JP6950234B2 - ポリカーボネート樹脂組成物、その製造方法、成形体 - Google Patents

ポリカーボネート樹脂組成物、その製造方法、成形体 Download PDF

Info

Publication number
JP6950234B2
JP6950234B2 JP2017063999A JP2017063999A JP6950234B2 JP 6950234 B2 JP6950234 B2 JP 6950234B2 JP 2017063999 A JP2017063999 A JP 2017063999A JP 2017063999 A JP2017063999 A JP 2017063999A JP 6950234 B2 JP6950234 B2 JP 6950234B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
compound
resin composition
group
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017063999A
Other languages
English (en)
Other versions
JP2018165341A (ja
Inventor
麻美 垣内
麻美 垣内
佐々木 一雄
一雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017063999A priority Critical patent/JP6950234B2/ja
Publication of JP2018165341A publication Critical patent/JP2018165341A/ja
Application granted granted Critical
Publication of JP6950234B2 publication Critical patent/JP6950234B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、透明性、色調、耐衝撃性、及び耐熱性のバランスのとれたポリカーボネート樹脂組成物、その製造方法、及び該樹脂組成物を成形してなる成形体に関する。
ビスフェノールA等に由来する構造を含む従来の芳香族ポリカーボネート樹脂は、石油資源から誘導される原料を用いて製造されるが、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたポリカーボネート樹脂の提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が気候変動などをもたらすことが危惧されていることからも、使用後に廃棄処分をしてもカーボンニュートラルな植物由来モノマーを原料としたポリカーボネート樹脂の開発が求められている。
かかる状況下、バイオマス資源から得られるジヒドロキシ化合物であるイソソルビド(ISB)をモノマー成分とし、炭酸ジエステルとのエステル交換により、副生するモノヒドロキシ化合物を減圧下で留去しながら、ポリカーボネート樹脂を得る方法が提案されている(例えば特許文献1〜7参照)。
ところが、ISBのようなジヒドロキシ化合物は、従来の芳香族ポリカーボネート樹脂に使用されているビスフェノール化合物類に比べると熱安定性が低く、高温下で行う重縮合反応や成形、加工の際に熱分解により樹脂が着色する問題があった。さらに、特許文献3〜6に記載されているISBとビスフェノール化合物との共重合体は、高いガラス転移温度のポリマーが得られる反面、ISBの反応性とビスフェノール化合物の反応性の違いにより、ポリマーの末端がビスフェノール化合物となってしまい、さらに色調やISBの熱安定性を考慮して芳香族ポリカーボネート樹脂の重合温度より低い重合温度を選択すると、一種の末端封止になってしまい、充分に重合度が上がらず、耐衝撃性に乏しいポリマーとなることがある。特に、ポリマー中のビスフェノール化合物の共重合量が20モル%以上になると顕著になる。
さらに、特許文献7には、ISBに由来する構成単位と脂肪族ジヒドロキシ化合物に由来する構成単位及び芳香族ビスフェノール化合物に由来する構成単位を含むポリカーボネート共重合体が開示されているが、このポリカーボネート共重合体も、耐熱性、成形性及び機械的強度に優れるものの、ビスフェノール化合物に由来する構成単位を含むため、充分な重合度が上がらず、耐衝撃性に乏しいポリマーになることがある。また、生物起源物質含有率が低く、環境面からも好ましくない。
耐衝撃性を改善する手法として、ポリカーボネート樹脂にコア・シェル型エラストマーを含有させることで、耐衝撃性が改良されることが知られている(例えば、特許文献8)。
また、特許文献9には、ISBに由来する構成単位を含むポリカーボネート樹脂と芳香族ポリカーボネート樹脂を触媒存在下で混練することで、透明性、耐熱性、耐湿熱性、および耐衝撃性を高いレベルでバランスよく兼ね備えたポリカーボネート樹脂組成物を得る方法が開示されている。
国際公開第2004/111106号パンフレット 国際公開第2007/063823号パンフレット 国際公開第2005/066239号パンフレット 国際公開第2006/041190号パンフレット 特開2009−062501号公報 特開2009−020963号公報 特開2011−127108号公報 国際公開第2012/008344号パンフレット 国際公開第2017/002886号パンフレット
特許文献8に開示のポリカーボネート樹脂組成物は耐衝撃性が向上しているが、透明性、色調および耐熱性に関しては、実用的にはさらなるバランスの向上が求められていた。
また、特許文献9に開示のポリカーボネート樹脂組成物は高速面衝撃試験による耐衝撃性が向上しているが、ノッチ付衝撃強度試験のようなノッチ部に衝撃エネルギーが集中する場合の耐衝撃性は改善の余地があり、例えば、自動車用途で使用した時に成形品の欠損部があった場合、その欠損部に強い衝撃エネルギーが集中し、成形品の破損を引き起こす場合も考えられる
本発明は、かかる背景に鑑みてなされたものであり、透明性、色調、耐衝撃性、及び耐熱性を高いレベルでバランスよく兼ね備えたポリカーボネート樹脂組成物、その製造方法、及びポリカーボネート樹脂組成物の成形体を提供しようとするものである。
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、特定のポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)と衝撃強度改質剤(C)と酸性化合物(D)とを含むポリカーボネート樹脂組成物が、透明性、色調、及び耐衝撃性を高いレベルでバランスよく兼ね備えることを見出し、本発明に至った。即ち、本発明の要旨は、下記の[1]〜[14]に存する。
[1] 全ジオールに由来する構成単位100モル%に対する下記式(1)で表される化合物に由来する構成単位を有するポリカーボネート樹脂(A)と、
芳香族ポリカーボネート樹脂(B)と、
衝撃強度改質剤(C)と、
酸性化合物(D)とを含有する、ポリカーボネート樹脂組成物。
Figure 0006950234
[2] 前記ポリカーボネート樹脂組成物が、さらに長周期型周期表第I族の金属の化合物、長周期型周期表第II族の金属の化合物から選択される少なくとも1種の化合物(E)を含有する、[1]に記載のポリカーボネート樹脂組成物。
[3] 前記化合物(E)の含有量が、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)との合計量100重量部に対して、該化合物(E)中の金属量で0.8重量ppm以上かつ1000重量ppm以下である、[1]または[2]に記載のポリカーボネート樹脂組成物。
[4] 前記化合物(E)が、無機塩(炭酸塩を含む)、カルボン酸塩、フェノラート、ハロゲン化合物、及び水酸化化合物からなるグループより選ばれる少なくとも1種である、[2]または[3]に記載のポリカーボネート樹脂組成物。
[5] 前記化合物(E)がリチウム化合物、ナトリウム化合物、カリウム化合物、及びセシウム化合物からなるグループより選ばれる少なくとも1種である、[2]〜[4]のいずれか1つに記載のポリカーボネート樹脂組成物。
[6] 前記酸性化合物(D)の含有量が、前記化合物(E)中の金属の含有量に対して0.5倍モル以上5倍モル以下である、[5]に記載のポリカーボネート樹脂組成物。
[7] [1]〜[6]のいずれか1つに記載のポリカーボネート樹脂組成物を成形して得られた成形体。
[8] 下記式(1)で表される化合物に由来する構成単位を含むポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)とを含む組成物に対して、長周期型周期表第I族の金属の化合物、長周期型周期表第II族の金属の化合物から選択される少なくとも一種の化合物(D)を溶融混練する前工程(i)と、
該工程後に、該工程で得られた樹脂組成物と衝撃強度改質剤(C)と酸性化合物(D)を溶融混練する後工程(ii)とを有する、ポリカーボネート樹脂組成物の製造方法。
Figure 0006950234
[9] 前記工程(i)を減圧下にて行う、[8]に記載のポリカーボネート樹脂組成物の
製造方法。
[10] 前記工程(i)を真空度30kPa以下という条件で行う、[8]又は[9]
に記載のポリカーボネート樹脂組成物の製造方法。
[11] 前記化合物(E)が、無機塩(炭酸塩を含む)、カルボン酸塩、フェノラート、ハロゲン化合物、水酸化化合物からなるグループより選ばれる少なくとも1種である、[8]〜[10]のいずれか1つに記載のポリカーボネート樹脂組成物の製造方法。
[12] 前記化合物(E)がリチウム化合物、ナトリウム化合物、カリウム化合物、及びセシウム化合物からなるグループより選ばれる少なくとも1種である、[8]〜[11]のいずれか1つに記載のポリカーボネート樹脂組成物の製造方法。
[13] 前記酸性化合物(D)の添加量が、前記化合物(E)の金属の添加量に対して、0.5倍モル以上5倍モル以下である、[8]〜[12]のいずれか1つに記載のポリカーボネート樹脂組成物の製造方法。
本発明のポリカーボネート樹脂組成物及びその成形体は、透明性、色調、耐衝撃性、及び耐熱性を高いレベルでバランスよく兼ね備える。本発明のポリカーボネート樹脂組成物は、上述のように添加工程及び反応工程を行うことにより得られる。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
[ポリカーボネート樹脂(A)]
前記ポリカーボネート樹脂(A)は、下記式(1)で表されるジヒドロキシ化合物に由来する構成単位(これを、適宜「構成単位(a)」という)を有するポリカーボネート樹脂である。ポリカーボネート樹脂(A)は、構成単位(a)のホモポリカーボネート樹脂であってもよいし、構成単位(a)以外の構成単位を共重合したポリカーボネート樹脂であってもよい。耐衝撃性により優れるという観点からは、共重合ポリカーボネート樹脂であることが好ましい。
Figure 0006950234
前記式(1)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド(ISB)、イソマンニド、およびイソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
前記式(1)で表されるジヒドロキシ化合物の中でも、植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビド(ISB)が、入手及び製造のし易さ、耐候性、光学特性、成形性、耐熱性及びカーボンニュートラルの面から最も好ましい。
なお、前記式(1)で表されるジヒドロキシ化合物は、酸素によって徐々に酸化されやすい。したがって、保管中又は製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが好ましい。
また、ポリカーボネート樹脂(A)は、式(1)で表されるジヒドロキシ化合物に由来する構成単位(a)と、脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物、及びエーテル含有ジヒドロキシ化合物からなる群より選ばれる1種以上の
ジヒドロキシ化合物に由来する構成単位(これを、適宜「構成単位(b)」という)とを含む共重合ポリカーボネート樹脂であることが好ましい。これらのジヒドロキシ化合物は、柔軟な分子構造を有するため、これらのジヒドロキシ化合物を原料として用いることにより、得られるポリカーボネート樹脂の靭性を向上させることができる。これらのジヒドロキシ化合物の中でも、靭性を向上させる効果の大きい脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物を用いることが好ましく、脂環式炭化水素のジヒドロキシ化合物を用いることが最も好ましい。脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物、及びエーテル含有ジヒドロキシ化合物の具体例としては、以下の通りである。
脂肪族炭化水素のジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を採用することができる。エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−ドデカンジオール等の直鎖脂肪族ジヒドロキシ化合物;1,3−ブタンジオール、1,2−ブタンジオール、ネオペンチルグリコール、ヘキシレングリコール等の分岐鎖を有する脂肪族ジヒドロキシ化合物。
脂環式炭化水素のジヒドロキシ化合物としては、例えば、以下のジヒドロキシ化合物を採用することができる。1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール、リモネン等の、テルペン化合物から誘導されるジヒドロキシ化合物等に例示される、脂環式炭化水素の1級アルコールであるジヒドロキシ化合物;1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,3−アダマンタンジオール、水添ビスフェノールA、2,2,4,4−テトラメチル−1,3−シクロブタンジオール等に例示される、脂環式炭化水素の2級アルコール又は3級アルコールであるジヒドロキシ化合物。
エーテル含有ジヒドロキシ化合物としては、オキシアルキレングリコール類やアセタール環を含有するジヒドロキシ化合物が挙げられる。
オキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール及びポリプロピレングリコール等を採用することができる。
アセタール環を含有するジヒドロキシ化合物としては、例えば、下記構造式(2)で表されるスピログリコールや、下記構造式(3)で表されるジオキサングリコール等を採用することができる。
Figure 0006950234
Figure 0006950234
前記ポリカーボネート樹脂(A)において、全ジヒドロキシ化合物に由来する構成単位100モル%に対する前記構成単位(a)の含有割合は、40モル%以上であることが好ましく、45モル%以上であることがより好ましく、50モル%以上95モル%以下であることがさらに好ましく、55モル%以上90モル%以下であることが特に好ましく、60モル%以上85モル%以下であることが最も好ましい。これらの場合には、生物起源物質含有率をより高めることができ、耐熱性をより向上させることができる。なお、ポリカーボネート樹脂(A)における構成単位(a)の含有割合は100モル%でも良いが、分子量をより高めるという観点及び耐衝撃性をより向上させるという観点からは、構成単位(a)以外の構成単位が共重合されていることが好ましい。
また、前記ポリカーボネート樹脂(A)は、前記構成単位(a)及び前記構成単位(b)以外の構成単位を更に含んでいてもよい。このような構成単位(その他のジヒドロキシ化合物)としては、例えば、芳香族基を含有するジヒドロキシ化合物等を採用することができる。ただし、前記ポリカーボネート樹脂(A)に芳香族基を含有するジヒドロキシ化合物に由来する構成単位が多く含まれる場合には、前述の理由により高い分子量のポリカーボネート樹脂が得られなくなり、耐衝撃性の向上効果が低下するおそれがある。したがって、耐衝撃性をより向上させるという観点からは、全ジヒドロキシ化合物に由来する構成単位100モル%に対して、芳香族基を含有するジヒドロキシ化合物に由来する構成単位の含有割合は、10モル%以下であることが好ましく、5モル%以下であることより好ましい。
芳香族基を含有するジヒドロキシ化合物としては、例えば以下のジヒドロキシ化合物を採用することができるが、これら以外のジヒドロキシ化合物を採用することも可能である。2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3−フェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−2−エチルヘキサン、1,1−ビス(4−ヒドロキシフェニル)デカン、ビス(4−ヒドロキシ−3−ニトロフェニル)メタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,3−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン、1,3−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシ−3−メチルフェニル)ス
ルフィド、ビス(4−ヒドロキシフェニル)ジスルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル等の芳香族ビスフェノール化合物;2,2−ビス(4−(2−ヒドロキシエトキシ)フェニル)プロパン、2,2−ビス(4−(2−ヒドロキシプロポキシ)フェニル)プロパン、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニル、ビス(4−(2−ヒドロキシエトキシ)フェニル)スルホン等の芳香族基に結合したエーテル基を有するジヒドロキシ化合物;9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシプロポキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシプロポキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−イソブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−シクロヘキシルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−tert−ブチル−6−メチルフェニル)フルオレン、9,9−ビス(4−(3−ヒドロキシ−2,2−ジメチルプロポキシ)フェニル)フルオレン等のフルオレン環を有するジヒドロキシ化合物。
前記その他のジヒドロキシ化合物は、ポリカーボネート樹脂に要求される特性に応じて適宜選択することができる。また、前記その他のジヒドロキシ化合物は、1種のみを用いてもよく、複数種を併用してもよい。前記その他のジヒドロキシ化合物を前記式(1)で表されるジヒドロキシ化合物と併用することにより、ポリカーボネート樹脂(A)の柔軟性や機械物性の改善、及び成形性の改善などの効果を得ることが可能である。
ポリカーボネート樹脂(A)の原料として用いられるジヒドロキシ化合物は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤又は熱安定剤等の安定剤を含んでいても良い。特に、前記式(1)で表されるジヒドロキシ化合物は、酸性状態において変質しやすい性質を有する。したがって、ポリカーボネート樹脂(A)の合成過程において塩基性安定剤を使用することにより、前記式(1)で表されるジヒドロキシ化合物の変質を抑制することができ、ひいては得られるポリカーボネート樹脂組成物の品質をより向上させることができる。
塩基性安定剤としては、例えば、以下の化合物を採用することができる。長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族又は2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩及び脂肪酸塩;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド及びブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物;ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、3−アミノ−1−プロパノール、エチレンジアミン、N−
メチルジエタノールアミン、ジエチルエタノールアミン、ジエタノールアミン、トリエタノールアミン、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール及びアミノキノリン等のアミン系化合物、並びにジ−(tert−ブチル)アミン及び2,2,6,6−テトラメチルピペリジン等のヒンダードアミン系化合物。
前記ジヒドロキシ化合物中における前記塩基性安定剤の含有量に特に制限はないが、前記式(1)で表されるジヒドロキシ化合物は酸性状態では不安定であるため、塩基性安定剤を含むジヒドロキシ化合物の水溶液のpHが7付近となるように塩基性安定剤の含有量を設定することが好ましい。
前記式(1)で表されるジヒドロキシ化合物に対する塩基性安定剤の含有量は、0.0001〜1重量%であることが好ましい。この場合には、前記式(1)で表されるジヒドロキシ化合物の変質を防止する効果が十分に得られる。この効果をさらに高めるという観点から、塩基性安定剤の含有量は0.001〜0.1重量%であることがより好ましい。
前記ポリカーボネート樹脂(A)の原料に用いる炭酸ジエステルとしては、通常、下記一般式(4)で表される化合物を採用することができる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を併用してもよい。
Figure 0006950234
前記一般式(4)において、A1及びA2は、それぞれ置換もしくは無置換の炭素数1〜18の脂肪族炭化水素基又は置換もしくは無置換の芳香族炭化水素基であり、A1とA2とは同一であっても異なっていてもよい。A1及びA2としては、置換もしくは無置換の芳香族炭化水素基を採用することが好ましく、無置換の芳香族炭化水素基を採用することがより好ましい。
前記一般式(4)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(DPC)及びジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート並びにジ−tert−ブチルカーボネート等を採用することができる。これらの炭酸ジエステルの中でも、ジフェニルカーボネート又は置換ジフェニルカーボネートを用いることが好ましく、ジフェニルカーボネートを用いることが特に好ましい。なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、不純物が重縮合反応を阻害したり、得られるポリカーボネート樹脂の色調を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
ポリカーボネート樹脂(A)は、上述したジヒドロキシ化合物と炭酸ジエステルをエステル交換反応により重縮合させることにより合成できる。より詳細には、重縮合と共に、エステル交換反応において副生するモノヒドロキシ化合物等を系外に除去することによっ
て得ることができる。
前記エステル交換反応は、エステル交換反応触媒(以下、エステル交換反応触媒を「重合触媒」と言う。)の存在下で進行する。重合触媒の種類は、エステル交換反応の反応速度及び得られるポリカーボネート樹脂(A)の品質に非常に大きな影響を与え得る。
重合触媒としては、得られるポリカーボネート樹脂(A)の透明性、色調、耐熱性、耐候性、及び機械的強度を満足させ得るものであれば限定されない。重合触媒としては、例えば、長周期型周期表における第I族又は第II族(以下、単に「1族」、「2族」と表記する。)の金属化合物、並びに塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物及びアミン系化合物等の塩基性化合物を使用することができ、中でも1族金属化合物及び/又は2族金属化合物が好ましい。
前記の1族金属化合物としては、例えば、以下の化合物を採用することができる。水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩及び2セシウム塩等。
1族金属化合物としては、重合活性と得られるポリカーボネート樹脂の色調の観点から、リチウム化合物が好ましい。
前記の2族金属化合物としては、例えば、以下の化合物を採用することができる。水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム及びステアリン酸ストロンチウム等。
2族金属化合物としては、マグネシウム化合物、カルシウム化合物およびバリウム化合物からなる群より選ばれる少なくとも一種の化合物が好ましく、重合活性と得られるポリカーボネート樹脂の色調の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、カルシウム化合物が最も好ましい。
なお、前記の1族金属化合物及び/又は2族金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び/又は2族金属化合物のみを使用することが特に好ましい。
前記の塩基性リン化合物としては、例えば、以下の化合物を採用することができる。トリエチルホスフィン、トリ−n−プロピルホスフィン、トリイソプロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン及び四級ホスホニウム塩等。
前記の塩基性アンモニウム化合物としては、例えば、以下の化合物を採用することができる。テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド及びブチルトリフェニルアンモニウムヒドロキシド等。
前記のアミン系化合物としては、例えば、以下の化合物を採用することができる。4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン及びグアニジン等。
前記重合触媒の使用量は、反応に使用した全ジヒドロキシ化合物1mol当たり0.1〜300μmolであることが好ましく、0.5〜100μmolであることがより好ましく、1〜50μmolであることが特に好ましい。
重合触媒として、長周期型周期表における第2族金属及びリチウムからなる群より選ばれた少なくとも1種の金属を含む化合物を用いる場合、特にマグネシウム化合物、カルシウム化合物およびバリウム化合物からなる群より選ばれる少なくとも一種の化合物を用いる場合は、重合触媒の使用量は、該金属を含む化合物の金属原子量として、反応に使用した全ジヒドロキシ化合物1mol当たり、0.1μmol以上が好ましく、0.3μmol以上がより好ましく、0.5μmol以上が特に好ましい。また上限としては、10μmol以下が好ましく、5μmol以下がより好ましく、3μmol以下が特に好ましい。
重合触媒の使用量を上述の範囲に調整することにより、重合速度を高めることができるため、重合温度を必ずしも高くすることなく所望の分子量のポリカーボネート樹脂を得ることが可能になるため、ポリカーボネート樹脂(A)の色調の悪化を抑制することができる。また、未反応の原料が重合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れてしまうことを防止することができるため、所望の分子量の樹脂をより確実に得ることができる。さらに、副反応の併発を抑制することができるため、ポリカーボネート樹脂(A)の色調の悪化又は成形加工時の着色をより一層防止することができる。
1族金属の中でもナトリウム、カリウム、又はセシウムがポリカーボネート樹脂の色調へ与える悪影響や、鉄がポリカーボネート樹脂の色調へ与える悪影響を考慮すると、ポリカーボネート樹脂(A)中のナトリウム、カリウム、セシウム、及び鉄の合計含有量は、1重量ppm以下であることが好ましい。この場合には、ポリカーボネート樹脂の色調の悪化をより一層防止することができ、ポリカーボネート樹脂の色調をより一層良好なものにすることができる。同様の観点から、ポリカーボネート樹脂(A)中のナトリウム、カリウム、セシウム、及び鉄の合計含有量は、0.5重量ppm以下であることがより好ましい。なお、これらの金属は使用する触媒からのみではなく、原料又は反応装置から混入する場合がある。出所にかかわらず、ポリカーボネート樹脂(A)中のこれらの金属の化合物の合計量は、ナトリウム、カリウム、セシウム及び鉄の合計の含有量として、上述の範囲にすることが好ましい。
(ポリカーボネート樹脂(A)の合成)
ポリカーボネート樹脂(A)は、前記式(1)で表されるジヒドロキシ化合物等のように原料として用いられるジヒドロキシ化合物と、炭酸ジエステルとを、重合触媒の存在下、エステル交換反応により重縮合させることによって得られる。
原料であるジヒドロキシ化合物と炭酸ジエステルは、エステル交換反応前に均一に混合することが好ましい。混合の温度は通常80℃以上、好ましくは90℃以上、かつ、通常250℃以下、好ましくは200℃以下、更に好ましくは150℃以下の範囲とし、中でも100℃以上120℃以下が好適である。この場合には、溶解速度を高めたり、溶解度を十分に向上させたりすることができ、固化等の不具合を十分に回避することができる。さらに、この場合には、ジヒドロキシ化合物の熱劣化を十分に抑制することができ、結果的に得られるポリカーボネート樹脂(A)の色調をより一層良好なものにすることができると共に、耐候性の向上も可能になる。
原料のジヒドロキシ化合物と炭酸ジエステルとを混合する操作は、酸素濃度10vol%以下、更には0.0001〜10vol%、中でも0.0001〜5vol%、特には0.0001〜1vol%の雰囲気下で行うことが好ましい。この場合には、色調をより良好なものにすることができると共に、反応性を高めることができる。
ポリカーボネート樹脂(A)を得るためには、反応に用いる全ジヒドロキシ化合物に対して、炭酸ジエステルを0.90〜1.20のモル比率で用いることが好ましい。この場合には、ポリカーボネート樹脂(A)のヒドロキシ基末端量の増加を抑制することができるため、ポリマーの熱安定性の向上が可能になる。そのため、成形時の着色をより一層防止したり、エステル交換反応の速度を向上させたりすることができる。また、所望の高分子量体をより確実に得ることが可能になる。さらに炭酸ジエステルの使用量を前記範囲内に調整することにより、エステル交換反応の速度が低下を抑制することができ、所望の分子量のポリカーボネート樹脂(A)のより確実な製造が可能になる。また、この場合には、反応時の熱履歴の増大を抑制することができるため、ポリカーボネート樹脂(A)の色調や耐候性をより一層良好なものにすることができる。さらにこの場合には、ポリカーボネート樹脂(A)中の残存炭酸ジエステル量を減少させることができ、成形時の汚れや臭気の発生を回避又は緩和することができる。以上と同様の観点から、全ジヒドロキシ化合物に対する炭酸ジエステル使用量は、モル比率で、0.95〜1.10であることがより好ましい。
ジヒドロキシ化合物と炭酸ジエステルとを重縮合させる方法は、上述の触媒存在下、複数の反応器を用いて多段階で実施される。反応の形式は、バッチ式、連続式、あるいはバッチ式と連続式の組み合わせの方法があるが、より少ない熱履歴でポリカーボネート樹脂が得られ、生産性にも優れている連続式を採用することが好ましい。
重合速度の制御や得られるポリカーボネート樹脂(A)の品質の観点からは、反応段階に応じてジャケット温度と内温、反応系内の圧力を適切に選択することが重要である。具体的には、重縮合反応の反応初期においては相対的に低温、低真空でプレポリマーを得、反応後期においては相対的に高温、高真空で所定の値まで分子量を上昇させることが好ましい。この場合には、未反応のモノマーの留出を抑制し、ジヒドロキシ化合物と炭酸ジエステルとのモル比率を所望の比率に調整し易くなる。その結果、重合速度の低下を抑制することができる。また、所望の分子量や末端基を持つポリマーをより確実に得ることが可能になる。
また、重縮合反応における重合速度はヒドロキシ基末端とカーボネート基末端のバラン
スによって制御される。そのため、未反応モノマーの留出によって末端基のバランスが変動すると、重合速度を一定に制御することが難しくなり、得られる樹脂の分子量の変動が大きくなるおそれがある。樹脂の分子量は溶融粘度と相関するため、得られた樹脂を溶融加工する際に、溶融粘度が変動し、成形品の品質を一定に保つことが難しくなることがある。かかる問題は、特に連続式で重縮合反応を行う場合に起こりやすい。
留出する未反応モノマーの量を抑制するためには、重合反応器に還流冷却器を用いることが有効であり、特に未反応モノマーが多い反応初期において高い効果を示す。還流冷却器に導入される冷媒の温度は使用するモノマーに応じて適宜選択することができるが、通常、還流冷却器に導入される冷媒の温度は該還流冷却器の入口において45〜180℃であり、好ましくは80〜150℃、特に好ましくは100〜130℃である。冷媒温度をこれらの範囲に調整することにより、還流量を十分に高め、その効果が十分得られると共に、留去すべきモノヒドロキシ化合物の留去効率を十分に向上させることができる。その結果、反応率の低下を防止することができ、得られる樹脂の着色をより一層防止することができる。冷媒としては、温水、蒸気、熱媒オイル等が用いられ、蒸気、熱媒オイルが好ましい。
重合速度を適切に維持し、モノマーの留出を抑制しながら、得られるポリカーボネート樹脂(A)の色調をより良好なものにするためには、前述の重合触媒の種類と量の選定が重要である。
ポリカーボネート樹脂(A)は、重合触媒を用いて、通常、2段階以上の工程を経て製造される。重縮合反応は、1つの重縮合反応器を用い、順次条件を変えて2段階以上の工程で行ってもよいが、生産効率の観点からは、複数の反応器を用い、それぞれの条件を変えて多段階で行うことが好ましい。
重縮合反応を効率よく行う観点から、反応液中に含まれるモノマーが多い反応初期においては、必要な重合速度を維持しつつ、モノマーの揮散を抑制することが重要である。また、反応後期においては、副生するモノヒドロキシ化合物を十分留去させることにより、平衡を重縮合反応側にシフトさせることが重要になる。従って、反応初期に好適な反応条件と、反応後期に好適な反応条件とは通常異なっている。それ故、直列に配置された複数の反応器を用いることにより、それぞれの条件を容易に変更することができ、生産効率を向上させることができる。
ポリカーボネート樹脂(A)の製造に使用される重合反応器は、上述の通り、少なくとも2つ以上であればよいが、生産効率などの観点からは、3つ以上、好ましくは3〜5つ、特に好ましくは4つである。重合反応器が2つ以上であれば、各重合反応器中で、更に条件の異なる反応段階を複数行ったり、連続的に温度・圧力を変えたりしてもよい。
重合触媒は、原料調製槽や原料貯槽に添加することもできるし、重合反応器に直接添加することもできる。供給の安定性、重縮合反応の制御の観点からは、重合反応器に供給される前の原料ラインの途中に触媒供給ラインを設置し、水溶液で重合触媒を供給することが好ましい。
重縮合反応の温度を調整することにより、生産性の向上や製品への熱履歴の増大の回避が可能になる。さらに、モノマーの揮散、及びポリカーボネート樹脂(A)の分解や着色をより一層防止することが可能になる。具体的には、第1段目の反応における反応条件としては、以下の条件を採用することができる。即ち、重合反応器の内温の最高温度は、通常150〜250℃、好ましくは160〜240℃、更に好ましくは170〜230℃の範囲で設定する。また、重合反応器の圧力(以下、圧力とは絶対圧力を表す)は、通常1
〜110kPa、好ましくは5〜70kPa、さらに好ましくは7〜30kPaの範囲で設定する。また、反応時間は、通常0.1〜10時間、好ましくは0.5〜3時間の範囲で設定する。第1段目の反応は、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施されることが好ましい。
第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を1kPa以下にすることが好ましい。また、重合反応器の内温の最高温度は、通常200〜260℃、好ましくは210〜250℃の範囲で設定する。また、反応時間は、通常0.1〜10時間、好ましくは0.3〜6時間、特に好ましくは0.5〜3時間の範囲で設定する。
ポリカーボネート樹脂(A)の着色や熱劣化をより一層抑制し、色調がより一層良好なポリカーボネート樹脂(A)を得るという観点からは、全反応段階における重合反応器の内温の最高温度を210〜240℃とすることが好ましい。また、反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重縮合反応の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
連続重合において、最終的に得られるポリカーボネート樹脂(A)の分子量を一定水準に制御するには、必要に応じて重合速度を調節することが好ましい。その場合は、最終段の重合反応器の圧力を調整することが操作性の良い方法である。
また、前述したようにヒドロキシ基末端とカーボネート基末端の比率によって重合速度が変化するため、あえて片方の末端基を減らして、重合速度を抑制し、その分、最終段の重合反応器の圧力を高真空に保つことで、モノヒドロキシ化合物をはじめとした樹脂中の残存低分子成分を低減することができる。しかし、この場合には、片方の末端が少なくなりすぎると、末端基バランスが少し変動しただけで、極端に反応性が低下し、得られるポリカーボネート樹脂(A)の分子量が所望の分子量に満たなくなるおそれがある。かかる問題を回避するため、最終段の重合反応器で得られるポリカーボネート樹脂(A)は、ヒドロキシ基末端とカーボネート基末端とも10mol/ton以上含有することが好ましい。一方、両方の末端基が多すぎると、重合速度が速くなり、分子量が高くなりすぎてしまうため、片方の末端基は60mol/ton以下であることが好ましい。
このようにして、末端基の量と最終段の重合反応器の圧力を好ましい範囲に調整することで、重合反応器の出口において、樹脂中のモノヒドロキシ化合物の残存量を低減することができる。重合反応器の出口における樹脂中のモノヒドロキシ化合物の残存量は、2000重量ppm以下であることが好ましく、1500重量ppm以下であることがより好ましく、1000重量ppm以下であることが更に好ましい。このように、重合反応器の出口におけるモノヒドロキシ化合物の含有量を低減することにより、後の工程においてモノヒドロキシ化合物等の脱揮を容易に行うことができる。
モノヒドロキシ化合物の残存量は少ない方が好ましいが、100重量ppm未満まで減らそうとすると、片方の末端基の量を極端に少なくし、重合反応器の圧力を高真空に保つような運転条件を取る必要がある。この場合には、前述のとおり、得られるポリカーボネート樹脂(A)の分子量を一定水準に保つことが難しくなるので、通常100重量ppm以上、好ましくは150重量ppm以上である。
副生したモノヒドロキシ化合物は、資源有効活用の観点から、必要に応じて精製を行った後、他の化合物の原料として再利用することが好ましい。例えば、モノヒドロキシ化合物がフェノールである場合、ジフェニルカーボネートやビスフェノールA等の原料として
用いることができる。
ポリカーボネート樹脂(A)のガラス転移温度は、90℃以上が好ましい。この場合には、前記ポリカーボネート樹脂組成物の耐熱性と生物起源物質含有率とをバランス良く向上させることができる。同様の観点から、ポリカーボネート樹脂(A)のガラス転移温度は、100℃以上がより好ましく、110℃以上がさらに好ましく、120℃以上が特に好ましい。一方、ポリカーボネート樹脂(A)のガラス転移温度は170℃以下が好ましい。この場合には、前述の溶融重合によって溶融粘度を小さくすることができ、充分な分子量のポリマーを得ることができる。また、重合温度を高くして溶融粘度を下げることにより、分子量を高くしようとした場合には、構成成分(a)の耐熱性が充分でないため、着色し易くなるおそれがある。分子量の向上と着色の防止をよりバランス良く向上できるという観点から、ポリカーボネート樹脂(A)のガラス転移温度は、165℃以下がより好ましく、160℃以下がさらに好ましく、150℃以下が特に好ましい。
ポリカーボネート樹脂(A)の分子量は、還元粘度で表すことができ、還元粘度が高いほど分子量が大きいことを示す。還元粘度は、通常0.30dL/g以上であり、0.33dL/g以上が好ましい。この場合には、成形品の機械的強度をより向上させることができる。一方、還元粘度は、通常1.20dL/g以下であり、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。これらの場合には、成形時の流動性を向上させることができ、生産性や成形性をより向上させることができる。なお、ポリカーボネート樹脂(A)の還元粘度は、塩化メチレンを溶媒として樹脂組成物の濃度を0.6g/dLに精密に調整した溶液を用いて、ウベローデ粘度管により温度20.0℃±0.1℃の条件下で測定した値を使用する。
ポリカーボネート樹脂(A)の溶融粘度は、400Pa・s以上3000Pa・s以下が好ましい。この場合には、樹脂組成物の成形品が脆くなることを防止し、機械物性をより向上させることができる。さらにこの場合には、成形加工時における流動性を向上させ、成形品の外観が損なわれたり、寸法精度が悪化したりすることを防止することができる。さらにこの場合には、剪断発熱により樹脂温度が上昇することに起因する、着色や発泡をより一層防止することができる。同様の観点から、ポリカーボネート樹脂(A)の溶融粘度は、600Pa・s以上2500Pa・s以下であることがより好ましく、800Pa・s以上2000Pa・s以下であることがさらにより好ましい。なお、本明細書において溶融粘度とは、キャピラリーレオメータ[東洋精機(株)製]を用いて測定される、温度240℃、剪断速度91.2sec-1における溶融粘度をいう。
ポリカーボネート樹脂(A)は、触媒失活剤を含むことが好ましい。触媒失活剤としては、酸性物質で、重合触媒の失活機能を有するものであれば特に限定されないが、例えば、リン酸、リン酸トリメチル、リン酸トリエチル、亜リン酸、オクチルスルホン酸テトラブチルホスホニウム塩、ベンゼンスルホン酸テトラメチルホスホニウム塩、ベンゼンスルホン酸テトラブチルホスホニウム塩、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩、P−トルエンスルホン酸テトラブチルホスホニウム塩のごときホスホニウム塩;デシルスルホン酸テトラメチルアンモニウム塩、ドデシルベンゼンスルホン酸テトラブチルアンモニウム塩のごときアンモニウム塩;およびベンゼンスルホン酸メチル、ベンゼンスルホン酸ブチル、p−トルエンスルホン酸メチル、p−トルエンスルホン酸ブチル、ヘキサデシルスルホン酸エチルのごときアルキルエステル等を挙げることができる。
前記触媒失活剤は、下記構造式(5)または下記構造式(6)で表される部分構造のいずれかを含むリン系化合物(以下、「特定リン系化合物」という。)を含んでいることが好ましい。前記特定リン系化合物は、重縮合反応が完了した後、即ち、例えば混練工程やペレット化工程等の際に添加することにより後述する重合触媒を失活させ、それ以降に重
縮合反応が不要に進行することを抑制できる。その結果、成形工程等においてポリカーボネート樹脂(A)が加熱された際の重縮合の進行を抑制でき、ひいては前記モノヒドロキシ化合物の脱離を抑制することができる。また、重合触媒を失活させることにより、高温下でのポリカーボネート樹脂(A)の着色をより一層抑制することができる。
Figure 0006950234
Figure 0006950234
前記構造式(5)または構造式(6)で表される部分構造を含む特定リン系化合物としては、リン酸、亜リン酸、ホスホン酸、次亜リン酸、ポリリン酸、ホスホン酸エステル、酸性リン酸エステル等を採用することができる。特定リン系化合物のうち、触媒失活と着色抑制の効果がさらに優れているのは、亜リン酸、ホスホン酸、ホスホン酸エステルであり、特に亜リン酸が好ましい。
ホスホン酸としては、例えば以下の化合物を採用することができる。ホスホン酸(亜リン酸)、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸、デシルホスホン酸、フェニルホスホン酸、ベンジルホスホン酸、アミノメチルホスホン酸、メチレンジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、4−メトキシフェニルホスホン酸、ニトリロトリス(メチレンホスホン酸)、プロピルホスホン酸無水物等。
ホスホン酸エステルとしては、例えば以下の化合物を採用することができる。ホスホン酸ジメチル、ホスホン酸ジエチル、ホスホン酸ビス(2−エチルヘキシル)、ホスホン酸ジラウリル、ホスホン酸ジオレイル、ホスホン酸ジフェニル、ホスホン酸ジベンジル、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、エチルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジプロピル、(メトキシメチル)ホスホン酸ジエチル、ビニルホスホン酸ジエチル、ヒドロキシメチルホスホン酸ジエチル、(2−ヒドロキシエチル)ホスホン酸ジメチル、p−メチルベンジルホスホン酸ジエチル、ジエチルホスホノ酢酸、ジエチルホスホノ酢酸エチル、ジエチルホスホノ酢酸tert−ブチル、(4−クロロベンジル)ホスホン酸ジエチル、シアノホスホン酸ジエチル、シアノメチルホスホン酸ジエチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、ジエチルホスホノアセトアルデヒドジエチルアセタール、(メチルチオメチル)ホスホン酸ジエチル等。
酸性リン酸エステルとしては、例えば以下の化合物を採用することができる。リン酸ジメチル、リン酸ジエチル、リン酸ジビニル、リン酸ジプロピル、リン酸ジブチル、リン酸ビス(ブトキシエチル)、リン酸ビス(2−エチルヘキシル)、リン酸ジイソトリデシル、リン酸ジオレイル、リン酸ジステアリル、リン酸ジフェニル、リン酸ジベンジルなどのリン酸ジエステル、又はジエステルとモノエステルの混合物、クロロリン酸ジエチル、リン酸ステアリル亜鉛塩等。
前記特定リン系化合物は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
前記ポリカーボネート樹脂(A)中の特定リン系化合物の含有量は、リン原子として0.1重量ppm以上5重量ppm以下であることが好ましい。この場合には、前記特定リン系化合物による触媒失活や着色抑制の効果を十分に得ることができる。また、この場合には、特に高温・高湿度での耐久試験において、ポリカーボネート樹脂(A)の着色をより一層防止することができる。
また、前記特定リン系化合物の含有量を重合触媒の量に応じて調節することにより、触媒失活や着色抑制の効果をより確実に得ることができる。前記特定リン系化合物の含有量は、重合触媒の金属原子1molに対して、リン原子の量として0.5倍mol以上5倍mol以下とすることが好ましく、0.7倍mol以上4倍mol以下とすることがより好ましく、0.8倍mol以上3倍mol以下とすることが特に好ましい。
[芳香族ポリカーボネート樹脂(B)]
前記芳香族ポリカーボネート樹脂(B)としては、例えば下記一般式(7)で表される芳香族ジヒドロキシ化合物に由来する構成単位を主構成単位とするポリカーボネート樹脂がある。
Figure 0006950234
前記一般式(7)中のR1〜R8は、それぞれ独立に、水素原子または置換基を示す。Yは、単結合または2価基を示す。一般式(2)中のR1〜R8の置換基としては、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、ハロゲン基、炭素数1〜10のハロゲン化アルキル基、または置換基を有していてもよい炭素数6〜20の芳香族基示す。これらの中でも、置換基を有していてもよい炭素数1〜10のアルキル基、または置換基を有していてもよい炭素数6〜20の芳香族基が好ましい。一般式(2)中のYの2価基としては、置換基を有していてもよい炭素数1〜6の鎖状構造のアルキレン基、置換基を有していてもよい炭素数1〜6の鎖状構造のアルキリデン基、置換基を有していてもよい炭素数3〜6の環状構造のアルキレン基、置換基を有していてもよい炭素数3〜6の環状構造のアルキリデン基、−O−、−S−、−CO−または−SO2−があげられる。ここで、置換基としては、本発明の効果
を阻害されない限りにおいて、特に限定されないが、通常、分子量が200以下のものである。また、炭素数1〜6の鎖状構造のアルキレン基が有する置換基としては、アリール基が好ましく、特にはフェニル基が好ましい。
芳香族ポリカーボネート樹脂(B)は、単独重合体であっても共重合体であっても構わないが、共重合体である場合、ジヒドロキシ化合物に由来する全構成単位中、前記一般式(2)で表されるジヒドロキシ化合物に由来する構成単位が最も多いポリカーボネート樹脂であることが好ましい。芳香族ポリカーボネート樹脂(B)においては、全ジヒドロキシ化合物に由来する全構成単位100モル%に対する、前記一般式(2)で表されるジヒドロキシ化合物に由来する構成単位の含有割合が、50モル%以上であることがより好ましく、70モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましくい。
また、芳香族ポリカーボネート樹脂(B)は、分岐構造であっても、直鎖構造であってもよいし、分岐構造と直鎖構造との混合物であってもよい。さらに、芳香族ポリカーボネート樹脂(B)は、前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構成単位を含むものであっても構わない。ただし、前記式(1)で表される部位を有するジヒドロキシ化合物に由来する構成単位を含むものである場合、ポリカーボネート樹脂(A)とは異なる構成単位のポリカーボネート樹脂が使用される。
芳香族ポリカーボネート樹脂(B)を構成するジヒドロキシ化合物に由来する構成単位は、ジヒドロキシ化合物の水酸基から水素原子を除いたものである。相当する、ジヒドロキシ化合物の具体例としては、下記のものがあげられる。
4,4’−ビフェノール、2,4’−ビフェノール、3,3’−ジメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジメチル−2,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジ−(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル、3,3’,5,5’−テトラ−(t−ブチル)−4,4’−ジヒドロキシ−1,1’−ビフェニル、2,2’,3,3’,5,5’−ヘキサメチル−4,4’−ジヒドロキシ−1,1’−ビフェニル等のビフェニル化合物。
ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス−(4−ヒドロキシフェニル)エタン、1,1−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシフェニル)ブタン、2,2−ビス−(4−ヒドロキシフェニル)ペンタン、2,2−ビス−(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス−(4−ヒドロキシフェニル)ヘキサン、2,2−ビス−(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス−(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス−(4−ヒドロキシフェニル)シクロヘキサン、ビス−(3−フェニル−4−ヒドロキシフェニル)メタン、1,1−ビス−(3−フェニル−4−ヒドロキシフェニル)エタン、1,1−ビス−(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス−(3−フェニル−4−ヒドロキシフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3−メチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−3−エチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−sec−ブチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシ−3,6−ジメチルフェニル)エタン、ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)メタン、1,1−
ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)エタン、2,2−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)プロパン、ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシ−2,3,5−トリメチルフェニル)フェニルエタン、1,1−ビス−(4−ヒドロキシ−3,3,5−トリメチルフェニル)シクロヘキサン、ビス−(4−ヒドロキシフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス−(4−ヒドロキシフェニル)ジフェニルメタン、ビス−(4−ヒドロキシフェニル)ジベンジルメタン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[フェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[フェノール]、4,4’−[1,
4−フェニレンビス(1−メチルエチリデン)]ビス−[2,6−ジメチルフェノール]、
4,4’−[1,4−フェニレンビスメチレン]ビス−[2,6−ジメチルフェノール]、4,4’−[1,4−フェニレンビスメチレン]ビス−[2,3,6−トリメチルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス−[2,3,6−
トリメチルフェノール]、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビス−[2,3,6−トリメチルフェノール]、4,4'−ジヒドロキシジフェニルエーテル、4,4'−ジヒドロキシジフェニルスルホン、4,4'−ジヒドロキシジフェニルスルフィド、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルエーテル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルホン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフィドフェノールフタルレイン、4,4'−[1,4−フェニレンビス(1−メチルビニリデン)]ビ
スフェノール、4,4'−[1,4−フェニレンビス(1−メチルビニリデン)]ビス[2−メチルフェノール]、(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)メタン、
(2−ヒドロキシ−5−メチルフェニル)(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)エタン、2,2−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパン、1,1−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパンなどのビスフェノール化合物。
2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)プロパンなどのハロゲン化ビスフェノール化合物。
これらの中でも好ましいジヒドロキシ化合物としては、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、1,1−ビス−(4−ヒドロキシフェニル)エタン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス−(4−ヒドロキシ−3,3,5−トリメチルフェニル)シクロヘキサン、ビス−(4−ヒドロキシフェニル)フェニルメタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス−(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス−(4−ヒドロキシフェニル)ジフェニルメタン、2−ヒドロキシフェニル(4−ヒドロキシフェニル)メタン、2,2−(2−ヒドロキシフェニル)(4−ヒドロキシフェニル)プロパン、があげられる。
これらの中でも特に、ビス−(4−ヒドロキシフェニル)メタン、ビス−(4−ヒドロキシ−3−メチルフェニル)メタン、ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、2,2−ビス−(4−ヒドロキシフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス−(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、1,1−ビス−(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス−(4−ヒドロキシ−3,3,5−トリメチルフェニル)シクロヘ
キサンが好ましい。
芳香族ポリカーボネート樹脂(B)の製造方法は、ホスゲン法、エステル交換法、ピリジン法等、従前知られるいずれの方法を用いてもかまわない。以下一例として、エステル交換法による芳香族ポリカーボネート樹脂(B)の製造方法を説明する。
エステル交換法は、ジヒドロキシ化合物と炭酸ジエステルとを塩基性触媒、さらにはこの塩基性触媒を中和する酸性物質を添加し、溶融エステル交換縮重合を行う製造方法である。ジヒドロキシ化合物としては、前記例示のビフェニル化合物、ビスフェノール化合物があげられる。
炭酸ジエステルの代表例としては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネート、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネートなどが挙げられる。これらのうち、特にジフェニルカーボネートが好ましく用いられる。
芳香族ポリカーボネート樹脂(B)の粘度平均分子量は、力学特性と成形加工性のバランスから、通常、8,000以上、30,000以下、好ましくは10,000以上、25,000以下の範囲である。又、芳香族ポリカーボネート樹脂(B)の還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.60g/dlに精密に調整し、温度20.0℃±0.1℃で測定され、通常、0.23dl/g以上0.72dl/g以下で、好ましくは0.27dl/g以上0.61dl/g以下の範囲内である。
なお、本発明においては、芳香族ポリカーボネート樹脂(B)を1種のみを単独、又は2種以上を混合して使用してもよい。
[衝撃強度改質剤(C)]
ポリカーボネート樹脂に対して配合する前記衝撃強度改質剤(C)としては、通常知られる耐衝撃強度を向上するものを使用することが可能であり、例えば、以下詳述するような熱可塑性エラストマー、コア・シェル構造からなる衝撃強度改質剤、軟質スチレン系樹脂が挙げられる。
<熱可塑性エラストマー>
エラストマーを用いることが好ましく、中でも熱可塑性のエラストマーを用いることが好ましい。熱可塑性エラストマーとしては、各種共重合樹脂が用いられるが、ガラス転移温度が通常0℃以下、中でも−10℃以下のものが好ましく、−20℃以下のものがより好ましく、更には−30℃以下のものが好ましい。
より具体的には、衝撃強度改質剤としては、例えばSB(スチレン−ブタジエン)共重合体、SBS(スチレン−ブタジエン−スチレンブロック)共重合体、ABS(アクリロニトリル−ブタジエン−スチレン)共重合体、MBS(メチルメタクリレート−ブタジエン−スチレン)共重合体、MABS(メチルメタクリレート−アクリロニトリル−ブタジエン−スチレン)共重合体、MB(メチルメタクリレート−ブタジエン)共重合体、ASA(アクリロニトリル−スチレン−アクリルゴム)共重合体、AES(アクリロニトリル−エチレンプロピレンゴム−スチレン)共重合体、MA(メチルメタクリレート−アクリルゴム)共重合体、MAS(メチルメタクリレート−アクリルゴム−スチレン)共重合体、メチルメタクリレート−アクリル−ブタジエンゴム共重合体、メチルメタクリレート−アクリル−ブタジエンゴム−スチレン共重合体、メチルメタクリレート−(アクリル−シリコーンIPNゴム)共重合体、及び天然ゴム等を用いることができる。
好ましくは、前記衝撃強度改質剤はブタジエンを含有する共重合物であることがよい。
この場合には、前記ポリカーボネート樹脂との組み合わせにおいて特に顕著な衝撃強度改質効果を得ることができる。
ブタジエンを含有する共重合物としては、具体的には、SBS(スチレン−ブタジエン−スチレンブロック)共重合体、ABS(アクリロニトリル−ブタジエン−スチレン)共重合体、MBS(メチルメタクリレート−ブタジエン−スチレン)共重合体、MABS(メチルメタクリレート−アクリロニトリル−ブタジエン−スチレン)共重合体、MB(メチルメタクリレート−ブタジエン)共重合体、メチルメタクリレート−アクリル−ブタジエンゴム共重合体等がある。
<コア・シェル構造からなる衝撃強度改質剤>
コア・シェル構造からなる衝撃強度改質剤は、以下に詳述する通りである。なお、本明細書において、「コア・シェル構造からなる衝撃強度改質剤」とは最内層(コア層)とそれを覆う1以上の層(シェル層)から構成され、コア層に対して共重合可能な単量体成分をシェル層としてグラフト共重合したコア・シェル型グラフト共重合体である。
コア・シェル構造からなる衝撃強度改質剤は、通常、ゴム成分と呼ばれる重合体成分をコア層とし、これと共重合可能な単量体成分をシェル層としてグラフト共重合したコア・シェル型グラフト共重合体が好ましい。
このコア・シェル型グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。但し、本発明の第2の態様においては通常、市販で入手可能なコア・シェル型エラストマーをそのまま使用することができる。市販で入手可能なコア・シェル型エラストマーの例は後に列挙する。
コア層を形成する重合体成分は、ガラス転移温度が通常0℃以下、中でも−10℃以下が好ましく、−20℃以下がより好ましく、更には−30℃以下が好ましい。コア層を形成する重合体成分の具体例としては、ポリブタジエン、ポリイソプレン、ポリブチルアクリレートやポリ(2−エチルヘキシルアクリレート)、ブチルアクリレート・2−エチルヘキシルアクリレート共重合体などのポリアルキルアクリレート、ポリオルガノシロキサンゴムなどのシリコーン系ゴム、ブタジエン−アクリル複合体、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN(Interpenetrating Polymer Network)型複合ゴム、スチレン−ブタジエン共重合体、エチレン−プロピレン共重合体やエチレン−ブテン共重合体、エチレン−オクテン共重合体などのエチレン−αオレフィン系共重合体、エチレン−アクリル共重合体、フッ素ゴムなど挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。これらの中でも、機械的特性や表面外観の面から、ポリブタジエン、ポリアルキルアクリレート、ポリオルガノシロキサン、ポリオルガノシロキサンとポリアルキルアクリレートとからなる複合体、ブタジエン−スチレン共重合体が好ましい。
シェル層を構成する、コア層の重合体成分とグラフト共重合可能な単量体成分の具体例としては、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N−メチルマレイミド、N−フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β−不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。これらの中でも、機械的特性や表面外観の面から、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物が好ましく、より好ましくは(メタ)アクリル酸エステル化合物である。(メタ)アクリル酸エステル化合物の具体例とし
ては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル等が挙げられ、これらの中でも比較的入手しやすい(メタ)アクリル酸メチル、(メタ)アクリル酸エチルが好ましく、(メタ)アクリル酸メチルがより好ましい。ここで、「(メタ)アクリル」とは「アクリル」と「メタクリル」とを総称するものである。
コア・シェル構造からなる衝撃強度改質剤は、なかでもポリブタジエン含有ゴム、ポリブチルアクリレート含有ゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴムから選ばれる少なくとも1種の重合体成分をコア層とし、その周囲に(メタ)アクリル酸エステルをグラフト共重合して形成されたシェル層からなる、コア・シェル型グラフト共重合体が特に好ましい。
これらコア・シェル型グラフト共重合体の好ましい具体例としては、メチルメタクリレート−ブタジエン−スチレン共重合体(MBS)、メチルメタクリレート−アクリロニトリル−ブタジエン−スチレン共重合体(MABS)、メチルメタクリレート−ブタジエン共重合体(MB)、メチルメタクリレート−アクリルゴム共重合体(MA)、メチルメタクリレート−アクリルゴム−スチレン共重合体(MAS)、メチルメタクリレート−アクリル・ブタジエンゴム共重合体、メチルメタクリレート−アクリル・ブタジエンゴム−スチレン共重合体、メチルメタクリレート−(アクリル・シリコーン複合体)共重合体等が挙げられる。
このようなコア・シェル型グラフト共重合体としては、例えば、ローム・アンド・ハース・ジャパン社製の「パラロイド(登録商標)EXL2602」、「パラロイド(登録商標)EXL2603」、「パラロイド(登録商標)EXL2655」、「パラロイド(登録商標)EXL2311」、「パラロイド(登録商標)EXL2313」、「パラロイド(登録商標)EXL2315」、「パラロイド(登録商標)KM330」、「パラロイド(登録商標)KM336P」、「パラロイド(登録商標)KCZ201」、三菱レイヨン社製の「メタブレン(登録商標)C−223A」、「メタブレン(登録商標)E−901」、「メタブレン(登録商標)S−2001」、「メタブレン(登録商標)W−450A」「メタブレン(登録商標)SRK−200」、カネカ社製の「カネエース(登録商標)M−511」、「カネエース(登録商標)M−600」、「カネエース(登録商標)M−400」、「カネエース(登録商標)M−580」、「カネエース(登録商標)MR−01」等が挙げられる。
これらのコア・シェル型グラフト共重合体等のコア・シェル構造からなる衝撃強度改質剤は1種を単独で用いてもよく、2種以上を併用してもよい。
<軟質スチレン系樹脂>
前記軟質スチレン系樹脂に用いる共役ジエン系重合体ブロックとしては、ブタジエン、イソプレン、1,3−ペンタジエン等の単独重合体、それらの共重合体、または、共役ジエン系モノマーと共重合可能なモノマーをブロック内に含む共重合体等を用いることができる。具体的にはスチレン・ブタジエン・スチレンブロック共重合体(SBS)、スチレン・イソプレン・スチレンブロック共重合体(SIS)等があげられる。具体的な商品としては、クレイトンポリマー社製「クレイトンD」シリーズ、アロン化成社製「AR−100」シリーズ等があげられる。
なお、前記ブロック共重合体はピュアブロック、ランダムブロック、テーパードブロック等を含み、共重合の形態については特に限定されない。また、そのブロック単位も繰り返し単位がいくつも重なっても構わない。具体的にはスチレン・ブタジエンブロック共重合体の場合、スチレン・ブタジエン共重合体、スチレン・ブタジエン・スチレンブロック
共重合体、スチレン・ブタジエン・スチレン・ブタジエンブロック共重合体のようにブロック単位がいくつも繰り返されても構わない。
また、前記SBSやSISの共役ジエン系重合体ブロックの二重結合の一部、または、全部を水素添加した水素添加スチレン・ブタジエン・スチレンブロック共重合体(SEBS)、水素添加スチレン・イソプレン・スチレンブロック共重合体(SEPS)を用いることもできる。具体的な商品としては、旭化成ケミカルズ社製「タフテックH」シリーズ、クレイトンポリマー社製「クレイトンG」シリーズ等があげられる。
加えて、前記軟質スチレン系樹脂に極性を有する官能基を付与することも可能である。極性を有する官能基の具体例としては、酸無水物基、カルボン酸基、カルボン酸エステル基、カルボン酸塩化物基、カルボン酸アミド基、カルボン酸塩基、スルホン酸基、スルホン酸エステル基、スルホン酸塩化物基、スルホン酸アミド基、スルホン酸塩基、エポキシ基、アミノ基、イミド基、オキサゾリン基などが挙げられる。
これらの中でも、酸無水物基やエポキシ基を付与することが好ましく、酸無水物基としては無水マレイン酸に由来する官能基が特に好ましい。このような官能基を付与することで、ポリカーボネート樹脂組成物と軟質スチレン系樹脂との相容性が向上し、軟質スチレン系樹脂がポリカーボネート樹脂組成物中に微分散するため、より効果的に耐衝撃性を向上することができる。
前記極性を有する官能基を付与した軟質スチレン系樹脂としては、SEBS、SEPSの変性体が好ましく用いられる。具体的には、無水マレイン酸変性SEBS、無水マレイン酸変性SEPS、エポキシ変性SEBS、エポキシ変性SEPSなどが挙げられる。具体的な商品としては、旭化成ケミカルズ社製「タフテックM」シリーズ、JSR社製「ダイナロン」シリーズ、ダイセル化学工業社製「エポフレンド」シリーズ等が挙げられる。
また、前記軟質スチレン系樹脂の230℃、2.16kg荷重におけるメルトフローレート(MFR)は、1g/10分以上、10g/10分以下であることが好ましい。MFRの下限としては、より好ましくは2g/10分、さらに好ましくは4g/10分である。またMFRの上限としては、より好ましくは8g/10分、さらに好ましくは6g/10分である。前記軟質スチレン系樹脂のMFRがかかる範囲内であれば、ポリカーボネート樹脂組成物との分散性が良く、透明性、耐衝撃性に優れた樹脂組成物を提供することができる。
また、前記ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)のポリカーボネート樹脂組成物の平均屈折率と前記衝撃強度改質剤(C)の平均屈折率の差(「ポリカーボネート樹脂組成物の平均屈折率」−「衝撃強度改質剤(C)の平均屈折率」)は、−0.015以上、+0.015以下であることが好ましく、−0.013以上、+0.013以下であることがより好ましく、−0.010以上、+0.010以下であることがさらに好ましい。ポリカーボネート樹脂組成物と衝撃強度改質剤(C)の平均屈折率の差がかかる範囲内であれば、特に透明性に優れた樹脂組成物を提供することができる。これらの中でも、コア・シェル構造からなる衝撃強度改質剤が、樹脂組成物としたときの透明性が良好であるため好ましい。
なお、前記ポリカーボネート樹脂組成物、及び、前記衝撃強度改質剤(C)の平均屈折率は以下の方法を用いて算出した。
厚み100μmに成形したサンプルをアタゴ社製アッベ屈折計を用いて、ナトリウムD線(589nm)を光源とし、JIS K7142(2008年)に基づき雰囲気温度23℃にてn=5で測定を行い、屈折率の平均値を算出し平均屈折率とした。
ポリカーボネート樹脂組成物においては、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)との合計100重量%のうち、前記衝撃強度改質剤(C)の含有量が、下限値として0重量%以上が好ましく、1重量%以上がより好ましく、3重量%以上がさらに好ましく、5重量%以上が特に好ましく、8重量%以上が最も好ましい。一方で、ポリカーボネート樹脂組成物100重量%に対する前記衝撃強度改質剤(C)の含有量が、上限値として25重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であることがさらに好ましく、12重量%が特に好ましい。
前記衝撃強度改質剤(C)の含有量が上述の下限値以上であることにより、充分な衝撃強度の改質効果が得ることができる。一方、上述の上限値以下であることにより、成形時のヤケ発生等を防止して成形性を良好に保つだけでなく、透明性も良好に保つことができる。
実施例の項で詳述する測定方法における、ポリカーボネート樹脂組成物のノッチ付シャルピー衝撃強度は、30kJ/m2以上が好ましく、35kJ/m2以上がより好ましく、40重量%以上が特に好ましい。
前記ノッチ付シャルピー衝撃強度は、前記ポリカーボネート樹脂組成物における分子量、ジヒドロキシ化合物のモル比率、衝撃強度改質剤(C)の種類または含有量等を調整することにより、制御することができる。
[酸性化合物(D)]
ポリカーボネート樹脂組成物は、さらに酸性化合物(D)を含有することが好ましい。この酸性化合物(D)は、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)と耐衝撃強度改質剤(C)とを配合する際に添加されるものであり、ポリカーボネート樹脂(A)及び芳香族ポリカーボネート樹脂(B)の製造時に用いられる上述の触媒失活剤を含まない概念である。これらの触媒失活剤は、ポリカーボネート樹脂(A)及び芳香族ポリカーボネート樹脂(B)の製造段階においてその効果自体が失われているためである。なお、酸性化合物(D)としては、上述の触媒失活剤と同様の物質を用いることができる。ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の混合物に衝撃強度改質剤(C)と酸性化合物(D)を併用して配合することで、得られるポリカーボネート樹脂組成物のノッチ付シャルピー衝撃強度のさらなる向上効果を得ることができる。ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の混合物に衝撃強度改質剤(C)と酸性化合物(D)を併用して配合することで、得られる樹脂組成物中での衝撃強度改質剤(C)の分散性が向上し、より衝撃強度が向上すると考えられる。
ポリカーボネート樹脂組成物においては、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)との合計100重量%に対する前記酸性化合物(D)の含有量が、下限値として2.5重量ppm以上が好ましく、7.5重量ppm以上がより好ましく、10重量ppm以上がさらに好ましい。一方で、ポリカーボネート樹脂組成物に対する前記酸性化合物(D)の含有量が、上限値として25重量ppm未満であることが好ましく、20重量ppm以下であることがより好ましく、13重量ppm以下であることがさらに好ましい。
前記酸性化合物(D)の含有量が上述の下限値以上であることにより、衝撃強度改質剤(C)と併用した際のノッチ付シャルピー強度のさらなる向上効果が得ることができる。一方、上述の上限値以下であることにより、高温高湿度下での変色を抑えることができる。
また、後述の化合物(E)をポリカーボネート樹脂組成物に配合する場合は、酸性化合物(D)の添加量は、ポリカーボネート樹脂組成物中に含まれる化合物(E)1モルに対して、0.5倍モル以上かつ5倍モル以下であることが好ましい。この場合には、耐湿熱
性をより一層向上させることができると共に、成形時等の熱安定性をより一層向上させることができる。同様の観点から、酸性化合物(D)の添加量は、化合物(E)1モルに対して、0.6倍モル以上2倍モル以下であることがより好ましく、0.7倍モル以上1.8倍モル以下であることがさらに好ましい。
[化合物(E)]
ポリカーボネート樹脂組成物に対して配合する前記化合物(E)は、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)とのエステル交換反応を促進することができる。エステル交換反応は、前記樹脂組成物を作製する際に、例えばポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との混練時における加熱により起こり、化合物(E)により促進される。その結果、樹脂組成物におけるポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との相溶性が向上するため、樹脂組成物の透明性を高めることが可能になる。そして、高い透明性を備えつつも、生物起源物質含有率を下げることなく、耐熱性、耐湿熱性、及び耐衝撃性等の特性に優れた樹脂組成物の実現が可能になる。化合物(E)は、1族の金属及び2族の金属からなる群から選択される少なくとも一種を含む化合物であれば良い。
化合物(E)における金属の例としては、リチウム、ナトリウム、カリウム、ルジビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
前記化合物(E)における金属は、1族及び2族の金属の中でも、電気陰性度が0.7〜1.1のものが好ましく、0.75〜1.0のものがより好ましく、0.75〜0.98のものがさらにより好ましい。具体的には、セシウム(0.79)、カリウム(0.82)、ナトリウム(0.93)、リチウム(0.98)、バリウム(0.89)、ストロンチウム(0.95)、カルシウム(1.0)が挙げられる。括弧内の数値は電気陰性度である。電気陰性度が前記範囲にある金属を採用することにより、前記ポリカーボネート樹脂組成物の透明性をより向上させることができ、さらに耐衝撃性をより向上させることができる。
化合物(E)としては、前記金属と、カルボン酸、炭酸、フェノール等の有機酸、硝酸、リン酸、ホウ酸等から成る金属塩を挙げることができる。また、金属塩としては、前記金属のハロゲン化物、水酸化物等も挙げられる。
化合物(E)における金属イオンの対イオンの酸解離定数(pKa)は2〜16であることが好ましい。この場合には、金属換算の触媒量を多くすることなく、ポリカーボネート樹脂組成物の透明性を高めことができ、色相が悪化することをより一層防止することができる。同様の観点から、化合物(E)における金属イオンの対イオンの酸解離定数(pKa)は3〜11であることがより好ましく、5〜10であることが特に好ましい。
化合物(E)として用いられる1族の金属の化合物としては、例えば、以下の化合物を採用することができる。水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セ
シウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩及び2セシウム塩等。これらの中でも、透明性、色調及び耐湿熱性をより向上させるという観点より、ナトリウム化合物、カリウム化合物、及びセシウム化合物からなるグループから選ばれる少なくとも1種が好ましく、カリウム化合物及び/又はセシウム化合物がより好ましい。特に好ましくは、炭酸水素カリウム、炭酸水素セシウム、炭酸カリウム、炭酸セシウム、酢酸カリウム、酢酸セシウム、ステアリン酸カリウム、ステアリン酸セシウムである。
化合物(E)として用いられる2族の金属の化合物としては、例えば、以下の化合物を採用することができる。水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム及びステアリン酸ストロンチウム等。これらの中でも、透明性及び色調をより向上させるという観点より、カルシウム化合物が好ましい。特に好ましくは、水酸化カルシウム、炭酸水素カルシウム、酢酸カルシウムである。
ポリカーボネート樹脂組成物中に含まれる化合物(E)に由来する金属量は、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)との合計量100重量部に対して、0.8重量ppm以上、かつ1000重量ppm以下であることが好ましい。金属種にもよるが、1000重量ppmを超えると、樹脂組成物の色調が悪化し、また耐湿熱性が低下する。0.8重量ppm未満では、樹脂組成物の透明性が不十分になる。色調、耐熱性、透明性をより向上させるという観点から、化合物(E)に由来する金属量は、0.9重量ppm以上、かつ100重量ppm以下であることがより好ましく、1重量ppm以上、かつ10重量ppm以下であることが特に好ましい。なお、原料であるポリカーボネート樹脂(A)の重合触媒や芳香族ポリカーボネート樹脂(B)の重合触媒より、ポリカーボネート樹脂組成物中に導入される化合物(E)は、一般に、例えば、重合工程後に、p−トルエンスルフォン酸ブチルのような酸
性化合物によって失活させられている場合が多いので、後述のように別途化合物(E)を添加することが好ましい。ポリカーボネート樹脂組成物中に含まれる化合物(E)は、ポリカーボネート樹脂(A)及び芳香族ポリカーボネート樹脂(B)の製造時に用いられて各樹脂(A)及び樹脂(B)から樹脂組成物中にもたらされる化合物(E)に相当する重合触媒と、樹脂組成物の作製時に別途添加される化合物(E)との両方を含む概念である。
樹脂組成物の製造時における前記化合物(E)の添加量は、金属種にもよるが、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)との合計量100重量部に対して、金属換算で0.5重量ppm〜1000重量ppm、好ましくは1重量ppm〜100重量ppm、特に好ましくは1重量ppm〜10重量ppmである。0.5重量ppm未満では、樹脂組成物の透明性が充分でなくなる。一方、1000重量ppmより多いと、透明にはなるものの、着色が激しく、また樹脂組成物の分子量(溶融粘度)が低下し、耐衝撃性に優れた樹脂組成物が得られない。
前記化合物(E)の添加方法は、固体のものは固体のままで供給してもよいし、水や溶媒に溶解可能なものは、水溶液や溶液にして供給してもよい。また、ポリカーボネート樹脂原料に添加してもよいし、水溶液や溶液の場合は、押出機の原料投入口から投入しても、ポンプ等を使用してシリンダーから液添加しても良い。
[ポリカーボネート樹脂組成物]
(全光線透過率、色調)
前記ポリカーボネート樹脂組成物は、これを成形してなる厚さ2mmの成形体の厚さ方向の全光線透過率が70%以上であることが好ましい。また、透明用途への適用性と原着時の鮮映性が良好になるという観点から、前記全光線透過率は、75%以上がより好ましく、80%以上がさらに好ましい。また、厚さ2mmの成形体のYI値は、10以下が好ましく、7以下がより好ましく、5以下がさらに好ましい。なお、全光線透過率およびYI値の測定方法は、後述の実施例において説明する。
また、ポリカーボネート樹脂組成物の荷重たわみ温度(HDT)は、後掲の実施例で測定した荷重たわみ温度のことをいう。ポリカーボネート樹脂組成物の荷重たわみ温度は、下限として100℃以上が好ましい。この場合には、耐熱性をより向上させることができるため、成形品の変形をより防止することができる。また、ポリカーボネート樹脂組成物の荷重たわみ温度は、上限として125℃以下が好ましい。この場合には、樹脂組成物の製造時におけるポリカーボネート樹脂(A)の流動性を適切に維持でき、熱劣化をより一層抑制することができ、耐衝撃性をより向上させることができる。さらに、成形時における樹脂組成物の熱劣化をより一層抑制することができる。
前記所定の全光線透過率及びガラス転移温度を示すポリカーボネート樹脂組成物は、前記式(1)で表される化合物に由来する構成単位を含むポリカーボネート樹脂(A)と、芳香族ポリカーボネート樹脂(B)と、前記特定の化合物(E)とを含有し、該化合物(E)の含有量を前記所定の範囲に調整することにより、実現が可能である。
前記ポリカーボネート樹脂組成物におけるポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との配合比は、所望の物性によって任意に選択することができる。生物起源物質含有率をより高めるという観点からは、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との重量比(A/B)は、95/5〜30/70であることが好ましく、80/20〜40/60であることがより好ましく、75/25〜50/50がさらに好ましく、70/30〜60/40が特に好ましい。これにより、耐熱性、耐衝撃性、および生物起源物質含有率をよりバランスよく高めることができる。
[その他の添加剤]
前記ポリカーボネート樹脂組成物には、種々の添加剤を添加することができる。前記添加剤としては、染顔料、酸化防止剤、UV吸収剤、光安定剤、離型剤、熱安定剤、難燃剤、難燃助剤、無機充填剤、加水分解抑制剤、発泡剤、核剤等があり、ポリカーボネート樹脂に通常用いられる添加剤を使用することができる。
「染顔料」
染顔料としては、無機顔料、有機顔料、及び有機染料等の有機染顔料が挙げられる。
無機顔料としては具体的には例えば、カーボンブラック;酸化チタン、亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛−鉄系ブラウン、銅−クロム系ブラック、銅−鉄系ブラック等の酸化物系顔料等;が挙げられる。
有機顔料及び有機染料等の有機染顔料としては具体的には例えばフタロシアニン系染顔料;アゾ系、チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系等の縮合多環染顔料;アンスラキノン系、ペリノン系、ペリレン系、メチン系、キノリン系、複素環系、メチル系の染顔料等;が挙げられる。
これら染顔料は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
前記無機顔料、有機顔料及び有機染料等の有機染顔料の中でも、無機顔料が好ましい。無機顔料を着色剤として使用することにより、成形品を屋外等で使用しても鮮映性等の長期間の保持が可能になる。
染顔料の量は、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)の合計100重量部に対して、0.05重量部以上5重量部以下であることが好ましい。より好ましくは0.05重量部以上3重量部以下、さらに好ましくは0.1重量部以上2重量部以下がよい。着色剤の量が0.05重量部未満では鮮映性のある原着成形品が得られづらい。5重量部より多いと、成形品の表面粗さが大きくなり、鮮映性のある原着成形品が得られづらい。
「酸化防止剤」
酸化防止剤としては、樹脂に使用される一般的な酸化防止剤が使用できるが、酸化安定性、熱安定性観点から、ホスファイト系酸化防止剤、イオウ系酸化防止剤、およびフェノール系酸化防止剤が好ましい。ここで、酸化防止剤の添加量は、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)の合計100重量部に対し、5重量部以下が好ましい。この場合には、成形時における金型の汚染をより確実に防止し、表面外観のより優れた成形品を得ることが可能になる。同様の観点から、酸化防止剤の添加量は、ポリカーボネート樹脂(A)及び芳香族ポリカーボネート樹脂(B)の合計100重量部に対し、3重量部以下がより好ましく、2重量部以下が更に好ましい。また、酸化防止剤の添加量は、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)の合計100重量部に対し、0.001重量部以上が好ましい。この場合には、成形安定性に対する改良効果を十分に得ることができる。同様の観点から、酸化防止剤の添加量は、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)の合計100重量部に対し、0.002重量部以上がより好ましく、0.005重量部以上が更に好ましい。
(ホスファイト系酸化防止剤)
ホスファイト系酸化防止剤としては、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト等が挙げられる。
これらの中でも、トリスノニルフェニルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが好ましく使用される。これらの化合物は、1種又は2種以上を併用することができる。
(イオウ系酸化防止剤)
イオウ系酸化防止剤としては、例えば、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトー
ルテトラキス(3−ラウリルチオプロピオネート)、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)などをあげることができる。前記のうち、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)が好ましい。これらの化合物は、1種又は2種以上を併用することができる。
(フェノール系酸化防止剤)
フェノール系酸化防止剤としては、例えばペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、グリセロール−3−ステアリルチオプロピオネート、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、4,4’−ビフェニレンジホスフィン酸テトラキス(2,4−ジ−tert−ブチルフェニル)、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、2,6−ジ−tert−ブチル−p−クレゾール、2,6−ジ−tert−ブチル−4−エチルフェノール等の化合物が挙げられる。
これらの化合物の中でも、炭素数5以上のアルキル基によって1つ以上置換された芳香族モノヒドロキシ化合物が好ましく、具体的には、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート}、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン等が好ましく、ペンタエリスリチル−テトラキス{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートが更に好ましい。これらの化合物は、1種又は2種以上を併用することができる。
「紫外線吸収剤」
紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンゾエート系化合物、ヒンダードアミン系化合物、サリチル酸フェニルエステル系化合物、シアノアクリレート系化合物、マロン酸エステル系化合物、シュウ酸アニリド系化合物等が挙げられる。これらは、単独又は2種以上を併用してもよい。
ベンゾトリアゾール系化合物のより具体的な例としては、2−(2’−ヒドロキシ−3’−メチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−メチル−5’−t−ドデシルフェニル)ベンゾトリアゾール、2−(2’−ヒ
ドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、メチル−3−(3−(2H−ベンゾトリアゾール−2−イル)−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート等が挙げられる。
トリアジン系化合物としては、2−[4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−(2−ヒドロキシ−4−イソオクチルオキシフェニル)−s−トリアジン、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール(BASF・ジャパン社製、Tinuvin1577FF)などが挙げられる。
ヒドロキシベンゾフェノン系化合物としては、2,2’−ジヒドロキシベンゾフェノン、2,2’、4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン等が挙げられる。
シアノアクリレート系化合物としては、エチル−2−シアノ−3,3−ジフェニルアクリレート、2’−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等が挙げられる。
マロン酸エステル系化合物としては、2−(1−アリールアルキリデン)マロン酸エステル類等が挙げられる。なかでも、マロン酸[(4−メトキシフェニル)−メチレン]−ジメチルエステル(Clariant社製、HostavinPR−25)、2−(パラメトキシベンジリデン)マロン酸ジメチルが好ましい。
シュウ酸アニリド系化合物としては、2−エチル−2’−エトキシ−オキサルアニリド(Clariant社製、SanduvorVSU)等が挙げられる。
これらの中でも、2−(2’−ヒドロキシ−3’−t−ブチル−5’−ヘキシルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−ブチルフェニル)ベンゾトリアゾール、2−[4−[(2−ヒドロキシ−3−ドデシルオキシプロピル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン、2,2’、4,4’−テトラヒドロキシベンゾフェノンが好ましい。
「光安定剤」
光安定剤としては、ヒンダードアミン系光安定剤が挙げられ、その分子量は、1000以下が好ましい。この場合には、成形品の耐候性をより向上させることができる。同様の観点から光安定剤の分子量は900以下がより好ましい。また、光安定剤の分子量は300以上が好ましい。この場合には、耐熱性をより向上させることができ、成形時における金型の汚染をより確実に防止することができる。その結果、表面外観のより優れた成形品を得ることができる。同様の観点から、光安定剤の分子量は400以上がより好ましい。さらに、光安定剤は、ピペリジン構造を有する化合物であることが好ましい。ここで規定するピペリジン構造とは、飽和6員環のアミン構造となっていればよく、ピペリジン構造の一部が置換基により置換されているものも含む。置換基としては、炭素数4以下のアルキル基があげられ、特にはメチル基が好ましい。特に、ピペリジン構造を複数有する化合物が好ましく、それら複数のピペリジン構造がエステル構造により連結されている化合物が好ましい。
そのような光安定剤としては、4−ピペリジノール、2,2,6,6−テトラメチル−4−ベンゾエート、ビス(2,2,6,6−テトラメチル−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、テトラキス(2,2,6,6‐テトラメチルピペリジン‐4‐カルボン酸)1,2,3,4‐ブタンテトライル、2,2,6,6−テトラメチル−ピレリジノールとトリデシルアルコールと1,2,3,4−ブタンテトラカルボン酸の縮合物、1,2,2,6,6−ペンタメチル−4
−ピペリジル、及びトリデシルアルコールとトリデシル−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,3,6,6−ペンタメチル−4−ピペリジル)[[3,
5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネー
ト、デカン二酸ビス(2,2,26,6−テトラメチル−1−(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生
成物、1−[2−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチル]−4−[3−(3,5−ジ−tert−ブチル−4−4−ヒドロ
キシフェニル)プロピオニルオキシ]エチル]−2,2,6,6−テトラメチルピペリジン、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、N,N‘−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサンジアミンポリマーと2,4,6−トリクロロ−1,3,5−トリアジン、1,2,3,4−ブタンテトラカルボン酸と2,2,6,6−テトラメチル−4−ピペリジノールとβ,β,β,β−テトラメチル−3,9−(2,4,8,10−テトラオキサス
ピロ[5,5]ウンデカン−ジエタノールとの縮合物、N,N’−ビス(3−アミノプロピル)エチレンジアミン-−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメ
チルピペリジン重縮合物等が挙げられる。
光安定剤の含有量は、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)の合計100重量部に対して、0.001重量部以上5重量部以下であることが好ましい。この場合には、ポリカーボネート樹脂組成物の着色をより一層防止することができる。その結果、例えば着色剤を添加した場合には、深みと清澄感のある漆黒を得ることができる。また、この場合には、ポリカーボネート樹脂組成物の耐光性をより向上させることができ、ポリカーボネート樹脂組成物を例えば自動車内外装品用途に適用しても優れた耐光性を発揮することができる。光安定剤の含有量は、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)の合計100重量部に対して、0.005重量部以上3重量部以下であることがより好ましく、0.01重量部以上1重量部以下であることがさらに好ましい。尚、芳香族ポリカーボネート樹脂(B)は、ヒンダードアミン系光安定剤によって分解しやすい傾向にある。したがって、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との比率において、芳香族ポリカーボネート樹脂(B)が多くなる場合は、光安定剤の添加量を控えめに設定することが好ましい。
「離型剤」
ポリカーボネート樹脂組成物は、成形時における離型性を付与するための離型剤として、前記ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)との合計100重量%に対して、多価アルコールの脂肪酸エステルを0.0001重量部以上2重量部以下含有してもよい。多価アルコールの脂肪酸エステルの量をこの範囲に調整することにより、添加効果が充分に得られ、成形加工における離型の際に、離型不良により成形品が割れることをより確実に防止することができる。さらにこの場合には、樹脂組成物の白濁や成形加工時に金型に付着する付着物の増大をより一層抑制することができる。多価アルコールの脂肪酸エステルの含有量は、0.01重量部以上、1.5重量部以下であることがより好ましく、0.1重量部以上、1重量部以下であることがさらに好ましい。
多価アルコールの脂肪酸エステルとしては、炭素数1〜炭素数20の多価アルコールと
炭素数10〜炭素数30の飽和脂肪酸との部分エステル又は全エステルが好ましい。かかる多価アルコールと飽和脂肪酸との部分エステル又は全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、イソプロピルパルミテート、ソルビタンモノステアレート等が挙げられる。なかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレートが好ましく用いられる。
また、耐熱性及び耐湿性の観点から、多価アルコールの脂肪酸エステルとしては、全エステルがより好ましい。
脂肪酸としては、高級脂肪酸が好ましく、炭素数10〜炭素数30の飽和脂肪酸がより好ましい。かかる脂肪酸としては、ミリスチン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘニン酸等が挙げられる。
また、多価アルコールの脂肪酸エステルにおいて、多価アルコールは、エチレングリコールであることが好ましい。この場合には、樹脂に添加した際に、樹脂の透明性を損なわずに離型性を向上させることができる。
また、前記多価アルコールの脂肪酸エステルは、2価アルコールの脂肪酸ジエステルであることが好ましい。この場合には、樹脂に添加した際に、湿熱環境下における樹脂組成物の分子量の低下を抑制することができる。
本実施の形態において、ポリカーボネート樹脂組成物に配合する離型剤の添加時期、添加方法は特に限定されない。添加時期としては、例えば、エステル交換法でポリカーボネート樹脂を製造した場合は重合反応終了時;さらに、重合法に関わらず、ポリカーボネート樹脂組成物と他の配合剤との混練途中等のポリカーボネート樹脂組成物が溶融した状態;押出機等を用い、ペレットまたは粉末等の固体状態のポリカーボネート樹脂組成物とブレンド・混練する際等が挙げられる。添加方法としては、ポリカーボネート樹脂組成物に離型剤を直接混合または混練する方法;少量のポリカーボネート樹脂組成物または他の樹脂等と離型剤を用いて作成した高濃度のマスターバッチとして添加することもできる。
「その他の樹脂」
また前記ポリカーボネート樹脂組成物は、本発明の効果を損なわない範囲で、例えば芳香族ポリエステル、脂肪族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィンなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂などの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
「無機充填剤、有機充填剤」
前記ポリカーボネート樹脂組成物には、意匠性を維持できる範囲において、ガラス繊維、ガラスミルドファイバー、ガラスフレーク、ガラスビーズ、シリカ、アルミナ、酸化チタン、硫酸カルシウム粉体、石膏、石膏ウィスカー、硫酸バリウム、タルク、マイカ、ワラストナイト等の珪酸カルシウム、カーボンブラック、グラファイト、鉄粉、銅粉、二硫化モリブデン、炭化ケイ素、炭化ケイ素繊維、窒化ケイ素、窒化ケイ素繊維、黄銅繊維、ステンレス繊維、チタン酸カリウム繊維、これらのウィスカー等の無機充填剤や、木粉、竹粉、ヤシ澱粉、コルク粉、パルプ粉などの粉末状有機充填剤;架橋ポリエステル、ポリスチレン、スチレン・アクリル共重合体、尿素樹脂などのバルン状・球状有機充填剤;炭素繊維、合成繊維、天然繊維などの繊維状有機充填剤を添加することもできる。
[ポリカーボネート樹脂組成物の製造方法]
前記ポリカーボネート樹脂組成物は、まず前記特定のポリカーボネート樹脂(A)及び芳香族ポリカーボネート樹脂(B)混練する工程を行い、その後、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との混練物に衝撃強度改質剤(C)と酸性化合物(D)を配合させる工程を行うことにより製造できる。反応工程においては、さらに化合物(E)を添加することで、化合物(E)の存在により、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)とのエステル交換反応が促進され、相溶性の高い樹脂組成物が得られる。なお、ポリカーボネート樹脂(A)、芳香族ポリカーボネート樹脂(B)、化合物(E)としては、前述と同様のものを使用することができる。化合物(E)を添加する場合は、前記特定のポリカーボネート樹脂(A)及び芳香族ポリカーボネート樹脂(B)に、前記特定の化合物(E)を金属量換算で0.5重量ppm以上1000重量ppm添加するのが好ましい。
ポリカーボネート樹脂組成物は、前記成分を所定の割合で同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができる。中でも、溶融混合の際、減圧の状態で混合できるものが、より好ましい。
前記の溶融混練機については、減圧状態での混合を達成できる構成であれば二軸押出機もしくは単軸押出機の種別の如何を限定するものではないが、用いる前記特定のポリカーボネート樹脂(A)及び芳香族ポリカーボネート樹脂(B)の特性に応じて反応混合を達成する目的の下では二軸押出機がより好ましい。
ポリカーボネート樹脂組成物の混合温度は200℃〜300℃が好ましい。この場合には、反応混練に要する時間の短縮が可能になり、反応に必要となる化合物(E)の量を抑制することができる。その結果、樹脂の劣化に伴う色調が悪化をより確実に防止することができる共に、耐衝撃性や耐湿熱性などの実用面での物理特性をより向上させることができる。同様の観点から、混合温度は220℃〜280℃であることがより好ましい。
また混合時間については、前記同様の樹脂劣化をより確実に回避するという観点から無用な長大化は回避されるべきであり、化合物(E)の量や混合温度との兼ね合いとなるが、10秒以上150秒以下が好ましく、より好ましくは10秒以上25秒以下であり、これを満たすような化合物(E)の量や混合温度の条件設定が必要となる。
反応工程における溶融反応を真空度30kPa以下という条件で行うことが好ましい。より好ましくは真空度は25kPa以下、さらに好ましくは真空度は15kPa以下であることがよい。ここでいう真空度とは絶対圧力を表し、真空圧力計を読み取り、換算式(101kPa−(真空圧力計数値))により算出したものである。
前記反応工程を減圧下にて行い、その減圧条件を前記特定の範囲に制御することにより、前記反応工程において、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)とのエステル交換反応時に生じうる副生成物が取り除かれ易くなる。その結果、エステル交換反応が進行し易くなり、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との相溶性がより高い樹脂組成物を製造することが可能になる。
[成形体]
ポリカーボネート樹脂組成物は、射出成形法、押出成形法、圧縮成形法等の通常知られている方法で成形することができる。成形によって得られる成形体は、透明性に優れると共に、生物起源物資含有率、耐熱性、耐湿熱性、及び耐衝撃性を高いレベルでバランスよく兼ね備える。また、ポリカーボネート樹脂組成物を成形してなる成形体においては、色調、耐候性、機械的強度等の向上や、残存低分子成分や異物の低減も可能である。したが
って、成形体は車両用内装部品に好適である。
前記ポリカーボネート樹脂組成物は、色相、透明性、耐熱性、耐候性、機械的強度等に優れ、さらに湿熱下での色相や光学特性の安定性にも優れるため、電気・電子部品、自動車用部品、ガラス代替用途等の射出成形分野;フィルム、シート分野、ボトル、容器分野などの押出成形分野;カメラレンズ、ファインダーレンズ、CCDやCMOS用レンズなどのレンズ用途;液晶や有機ELディスプレイなどに利用される位相差フィルム、拡散シート、導光板、偏光フィルム等の光学フィルム、光学シート;光ディスク、光学材料、光学部品;色素及び電荷移動剤等を固定化するバインダー用途といった幅広い分野へ適用が可能である。
前記ポリカーボネート樹脂組成物は、透明性、耐熱性、耐候性、機械的強度等に優れるため、着色剤等で着色しても鮮映性に優れるため、自動車内外装部品や電気・電子部品、筐体等の用途に適用できる。自動車外装部品としては、例えばフェンダー、バンパー、フェーシャ、ドアパネル、サイドガーニッシュ、ピラー、ラジエータグリル、サイドプロテクター、サイドモール、リアプロテクター、リアモール、各種スポイラー、ボンネット、ルーフパネル、トランクリッド、デタッチャブルトップ、ウインドリフレクター、ミラーハウジング、アウタードアハンドル等がある。自動車内装部品としては、例えばインストルメントパネル、センターコンソールパネル、メーター部品、各種スイッチ類、カーナビケーション部品、カーオーディオビジュアル部品、オートモバイルコンピュータ部品等がある。電気・電子部品、筐体としては、例えばデスクトップパソコン、ノートパソコンなどのパソコン類の外装部品、プリンター、コピー機、スキャナーおよびファックス(これらの複合機を含む)等のOA機器の外装部品、ディスプレイ装置(CRT、液晶、プラズマ、プロジェクタ、および有機ELなど)の外装部品、マウスなどの外装部品、キーボードのキーや各種スイッチなどのスイッチ機構部品、ゲーム機(家庭用ゲーム機、業務用ゲーム機、およびパチンコ、およびスロットマシーンなど)の外装部品などがある。さらに、携帯情報端末(いわゆるPDA)、携帯電話、携帯書籍(辞書類等)、携帯テレビ、記録媒体(CD、MD、DVD、次世代高密度ディスク、ハードディスクなど)のドライブ、記録媒体(ICカード、スマートメディア、メモリースティックなど)の読取装置、光学カメラ、デジタルカメラ、パラボラアンテナ、電動工具、VTR、アイロン、ヘアードライヤー、炊飯器、電子レンジ、ホットプレート、音響機器、照明機器、冷蔵庫、エアコン、空気清浄機、マイナスイオン発生器、および時計など電気・OA機器、家庭用電化製品を挙げることができる。
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
[評価方法]
以下において、ポリカーボネート樹脂(A)、芳香族ポリカーボネート樹脂(B)及び樹脂組成物の物性ないし特性の評価は次の方法により行った。
(1)ポリカーボネート樹脂組成物中の金属量測定
ポリカーボネート樹脂組成物中の金属量は、ICP−MS(誘導結合プラズマ質量分析計)を用いて、測定した。具体的には、ポリカーボネート樹脂組成物試料約0.5gを正確に秤量し、硫酸・硝酸で加圧密閉分解した。加圧密閉分解には、マイクロウェーブ分解装置パーキンエルマー社製MULTIWAVを使用した。分解液を適宜純水で希釈して、ICP−MS(サーモクエスト社製ELEMENT)で測定した。なお、測定したアルカリ、アルカリ土類金属はLi、Na、K、Cs、Mg、Ca、Baである。なお、後述の実施例1〜20における金属量は、化合物(C)由来の金属だけでなく、ポリカーボネー
ト樹脂(A)由来の金属(例えばCa)や芳香族ポリカーボネート樹脂(B)由来の金属(例えばCs)を含む。
(2)メルトフローレート(MFR)
ポリカーボネート樹脂組成物のMFRは、JIS K7210(1999年)に準拠して、温度=230℃、荷重2.16kgfで測定した。
(3)全光線透過率、YIの測定
ポリカーボネート樹脂組成物のペレットを、熱風乾燥機を用いて、90℃で4時間以上乾燥した。次に、乾燥したペレットを射出成形機(東芝機械株式会社製EC−75SX)に供給し、樹脂温度240℃、金型温度60℃、成形サイクル50秒間の条件で成形を行うことにより、射出成形板(幅100mm×長さ100mm×厚さ2mm)を得た。JIS K7136(2000年)に準拠し、日本電色工業(株)製ヘーズメータ「NDH2000」を使用し、D65光源にて、射出成形板の全光線透過率、Hazeを測定した。なお、全光線透過率は、70%以上を合格とし、目視にて射出成形板が不透明であることが明かな場合には、全光線透過率の測定値の代わりに、評価結果を「不透明」とした。また、YI値は、JIS K7373(2006)に準拠し、コニカミノルタ社製分光測色計「CM−5」を使用し、C光源にて、射出成形板のYIを測定した。
尚、本実施例においては、以下の通り評価した。
<全光線透過率>
75%以上の場合:透明性に特に優れると判断し、「◎」とした。
70%以上の場合:透明性に優れると判断し、「〇」とした。
70%未満の場合:透明性に優れないと判断し、「×」とした。
<YI値>
5以下の場合:色調に特に優れると判断し、「◎」とした。
10以下の場合:色調に優れると判断し、「〇」とした。
10を超える場合:色調に優れないと判断し、「×」とした。
(4)ノッチ付シャルピー衝撃試験
下記で得られた機械物性用ISO試験片についてISO179(2000年)に準拠してノッチ付シャルピー衝撃試験を実施した。ノッチに関しては先端半径Rについて0.25mmについて測定を行った。なお、ノッチ付シャルピー衝撃強度は数値が大きいほど耐衝撃強度に優れるが、
尚、本実施例においては、以下の通り評価した。
35kJ/m以上の場合:耐衝撃性に特に優れると判断し、「◎」とした。
30kJ/m以上の場合:耐衝撃性に優れると判断し、「〇」とした。
30kJ/m未満の場合:耐衝撃性に優れないと判断し、「×」とした。
(5)耐熱性(荷重たわみ温度)
ポリカーボネート樹脂組成物の耐熱性は、以下のように評価した。
ポリカーボネート樹脂組成物のペレットを、熱風乾燥機を用いて、90℃で4時間以上乾燥した。次に、乾燥したペレットを射出成形機(東芝機械株式会社製EC−75SX)により引張試験用ダンベル型試験片を成形した。このダンベル型試験片を切削し、荷重たわみ温度測定用試験片を作製した。この荷重たわみ温度測定用試験片を用いて、ISO 75(2004年)に準拠して荷重たわみ温度を測定した。試験は、フラットワイズにて行い、試験片のたわみが規定のたわみに達したときの温度を荷重たわみ温度とした。荷重は1.80MPaで測定した。この値が高いほど耐熱性が高いことを示す。
尚、本実施例においては、以下の通り評価した。
100℃以上の場合:耐熱性に優れると判断し、「〇」とした。
100℃未満の場合:耐熱性に優れないと判断し、「×」とした。
(6)総合評価
上記(1)〜(5)の評価をもとに、「×」が1つでもある場合は不合格とし、またそれ以外を合格とした。また、合格の中でも「◎」の数が多いほど、特に優れている。
[使用原料]
以下の実施例及び比較例で用いた化合物の略号、及び製造元は次の通りである。
<ジヒドロキシ化合物>
・ISB:イソソルビド[ロケットフルーレ社製]
・CHDM:1,4−シクロヘキサンジメタノール[SKChemical社製]
<炭酸ジエステル>
・DPC:ジフェニルカーボネート[三菱化学(株)製]
<芳香族ポリカーボネート(B)>
・PC−B1:三菱エンジニアリングプラスチックス社製ノバレックス7022J(ビ
スフェノールA構成単位100モル%の芳香族ポリカーボネート樹脂、溶融粘度(240℃、せん断速度91.2sec-1)3260Pa・s)
<衝撃強度改質剤(C)>
・パラロイドEXL−2678(ダウ・ケミカル社製 ブタジエン系ゴム質重合体:メタクリレート・ブタジエン・スチレン樹脂、屈折率1.532−1.53)
・メタブレンC−223A(三菱レイヨン社製 ブタジエン系ゴム質重合体:メタクリレート・ブタジエン・スチレン樹脂、屈折率1.52)
・メタブレンE−807A(三菱レイヨン社製 ブタジエン系ゴム質重合体:メタクリレート・ブタジエン・スチレン樹脂、屈折率1.52)
・B−513(カネカ社製 ブタジエン系ゴム質重合体:メタクリレート・ブタジエン・スチレン樹脂、屈折率1.53)
・メタブレンC−201A(三菱レイヨン社製 ブタジエン系ゴム質重合体:メタクリレート・ブタジエン・スチレン樹脂、屈折率1.53)
<触媒失活剤(酸性化合物(D))>
・ホスホン酸[和光純薬製 試薬特級ホスホン酸(亜リン酸)](分子量82.0)
<化合物(E)>
ハイパーフォームHPN−68L(ミリケン・ジャパン(同)製:Bicyclo[2.2.1]Heptane-2,3-Dicarboxylic Acid, Disodium Salt.を80%含有し、その他成分として水、シリカ等を含む。)
<熱安定剤(酸化防止剤)>
・Irganox1010:ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート][BASF社製]
・AS2112:トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト[(株)ADEKA製](分子量646.9)
<離型剤>
・E−275:エチレングリコールジステアレート[日油(株)製]
[ポリカーボネート樹脂(A)の製造例1]
竪型攪拌反応器3器と横型攪拌反応器1器、並びに二軸押出機からなる連続重合設備を用いて、ポリカーボネート樹脂の重合を行った。具体的には、まず、ISB、CHDM、及びDPCをそれぞれタンクで溶融させ、ISBを35.2kg/hr、CHDMを14.9kg/hr、DPCを74.5kg/hr(モル比でISB/CHDM/DPC=0.700/0.300/1.010)の流量で第1竪型攪拌反応器に連続的に供給した。
同時に、触媒としての酢酸カルシウム1水和物の添加量が全ジヒドロキシ化合物1molに対して1.5μmolとなるように酢酸カルシウム1水和物の水溶液を第1竪型攪拌反応器に供給した。各反応器の反応温度、内圧、滞留時間はそれぞれ、第1竪型攪拌反応器:190℃、25kPa、90分、第2竪型攪拌反応器:195℃、10kPa、45分、第3竪型攪拌反応器:210℃、3kPa、45分、第4横型攪拌反応器:225℃、0.5kPa、90分とした。得られるポリカーボネート樹脂の還元粘度が0.41dL/g〜0.43dL/gとなるように、第4横型攪拌反応器の内圧を微調整しながら運転を行った。
第4横型攪拌反応器より60kg/hrの量でポリカーボネート樹脂を抜き出し、続いて樹脂を溶融状態のままベント式二軸押出機[(株)日本製鋼所製TEX30α、L/D:42.0、L(mm):スクリュの長さ、D(mm):スクリュの直径]に供給した。押出機を通過したポリカーボネート樹脂を、引き続き溶融状態のまま、目開き10μmのキャンドル型フィルター(SUS316製)に通して、異物を濾過した。その後、ダイスからストランド状にポリカーボネート樹脂を排出させ、水冷、固化させた後、回転式カッターでペレット化し、ISB/CHDMのモル比が70/30mol%の共重合ポリカーボネート樹脂のペレットを得た。
前記押出機は3つの真空ベント口を有しており、ここで樹脂中の残存低分子成分を脱揮除去した。第2ベントの手前で樹脂に対して2000重量ppmの水を添加し、注水脱揮を行った。第3ベントの手前でIrganox1010、AS2112、E−275をポリカーボネート樹脂100重量部に対して、それぞれ0.1重量部、0.05重量部、0.3重量部を添加した。以上により、ISB/CHDM共重合体ポリカーボネート樹脂を得た。前記ポリカーボネート樹脂に対して、触媒失活剤として0.65重量ppmの亜リン酸(リン原子の量として0.24重量ppm)を添加した。なお、亜リン酸は次のようにして添加した。製造例1において得られたポリカーボネート樹脂のペレットに、亜リン酸のエタノール溶液をまぶして混合したマスターバッチを調製し、押出機の第1ベント口の手前(押出機の樹脂供給口側)から、押出機中のポリカーボネート樹脂100重量部に対して、マスターバッチを1重量部となるように供給した。
製造例1において得られたポリカーボネート樹脂(A)を「PC−A1」という。PC−A1の溶融粘度(240℃、せん断速度91.2sec-1)は720Pa・sである。
[実施例1]
本例においては、第1段目の混練として、ポリカーボネート樹脂(A)としてPC−A1 70重量部を用い、芳香族ポリカーボネート樹脂(B)としてPC−B1 30重量部を用い、化合物(D)として、Naを含有する粉末状のハイパーフォームHPN−68L(ミリケン・ジャパン(同)製) 2質量ppmを用い、そして15−クラウン5−エーテルを化合物(D)中の金属に対して1倍モル(金属換算(Na換算)で2質量ppm)用いて、二軸混練機(日本製鋼所社製、TEX−30α(L/D=52.5、L(mm):スクリュの長さ、D(mm):スクリュの直径))を用いて混練を行い、ポリカーボネート樹脂(A)と芳香族ポリカーボネート樹脂(B)との溶融反応を行った。混練条件は、流量:60kg/h、スクリュ回転速度:430rpm、シリンダー温度:230℃である。前記押出機に2つの真空ベント口を有しており、ベント真空度:113kPaの条件で行った。混練による溶融反応後に混練物をストランド状に押出し、水冷工程を経てペレット状にカッティングを行い混練物のペレットを得た。第2段目の混練として、得られた混練物のペレット95重量%と、衝撃強度改質剤(C)としてパラロイドEXL−2678と、酸性化合物(D)としてホスホン酸(和光純薬(株) 製 試薬特級)を、前記
ポリカーボネート樹脂(A)、前記芳香族ポリカーボネート樹脂(B)および前記衝撃強度改質剤(C)との合計量100重量部に対して7.5重量ppmとなるように上記二軸混練機を用いて再び溶融混練し、ポリカーボネート樹脂組成物のペレットを得た。混練条
件は、流量:30kg/h、スクリュ回転速度:200rpm、シリンダー温度:230℃である。
次いで、得られたペレットを温度100℃の熱風乾燥機で5時間乾燥した後、75トン射出成形機(東芝機械株式会社製EC−75SX)を用いて、ペレットの射出成形を行った。成形条件は、金型温度:60℃、シリンダー温度:240℃である。このようにして、幅100mm×長さ100mm×厚さ2mmの板状の成形体からなる試験片を得た。また、同様に成形を行うことにより、ISO引張試験片を得た。これらの試験片を用いて前記の評価を行い、その結果を表1に示す。
[実施例2]
下記の(1)及び(2)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)衝撃強度改質剤(C)として用いられるパラロイド EXL−2678をメタブレン C−223Aに変更した。
(2)酸性化合物(D)の添加量を7.5重量ppmから10.8重量ppmに変更した。
(3)第1段目の混練で用いた二軸混練機を以下の通り変更した。
混練機:TEX54αII(L/D=45.5)、流量:265kg/h、スクリュ回転速度:215rpm、シリンダー温度:230℃)
尚、第2段目の混練で用いた二軸混練機は実施例1から変更はない。
[実施例3]
下記の(1)〜(3)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)衝撃強度改質剤(C)として用いられるパラロイド EXL−2678をメタブレン E−807Aに変更した。
(2)酸性化合物(D)の添加量を7.5重量ppmから10.8重量ppmに変更した。
(3)第1段目の混練で用いた二軸混練機の条件を実施例2の変更点(3)に変更した。
[実施例4]
下記の(1)〜(3)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)衝撃強度改質剤(C)として用いられるパラロイド EXL−2678をメタブレン C−223Aに変更し、その添加量を5重量%から10重量%に変更した。
(2)酸性化合物(D)の添加量を7.5重量ppmから10.8重量ppmに変更した。
(3)第1段目の混練で用いた二軸混練機の条件を実施例2の変更点(3)に変更した。
[実施例5]
下記の(1)〜(3)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)衝撃強度改質剤(C)として用いられるパラロイド EXL−2678をメタブレン E−807Aに変更し、その添加量を5重量%から10重量%に変更した。
(2)酸性化合物(D)の添加量を7.5重量ppmから10.8重量ppmに変更した

(3)第1段目の混練で用いた二軸混練機の条件を実施例2の変更点(3)に変更した。
[比較例1]
下記の(1)及び(2)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)衝撃強度改質剤(C)の添加量を0に変更した。
(2)酸性化合物(D)の添加量を0に変更した。
[比較例2]
下記の(1)〜(2)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)衝撃強度改質剤(C)の添加量を0に変更した。
(2)第1段目の混練において、二軸混練機のスクリュ回転速度を430rpmから325rpmに変更した。
[比較例3]
下記の(1)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)酸性化合物(D)の添加量を0に変更した。
[比較例4]
下記の(1)〜(3)に示す変更点を除いては、実施例1と同様にしてポリカーボネート樹脂組成物を作製し、これを用いて成形体(試験片)を作製した。本例の評価結果を表1に示す。
(1)ポリカーボネート樹脂(B)の添加量を0に変更した。
(2)酸性化合物(D)の添加量を0に変更した。
(3)化合物(E)の添加量を0に変更した。
Figure 0006950234
表1より知られるように、実施例のポリカーボネート樹脂組成物は、前述の式(1)で表される化合物に由来する構成単位を含むポリカーボネート樹脂(A)と、芳香族ポリカーボネート樹脂(B)と、衝撃強度改質剤(C)と、酸性化合物(D)とを含有する。か
かるポリカーボネート樹脂組成物は、厚さ2mmの成形体の全光線透過率が70%以上であり、YI値が10以下であり、ノッチ先端半径Rが0.25mmで測定したノッチ付シャルピー衝撃強度が30kJ/m以上であり、耐熱性も100℃以上であり、透明性、色調、耐衝撃性、及び耐熱性を高いレベルでバランスよく兼ね備えていた。

Claims (12)

  1. 記式(1)で表される化合物に由来する構成単位を有し、全ジヒドロキシ化合物に由
    来する構成単位100モル%に対して、芳香族基を含有するジヒドロキシ化合物に由来す
    る構成単位の含有割合が10モル%以下であるポリカーボネート樹脂(A)と、
    芳香族ポリカーボネート樹脂(B)(但し、該ポリカーボネート樹脂(A)と同一であ
    ることはない)と、
    衝撃強度改質剤(C)と、
    酸性化合物(D)とを含有し、
    該ポリカーボネート樹脂(A)、該芳香族ポリカーボネート樹脂(B)および該衝撃強
    度改質剤(C)の合計に対する該酸性化合物(D)の含有量が、2.5重量ppm以上、
    25重量ppm未満であり、
    該ポリカーボネート樹脂組成物が、さらに長周期型周期表第I族の金属の化合物及び長
    周期型周期表第II族の金属の化合物から選択される少なくとも1種の化合物(E)を含有
    することを特徴とする、ポリカーボネート樹脂組成物。
    Figure 0006950234
  2. 前記化合物(E)の含有量が、前記ポリカーボネート樹脂(A)、前記芳香族ポリカー
    ボネート樹脂(B)および前記衝撃強度改質剤(C)の合計量100重量部に対して、該
    化合物(E)中の金属量で0.8重量ppm以上かつ1000重量ppm以下である、請
    求項1に記載のポリカーボネート樹脂組成物。
  3. 前記化合物(E)が、無機塩(炭酸塩を含む)、カルボン酸塩、フェノラート、ハロゲ
    ン化合物、及び水酸化化合物からなるグループより選ばれる少なくとも1種である、請求
    又はに記載のポリカーボネート樹脂組成物。
  4. 前記化合物(E)がリチウム化合物、ナトリウム化合物、カリウム化合物、及びセシウ
    ム化合物からなるグループより選ばれる少なくとも1種である、請求項のいずれか
    1項に記載のポリカーボネート樹脂組成物。
  5. 前記酸性化合物(D)の含有量が、前記化合物(E)中の金属の含有量に対して0.5
    倍モル以上5倍モル以下である、請求項1〜4のいずれか1項に記載のポリカーボネート
    樹脂組成物。
  6. 請求項1〜のいずれか1項に記載のポリカーボネート樹脂組成物を成形して得られた
    成形体。
  7. 請求項1に記載のポリカーボネート樹脂組成物を製造する方法であって、
    下記式(1)で表される化合物に由来する構成単位を含むポリカーボネート樹脂(A)と
    芳香族ポリカーボネート樹脂(B)とを含む組成物に対して、長周期型周期表第I族の金
    属の化合物及び長周期型周期表第II族の金属の化合物から選択される少なくとも一種の化
    合物()を溶融混練する前工程(i)と、
    該工程後に、該工程で得られた樹脂組成物と衝撃強度改質剤(C)と酸性化合物(D)
    を溶融混練する後工程(ii)とを有する、ポリカーボネート樹脂組成物の製造方法。
    Figure 0006950234
  8. 前記工程(i)を減圧下にて行う、請求項に記載のポリカーボネート樹脂組成物の製造
    方法。
  9. 前記工程(i)を真空度30kPa以下という条件で行う、請求項又はに記載のポ
    リカーボネート樹脂組成物の製造方法。
  10. 前記化合物(E)が、無機塩(炭酸塩を含む)、カルボン酸塩、フェノラート、ハロゲ
    ン化合物、水酸化化合物からなるグループより選ばれる少なくとも1種である、請求項
    のいずれか1項に記載のポリカーボネート樹脂組成物の製造方法。
  11. 前記化合物(E)がリチウム化合物、ナトリウム化合物、カリウム化合物、及びセシウ
    ム化合物からなるグループより選ばれる少なくとも1種である、請求項10のいずれ
    か1項に記載のポリカーボネート樹脂組成物の製造方法。
  12. 前記酸性化合物(D)の添加量が、前記化合物(E)の金属の添加量に対して、0.5
    倍モル以上5倍モル以下である、請求項11のいずれか1項に記載のポリカーボネー
    ト樹脂組成物の製造方法。
JP2017063999A 2017-03-28 2017-03-28 ポリカーボネート樹脂組成物、その製造方法、成形体 Active JP6950234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063999A JP6950234B2 (ja) 2017-03-28 2017-03-28 ポリカーボネート樹脂組成物、その製造方法、成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063999A JP6950234B2 (ja) 2017-03-28 2017-03-28 ポリカーボネート樹脂組成物、その製造方法、成形体

Publications (2)

Publication Number Publication Date
JP2018165341A JP2018165341A (ja) 2018-10-25
JP6950234B2 true JP6950234B2 (ja) 2021-10-13

Family

ID=63922372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063999A Active JP6950234B2 (ja) 2017-03-28 2017-03-28 ポリカーボネート樹脂組成物、その製造方法、成形体

Country Status (1)

Country Link
JP (1) JP6950234B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253438A4 (en) * 2020-11-30 2024-05-29 Mitsubishi Chemical Corporation RESIN COMPOSITION, MOLDED BODY, AND MACROMONOMER COPOLYMER
CN115322447B (zh) * 2022-09-20 2023-03-24 江南大学 一种淀粉基增韧复合材料的加工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100014667A (ko) * 2007-05-23 2010-02-10 데이진 가부시키가이샤 폴리카보네이트 수지 조성물
JP6439317B2 (ja) * 2014-08-21 2018-12-19 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物及びその成形品
CN111171545B (zh) * 2015-06-30 2023-04-28 三菱化学株式会社 聚碳酸酯树脂组合物、其制造方法、成型体

Also Published As

Publication number Publication date
JP2018165341A (ja) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6519611B2 (ja) ポリカーボネート樹脂組成物、及びこれを用いた成形品、フィルム、プレート、射出成形品
US10703902B2 (en) Polycarbonate resin composition and molded body thereof
US10526446B2 (en) Polycarbonate resin composition, method for producing same, and molded object
JP6950234B2 (ja) ポリカーボネート樹脂組成物、その製造方法、成形体
JP5434571B2 (ja) 透明樹脂組成物及び透明樹脂成形品
JP6671114B2 (ja) ポリカーボネート樹脂組成物、その製造方法、成形体、及びその製造方法
WO2017020185A1 (zh) 聚碳酸酯树脂复合物
JP7095358B2 (ja) ポリカーボネート樹脂組成物及びその成形体
JP6642212B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP2018150480A (ja) ポリカーボネート樹脂組成物及び成形体
JP6693231B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP6693232B2 (ja) ポリカーボネート樹脂組成物及び成形体
CN107709458B (zh) 聚碳酸酯树脂组合物、其制造方法、成形体
JP6969119B2 (ja) 成形体の製造方法
JP2023148429A (ja) 熱可塑性樹脂組成物よび成形体
WO2017000154A1 (zh) 聚碳酸酯树脂组合物、其制造方法、成形体

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R151 Written notification of patent or utility model registration

Ref document number: 6950234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151