹脂を得ることが可能になるため、ポリカーボネート樹脂(A)の色調の悪化を抑制することができる。また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れてしまうことを防止することができるため、所望の分子量の樹脂をより確実に得ることができる。さらに、副反応の併発を抑制することができるため、ポリカーボネート樹脂(A)の色調の悪化又は成形加工時の着色をより一層防止することができる。
1族の金属の中でもナトリウム、カリウム、又はセシウムがポリカーボネート樹脂の色調へ与える悪影響や、鉄がポリカーボネート樹脂の色調へ与える悪影響を考慮すると、ポリカーボネート樹脂(A)中のナトリウム、カリウム、セシウム、及び鉄の合計含有量は、1重量ppm以下であることが好ましい。この場合には、ポリカーボネート樹脂の色調の悪化をより一層防止することができ、ポリカーボネート樹脂の色調をより一層良好なものにすることができる。同様の観点から、ポリカーボネート樹脂(A)中のナトリウム、カリウム、セシウム、及び鉄の合計含有量は、0.5重量ppm以下であることがより好ましい。なお、これらの金属は使用する触媒からのみではなく、原料又は反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂(A)中のこれらの金属の化合物の合計量は、ナトリウム、カリウム、セシウム及び鉄の合計の含有量として、上述の範囲にすることが好ましい。
原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。混合の温度は通常80℃以上、好ましくは90℃以上、かつ、通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下の範囲とし、中でも100℃以上120℃以下が好適である。この場合には、溶解速度を高めたり、溶解度を十分に向上させたりすることができ、固化等の不具合を十分に回避することができる。さらに、この場合には、ジヒドロキシ化合物の熱劣化を十分に抑制することができ、結果的に得られるポリカーボネート樹脂(A)の色調をより一層良好なものにすることができると共に、耐候性の向上も可能になる。
原料のジヒドロキシ化合物と炭酸ジエステルとを混合する操作は、酸素濃度10vol%以下、更には0.0001〜10vol%、中でも0.0001〜5vol%、特には0.0001〜1vol%の雰囲気下で行うことが好ましい。この場合には、色調をより良好なものにすることができると共に、反応性を高めることができる。
ポリカーボネート樹脂(A)を得るためには、反応に用いる全ジヒドロキシ化合物に対して、炭酸ジエステルを0.90〜1.20のモル比率で用いることが好ましい。この場合には、ポリカーボネート樹脂(A)のヒドロキシ基末端量の増加を抑制することができるため、ポリマーの熱安定性の向上が可能になる。そのため、成形時の着色をより一層防止したり、エステル交換反応の速度を向上させたりすることができる。また、所望の高分子量体をより確実に得ることが可能になる。さらに炭酸ジエステルの使用量を前記範囲内に調整することにより、エステル交換反応の速度が低下を抑制することができ、所望の分子量のポリカーボネート樹脂(A)のより確実な製造が可能になる。また、この場合には、反応時の熱履歴の増大を抑制することができるため、ポリカーボネート樹脂(A)の色調や耐候性をより一層良好なものにすることができる。さらにこの場合には、ポリカーボネート樹脂(A)中の残存炭酸ジエステル量を減少させることができ、成形時の汚れや臭気の発生を回避又は緩和することができる。以上と同様の観点から、全ジヒドロキシ化合物に対する炭酸ジエステル使用量は、モル比率で、0.95〜1.10であることがより好ましい。
ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせの方法があるが、より少ない熱履歴でポリカーボネート樹脂が得られ、生産性にも優れている連続式を採用することが好ましい。
重合速度の制御や得られるポリカーボネート樹脂(A)の品質の観点からは、反応段階に応じてジャケット温度と内温、反応系内の圧力を適切に選択することが重要である。具体的には、重縮合反応の反応初期においては相対的に低温、低真空でプレポリマーを得、反応後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましい。この場合には、未反応のモノマーの留出を抑制し、ジヒドロキシ化合物と炭酸ジエステルとのモル比率を所望の比率に調整し易くなる。その結果、重合速度の低下を抑制することができる。また、所望の分子量や末端基を持つポリマーをより確実に得ることが可能になる。
また、重縮合反応における重合速度はヒドロキシ基末端とカーボネート基末端のバランスによって制御される。そのため、未反応モノマーの留出によって末端基のバランスが変動すると、重合速度を一定に制御することが難しくなり、得られる樹脂の分子量の変動が大きくなるおそれがある。樹脂の分子量は溶融粘度と相関するため、得られた樹脂を溶融加工する際に、溶融粘度が変動し、成形品の品質を一定に保つことが難しくなることがある。かかる問題は、特に連続式で重縮合反応を行う場合に起こりやすい。
留出する未反応モノマーの量を抑制するためには、重合反応器に還流冷却器を用いることが有効であり、特に未反応モノマーが多い反応初期において高い効果を示す。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができるが、通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45〜180℃であり、好ましくは80〜150℃、特に好ましくは100〜130℃である。冷媒温度をこれらの範囲に調整することにより、還流量を十分に高め、その効果が十分得られると共に、留去すべきモノヒドロキシ化合物の留去効率を十分に向上させることができる。その結果、反応率の低下を防止することができ、得られる樹脂の着色をより一層防止することができる。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。
重合速度を適切に維持し、モノマーの留出を抑制しながら、得られるポリカーボネート樹脂(A)の色調をより良好なものにするためには、前述の重合触媒の種類と量の選定が重要である。
ポリカーボネート樹脂(A)は、重合触媒を用いて、通常、2段階以上の工程を経て製造される。重縮合反応は、1つの重縮合反応器を用い、順次条件を変えて2段階以上の工程で行ってもよいが、生産効率の観点からは、複数の反応器を用い、それぞれの条件を変えて多段階で行うことが好ましい。
重縮合反応を効率よく行う観点から、反応液中に含まれるモノマーが多い反応初期においては、必要な重合速度を維持しつつ、モノマーの揮散を抑制することが重要である。また、反応後期においては、副生するモノヒドロキシ化合物を十分留去させることにより、平衡を重縮合反応側にシフトさせることが重要になる。従って、反応初期に好適な反応条件と、反応後期に好適な反応条件とは通常異なっている。それ故、直列に配置された複数の反応器を用いることにより、それぞれの条件を容易に変更することができ、生産効率を向上させることができる。
ポリカーボネート樹脂(A)の製造に使用される重合反応器は、上述の通り、少なくとも2つ以上であればよいが、生産効率などの観点からは、3つ以上、好ましくは3〜5つ、特に好ましくは4つである。重合反応器が2つ以上であれば、各重合反応器中で、更に条件の異なる反応段階を複数行ったり、連続的に温度・圧力を変えたりしてもよい。
重合触媒は、原料調製槽や原料貯槽に添加することもできるし、重合反応器に直接添加することもできる。供給の安定性、重縮合反応の制御の観点からは、重合反応器に供給される前の原料ラインの途中に触媒供給ラインを設置し、水溶液で重合触媒を供給することが好ましい。
重縮合反応の温度を調整することにより、生産性の向上や製品への熱履歴の増大の回避が可能になる。さらに、モノマーの揮散、及びポリカーボネート樹脂(A)の分解や着色をより一層防止することが可能になる。具体的には、第1段目の反応における反応条件としては、以下の条件を採用することができる。即ち、重合反応器の内温の最高温度は、通常150〜250℃、好ましくは160〜240℃、更に好ましくは170〜230℃の範囲で設定する。また、重合反応器の圧力(以下、圧力とは絶対圧力を表す。)は、通常1〜110kPa、好ましくは5〜70kPa、さらに好ましくは7〜30kPaの範囲で設定する。また、反応時間は、通常0.1〜10時間、好ましくは0.5〜3時間の範囲で設定する。第1段目の反応は、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施されることが好ましい。
第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を1kPa以下にすることが好ましい。また、重合反応器の内温の最高温度は、通常200〜260℃、好ましくは210〜250℃の範囲で設定する。また、反応時間は、通常0.1〜10時間、好ましくは0.3〜6時間、特に好ましくは0.5〜3時間の範囲で設定する。
ポリカーボネート樹脂(A)の着色や熱劣化をより一層抑制し、色調がより一層良好なポリカーボネート樹脂(A)を得るという観点からは、全反応段階における重合反応器の内温の最高温度を210〜240℃とすることが好ましい。また、反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重縮合反応の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
連続重合において、最終的に得られるポリカーボネート樹脂(A)の分子量を一定水準に制御するには、必要に応じて重合速度を調節することが好ましい。その場合は、最終段の重合反応器の圧力を調整することが操作性の良い方法である。
また、前述したようにヒドロキシ基末端とカーボネート基末端の比率によって重合速度が変化するため、あえて片方の末端基を減らして、重合速度を抑制し、その分、最終段の重合反応器の圧力を高真空に保つことで、モノヒドロキシ化合物をはじめとした樹脂中の残存低分子成分を低減することができる。しかし、この場合には、片方の末端が少なくなりすぎると、末端基バランスが少し変動しただけで、極端に反応性が低下し、得られるポリカーボネート樹脂(A)の分子量が所望の分子量に満たなくなるおそれがある。かかる問題を回避するため、最終段の重合反応器で得られるポリカーボネート樹脂(A)は、ヒドロキシ基末端とカーボネート基末端とも10mol/ton以上含有することが好ましい。一方、両方の末端基が多すぎると、重合速度が速くなり、分子量が高くなりすぎてしまうため、片方の末端基は60mol/ton以下であることが好ましい。
このようにして、末端基の量と最終段の重合反応器の圧力を好ましい範囲に調整することで、重合反応器の出口において、樹脂中のモノヒドロキシ化合物の残存量を低減することができる。重合反応器の出口における樹脂中のモノヒドロキシ化合物の残存量は、2000重量ppm以下であることが好ましく、1500重量ppm以下であることがより好ましく、1000重量ppm以下であることが更に好ましい。このように、重合反応器の出口におけるモノヒドロキシ化合物の含有量を低減することにより、後の工程においてモノヒドロキシ化合物等の脱揮を容易に行うことができる。
モノヒドロキシ化合物の残存量は少ない方が好ましいが、100重量ppm未満まで減らそうとすると、片方の末端基の量を極端に少なくし、重合反応器の圧力を高真空に保つような運転条件を取る必要がある。この場合には、前述のとおり、得られるポリカーボネート樹脂(A)の分子量を一定水準に保つことが難しくなるので、通常100重量ppm以上、好ましくは150重量ppm以上である。
副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じて精製を行った後、他の化合物の原料として再利用することが好ましい。例えば、モノヒドロキシ化合物がフェノールである場合、ジフェニルカーボネートやビスフェノールA等の原料として用いることができる。
[ポリカーボネート樹脂(A)の物性]
<ガラス転移温度>
ポリカーボネート樹脂(A)のガラス転移温度は、90℃以上が好ましい。この場合には、前記ポリカーボネート樹脂組成物の耐熱性と生物起源物質含有率とをバランス良く向上させることができる。同様の観点から、ポリカーボネート樹脂(A)のガラス転移温度は、100℃以上がより好ましく、110℃以上がさらに好ましく、120℃以上が特に好ましい。一方、ポリカーボネート樹脂(A)のガラス転移温度は170℃以下が好ましい。この場合には、前述の溶融重合によって溶融粘度を小さくすることができ、充分な分子量のポリマーを得ることができる。また、重合温度を高くして溶融粘度を下げることにより、分子量を高くしようとした場合には、構成単位(a)の耐熱性が充分でないため、着色し易くなるおそれがある。分子量の向上と着色の防止をよりバランス良く向上できるという観点から、ポリカーボネート樹脂(A)のガラス転移温度は、165℃以下がより好ましく、160℃以下がさらに好ましく、150℃以下が特に好ましく、145℃未満が最も好ましい。
<還元粘度>
ポリカーボネート樹脂(A)の分子量は、還元粘度で表すことができ、還元粘度が高いほど分子量が大きいことを示す。還元粘度は、通常0.30dL/g以上であり、0.33dL/g以上が好ましい。この場合には、成形品の機械的強度をより向上させることができる。一方、還元粘度は、通常1.20dL/g以下であり、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。これらの場合には、成形時の流動性を向上させることができ、生産性や成形性をより向上させることができる。なお、ポリカーボネート樹脂(A)の還元粘度は、塩化メチレンを溶媒として樹脂組成物の濃度を0.6g/dLに精密に調整した溶液を用いて、ウベローデ粘度管により温度20.0℃±0.1℃の条件下で測定した値を使用する。還元粘度の測定方法の詳細は実施例において説明する。
<溶融粘度>
ポリカーボネート樹脂(A)の溶融粘度は、400Pa・s以上3000Pa・s以下が好ましい。この場合には、樹脂組成物の成形品が脆くなることを防止し、機械特性をより向上させることができる。さらにこの場合には、成形加工時における流動性を向上させ、成形品の外観が損なわれたり、寸法精度が悪化したりすることを防止することができる。さらにこの場合には、剪断発熱により樹脂温度が上昇することに起因する、着色や発泡をより一層防止することができる。同様の観点から、ポリカーボネート樹脂(A)の溶融粘度は、600Pa・s以上2500Pa・s以下であることがより好ましく、800Pa・s以上2000Pa・s以下であることがさらにより好ましい。なお、本明細書において溶融粘度とは、キャピラリーレオメータ[東洋精機(株)製]を用いて測定される、温度240℃、剪断速度91.2sec−1における溶融粘度をいう。溶融粘度の測定方法の詳細は、後述の実施例において説明する。
ポリカーボネート樹脂(A)は、触媒失活剤を含むことが好ましい。触媒失活剤としては、酸性物質で、重合触媒の失活機能を有するものであれば特に限定されないが、例えば、リン酸、リン酸トリメチル、リン酸トリエチル、亜リン酸、オクチルスルホン酸テトラブチルホスホニウム塩、ベンゼンスルホン酸テトラメチルホスホニウム塩、ベンゼンスルホン酸テトラブチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩、p−トルエンスルホン酸テトラブチルホスホニウム塩のごときホスホニウム塩;デシルスルホン酸テトラメチルアンモニウム塩、ドデシルベンゼンスルホン酸テトラブチルアンモニウム塩のごときアンモニウム塩;およびベンゼンスルホン酸メチル、ベンゼンスルホン酸ブチル、p−トルエンスルホン酸メチル、p−トルエンスルホン酸ブチル、ヘキサデシルスルホン酸エチルのごときアルキルエステル等を挙げることができる。
前記触媒失活剤は、下記構造式(5)または下記構造式(6)で表される部分構造のいずれかを含むリン系化合物(以下、「特定リン系化合物」という。)を含んでいることが好ましい。前記特定リン系化合物は、重縮合反応が完了した後、即ち、例えば混練工程やペレット化工程等の際に添加することにより後述する重合触媒を失活させ、それ以降に重縮合反応が不要に進行することを抑制できる。その結果、成形工程等においてポリカーボネート樹脂(A)が加熱された際の重縮合の進行を抑制でき、ひいては前記モノヒドロキシ化合物の脱離を抑制することができる。また、重合触媒を失活させることにより、高温下でのポリカーボネート樹脂(A)の着色をより一層抑制することができる。
Figure 0006714877
Figure 0006714877
前記構造式(5)または構造式(6)で表される部分構造を含む特定リン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル等を採用することができる。特定リン系化合物のうち、触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特に亜リン酸が好ましい。
ホスホン酸としては、例えば以下の化合物を採用することができる。ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、4−メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物等。
ホスホン酸エステルとしては、例えば以下の化合物を採用することができる。ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2−エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2−ヒドロキシエチル)ホスホン酸ジメチル、p−メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチル等。
酸性リン酸エステルとしては、例えば以下の化合物を採用することができる。リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2−エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、又はジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩等。
前記特定リン系化合物は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
前記ポリカーボネート樹脂(A)中の特定リン系化合物の含有量は、リン原子として0.1重量ppm以上5重量ppm以下であることが好ましい。この場合には、前記特定リン系化合物による触媒失活や着色抑制の効果を十分に得ることができる。また、この場合には、特に高温・高湿度での耐久試験において、ポリカーボネート樹脂(A)の着色をより一層防止することができる。
また、前記特定リン系化合物の含有量を重合触媒の量に応じて調節することにより、触媒失活や着色抑制の効果をより確実に得ることができる。前記特定リン系化合物の含有量は、重合触媒の金属原子1molに対して、リン原子の量として0.5倍mol以上5倍mol以下とすることが好ましく、0.7倍mol以上4倍mol以下とすることがより好ましく、0.8倍mol以上3倍mol以下とすることが特に好ましい。
[ポリロタキサン(B)]
本発明におけるポリロタキサンとは、環状分子の開口部が直鎖状分子によって串刺し状に貫かれ、環状分子が直鎖状分子を包接してなる擬ポリロタキサンの両末端(直鎖状分子の両末端)に、環状分子が直鎖状分子から遊離しないようにブロック基を配置した分子をいう。
<直鎖状分子>
直鎖状分子は、環状分子に包接され、非共有結合的に環状分子と一体化することができる、後述の分子量である高分子であればよい。
ここで、「直鎖状分子」の「直鎖」は、実質的に「直鎖」であることを意味する。即ち、回転子である環状分子が回転可能、あるいは直鎖状分子上で環状分子が摺動又は移動可能であれば、直鎖状分子は分岐鎖を有していてもよい。また、「直鎖」の長さは、直鎖状分子上で環状分子が摺動又は移動可能であれば、その長さに特に制限はない。
また、「直鎖状分子」の「直鎖」は、ポリロタキサン材料との関係で、相対的に決まる。即ち、架橋構造を一部に有する材料の場合、直鎖状分子は、材料中においてごく一部である場合もあり得る。ごく一部であっても、上記のように、直鎖状分子上で環状分子が摺動又は移動可能であれば、その長さに特に制限はない。
直鎖状分子としては、親水性ポリマー及び疎水性ポリマーのいずれも使用することができる。親水性ポリマーとしては、例えばポリビニルアルコールやポリビニルピロリドン、ポリ(メタ)アクリル酸、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ポリアクリルアミド、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール系樹脂、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん等及び/又はこれらの共重合体等が挙げることができ;疎水性ポリマーとしては、例えばポリエチレン、ポリプロピレン、及びその他オレフィン系単量体との共重合樹脂等のポリオレフィン系樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレンやアクリロニトリル−スチレン共重合樹脂等のポリスチレン系樹脂、ポリメチルメタクリレートや(メタ)アクリル酸エステル共重合体、アクリロニトリル−メチルアクリレート共重合樹脂等のアクリル系樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル−酢酸ビニル共重合樹脂、ポリビニルブチラール樹脂等;並びにこれらの誘導体又は変性体を挙げることができる。この他に、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ナイロンなどのポリアミド類、ポリイミド類、ポリイソプレン、ポリブタジエンなどのポリジエン類、ポリジメチルシロキサンなどのポリシロキサン類、ポリスルホン類、ポリイミン類、ポリ無水酢酸類、ポリ尿素類、ポリスルフィド類、ポリフォスファゼン類、ポリケトン類、ポリフェニレン類、ポリハロオレフィン類、並びにこれらの誘導体なども使用することができる。
これらのうち、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、及びポリプロピレンが好ましい。特にポリエチレングリコールであるのが好ましい。
直線状分子の好ましい分子量は、数平均分子量でその分子量が1万以上、好ましくは2万以上、より好ましくは3.5万以上である。
直鎖状分子は、その両末端に反応基を有するのが好ましい。反応基を有することにより、ブロック基と容易に反応することができる。反応基は、用いるブロック基に依存するが、例えば水酸基、アミノ基、カルボキシル基、チオール基等を挙げることができる。
ブロック基は、環状分子が直鎖状分子により串刺し状になった形態を保持する基であれば、特に限定されず、いかなる基を用いてもよい。このような基として、例えば「嵩高さ」を有する基及び/又は「イオン性」を有する基等を挙げることができる。ここで、「基」というのは、分子基及び高分子基を含めた種々の基を意味する。即ち、「嵩高さ」を有する基として、模式的に、球形で表される基であっても、側壁のように表される固体支持体であってもよい。また、「イオン性」を有する基の「イオン性」と、環状分子の有する「イオン性」とが影響しあうことにより、例えば反発しあうことにより、環状分子が直鎖状分子により串刺し状になった形態を保持することができる。
ブロック基としては、2,4−ジニトロフェニル基、3,5−ジニトロフェニル基等のジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類及びピレン類、並びにこれらの誘導体又は変性体を挙げることができる。より具体的には、環状分子としてα−シクロデキストリン、及び直鎖状分子としてポリエチレングリコールを用いる場合であっても、ブロック基としてシクロデキストリン類、2,4−ジニトロフェニル基、3,5−ジニトロフェニル基等のジニトロフェニル基類、アダマンタン基類、トリチル基類、フルオレセイン類及びピレン類、並びにこれらの誘導体又は変性体を挙げることができる。
<環状分子>
環状分子は直鎖状分子に包接されて滑車効果を奏するものである限り、特に限定されるものではなく、種々の環状物質を上げることができる。また、環状分子は実質的に環状であれば十分であって、「C」字状のように、必ずしも完全な閉環である必要はない。
なお、環状分子は、本願発明の効果を損なわない範囲で、該分子の少なくとも1か所以上の外周部位が置換されていてもよい(環状分子の側鎖)。具体的な環状分子としては、側鎖に官能基を有していてもよいシクロデキストリン分子であるのがよく、該シクロデキストリン分子がα−シクロデキストリン、β−シクロデキストリン及びγ−シクロデキストリン、並びにその誘導体からなる群から選ばれるのがよい。また、該側鎖の末端の官能基としては、例えば水酸基、アミノ基、カルボキシル基、チオール基等を挙げることができる。
擬ポリロタキサンの調製の際、直鎖状分子で串刺し状に貫かれる環状分子の量を制御するのが好ましい。少なくとも2個の環状分子を直鎖状分子で串刺し状に貫き、少なくとも2個の環状分子が直鎖状分子を包接してなるのが好ましい。また、環状分子が直鎖状分子上に最大限に存在することができる量、即ち最大包接量を1とした場合、環状分子の量は、最大包接量の0.001〜0.6、好ましくは0.01〜0.5、より好ましくは0.05〜0.4の値で存在するのが好ましい。
ポリロタキサンは、好ましくは、直鎖状分子としてポリエチレングリコールを、環状分子としてシクロデキストリン分子を含んでなり、具体的に、側鎖に官能基を有していてもよいシクロデキストリン分子、特にα−シクロデキストリンが、ポリエチレングリコールを包接する擬ポリロタキサンにブロック基(アダマンタン基、ジニトロフェニル基等)を配置したポリロタキサンであることが好ましい。
[ポリロタキサン(B)の物性]
<分子量>
ポリロタキサンの全体の分子量は、特に制限はないが、GPC法で測定して数平均分子量で、下限として好ましくは10万以上、さらに好ましくは30万以上である。一方、上限として好ましくは100万以下、さらに好ましくは70万以下である。
[ポリカーボネート樹脂組成物およびその物性]
本発明でいうポリカーボネート樹脂組成物は、少なくとも前述のポリカーボネート樹脂(A)とポリロタキサン(B)とを含有するものである。前記ポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)とポリロタキサン(B)とが互いに混ざり合った状態であれば、本願発明の効果を十分奏するが、ポリロタキサン(B)の特性を最大限に利用するため、あるいは樹脂同士の相溶性を高めるために、好ましくはポリカーボネート樹脂(A)がポリロタキサン(B)の環状分子の官能基と反応し、ポリカーボネート樹脂(A)とポリロタキサン(B)とが結合された状態が好ましい。
また、本発明のポリカーボネート樹脂組成物は、用いたポリカーボネート樹脂(A)とは異なる上述のポリカーボネート樹脂(A)を1種又は2種以上をさらに混合したポリマーアロイを用いてもよい。
また、本発明において芳香族ジヒドロキシ化合物のみからなるポリカーボネート樹脂を用いた場合、上記の式(1)で表されるジヒドロキシ化合物に由来する構成単位を有するポリカーボネート樹脂に比べて、一般的に機械特性に優れるのに対して、表面硬度等に劣ることが知られているが、本発明の樹脂組成物にすることで耐擦傷性を向上させることができる。
[ポリカーボネート樹脂組成物の物性]
<全光線透過率>
前記ポリカーボネート樹脂組成物は、これを成形してなる厚さ2mmの成形体の厚さ方向の全光線透過率が55%以上であることが好ましく、より好ましくは70%以上、さらに好ましくは80%以上である。
<ガラス転移温度>
ポリカーボネート樹脂組成物においては、DSC法で測定したガラス転移温度のピークが単一であることが好ましい。また、ポリカーボネート樹脂組成物のガラス転移温度は、100℃以上200℃以下が好ましい。この場合には、耐熱性をより向上させることができるため、成形品の変形をより防止することができる。また、この場合には、樹脂組成物の製造時におけるポリカーボネート樹脂(A)の熱劣化をより一層抑制することができ、耐衝撃性をより向上させることができる。さらに、成形時における樹脂組成物の熱劣化をより一層抑制することができる。同様の観点から、ポリカーボネート樹脂組成物のガラス転移温度は、110℃以上190℃以下がより好ましく、120℃以上180℃以下がさらに好ましい。
前記所定の全光線透過率及びガラス転移温度を示すポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)と、ポリロタキサン(B)と、後述する特定の化合物(C)とを含有し、該化合物(C)の含有量を後述の所定の範囲に調整することにより、実現が可能である。
本発明のポリカーボネート樹脂組成物中のポリロタキサン(B)の配合量の下限は、ポリカーボネート樹脂(A)とポリロタキサン(B)との合計量100重量部に対して0.1重量部以上であり、1重量部以上が好ましく、2重量部以上がより好ましい。ポリロタキサン(B)の配合量が前記量より少ないと、ポリロタキサンの滑車効果が低下することで機械特性が低下するため所望の効果が得られない。一方で、前記ポリロタキサン(B)の配合量の上限はポリカーボネート樹脂(A)とポリロタキサン(B)との合計量100重量部に対して40重量部未満が好ましい。前記配合量より多いと得られるポリカーボネート樹脂(A)とポリロタキサン(B)の相溶性の観点から樹脂組成物の透明性および色調の悪化を招き、ポリカーボネート樹脂組成物の透明性および色調が損なわれるだけでなく、樹脂組成物自体の取扱いも難しくなり成形性に劣る。ポリロタキサン(B)の配合量の上限は、好ましくは30重量部以下、より好ましくは20重量部未満、さらに好ましくは15重量部以下、特に好ましくは10重量部以下である。前記範囲内であることにより、透明性を維持したまま、破断伸度や耐衝撃性といった機械物性を高めることができる。
本発明において、ポリカーボネート樹脂組成物中のポリロタキサン(B)の配合量は、具体的に、ポリカーボネート樹脂(A)と前記ポリロタキサン(B)との合計量100重量部に対して0.1重量部以上20重量部未満であることが好ましい。
前記ポリカーボネート樹脂組成物の溶融粘度は、ポリカーボネート樹脂(A)の溶融粘度とポリロタキサン(B)の溶融粘度にそれぞれの重量比を掛けたものの和を理想溶融粘度とした場合、理想溶融粘度に対して40%以上が好ましい。この場合には、衝撃強度をより向上させることができる。同様の観点から、ポリカーボネート樹脂組成物の溶融粘度は、理想溶融粘度に対して60%以上がより好ましく、80%以上が特に好ましい。尚、溶融粘度とは、キャピラリーレオメータ[東洋精機(株)製]を用いて測定される、温度240℃、剪断速度91.2sec−1における溶融粘度をいう。溶融粘度の測定方法の詳細は、後述の実施例において説明する。
前記ポリカーボネート樹脂組成物の引張伸びは、後掲の実施例で詳述する引張伸び試験で評価することができる。引張伸びは好ましくは11%以上、より好ましくは14%以上、さらに好ましくは16%以上である。
前記ポリカーボネート樹脂組成物の衝撃強度は、例えば、後掲の実施例で詳述するノッチ付シャルピー衝撃強度試験で評価することができる。ノッチ付シャルピー衝撃強度は好ましくは10kJ/m以上、より好ましくは20kJ/m以上、さらに好ましくは30kJ/m以上、特に好ましくは40kJ/m以上である。この範囲であることにより、優れた耐衝撃強度を有する。
[化合物(C)]
本発明のポリカーボネート樹脂組成物は、前述のポリカーボネート樹脂(A)およびポリロタキサン(B)以外に、さらに以下詳述の化合物(C)を含んでもよい。ポリカーボネート樹脂組成物に対して配合する前記化合物(C)は、ポリカーボネート樹脂(A)とポリロタキサン(B)とのエステル交換反応を促進することができる。エステル交換反応は、前記樹脂組成物を作製する際に、例えばポリカーボネート樹脂(A)とポリロタキサン(B)との混練時における加熱により起こり、化合物(C)により促進される。その結果、樹脂組成物におけるポリカーボネート樹脂(A)とポリロタキサン(B)との相溶性が向上するため、樹脂組成物の透明性を高めることが可能になる。そして、高い透明性を備えつつも、耐熱性、耐湿熱性、及び耐衝撃性等の特性に優れた樹脂組成物の実現が可能になる。化合物(C)は、1族の金属、2族の金属、からなる群から選択される少なくとも一種を含む化合物であればよい。
前記化合物(C)における金属の例としては、リチウム、ナトリウム、カリウム、ルジビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。中でも、ナトリウム、カリウム、マグネシウム、カルシウム及びセシウムが好ましく、これらを含む化合物、すなわちナトリウム化合物、カリウム化合物、マグネシウム化合物、カルシウム化合物およびセシウム化合物からなる群より選ばれる少なくとも1種が好ましい。
前記化合物(C)における金属は、電気陰性度が0.7〜1.1のものが好ましく、0.75〜1.0のものがより好ましく、0.75〜0.98のものがさらにより好ましい。具体的には、セシウム(0.79)、カリウム(0.82)、ナトリウム(0.93)、リチウム(0.98)、バリウム(0.89)、ストロンチウム(0.95)、カルシウム(1.0)が挙げられる。括弧内の数値は電気陰性度である。電気陰性度が前記範囲にある金属を採用することにより、前記ポリカーボネート樹脂組成物の透明性をより向上させることができ、さらに耐衝撃性をより向上させることができる。
化合物(C)としては、前記金属と、カルボン酸、炭酸、フェノール等の有機酸、硝酸、リン酸、ホウ酸等から成る金属塩を挙げることができる。また、金属塩としては、前記金属のハロゲン化物、水酸化物等も挙げられる。本発明において、化合物(C)が、無機塩(炭酸塩を含む)、カルボン酸塩、フェノラート、ハロゲン化合物、および水酸化物からなる群より選ばれる少なくとも1種であることがより好ましい。
化合物(C)における金属イオンの対イオンの酸解離定数(pKa)は2〜16であることが好ましい。この場合には、金属換算の触媒量を多くすることなく、ポリカーボネート樹脂組成物の透明性を高めことができ、色相が悪化することをより一層防止することができる。同様の観点から、化合物(C)における金属イオンの対イオンの酸解離定数(pKa)は3〜11であることがより好ましく、5〜10であることが特に好ましい。
化合物(C)として用いられる1族の金属の化合物としては、例えば、以下の化合物を採用することができる。水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩及び2セシウム塩等。これらの中でも、透明性、色調及び耐湿熱性をより向上させるという観点より、ナトリウム化合物、カリウム化合物、及びセシウム化合物からなるグループから選ばれる少なくとも1種が好ましく、カリウム化合物及び/又はセシウム化合物がより好ましい。特に好ましくは、炭酸水素カリウム、炭酸水素セシウム、炭酸カリウム、炭酸セシウム、酢酸カリウム、酢酸セシウム、ステアリン酸カリウム、ステアリン酸セシウムである。
化合物(C)として用いられる2族の金属の化合物としては、例えば、以下の化合物を採用することができる。水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム及びステアリン酸ストロンチウム等。これらの中でも、透明性及び色調をより向上させるという観点より、カルシウム化合物が好ましい。特に好ましくは、水酸化カルシウム、炭酸水素カルシウム、酢酸カルシウムである。
ポリカーボネート樹脂組成物中に含まれる化合物(C)の含有量は、前記ポリカーボネート樹脂(A)と前記ポリロタキサン(B)との合計量100重量部に対して、該化合物(C)中の金属量で0.5重量ppm以上、かつ1000重量ppm以下であることが好ましい。金属種にもよるが、1000重量ppmを超えると、樹脂組成物の色調が悪化し、また耐湿熱性が低下する。0.5重量ppm未満では、樹脂組成物の透明性が不十分になる。色調、耐熱性、透明性をより向上させるという観点から、化合物(C)中の金属量は、0.9重量ppm以上、かつ100重量ppm以下であることがより好ましく、1重量ppm以上、かつ10重量ppm以下であることが特に好ましい。なお、原料であるポリカーボネート樹脂(A)の重合触媒ポリカーボネート樹脂組成物中に導入される化合物(C)は、一般に、例えば、重合工程後に、p−トルエンスルフォン酸ブチルのような酸性化合物によって失活させられている場合が多いので、後述のように別途化合物(C)を添加することが好ましい。ポリカーボネート樹脂組成物中に含まれる化合物(C)は、ポリカーボネート樹脂(A)の製造時に用いられて各樹脂(A)から樹脂組成物中にもたらされる化合物(C)に相当する重合触媒と、樹脂組成物の作製時に別途添加される化合物(C)との両方を含む概念である。
前記化合物(C)の添加方法は、固体のものは固体のままで供給してもよいし、水や溶媒に溶解可能なものは、水溶液や溶液にして供給してもよい。また、ポリカーボネート樹脂原料に添加してもよいし、水溶液や溶液の場合は、押出機の原料投入口から投入しても、ポンプ等を使用してシリンダーから液添加してもよい。
[その他の添加剤]
ポリカーボネート樹脂(A)あるいはポリカーボネート樹脂組成物には、その他種々の添加剤を添加することができる。前記添加剤としては、酸性化合物、染顔料、酸化防止剤、UV吸収剤、光安定剤、離型剤、熱安定剤、難燃剤、難燃助剤、無機充填剤、有機充填剤、衝撃改良剤、加水分解抑制剤、発泡剤、核剤等があり、ポリカーボネート樹脂に通常用いられる添加剤を使用することができる。
(酸性化合物)
ポリカーボネート樹脂組成物は、さらに酸性化合物を含有することが好ましい。この酸性化合物は、ポリカーボネート樹脂(A)とポリロタキサン(B)とを配合する際に添加されるものであり、ポリカーボネート樹脂(A)及びポリロタキサン(B)の製造時に用いられる上述の触媒失活剤を含まない概念である。これらの触媒失活剤は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の製造段階においてその効果自体が失われているためである。なお、酸性化合物としては、上述の触媒失活剤と同様の物質を用いることができる。
酸性化合物の添加量は、ポリカーボネート樹脂組成物中に含まれる化合物(C)1モルに対して、0.5倍モル以上かつ5倍モル以下であることが好ましい。この場合には、耐湿熱性をより一層向上させることができると共に、成形時等の熱安定性をより一層向上させることができる。同様の観点から、酸性化合物の添加量は、化合物(C)1モルに対して、0.6倍モル以上2倍モル以下であることがより好ましく、0.7倍モル以上1倍モル以下であることがさらに好ましい。
(染顔料)
染顔料としては、無機顔料、有機顔料、及び有機染料等の有機染顔料が挙げられる。
無機顔料としては具体的には例えば、カーボンブラック;酸化チタン、亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛−鉄系ブラウン、銅−クロム系ブラック、銅−鉄系ブラック等の酸化物系顔料等;が挙げられる。
有機顔料及び有機染料等の有機染顔料としては具体的には例えば、フタロシアニン系染顔料;アゾ系、チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系等の縮合多環染顔料;アンスラキノン系、ペリノン系、ペリレン系、メチン系、キノリン系、複素環系、メチル系の染顔料等;が挙げられる。
これら染顔料は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
前記無機顔料、有機顔料及び有機染料等の有機染顔料の中でも、無機顔料が好ましい。無機顔料を着色剤として使用することにより、成形品を屋外等で使用しても鮮映性等の長期間の保持が可能になる。
染顔料の量は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の合計100重量部に対して、0.05重量部以上5重量部以下であることが好ましい。より好ましくは0.05重量部以上3重量部以下、さらに好ましくは0.1重量部以上2重量部以下である。着色剤の量が0.05重量部未満では鮮映性のある原着成形品が得られづらい。5重量部より多いと、成形品の表面粗さが大きくなり、鮮映性のある原着成形品が得られづらい。
(酸化防止剤)
酸化防止剤としては、樹脂に使用される一般的な酸化防止剤が使用できるが、酸化安定性、熱安定性観点から、ホスファイト系酸化防止剤、イオウ系酸化防止剤、およびフェノール系酸化防止剤が好ましい。ここで、酸化防止剤の添加量は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の合計100重量部に対し、5重量部以下が好ましい。この場合には、成形時における金型の汚染をより確実に防止し、表面外観のより優れた成形品を得ることが可能になる。同様の観点から、酸化防止剤の添加量は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の合計100重量部に対し、3重量部以下がより好ましく、2重量部以下が更に好ましい。また、酸化防止剤の添加量は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の合計100重量部に対し、0.001重量部以上が好ましい。この場合には、成形安定性に対する改良効果を十分に得ることができる。同様の観点から、酸化防止剤の添加量は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の合計100重量部に対し、0.002重量部以上がより好ましく、0.005重量部以上が更に好ましい。
(ホスファイト系酸化防止剤)
ホスファイト系酸化防止剤としては、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト等が挙げられる。
これらの中でも、トリスノニルフェニルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましく使用される。これらの化合物は、1種又は2種以上を併用することができる。
(イオウ系酸化防止剤)
イオウ系酸化防止剤としては、例えば、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)などをあげることができる。前記のうち、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)が好ましい。これらの化合物は、1種又は2種以上を併用することができる。
(フェノール系酸化防止剤)
フェノール系酸化防止剤としては、例えばペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、2,6−ジ−tert−ブチル−p−クレゾール、2,6−ジ−tert−ブチル−4−エチルフェノール等の化合物が挙げられる。
これらの化合物の中でも、炭素数5以上のアルキル基によって1つ以上置換された芳香族モノヒドロキシ化合物が好ましく、具体的には、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が好ましく、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}が更に好ましい。これらの化合物は、1種又は2種以上を併用することができる。
(UV吸収剤)
紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾエート系化合物、ヒンダードアミン系化合物、サリチル酸フェニルエステル系化合物、シアノアクリレート系化合物、マロン酸エステル系化合物、シュウ酸アニリド系化合物等が挙げられる。これらは、単独又は2種以上を併用してもよい。
ベンゾトリアゾール系化合物のより具体的な例としては、2−(2’−ヒドロキシ−3’−メチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、メチル−3−[3−(2H−ベンゾトリアゾール−2−イル)−5−t−ブチル−4−ヒドロキシフェニル]プロピオネート等が挙げられる。
トリアジン系化合物としては、2−{4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル}−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−(2−ヒドロキシ−4−イソオクチルオキシフェニル)−s−トリアジン、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール(BASF・ジャパン社製、Tinuvin1577FF)などが挙げられる。
ヒドロキシベンゾフェノン系化合物としては、2,2’−ジヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン等が挙げられる。
シアノアクリレート系化合物としては、エチル−2−シアノ−3,3−ジフェニルアクリレート、2’−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等が挙げられる。
マロン酸エステル系化合物としては、2−(1−アリールアルキリデン)マロン酸エステル類等が挙げられる。なかでも、マロン酸[(4−メトキシフェニル)−メチレン]−ジメチルエステル(Clariant社製、HostavinPR−25)、2−(パラメトキシベンジリデン)マロン酸ジメチルが好ましい。
シュウ酸アニリド系化合物としては、2−エチル−2’−エトキシ−オキサルアニリド(Clariant社製、SanduvorVSU)等が挙げられる。
これらの中でも、2−(2’−ヒドロキシ−3’−t−ブチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、2−{4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル}−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,2’,4,4’−テトラヒドロキシベンゾフェノンが好ましい。
(光安定剤)
光安定剤としては、ヒンダードアミン系光安定剤が挙げられ、その分子量は、1000以下が好ましい。この場合には、成形品の耐候性をより向上させることができる。同様の観点から光安定剤の分子量は900以下がより好ましい。また、光安定剤の分子量は300以上が好ましい。この場合には、耐熱性をより向上させることができ、成形時における金型の汚染をより確実に防止することができる。その結果、表面外観のより優れた成形品を得ることができる。同様の観点から、光安定剤の分子量は400以上がより好ましい。さらに、光安定剤は、ピペリジン構造を有する化合物であることが好ましい。ここで規定するピペリジン構造とは、飽和6員環のアミン構造となっていればよく、ピペリジン構造の一部が置換基により置換されているものも含む。置換基としては、炭素数4以下のアルキル基があげられ、特にはメチル基が好ましい。特に、ピペリジン構造を複数有する化合物が好ましく、それら複数のピペリジン構造がエステル構造により連結されている化合物が好ましい。
そのような光安定剤としては、4−ピペリジノール、2,2,6,6−テトラメチル−4−ベンゾエート、ビス(2,2,6,6−テトラメチル−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、テトラキス(2,2,6,6−テトラメチルピペリジン−4−カルボン酸)1,2,3,4−ブタンテトライル、2,2,6,6−テトラメチル−ピレリジノールとトリデシルアルコールと1,2,3,4−ブタンテトラカルボン酸の縮合物、1,2,2,6,6−ペンタメチル−4−ピペリジル、及びトリデシルアルコールとトリデシル−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,3,6,6−ペンタメチル−4−ピペリジル){[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル}ブチルマロネート、デカン二酸ビス[2,2,6,6−テトラメチル−1−(オクチルオキシ)−4−ピペリジニル]エステル、1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、1−{2−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチル}−4−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−2,2,6,6−テトラメチルピペリジン、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサンジアミンポリマーと2,4,6−トリクロロ−1,3,5−トリアジン、1,2,3,4−ブタンテトラカルボン酸と2,2,6,6−テトラメチル−4−ピペリジノールとβ,β,β,β−テトラメチル−3,9−(2,4,8,10−テトラオキサスピロ[5,5]ウンデカン−ジエタノールとの縮合物、N,N’−ビス(3−アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物等が挙げられる。
光安定剤の含有量は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の合計100重量部に対して、0.001重量部以上5重量部以下であることが好ましい。この場合には、ポリカーボネート樹脂組成物の着色をより一層防止することができる。その結果、例えば着色剤を添加した場合には、深みと清澄感のある漆黒を得ることができる。また、この場合には、ポリカーボネート樹脂組成物の耐光性をより向上させることができ、ポリカーボネート樹脂組成物を例えば自動車内外装品用途に適用しても優れた耐光性を発揮することができる。光安定剤の含有量は、ポリカーボネート樹脂(A)及びポリロタキサン(B)の合計100重量部に対して、0.005重量部以上3重量部以下であることがより好ましく、0.01重量部以上1重量部以下であることがさらに好ましい。尚、ポリロタキサン(B)は、ヒンダードアミン系光安定剤によって分解しやすい傾向にある。したがって、ポリカーボネート樹脂(A)とポリロタキサン(B)との比率において、ポリロタキサン(B)が多くなる場合は、光安定剤の添加量を控えめに設定することが好ましい。
(離型剤)
ポリカーボネート樹脂組成物は、成形時における離型性を付与するための離型剤として、前記ポリカーボネート樹脂100重量部に対して、多価アルコールの脂肪酸エステルを0.0001重量部以上2重量部以下含有してもよい。多価アルコールの脂肪酸エステルの量をこの範囲に調整することにより、添加効果が充分に得られ、成形加工における離型の際に、離型不良により成形品が割れることをより確実に防止することができる。さらにこの場合には、樹脂組成物の白濁や成形加工時に金型に付着する付着物の増大をより一層抑制することができる。多価アルコールの脂肪酸エステルの含有量は、0.01重量部以上、1.5重量部以下であることがより好ましく、0.1重量部以上1重量部以下であることがさらに好ましい。
多価アルコールの脂肪酸エステルとしては、炭素数1〜炭素数20の多価アルコールと炭素数10〜炭素数30の飽和脂肪酸との部分エステル又は全エステルが好ましい。かかる多価アルコールと飽和脂肪酸との部分エステル又は全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、イソプロピルパルミテート、ソルビタンモノステアレート等が挙げられる。なかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレートが好ましく用いられる。
また、耐熱性及び耐湿性の観点から、多価アルコールの脂肪酸エステルとしては、全エステルがより好ましい。
脂肪酸としては、高級脂肪酸が好ましく、炭素数10〜炭素数30の飽和脂肪酸がより好ましい。かかる脂肪酸としては、ミリスチン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘニン酸等が挙げられる。
また、多価アルコールの脂肪酸エステルにおいて、多価アルコールは、エチレングリコールであることが好ましい。この場合には、樹脂に添加した際に、樹脂の透明性を損なわずに離型性を向上させることができる。
また、前記多価アルコールの脂肪酸エステルは、2価アルコールの脂肪酸ジエステルであることが好ましい。この場合には、樹脂に添加した際に、湿熱環境下における樹脂組成物の分子量の低下を抑制することができる。
本実施の形態において、ポリカーボネート樹脂組成物に配合する離型剤の添加時期、添加方法は特に限定されない。添加時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂組成物と他の配合剤との混練途中等のポリカーボネート樹脂組成物が溶融した状態;押出機等を用い、ペレットまたは粉末等の固体状態のポリカーボネート樹脂組成物とブレンド・混練する際等が挙げられる。添加方法としては、ポリカーボネート樹脂組成物に離型剤を直接混合または混練する方法;少量のポリカーボネート樹脂組成物または他の樹脂等と離型剤を用いて作成した高濃度のマスターバッチとして添加することもできる。
(その他の樹脂)
また前記ポリカーボネート樹脂組成物は、本発明の効果を損なわない範囲で、例えば芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィン、ABS、AS(アクリロニトリルスチレン)などの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂などの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。本発明のポリカーボネート樹脂組成物の配合量としては、本発明に用いるポリカーボネート樹脂(A)とポリロタキサン(B)との混合物100重量部に対して、1重量部以上、30重量部以下の割合で配合することが好ましく、3重量部以上、20重量部以下の割合で配合することがより好ましく、5重量部以上、10重量部以下の割合で配合することがさらに好ましい。
(無機充填剤、有機充填剤)
前記ポリカーボネート樹脂組成物には、意匠性を維持できる範囲において公知の無機充填剤、有機充填剤を含有していてもよく、詳しくはガラス繊維、ガラスミルドファイバー、ガラスフレーク、ガラスビーズ、シリカ、アルミナ、酸化チタン、硫酸カルシウム粉体、石膏、石膏ウィスカー、硫酸バリウム、タルク、マイカ、ワラストナイト等の珪酸カルシウム、カーボンブラック、グラファイト、鉄粉、銅粉、二硫化モリブデン、炭化ケイ素、炭化ケイ素繊維、窒化ケイ素、窒化ケイ素繊維、黄銅繊維、ステンレス繊維、チタン酸カリウム繊維、これらのウィスカー等の無機充填剤や、木粉、竹粉、ヤシ澱粉、コルク粉、パルプ粉などの粉末状有機充填剤;架橋ポリエステル、ポリスチレン、スチレン・アクリル共重合体、尿素樹脂などのバルン状・球状有機充填剤;炭素繊維、合成繊維、天然繊維などの繊維状有機充填剤を添加することもできる。
[ポリカーボネート樹脂組成物の製造方法]
本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)とポリロタキサン(B)とを溶融反応させる反応工程を行うことにより製造できる。好ましくは、前記ポリカーボネート樹脂(A)及びポリロタキサン(B)に、前記特定の化合物(C)を金属量換算で0.5重量ppm以上1000重量ppm添加する添加工程を行い、その後、ポリカーボネート樹脂(A)とポリロタキサン(B)とを溶融反応させる反応工程を行って製造するのがよい。反応工程においては、化合物(C)の存在により、ポリカーボネート樹脂(A)とポリロタキサン(B)とのエステル交換反応が促進され、相溶性の高い樹脂組成物が得られる。なお、ポリカーボネート樹脂(A)、ポリロタキサン(B)、化合物(C)としては、前述と同様のものを使用することができる。
ポリカーボネート樹脂組成物は、前記成分を所定の割合で同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。中でも、溶融混合の際、減圧の状態で混合できるものが、より好ましい。
前記の溶融混練機については、減圧状態での混合を達成できる構成であれば二軸押出機もしくは単軸押出機の種別の如何を限定するものではないが、用いる前記ポリカーボネート樹脂(A)及びポリロタキサン(B)の特性に応じて反応混合を達成する目的の下では二軸押出機がより好ましい。
ポリカーボネート樹脂組成物の混合温度は190℃〜280℃が好ましい。この場合には、反応混練に要する時間の短縮が可能になり、反応に必要となる化合物(C)の量を抑制することができる。その結果、樹脂の劣化に伴う色調が悪化をより確実に防止することができる共に、耐衝撃性や耐湿熱性などの実用面での物理特性をより向上させることができる。同様の観点から、混合温度は190℃〜280℃であることがより好ましい。
また混合時間については、前記同様の樹脂劣化をより確実に回避するという観点から無用な長大化は回避されるべきであり、化合物(C)の量や混合温度との兼ね合いとなるが、10秒以上150秒以下が好ましく、より好ましくは10秒以上25秒以下であり、これを満たすような化合物(C)の量や混合温度の条件設定が必要となる。
特に制限はないが、反応工程における溶融反応を真空度30kPa以下という条件で行うことが好ましい。より好ましくは真空度は25kPa以下、さらに好ましくは真空度は15kPa以下であることがよい。ここでいう真空度とは絶対圧力を表し、真空圧力計を読み取り、換算式(101kPa−(真空圧力計数値))により算出したものである。
前記反応工程を減圧下にて行い、その減圧条件を前記特定の範囲に制御することにより、前記反応工程において、ポリカーボネート樹脂(A)とポリロタキサン(B)とのエステル交換反応時に生じうる副生成物が取り除かれ易くなる。その結果、エステル交換反応が進行し易くなり、ポリカーボネート樹脂(A)とポリロタキサン(B)との相溶性がより高い樹脂組成物を製造することが可能になる。
[成形体]
本発明のポリカーボネート樹脂組成物は、射出成形法、押出成形法、圧縮成形法、熱プレス成形法等の通常知られている方法で成形することができる。本発明のポリカーボネート樹脂組成物の成形によって得られる成形体は、透明性に優れると共に、生物起源物資含有率、耐熱性、耐湿熱性、及び耐衝撃性を高いレベルでバランスよく兼ね備える。また、ポリカーボネート樹脂組成物を成形してなる成形体においては、色調、耐候性、機械的強度等の向上や、残存低分子成分や異物の低減も可能である。したがって、成形体は車両用内装部品に好適である。
前記ポリカーボネート樹脂組成物は、色相、透明性、耐熱性、機械的強度等に優れるため、電気・電子部品、自動車用部品、ガラス代替用途等の射出成形分野;フィルム、シート分野、ボトル、容器分野などの押出成形分野;カメラレンズ、ファインダーレンズ、CCDやCMOS用レンズなどのレンズ用途;液晶や有機EL(Electro Luminescence)ディスプレイなどに利用される位相差フィルム、拡散シート、導光板、偏光フィルム等の光学フィルム、光学シート;光ディスク、光学材料、光学部品;色素及び電荷移動剤等を固定化するバインダー用途といった幅広い分野へ適用が可能である。
前記ポリカーボネート樹脂組成物は、透明性、耐熱性、機械的強度等に優れるため、着色剤等で着色しても鮮映性に優れるため、自動車内外装部品や電気・電子部品、筐体等の用途に適用できる。自動車外装部品としては、例えばフェンダー、バンパー、フェーシャ、ドアパネル、サイドガーニッシュ、ピラー、ラジエータグリル、サイドプロテクター、サイドモール、リアプロテクター、リアモール、各種スポイラー、ボンネット、ルーフパネル、トランクリッド、デタッチャブルトップ、ウインドリフレクター、ミラーハウジング、アウタードアハンドル等がある。自動車内装部品としては、例えばインストルメントパネル、センターコンソールパネル、メーター部品、各種スイッチ類、カーナビケーション部品、カーオーディオビジュアル部品、オートモバイルコンピュータ部品等がある。電気・電子部品、筐体としては、例えばデスクトップパソコン、ノートパソコンなどのパソコン類の外装部品、プリンター、コピー機、スキャナーおよびファックス(これらの複合機を含む)等のOA(Office Automation)機器の外装部品、ディスプレイ装置(CRT、液晶、プラズマ、プロジェクタ、および有機ELなど)の外装部品、マウスなどの外装部品、キーボードのキーや各種スイッチなどのスイッチ機構部品、ゲーム機(家庭用ゲーム機、業務用ゲーム機、およびパチンコ、およびスロットマシーンなど)の外装部品などがある。さらに、携帯情報端末(いわゆるPDA)、携帯電話、携帯書籍(辞書類等)、携帯テレビ、記録媒体(CD、MD、DVD、次世代高密度ディスク、ハードディスクなど)のドライブ、記録媒体(ICカード、スマートメディア、メモリースティックなど)の読取装置、光学カメラ、デジタルカメラ、パラボラアンテナ、電動工具、VTR、アイロン、ヘアードライヤー、炊飯器、電子レンジ、ホットプレート、音響機器、照明機器、冷蔵庫、エアコン、空気清浄機、マイナスイオン発生器、および時計など電気・OA機器、家庭用電化製品を挙げることができる。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
[評価方法]
以下において、ポリカーボネート樹脂(A)、ポリロタキサン(B)、及び樹脂組成物の物性ないし特性の評価は次の方法により行った。
(1)引張伸び測定
東洋精機(株)製、ストログラフ 形式名VG10Eを用いて23℃の室温内にて引張速度50mm/分にて破壊点伸び率につき測定した。なお、引張伸びは数値が大きいほど機械的強度に優れるが、本発明では12%以上のものを機械的強度に優れるものと判断した。
(2)全光線透過率
ポリカーボネート樹脂組成物のペレットを、熱風乾燥機を用いて、90℃で4時間以上乾燥した。次に、乾燥したペレットを射出成形機((株)日本製鋼所製J75EII型)に供給し、樹脂温度240℃、金型温度60℃、成形サイクル50秒間の条件で成形を行うことにより、射出成形板(幅100mm×長さ100mm×厚さ2mm)を得た。JIS K7136(2000年)に準拠し、日本電色工業(株)製ヘーズメータ「NDH2000」を使用し、D65光源にて、射出成形板の全光線透過率を測定した。なお、全光線透過率は、数値が高い方が透明性に優れるが、本発明では55%以上のものを透明性に優れるものと判断した。さらに、65%以上を特に透明性に優れるものとした。
(3)ノッチ付シャルピー衝撃強度
下記で得られた機械特性試験用ISO試験片についてISO179(2000年)に準拠してノッチ付シャルピー衝撃試験を実施し、ノッチ付シャルピー衝撃強度を得た。本試験では、ノッチ先端半径が0.50Rの試験片を用いて測定した。なお、ノッチ付シャルピー衝撃強度は数値が大きいほど耐衝撃強度に優れるが、本発明では20kJ/m以上のものを機械的強度に優れるものと判断した。
(4)溶融粘度
溶融粘度は、東洋精機(株)製、キャピログラフ、形式名 CAPIROGRAPH1Bを用いて、温度250℃、せん断速度91.2sec−1において、オリフィス長10mm、オリフィス穴径1mmの条件にて測定した。
(5)ガラス転移温度
示差走査熱量計(エスアイアイ・ナノテクノロジー社製DSC6220)を用いて測定した。ポリカーボネート樹脂サンプル約10mgを同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で室温から250℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
(6)還元粘度
ポリカーボネート樹脂のサンプルを、溶媒として塩化メチレンを用いて溶解し、0.6g/dLの濃度のポリカーボネート溶液を調製した。森友理化工業社製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間tと溶液の通過時間tから次式より相対粘度ηrelを求め、
ηrel=t/t
相対粘度から次式より比粘度ηspを求めた。
ηsp=(η−η)/η=ηrel−1
比粘度を濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
(7)耐湿熱試験
ポリカーボネート樹脂組成物のペレットを、熱風乾燥機((株)松井製作所製 箱型乾燥機PO−80)を用いて、90℃で4時間以上乾燥した。次に、乾燥したペレットを射出成形機((株)日本製鋼所製J75EII型)に供給し、樹脂温度240℃、金型温度60℃、成形サイクル50秒間の条件で成形を行うことにより、射出成形板(幅100mm×長さ100mm×厚さ2mm)を得た。この成形板について、幅50mm×長さ50mmに切削した後、楠本化成(株)製 ETAC HIFLEX FX224Pにて、温度85℃、相対湿度85%の条件にて、264時間静置処理した。
耐湿熱試験前後のYI変化(ΔYI)について、JIS K7136(2000年)に準拠し、日本電色工業(株)製測色色差計「ZE−2000」を使用し、C光源にて、射出成形板のYIを測定し、耐湿熱試験前後のYI値の差(ΔYI)を算出した。また、耐湿熱試験後の全光線透過率も測定し、該試験前後の全光線透過率の差を算出した。
本評価において、ΔYI値が小さいほど、高温高湿環境下で長期使用した際の色調変化が小さく、耐湿熱性に優れることを示す。尚、本実施例においては、本評価におけるΔYI値が6.0以下を耐湿熱性に優れるとした。さらに、ΔYI値が5.0以下を特に耐湿熱性に優れるとした。
同様に、耐湿熱試験前後の全光線透過率の変化が小さいほど、高温高湿環境下で長期使用した際の透明性変化が小さく、耐湿熱性に優れることを示す。尚、本実施例においては、本評価における耐湿熱試験前後の全光線透過率の変化が−3.0以下を湿熱性に優れるとした。さらに、耐湿熱試験前後の全光線透過率の変化が−1.0以下を特に耐湿熱性に優れるとした。
特に、耐湿熱試験前後の全光線透過率の変化が−2.0以下、かつ耐湿熱試験前後のΔYI値が5.0以下であるものを極めて耐湿熱性に優れるとした。
[使用原料]
以下の実施例及び比較例で用いた化合物の略号、及び製造元は次の通りである。
[ポリカーボネート樹脂(A)]
<ジヒドロキシ化合物>
・ISB:イソソルビド[ロケットフルーレ社製]
・CHDM:1,4−シクロヘキサンジメタノール[SKChemical社製]
<炭酸ジエステル>
・DPC:ジフェニルカーボネート[三菱化学(株)製]
<触媒失活剤(酸性化合物)>
・亜リン酸[太平化学産業(株)製](分子量82.0)
<熱安定剤(酸化防止剤)>
・Irganox1010:ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][BASF社製]
・AS2112:トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト[(株)ADEKA製](分子量646.9)
<離型剤>
・E−275:エチレングリコールジステアレート[日油(株)製]
[ポリロタキサン(B)]
・水酸基含有ポリロタキサン(環状分子:水酸基末端(ポリカプロラクトン鎖)を有するシクロデキストリン、軸分子:ポリエチレングリコール[アドバンストソフトマテリアルズ(株)製 商品名:セルムスーパーポリマーSH2400P(全体分子量:40万、軸分子の分子量:2万)、SH3400P(全体分子量:70万、軸分子の分子量:3.5万)、CAS No.:928045−45−8]
[化合物(C)]
・酢酸マグネシウム4水和物[和光純薬(株)製](実施例では2重量%水溶液に調整したものを使用した。)
・ステアリン酸リチウム[東京化成工業(株)製](実施例では10重量%水溶液に調整したものを使用した。)
[衝撃改質剤(D)]
・(株)コアシェルゴムM−590(カネカ(株)製)
[ポリカーボネート樹脂(A)の製造例1]
竪型攪拌反応器3器と横型攪拌反応器1器、並びに二軸押出機からなる連続重合設備を用いて、ポリカーボネート樹脂の重合を行った。具体的には、まず、ISB、CHDM、及びDPCをそれぞれタンクで溶融させ、ISBを35.2kg/hr、CHDMを14.9kg/hr、DPCを74.5kg/hr(モル比でISB/CHDM/DPC=0.700/0.300/1.010)の流量で第1竪型攪拌反応器に連続的に供給した。同時に、触媒としての酢酸カルシウム1水和物の添加量が全ジヒドロキシ化合物1molに対して1.5μmolとなるように酢酸カルシウム1水和物の水溶液を第1竪型攪拌反応器に供給した。各反応器の反応温度、内圧、滞留時間はそれぞれ、第1竪型攪拌反応器:190℃、25kPa、90分、第2竪型攪拌反応器:195℃、10kPa、45分、第3竪型攪拌反応器:210℃、3kPa、45分、第4横型攪拌反応器:225℃、0.5kPa、90分とした。得られるポリカーボネート樹脂の還元粘度が0.41dL/g〜0.43dL/gとなるように、第4横型攪拌反応器の内圧を微調整しながら運転を行った。
第4横型攪拌反応器より60kg/hrの量でポリカーボネート樹脂を抜き出し、続いて樹脂を溶融状態のままベント式二軸押出機[(株)日本製鋼所製TEX30α、L/D:42.0、L(mm):スクリュの長さ、D(mm):スクリュの直径]に供給した。押出機を通過したポリカーボネート樹脂を、引き続き溶融状態のまま、目開き10μmのキャンドル型フィルター(SUS316製)に通して、異物を濾過した。その後、ダイスからストランド状にポリカーボネート樹脂を排出させ、水冷、固化させた後、回転式カッターでペレット化し、ISB/CHDMのモル比が70/30mol%の共重合ポリカーボネート樹脂を得た。
前記押出機は3つの真空ベント口を有しており、ここで樹脂中の残存低分子成分を脱揮除去した。第2ベントの手前で樹脂に対して2000重量ppmの水を添加し、注水脱揮を行った。第3ベントの手前でIrganox1010、AS2112、E−275をポリカーボネート樹脂100重量部に対して、それぞれ0.1重量部、0.05重量部、0.3重量部を添加した。以上により、ISB/CHDM共重合体ポリカーボネート樹脂ペレットを得た。前記ポリカーボネート樹脂に対して、触媒失活剤として0.65重量ppmの亜リン酸(リン原子の量として0.24重量ppm)を添加した。なお、亜リン酸は次のようにして添加した。製造例1において得られたポリカーボネート樹脂のペレットに、亜リン酸のエタノール溶液をまぶして混合したマスターバッチを調製し、押出機の第1ベント口の手前(押出機の樹脂供給口側)から、押出機中のポリカーボネート樹脂100重量部に対して、マスターバッチを1重量部となるように供給した。
製造例1において得られたポリカーボネート樹脂(A)を「PC−A1」という。PC−A1の各物性は以下の通りであった。
ガラス転移温度:120℃
還元粘度:0.42dL/g
溶融粘度(240℃、せん断速度91.2sec−1):720Pa・s
[実施例1]
製造例1で得られた共重合ポリカーボネート樹脂47.5gおよびポリロタキサンとしてセルムスーパーポリマーSH2400P 2.5gを東洋精機(株)製 ラボプラストミル4C150−01を使用して240℃にて10分間混練を行った(配合比率は表1を参照)。
得られた混練樹脂について、90℃の減圧乾燥機で5時間乾燥後、東洋精機(株)製熱プレス機(ミニテストプレス(200×200mm)型式MP−2FH)を使用して200℃にて10分で熱プレスを行い、厚さ0.5mmの共重合ポリカーボネートとポリロタキサンの複合組成プレス板を得た。得られたプレス板について全光線透過率評価および引っ張り試験用試験片を打ち抜きし、引っ張り試験にて伸び量について評価した。
[実施例2]
表1に示す通り、さらに化合物(C)を添加した以外は実施例1と同様にしてポリカーボネート樹脂(A)とポリロタキサン(B)とを含有する樹脂組成物の試験片作製および評価を行った。
[実施例3]
表1に示す通り、実施例2でポリロタキサン(B)の種類を変更した以外は実施例2と同様にして試験片作製および評価を行った。
[比較例1]
実施例1でポリロタキサン(B)を添加しない以外は実施例1と同様にして試験片作製および評価を行った。
Figure 0006714877
(表1中の化合物(C)の配合割合は、ポリカーボネート樹脂(A)およびポリロタキサン(B)の合計量を100とした時の値であり、空欄はその材料を使用していないことを示す。)
[実施例4]
製造例1で得られた共重合ポリカーボネート樹脂ペレット4750gとポリロタキサンとしてセルムスーパーポリマーSH3400P 250gおよび2重量%酢酸マグネシウム水溶液18gをブレンドした後(配合比率は表2を参照)、真空ベントを設けた30mm二軸押出機((株)日本製鋼所製TEX−30α L/D=52.5)を使用して樹脂中の残存低分子成分を脱揮除去しながら240℃にて押出を行い、共重合ポリカーボネートとポリロタキサン複合組成ペレットを得た。次いで、得られたペレットを温度90℃の熱風乾燥機で5時間乾燥した後、75トン射出成形機(東芝機械(株)製 EC−75)を用いて、ペレットの射出成形を行った。成形条件は、金型温度:60℃、シリンダー温度:240℃である。このようにして、幅100mm×長さ100mm×厚さ2mmの板状の成形体からなる試験片とISO引張試験片を得た。得られたISO引張試験片について、0.5mmノッチを付けたシャルピー衝撃試験片を切り出し、シャルピー衝撃試験を実施した。また、板状の成形品について、幅50mm×長さ50mmに切削したサンプルについて全光線透過率の測定を行った。
[実施例5]
表2に示す通り、ポリロタキサン(B)の種類を変更した以外は実施例4と同様にしてポリカーボネート樹脂(A)とポリロタキサン(B)とを含む樹脂組成物の試験片作製および評価を行った。
[実施例6]
製造例1で得られたポリカーボネート樹脂ペレットPC−A1 2850重量部とポリロタキサンとしてセルムスーパーポリマーSH3400P 150gおよび10重量%ステアリン酸リチウム水溶液15gをブレンドした後(配合比率は表2を参照)、真空ベントを設けた15mm二軸押出機(テクノベル(株)製KZW−15−30MG)を使用して樹脂中の残存低分子成分を脱揮除去しながら230℃にて押出を行い、ポリカーボネート樹脂組成物ペレットを得た。次いで、得られたペレットを温度90℃の熱風乾燥機で5時間乾燥した後、75トン射出成形機(東芝機械(株)製 EC−75)を用いて、ペレットの射出成形を行った。成形条件は、金型温度:60℃、シリンダー温度:240℃である。このようにして、幅100mm×長さ100mm×厚さ2mmの板状の成形体からなる試験片とISO引張試験片を得た。得られたISO引張試験片について、0.5mmノッチを付けたシャルピー衝撃試験片を切り出し、シャルピー衝撃試験を実施した。また、板状の成形品について、幅50mm×長さ50mmに切削したサンプルについて全光線透過率の測定を行った。
[比較例2]
製造例1で得たポリカーボネート樹脂(A)を実施例4に記載の工程を経ずにそのまま射出成形して試験片作製および評価を行った。
[比較例3]
製造例1で得られたポリカーボネート樹脂ペレットPC−A1 2850重量部と衝撃改質剤としてM590 をブレンドした後(配合比率は表2を参照)、真空ベントを設けた15mm二軸押出機(テクノベル(株)製KZW−15−30MG)を使用して樹脂中の残存低分子成分を脱揮除去しながら230℃にて押出を行い、ポリカーボネート樹脂組成物ペレットを得た以外は実施例6と同様にしてポリカーボネート樹脂(A)と衝撃改質剤(D)とを含む樹脂組成物の試験片作製および評価を行った。
Figure 0006714877
(表2中の化合物(C)の配合割合は、ポリカーボネート樹脂(A)およびポリロタキサン(B)の合計量を100とした時の値であり、空欄はその材料を使用していないことを示す。)
表1および表2より、本願の樹脂組成物は引張伸びおよび耐衝撃等の機械特性に優れることが明らかである。また、該樹脂組成物に化合物(C)をさらに添加することで機械特性、透明性および耐湿熱性のバランスに優れる。
本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2015年9月29日出願の日本特許出願(特願2015−191606)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (7)

  1. 少なくとも下記式(1)で表される化合物に由来する構成単位を有するポリカーボネート樹脂(A)と、ポリロタキサン(B)と、長周期型周期表第1族の金属の化合物および長周期型周期表第2族の金属の化合物から選択される少なくとも1種の化合物(C)とを含有し、
    該ポリカーボネート樹脂(A)と該ポリロタキサン(B)との合計量100重量部に対する該化合物(C)の含有量が、該化合物(C)中の金属量で0.5重量ppm以上1000重量ppm以下であり、
    該ポリロタキサン(B)の環状分子の側鎖の末端に水酸基、アミノ基、カルボキシル基、チオール基からなる群より選択される少なくとも1つの官能基を有する、ポリカーボネート樹脂組成物。
    Figure 0006714877
  2. 前記ポリカーボネート樹脂(A)の有する構成単位のうち、全ジヒドロキシ化合物に由来する構成単位100モル%に対する前記式(1)で表される化合物に由来する構成単位の割合が30モル%を超える、請求項1に記載のポリカーボネート樹脂組成物。
  3. 前記ポリカーボネート樹脂(A)と前記ポリロタキサン(B)との合計量100重量部に対して前記ポリロタキサン(B)を0.1重量部以上20重量部未満含有する、請求項1または2に記載のポリカーボネート樹脂組成物。
  4. 前記ポリロタキサン(B)が、ポリエチレングリコールおよびシクロデキストリン分子を含んでなる、請求項1〜3のいずれか1項に記載のポリカーボネート樹脂組成物。
  5. 前記化合物(C)が、無機塩(炭酸塩を含む)、カルボン酸塩、フェノラート、ハロゲン化合物、および水酸化物からなる群より選ばれる少なくとも1種である、請求項1〜4のいずれか1項に記載のポリカーボネート樹脂組成物。
  6. 前記化合物(C)が、ナトリウム化合物、カリウム化合物、マグネシウム化合物、カルシウム化合物およびセシウム化合物からなる群より選ばれる少なくとも1種である、請求項のいずれか1項に記載のポリカーボネート樹脂組成物。
  7. 請求項1〜のいずれか1項に記載のポリカーボネート樹脂組成物を成形して得られた成形体。
JP2017543527A 2015-09-29 2016-09-28 ポリカーボネート樹脂組成物、およびその成形体 Active JP6714877B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015191606 2015-09-29
JP2015191606 2015-09-29
PCT/JP2016/078735 WO2017057521A1 (ja) 2015-09-29 2016-09-28 ポリカーボネート樹脂組成物、およびその成形体

Publications (2)

Publication Number Publication Date
JPWO2017057521A1 JPWO2017057521A1 (ja) 2018-07-19
JP6714877B2 true JP6714877B2 (ja) 2020-07-01

Family

ID=58427616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017543527A Active JP6714877B2 (ja) 2015-09-29 2016-09-28 ポリカーボネート樹脂組成物、およびその成形体

Country Status (6)

Country Link
US (1) US10703902B2 (ja)
EP (1) EP3357971B1 (ja)
JP (1) JP6714877B2 (ja)
KR (1) KR102571874B1 (ja)
CN (1) CN108603018B (ja)
WO (1) WO2017057521A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6390800B2 (ja) * 2016-08-31 2018-09-19 東レ株式会社 樹脂組成物およびその成形品
WO2019146633A1 (ja) * 2018-01-26 2019-08-01 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP7095358B2 (ja) * 2018-03-29 2022-07-05 三菱ケミカル株式会社 ポリカーボネート樹脂組成物及びその成形体
CN111866671B (zh) * 2019-04-24 2021-11-16 歌尔股份有限公司 一种用于微型发声装置的振膜和微型发声装置
WO2021039942A1 (en) * 2019-08-29 2021-03-04 The Texas A&M University System Thermoplastic polymer composition comprising polyrotaxane
CN113429496A (zh) * 2021-07-09 2021-09-24 贵州大学 一种改性无水β-环糊精作为聚丙烯发泡成核剂的应用
KR20230013667A (ko) * 2021-07-15 2023-01-27 주식회사 삼양사 광학 특성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
CN116144191A (zh) * 2022-09-09 2023-05-23 中科广化(重庆)新材料研究院有限公司 一种利用植物木质纤维制备的可降解塑料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100329A (en) * 1998-03-12 2000-08-08 Virginia Tech Intellectual Properties, Inc. Reversible, mechanically interlocked polymeric networks which self-assemble
JP5176086B2 (ja) 2005-10-13 2013-04-03 日産自動車株式会社 ポリロタキサン含有自動車用着色プラスチック
US20070205395A1 (en) * 2006-03-03 2007-09-06 The University Of Tokyo Liquid crystalline polyrotaxane
JP5428154B2 (ja) * 2007-12-12 2014-02-26 三菱化学株式会社 樹脂組成物
BR112012019399A2 (pt) * 2010-02-05 2018-03-20 Teijin Limited E Univ Nagoya National Univ Corporation resina de policarbonato, processo para produzir uma resina de policarbonato,e, artigo moldado.
WO2011108515A1 (ja) * 2010-03-02 2011-09-09 アドバンスト・ソフトマテリアルズ株式会社 架橋ポリロタキサンを有する材料、及びその製造方法
JP5304722B2 (ja) * 2010-05-07 2013-10-02 コニカミノルタ株式会社 偏光板保護フィルム及びそれを用いた偏光板
KR101968884B1 (ko) 2010-07-14 2019-04-12 미쯔비시 케미컬 주식회사 폴리카보네이트 수지 조성물, 및 이것을 사용한 성형품, 필름, 플레이트, 사출 성형품
JP5601267B2 (ja) * 2011-03-31 2014-10-08 三菱化学株式会社 ポリカーボネート樹脂組成物及び成形品
JP2011241401A (ja) * 2011-05-30 2011-12-01 Advanced Softmaterials Inc 架橋ポリロタキサンを有する材料、及びその製造方法
JPWO2013099842A1 (ja) * 2011-12-26 2015-05-07 アドバンスト・ソフトマテリアルズ株式会社 修飾化ポリロタキサン及びその製造方法、並びに修飾化ポリロタキサンを有して形成される材料
JP2013209460A (ja) 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd 樹脂反応生成物、およびそれを含む成形体
JP6016577B2 (ja) * 2012-10-24 2016-10-26 大阪瓦斯株式会社 ポリ乳酸含有ブロック共重合体グラフトポリロタキサン及び該ブロック共重合体グラフトポリロタキサンを含有する樹脂組成物

Also Published As

Publication number Publication date
KR20180063088A (ko) 2018-06-11
EP3357971A1 (en) 2018-08-08
JPWO2017057521A1 (ja) 2018-07-19
WO2017057521A1 (ja) 2017-04-06
US20180208764A1 (en) 2018-07-26
KR102571874B1 (ko) 2023-08-28
EP3357971A4 (en) 2018-08-08
US10703902B2 (en) 2020-07-07
EP3357971B1 (en) 2019-12-25
CN108603018A (zh) 2018-09-28
CN108603018B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
JP6714877B2 (ja) ポリカーボネート樹脂組成物、およびその成形体
JP6519611B2 (ja) ポリカーボネート樹脂組成物、及びこれを用いた成形品、フィルム、プレート、射出成形品
EP2511339B1 (en) Polycarbonate resin composition and molded body, film, plate and injection-molded article obtained by molding same
US10526446B2 (en) Polycarbonate resin composition, method for producing same, and molded object
JP5434571B2 (ja) 透明樹脂組成物及び透明樹脂成形品
JP6671114B2 (ja) ポリカーボネート樹脂組成物、その製造方法、成形体、及びその製造方法
CN107849344B (zh) 聚碳酸酯树脂复合物
JP6950234B2 (ja) ポリカーボネート樹脂組成物、その製造方法、成形体
JP7095358B2 (ja) ポリカーボネート樹脂組成物及びその成形体
CN107709458B (zh) 聚碳酸酯树脂组合物、其制造方法、成形体
CN107922720B (zh) 聚碳酸酯树脂组合物、其制造方法、成形体
CN107709459B (zh) 聚碳酸酯树脂组合物、其制造方法、成形体
JP6642212B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP2018150480A (ja) ポリカーボネート樹脂組成物及び成形体
JP6693231B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP6693232B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP2023133987A (ja) ポリカーボネート樹脂組成物及び成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200520

R151 Written notification of patent or utility model registration

Ref document number: 6714877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151