JP6697990B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6697990B2
JP6697990B2 JP2016181410A JP2016181410A JP6697990B2 JP 6697990 B2 JP6697990 B2 JP 6697990B2 JP 2016181410 A JP2016181410 A JP 2016181410A JP 2016181410 A JP2016181410 A JP 2016181410A JP 6697990 B2 JP6697990 B2 JP 6697990B2
Authority
JP
Japan
Prior art keywords
circuit
data
sampling
delay
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016181410A
Other languages
English (en)
Other versions
JP2018046489A (ja
Inventor
一人 鹿又
一人 鹿又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2016181410A priority Critical patent/JP6697990B2/ja
Priority to CN201710699221.6A priority patent/CN107832246B/zh
Priority to EP17188232.7A priority patent/EP3297238B1/en
Priority to TW106131103A priority patent/TWI741027B/zh
Priority to US15/702,341 priority patent/US10483957B2/en
Publication of JP2018046489A publication Critical patent/JP2018046489A/ja
Application granted granted Critical
Publication of JP6697990B2 publication Critical patent/JP6697990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4204Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus
    • G06F13/4221Bus transfer protocol, e.g. handshake; Synchronisation on a parallel bus being an input/output bus, e.g. ISA bus, EISA bus, PCI bus, SCSI bus
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • H04L25/03885Line equalisers; line build-out devices adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0026PCI express
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00286Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03484Tapped delay lines time-recursive
    • H04L2025/0349Tapped delay lines time-recursive as a feedback filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、半導体装置に関し、特に帰還型等化器を備えた半導体装置に関する。
時間的に前(過去)のデータを用いて、波形の等化を行う帰還型等化器が知られている。帰還型等化器としては、例えば判定帰還型等化器(Decision Feedback Equalizer、以下、DFEとも称する)等の種々の構成のものが存在する。
DFEは、例えばシリアルデータとパラレルデータとの相互変換を行うSerDes(SERializer/DESerializer)回路に設けられ、シリアルデータの波形を等化するのに使われる。
SerDes回路は、半導体装置に内蔵され、例えばPCI Expressのカードに搭載される。PCI Expressには、規格によって転送レートの異なるものが複数存在する。規格PCI Express1.1(以下、規格Gen1)では、転送レートが、2.5Gbpsであり、規格PCI Express2.0(以下、規格Gen2)では、転送レートが、5Gbpsである。また、規格PCI Express3.0(以下、規格Gen3)では、転送レートが、8Gbpsであり、規格PCI Express4.0(以下、規格Gen4)では、転送レートが、16Gbpsであ。PCI Expressカードに搭載されたSerDes回路におけるDFEは、カードが採用する規格に合わせた転送レートで動作することが要求されることになる。
DFEは、例えば特許文献1に記載されている。
特開2011−151765号公報
DFEは、例えばアナログ回路とデジタル回路によって構成される。特許文献1の図1において、DFE(80)は、アナログ回路により構成され、タップ係数決定回路(90)およびデータフィルタ回路(10)は、デジタル回路によって構成される。このような構成のDFEを、それぞれの規格Gen1〜Gen4に合わせて、複数種類設計または/および製造すると、設計に要する時間が増え、製造費用の低減も難しい。なお、上記した()内の符合は、特許文献1の図1において用いられている符号を示している。
そこで、本発明者は、最も転送レートの高い規格Gen4に合わせたDFEを用意し、転送レートの低い規格Gen1〜Gen3においても、用意したDFEを用いることにより、設計に要する時間および製造費用の低減を図ることを考えた。しかしながら、このようにした場合、例えばDFEを構成するアナログ回路において要求される遅延時間が、転送レートによって異なるため、適切な等化を行うことが難しくなると言う課題が生じる。
特許文献1には、DFEの構成が記載されているが、異なる転送レートで用いた場合に、適切な等化を行うことが難しくなることは、認識されておらず、勿論記載もされていない。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態による半導体装置は、帰還型等化器を備えている。帰還型等化器は、入力データと帰還データとを加算し、加算データを出力する加算回路と、加算回路からの加算データをサンプリングし、サンプリングデータを出力する第1サンプリング回路と、第1サンプリング回路からのサンプリングデータにタップ係数を乗算して、帰還データを形成する乗算回路と、第1サンプリング回路からのサンプリングデータに基づいて、タップ係数を決定するタップ係数決定回路と、キャリブレーション回路を備えている。キャリブレーション回路は、第1サンプリング回路がサンプリングデータを出力してから、当該サンプリングデータに対応する加算データが、第1サンプリング回路に供給されるまでの遅延時間、または第1サンプリング回路のサンプリングのタイミングを調整する。
一実施の形態によれば、シリアルデータの転送レート(転送速度)が変わっても、適切に等化を行うことが可能な半導体装置を提供することができる。
実施の形態1に係わるDFEの構成を示すブロック図である。 実施の形態1に係わるキャリブレーションモードの動作を示すフローチャート図である。 実施の形態1に係わるDFEの動作を模式的に示した説明図である。 実施の形態2に係わるDFEの構成を示すブロック図である。 実施の形態2に係わるキャリブレーションモードの動作を示すフローチャート図である。 実施の形態2に係わるDFEの動作を示す波形図である。 実施の形態3に係わるDFEの構成を示すブロック図である。 実施の形態1に係わる受信ユニットの構成を示す模式的なブロック図である。 実施の形態1に係わる半導体装置の構成を示すブロック図である。 実施の形態1に係わる電子装置の構成を示す模式的な断面図である。 (A)から(C)は、DFEの基本的な動作を示す説明図である。 (A)から(C)は、DFEの課題を説明する説明図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部分には原則として同一の符号を付し、その繰り返しの説明は、原則として省略する。
(実施の形態1)
実施の形態の理解を容易にするために、先ず、DFEの基本的な動作と、シリアルデータの転送レートが変わった場合の課題を説明する。
<DFEの基本的な動作>
図11は、DFEの基本的な動作を示す説明図である。図11(A)は、DFEにおける波形の等化を模式的に示す説明図である。図11(B)は、矩形状の波形を有する入力データが、信号配線の入力端子に供給されたときに、信号配線の出力端子から出力される出力データの波形を示す波形図である。図11(C)は、信号配線の伝達特性をDFEによって等化することにより整形された出力データの波形を示す波形図である。説明を容易にするために、矩形状の波形が信号配線の入力端子に供給され、インパルス応答の波形を等化する場合を説明する。
図11(A)において、W(0)は、現在の入力データの波形を示し、W(−1)は、現在よりも時間的に前(過去)の入力データの波形を示している。また、W(+1)は、現在よりも時間的に後(未来)の入力データの波形を示している。DFEにおいては、現在の入力データに対して、過去の入力データにタップ係数を乗算して得た帰還データを加算(減算)することによって、現在の入力データに対応する出力データの波形を整形する。これにより、信号配線が有する伝達特性の等化が行われる。以下の説明では、帰還データを加算するとして説明するが、帰還データを反転して加算することにより、加算は、実質的に減算を意味する。なお、図11(A)において、入力データの波形W(−1)、W(0)およびW(+1)は、アイパターンとして描かれている。
信号配線の入力端子に、図11(B)に示すような矩形状の入力データの波形W(0)が供給された場合、信号配線の有する伝達特性に従って、信号配線の出力端子から出力される出力データの波形は劣化し、形状が、入力データの波形W(0)とは異なり、例えば図11(B)においてWVで示すような波形となる。DFEにおいては、図11(A)において、過去の入力データの波形W(−1)を、所定のタイミングtsでサンプリングする。このサンプリングにより得られたサンプリングデータとタップ係数TP(1)との間で、乗算回路15(1)により乗算を行い、帰還データを形成し、所定のタイミングtb(−1)で、現在の波形W(0)に加算(減算)する。信号配線の伝達特性が時間的に一定であれば、サンプリングデータに適切なタップ係数TP(1)を乗算することにより得られた帰還データは、所定のタイミングtb(−1)のときの波形WVの値W(−1)tsを示している。そのため、この帰還データが示す値W(−1)tsを反転して、波形WVに加算することにより、図11(C)に示すように、所定のタイミングtb(−1)においては、波形の歪が整形される。
同様にして、図示しないが、さらに過去の入力データの波形W(−2)、W(−3)についても、これらの波形が供給されたときに、サンプリングしておき、適切なタップ係数を乗算して、所定のタイミングtb(−2)、tb(−3)のときの波形WVの値W(−2)ts、W(−3)tsを示す帰還データを形成する。これらの帰還データを、タイミングtb(−2)、tb(−3)において、波形WVに加算することにより、タイミングtb(−2)、tb(−3)において、図11(C)に示すように、波形が整形される。その結果、信号配線の伝達特性が等化され、図11(C)に示すように、整形された波形WVEの出力データが得られることになる。
なお、図11(A)〜(C)において、横軸は時間を示し、縦軸は電圧を示している。
<転送レートが変わった場合の課題>
次に、転送レートが変わった場合、すなわち転送レートの異なるシリアルデータを等化する場合の課題を説明する。転送レートの異なるシリアルデータを等化する場合の例としては、最も転送レートの高い規格Gen4に合わせたDFEを、所謂マクロ回路として用意し、他の規格Gen1〜規格Gen3のDFEとしても流用する場合が挙げられる。
図12は、課題を説明する説明図である。図12(A)〜図12(C)は、図11(A)〜図11(C)と類似しており、同じ部分には、同じ符合が付されている。図12(A)において、乗算回路15(1)は、アナログ回路によって構成されている。この乗算回路15(1)の遅延時間は、過去の入力データの波形W(−1)を所定のタイミングtsでサンプリングしてから、所定のタイミングtb(−1)で現在の入力データと帰還データが加算されるように、設定される。図示しない過去の入力データの波形W(−2)、W(−3)に対応する乗算回路についても、それぞれの波形を所定のタイミングtsでサンプリングしてから、所定のタイミングtb(−2)、tb(−3)で現在の入力データと帰還データが加算されるように、それぞれの遅延時間が設定される。
乗算回路15(1)は、アナログ回路によって構成されているため、シリアルデータの転送レートが変化しても、遅延時間はほぼ一定である。すなわち、シリアルデータとして供給される入力信号の波形の周期は、転送レートが変わると、変わるが、乗算回路15(1)の遅延時間はほぼ一定である。
規格Gen4用のDFEでは、規格Gen4の転送レートのシリアルデータを等化することができるように、タイミングtsにおいてサンプリングしてから、タイミングtb(−1)で入力データに帰還データが加算されるように、乗算回路15(1)の遅延時間が設定される。この規格Gen4用のDFEを規格Gen1〜Gen3用に流用すると、入力データに帰還データを加算するタイミングが速くなる。図12(A)では、時間DL分だけ、加算するタイミングが早くなり、タイミングtb(−1)Rに変わってしまう。
加算するタイミングが早くなるため、規格Gen4ではタイミングtb(−1)において加算していた帰還データの値W(−1)tsが、図12(B)に示すように、タイミングtb(−1)Rにおいて、波形WVに加算(×印)されることになる。帰還データは反転して加算されるため、等化された波形WVEは、図12(C)に示すようになり、タイミングtb(−1)では、波形WVEは、値ER(−1)を有しており、十分に整形されない。
乗算回路15(1)について説明したが、過去の入力データW(−2)、W(−3)についても同様に、帰還データが、タイミングtb(−2)、tb(−3)において、波形WVに加算されるのではなく、タイミングtb(−2)R、tb(−3)Rにおいて加算されることになり、図12(C)に示すように、十分に等化されていない波形WVEが出力されることになる。
特に、乗算回路15(1)については、現在の入力データの1個前に入力された入力データW(−1)を帰還データとして、現在に入力データW(0)へ加算することになるため、乗算回路15(1)に許容される時間が、他の入力データW(−2)、W(−3)に対応する乗算回路に許容される時間よりも短くなる。そのため、特に乗算回路15(1)は、遅延時間を短くすることが可能なアナログ回路によって構成される。また、図11(B)および図12(B)からも理解されるように、乗算回路15(1)によって形成され、波形WVに加算される値W(−1)tsは大きい。そのため、乗算回路15(1)によって形成された帰還データを加算するタイミングが、所定のタイミングから変わると、等化された波形の歪みは、他の帰還データを加算するタイミングが変わった場合に比べて大きくなる。従って、特に乗算回路15(1)によって形成される帰還データを加算するタイミングは、他の帰還データに比べて、所定のタイミングtb(−1)になるようにすることが重要である。
ここでは、規格Gen4に合わせたDFEをマクロ回路として、他の規格用のDFEに流用する例を述べたが、例えば規格Gen1に合わせたDFEをマクロ回路として用意し、他の規格用のDFEとして流用する場合も同様に、十分に等化されていない波形WVEが出力される。
さらに、加算するタイミングが、図12(A)に斜線で示した領域EQ1、EQ2まで変化すると、間違った等化が行われる可能性がある。
すなわち、シリアルデータの転送レート(転送速度)が変わると、適切に等化を行うことが困難になり、十分に整形されていない波形あるいは誤った波形が、出力されると言う課題が生じる。
<電子装置>
次に、実施の形態1に係わるDFEを有する電子装置の一例を説明する。図10は、実施の形態1に係わる電子装置EPPの構成を示す模式的な断面図である。電子装置EPPは、プリント基板BPSに搭載された複数の半導体装置および電子部品を備えている。また、プリント基板BPSには、特に制限されないが、複数個のソケットが搭載されている。図10においては、プリント基板BPSに搭載された1個の半導体装置LS−CPと2個のソケットSL0、SL1のみが描かれている。また、図10において、BPBは、プリント基板BPSに形成された信号配線を示している。
プリント基板BPSに搭載された半導体装置LS−CPは、例えば中央処理装置であり、信号配線BPBに接続されている。また、ソケットSL0、SL1も信号配線BPBに接続されている。この信号配線BPBを介して、半導体装置LS−CPとソケットSL0、SL1との間でデータの送受信が行われる。ソケットSL0、SL1には、PCI Express規格に従ったカードCRD0、CRD1が挿入される。カードCRD0、CRD1にも、複数の半導体装置と電子部品が搭載されるが、図10には、カードCRD0(CRD1)に搭載された2個の半導体装置LS−DFE、LS−0(LS−DFE、LS−1)が例示されている。図10において、カードCRD0、CRD1に搭載された半導体装置LS−DFEは、DFEを内蔵した半導体装置であり、LS−0、LS−1は、半導体装置LS−DFEとの間でデータの送受信を行い、所望の処理を行う半導体装置である。
カードCRD0、CRD1に搭載された半導体装置LS−DFEと、半導体装置LS−CPとの間は、信号配線BPBを介して、シリアルデータが送受信される。そのため、半導体装置LS−DFEに搭載されたDFEには、信号配線BPBの伝達特性に従って歪んだ波形のデータが入力データとして供給される。半導体装置LS−DFEにおいて、信号配線BPBの等化が行われ、整形された波形の出力データが、半導体装置LS−0、LS−1に供給され、半導体装置LS−0、LS−1において所望の処理が行われる。
スロットSL0、SL1に挿入されるカードCRD0、CRD1は、両方とも同じ規格Gen4に従ってカードであってもよいし、互いに異なる規格、例えばGen4とGen1に従ったカードであってもよい。
<半導体装置LS−DFEの構成>
図9は、実施の形態1に係わる半導体装置LS−DFEの構成を示すブロック図である。2点鎖線で囲んだ半導体装置LS−DFEは、特に制限されないが、1個の半導体基板と、この半導体基板に形成された複数の回路ブロックとを備えている。図9には、複数の回路ブロックのうち、説明に必要な回路ブロックのみが示されている。図9において、半導体装置LS−DFEは、SerDes回路SEDC、中央処理装置CPC、揮発性メモリおよび不揮発性メモリを含むメモリMEMおよびロジック回路LOGを備えており、これらの回路ブロックはバスBUSを介して相互に接続され、相互間でデータ、制御信号等の送受信が行われる。
SerDes回路SEDCは、物理層PHY、リンク層LINKおよびインタフェースPIPEを備えている。リンク層LINKが、バスBUSに接続され、SerDes回路SEDCとバスBUSとの間で、データ、制御信号の送受信が行われる。また、インタフェースPIPEは、PCS(Physical Coding Sublayer)の機能を有する物理層PHYとリンク層LINKとの間のインタフェースを行う。物理層PHYは、送信ユニットTXUと受信ユニットRXUを有しており、パラレルデータとシリアルデータの変換を行う。
シリアルデータが、例えば、図10に示したプリント基板BPSの信号配線BPBを伝達して、受信ユニットRXUによって受信され、物理層PHYでパラレルデータに変換され、インタフェースPIPEおよびリンク層LINKを介してバスBUSに供給される。中央処理装置CPCが、メモリMEMに格納されたプログラムに従って、バスBUSに供給されたパラレルデータを処理し、ロジック回路LOG等に供給される。反対にロジック回路LOG等からバスBUSへ供給されたパラレルデータは、リンク層LINKおよびインタフェースPIPEを介して物理層PHYに供給される。物理層PHYに供給されたパラレルデータはシリアルデータに変換され、送信ユニットTXUによって、信号配線BPBへ送信される。
これにより、図10に示した電子装置EPPにおいては、半導体装置LS−CPと半導体装置LS−DFEとの間で、シリアルデータが信号配線BPBを介して送受信されることになる。また、カードCRD0(CRD1)に搭載された半導体装置LS−0(LS−1)は、例えば半導体装置LS−DFE内のロジックLOGによって接続されており、半導体装置LS−0(LS−1)と半導体装置LS−DFEとの間のデータ、制御信号の送受信は、ロジックLOGを介して行われる。
ここでは、図10に示した電子装置EPPを例にして説明したが、これに限定されるものではない。例えば、図9に示した半導体装置LS−DFEを、コネクタが搭載されたプリント基板に搭載し、コネクタに接続されたゲーブルを介して対応する電子装置または半導体装置に接続されるようにしてもよい。この場合には、コネクタに接続されたケーブルがデータを伝達する信号配線として機能することになる。また、図10では、所望の機能を実現する半導体装置が、LS−DFEとは異なる半導体装置LS−0(LS−1)を用いる例を説明したが、半導体装置LS−DFEにおいて、所望の機能が達成されるようにしてもよい。
<受信ユニットの構成>
次に、実施の形態1に係わる受信ユニットRXUの構成を説明する。受信ユニットRXUが、信号配線BPB(図9および図10)の伝達特性を等化するDFEを備えている。図8は、実施の形態1に係わる受信ユニットRXUの構成を示す模式的なブロック図である。受信ユニットRXUは、主としてアナログ回路によって構成された回路ブロックANGCと、主としてデジタル回路によって構成された回路ブロックDIGCとを備えている。この実施の形態1においては、特に制限されないが、入力データであるシリアルデータは、差動信号で供給される。図8では、この差動信号が、符合RXINNと符合RXINPによって示されている。すなわち、互いに相補的に変化する差動信号RXINN、RXINPが、信号配線BPBを伝達して、受信ユニットRXUに供給されることになる。
回路ブロックANGCは、入出力回路IOU、線形増幅回路VGA、セレクタSEL、DFE1、サンプリング回路SMP、デマルチプレクサDMUL、CDR回路CDRCおよび位相補間回路PHIを備えている。
入出力回路IOUは、特に制限されないが、差動増幅回路DAPと検出回路DETCを備えている。差動増幅回路DAPおよび検出回路DETCには、差動信号RXINN、RXINPが供給される。差動増幅回路DAPは、差動信号RXINN、RXINPを増幅して、出力する。また、検出回路DETCは、シリアルデータが供給されたか否かを、差動信号RXINN、RXINPによって検出する。これにより、入出力回路IOUにおいて、シリアルデータの供給が検出された場合、差動増幅回路DAPによって増幅された差動信号が、線形増幅回路VGAに供給される。
線形増幅回路VGAによって、線形に増幅された入力データは、特に制限されないが、この実施の形態1においては、セレクタSELに供給される。セレクタSELによって、線形増幅回路VGAによって増幅された入力データが選択されると、入力データは、DFE1に供給される。DFE1は、シリアルデータを伝達した信号配線(例えば、図9および図10に示した信号配線BPB)の伝達特性を等化して、供給された入力データの波形を整形する。このDFE1については、後で詳しく説明するので、ここではこれ以上の説明は省略する。
波形が整形されて、DFE1から出力された出力データは、サンプリング回路SMPに供給される。このサンプリング回路SMPは、クロック入力端子ckに供給されているクロック信号に同期して、DFE1からの出力データをサンプリングし、サンプリングにより得られて2値のサンプリングデータを、CDR回路CDRCへ供給するとともに、デマルチプレクサDMULへ供給する。
CDR回路CDRCは、クロックデータリカバリ回路であり、サンプリング回路SMPから出力された2値のサンプリングデータから、適切なクロック信号の位相に関する位相情報を抽出する。CDR回路CDRCによって抽出された位相情報は、位相補間回路PHIに供給される。位相補間回路PHIは、クロック発生回路CGCによって形成されたクロック信号CCKを受け、供給されているクロック信号CCKの位相を、CDR回路CDRCからの位相情報に基づいて調整し、調整によって得られたクロック信号SCCKを、上記したサンプリング回路SMPのクロック入力端子ckと、上記したDFE1へ供給する。これにより、サンプリング回路SMPは、適切に位相が調整されクロック信号SCCKに基づいて、DFE1からの出力データをサンプリングすることが可能となっている。また、DFE1にも、適切な位相のクロック信号SCCKが供給されることになる。位相補間回路は、位相を調整すると言う観点で見た場合、位相調整回路と見なすこともできる。
サンプリング回路SMPから出力された2値のサンプリングデータは、デマルチプレクサDMULへ供給され、このデマルチプレクサDMULでパラレルデータに変換される。
デマルチプレクサDMULからのパラレルデータは、回路ブロックDIGCに供給される。この回路ブロックDIGCは、制御回路CNTLを備えている。特に制限されないが、この制御回路CNTLに、デマルチプレクサDMULからのパラレルデータが供給され、制御回路CNTLを介して、受信ユニットRXUに供給されたシリアルデータに対応したパラレルデータが、出力データRxDTとして出力される。また、制御回路CNTLは、DFE1を制御する。この制御が、図8では模式的に制御信号cntrとして描かれている。後で詳しく説明するが、この実施の形態1に係わるDFE1は、2種類のモードを有し、制御回路CNTLの制御によって、2種類のモードのうちのいずれかのモードで動作する。
この実施の形態1においては、特に制限されないが、セレクタSELには、上記した送信ユニットTXUから送信されるべき送信シリアルデータも供給される。セレクタSELによって、送信シリアルデータが選択されることにより、送信シリアルデータは、送信されるとともに、DFE1にも供給される。勿論、回路ブロックANGCは、セレクタSELを有さずに、線形増幅回路VGAから出力されているデータが、DFE1に入力データとして供給されるようにしてもよい。
<DFEの構成>
図1は、実施の形態1に係わるDFEの構成を示すブロック図である。図1において、1は判定帰還型等化器(DFE)、2はDFE1を制御する制御ユニットを示している。この制御ユニット2は、デジタル回路で構成されている。そのため、上記した図8を参照にすると、制御ユニット2は、回路ブロックDIGCに設けられている。勿論、制御ユニット2は、図8に示したDFE1と同じく、回路ブロックANGCに設けてもよい。
DFE1は、動作を停止することが可能なバッファ回路(以下、停止可能バッファ回路とも称する)10、加算回路11、第1サンプリング回路12、第2サンプリング回路13、遅延回路14(1)〜14(n+1)、乗算回路15(1)〜15(n)および可変遅延回路16(1)〜16(n)を備えている。
実施の形態1に係わるDFE1は、2個の動作モードを備えている。すなわち、入力データD0を等化して、整形された出力データODを出力する等化モードと、転送レートに合わせて遅延時間を調整するキャリブレーションモードとを備えている。
入力データD0は、停止可能バッファ回路10を介して加算回路11に供給される。加算回路11は、停止可能バッファ回路10からの入力データD0と、後で説明する帰還データとを加算し、出力する。加算回路11によって求められた加算データは、第1サンプリング回路12および第2サンプリング回路13に供給される。
第1サンプリング回路12は、入力端子DI、出力端子Qおよびクロック入力端子ckを備える。位相補間回路PHIから位相が調整された周期的なクロック信号SCCKが、第1サンプリング回路12のクロック入力端子ckに供給され、加算回路11からの加算データが入力端子DIに供給されている。第1サンプリング回路12は、クロック入力端子ckに供給されているクロック信号SCCKに同期して、入力端子DIに供給されている加算データを取り込み、2値化して、出力端子Qから出力する。すなわち、第1サンプリング回路12は、クロック信号SCCKに同期して、加算データをサンプリングする。
また、第2サンプリング回路13は、入力端子DI1、DI2、出力端子Qおよびクロック入力端子ckを備えている。入力端子DI2には、オフセットOFSが供給され、入力端子DI1には、加算回路11からの加算データが供給される。第2サンプリング回路13は、クロック入力端子ckに供給されているクロック信号SCCKに同期して、加算データを取り込む。このとき、第2入力端子DI2に供給されているオフセットOFSを基準として、第1入力端子DI1に供給されている加算データを2値化する。すなわち、加算データが、オフセットOFSよりも高いか低いかを判定することにより2値化し、クロック信号SCCKに同期して取り込む。言い換えるならば、オフセットOFSを基準として、第2サンプリング回路13は、加算データをサンプリングする。
この第1サンプリング回路12および第2サンプリング回路13は、例えばクロック信号SCCKの立ち上がりに同期して、加算データおよびオフセットOFSを基準とした加算データを取り込む。すなわち、クロック信号SCCKの立ち上がりに同期して、第1サンプリング回路12および第2サンプリング回路13のそれぞれが、加算データをサンプリングすることになる。第1サンプリング回路12の出力端子Qからは、取り込まれた加算データに対応する2値のデータが、サンプリングデータD1および出力データODとして出力される。
クロック信号SCCKは、図8で述べたように、CDR回路CDRCによって求められた位相情報に基づいて、クロック信号CCKの位相を位相補間回路PHIが調整することにより形成される。
遅延回路14(1)〜14(n+1)のそれぞれは、クロック入力端子ck、入力端子DIおよび出力端子Qを備えている。遅延回路14(1)〜14(n+1)のそれぞれも、第1サンプリング回路12と同様に、クロック信号SCCKに同期(例えば立ち上がりに同期)して、入力端子DIに供給されているデータを取り込み、出力端子Qから出力する。遅延回路14(1)の入力端子DIは、第1サンプリング回路12の出力端子Qに接続され、遅延回路14(1)の出力端子Qは、図示しない遅延回路14(2)の入力端子DIに接続される。以降、同様にして、遅延回路の出力端子は、次段の遅延回路の入力端子に接続され、遅延回路14(n)の出力端子Qは、遅延回路14(n+1)の入力端子DIに接続されている。すなわち、遅延回路14(1)〜14(n+1)は直列接続され、遅延回路14(1)〜14(n+1)のそれぞれのクロック入力端子ckには、クロック信号SCCKが供給されている。これにより、遅延回路14(1)〜14(n+1)は、クロック信号SCCKに同期して動作するシフトレジスタを構成している。
このシフトレジスタの初段となる遅延回路14(1)の入力端子DIに、第1サンプリング回路12の出力端子QからサンプリングデータD1が供給される。クロック信号SCCKが変化するごとに、第1サンプリング回路12からのサンプリングデータD1は、シフトレジスタを構成する段(遅延回路14(1)〜14(n+1))を移動し、それぞれの段(遅延回路14(1)〜14(n+1))の出力端子QからサンプリングデータD2〜Dn+1として出力される。
停止可能入力バッファ回路10に供給されている入力データD0を、現時点のデータとした場合、第1サンプリング回路12および第2サンプリング回路13の出力端子Qからは、現時点よりも前(過去)の入力データに従ったサンプリングデータD1およびエラー信号E1が出力されていることになる。すなわち、現時点よりも前に、クロック信号SCCKが1回変化したときに第1サンプリング回路12および第2サンプリング回路13に取り込まれた加算データに対応するサンプリングのデータが、出力端子QからサンプリングデータD1およびエラー信号E1として出力されていることになる。
クロック信号SCCKが変化するたびに、第1サンプリング回路12の出力端子Qから出力されているサンプリングデータが、順次遅延回路14(1)〜14(n+1)を伝達し、それぞれの遅延回路に格納され、出力されることになる。すなわち、第1サンプリング回路12から遅延回路14(n+1)に向かって、現時点の入力データに時間的に近い入力データに従ったサンプリングデータD1から、時間的により前(過去)の入力データに従ったサンプリングデータDn+1が、出力端子Qから出力されていることになる。なお、図1において、遅延回路14(1)〜14(n+1)に示した符合Z−1は、Z変換表示で遅延回路を表したものである。
この実施の形態1において、第1サンプリング回路12の出力端子Qは、可変遅延回路16(1)を介して、乗算回路15(1)に接続されている。可変遅延回路16(1)の遅延時間は、遅延時間情報SD(1)によって定められる。これにより、第1サンプリング回路12の出力端子Qから出力されたサンプリングデータD1は、遅延時間情報SD(1)で定められた時間だけ遅れて、乗算回路15(1)に供給されることになる。乗算回路15(1)は、供給されたサンプリングデータD1とタップ係数TP(1)との間で乗算を行い、帰還データを出力する。この実施の形態1においては、乗算回路15(1)は、乗算結果を反転し、反転により得られた乗算結果を帰還データとして出力する。
また、遅延回路14(1)の出力端子Qも、遅延時間情報SD(2)によって遅延時間が定められる可変遅延回路16(2)を介して乗算回路15(2)に接続されている。これにより、遅延回路14(1)の出力端子Qから出力されたサンプリングデータD2は、遅延時間情報SD(2)によって定められた時間だけ遅延して、乗算回路15(2)に供給されることになる。乗算回路15(2)は、タップ係数TP(2)と供給されたサンプリングデータD2との間で乗算を行い、演算結果を反転して、帰還データとして出力する。残りの複数の遅延回路(図1では、例として14(n))についても同様に、遅延回路(14(n))から出力されたサンプリングデータ(Dn)は、遅延時間情報(SD(n))によって定められた時間だけ遅延させられて、対応する乗算回路(15(n))に供給され、対応する乗算回路(15(n))において、タップ係数(TP(n))との乗算が行われ、反転されて、帰還データとして出力される。
乗算回路15(1)〜15(n)のそれぞれから出力されている帰還データは、加算回路11に供給される。加算回路11は、これらの帰還データと停止可能バッファ回路10から供給されている入力データD0との間で加算の演算を行う。乗算回路15(1)〜15(n)のそれぞれは、反転した帰還データを出力するため、加算回路11は、実質的に減算回路として機能し、入力データD0から、帰還データを減算するように機能する。
制御ユニット2は、データエラー率判定回路3、遅延(Delay)決定回路4、タップ(Tap)係数決定回路5、制御回路6、タップ(Tap)係数レジスタ7および遅延(Delay)レジスタ8を備えている。データエラー率判定回路3、遅延決定回路4およびタップ係数決定回路5は、制御回路6によって制御される。制御回路6は、DFE1が、等化モードで動作するのか、キャリブレーションモードで動作するのかに応じて、データエラー率判定回路3、遅延決定回路4およびタップ係数決定回路5のそれぞれの動作を定める。等化モードおよびキャリブレーションモードは後で詳しく説明するが、この実施の形態1では、キャリブレーションモードにおいて、遅延時間の調整が行われ、等化モードにおいて、調整された遅延時間を用いて入力データの等化が行われる。
制御回路6は、例えば半導体装置LS−DFEに電源が投入されたのを検出し、DFE1がキャリブレーションモードで動作するように、データエラー率判定回路3、遅延決定回路4およびタップ係数決定回路5を動作させる。キャリブレーションモードで遅延時間の調整が完了すると、DFE1が等化モードで動作するように、制御回路6は、データエラー率判定回路3、遅延決定回路4およびタップ係数決定回路5を動作させる。この制御回路6によるデータエラー率判定回路3、遅延決定回路4およびタップ係数決定回路5の制御が、図8に模式的に示した制御信号cntrに相当する。
データエラー率判定回路3には、第1サンプリング回路12および遅延回路14(1)〜14(n+1)からのサンプリングデータD1〜Dn+1が供給される。また、データエラー率判定回路3には、第2サンプリング回路13の出力端子Qから出力されたサンプリングデータがエラー信号E1として供給される。遅延決定回路4は、キャリブレーションモードのとき、データエラー率判定回路3からの情報に基づいて、遅延時間情報SD(1)〜SD(n)を形成し、遅延レジスタ8および可変遅延回路16(1)〜16(n)へ供給する。遅延レジスタ8は、可変遅延回路16(1)〜16(n)のそれぞれに対応した複数のビットを有している。図1では、遅延レジスタ8が有する複数のビットのうち、可変遅延回路16(1)、16(2)および16(n)に対応するビットDD1、DD2およびDDnのみが示されている。なお、それぞれのビットDD1、DD2およびDDnは、複数のビットによって構成されており、遅延時間の変更範囲が広くなるようにされている。
後で説明するが、キャリブレーションモードのとき、可変遅延回路16(1)〜16(n)のそれぞれの遅延時間が適切な遅延時間となるように、遅延決定回路4は、遅延時間情報SD(1)〜SD(n)の値を変更する。特に制限されないが、可変遅延回路16(1)〜16(n)のそれぞれの遅延時間が適切な値になったとき、それぞれの遅延時間に対応する遅延情報SD(1)〜SD(n)が、遅延レジスタ8の対応するビットDD1〜DDnに格納される。この実施の形態1においては、遅延レジスタ8のビットDD1〜DDnに格納された遅延時間情報はSD(1)〜SD(n)は、等化モードの期間においては、遅延レジスタに保持され続ける。
タップ係数決定回路5は、乗算回路15(1)〜15(n)に供給されるタップ係数TP(1)〜TP(n)を形成する。また、タップ係数決定回路5は、停止可能バッファ回路10を制御するバッファ制御信号BCTを形成する。形成されたタップ係数TP(1)〜TP(n)およびバッファ制御信号BCTは、タップ係数レジスタ7に格納される。タップ係数レジスタ7は、停止可能バッファ回路10、乗算回路15(1)〜15(n)のそれぞれに対応した複数のビットを備えており、タップ係数決定回路5によって形成されたバッファ制御信号BCTおよびタップ係数TP(1)〜TP(n)は、対応するビットに格納され、停止可能バッファ回路10および乗算回路15(1)〜15(n)に供給される。図1においては、停止可能バッファ回路10に対応するビットW0z、乗算回路15(1)、15(2)および15(n)に対応するビットW1、W2およびWnが例示されている。
タップ係数決定回路5は、キャリブレーションモードのとき、タップ係数TP(1)〜TP(n)を所定の値にするとともに、停止可能バッファ回路10を制御するバッファ制御信号BCTによって、停止可能バッファ回路10を停止状態にする。また、等化モードのときには、データエラー率判定回路3からの情報に基づいて、タップ係数TP(1)〜TP(n)を決定するとともに、停止可能バッファ回路10が動作するようなバッファ制御信号BCTを形成する。
次に、キャリブレーションモードおよび等化モードでの動作を説明する。
<キャリブレーションモード>
図2は、実施の形態1に係わるキャリブレーションモードの動作を示すフローチャート図である。図1および図2を参照して、キャリブレーションモードでのDFE1の動作を説明する。
図1に示した制御回路6は、半導体装置LS−DFEの電源の投入を検出すると、キャリブレーションモードを実行する。図2で述べると、DFE1は、遅延量(Delay量)を調整するキャリブレーションを開始する(ステップS10)。次に、DFE1は、ステップS11を実行する。ステップS11において、制御回路6は、タップ係数決定回路5に対して、停止可能バッファ回路10を停止させるようなバッファ制御信号BCTを形成するように指示するとともに、所定の値を有するタップ係数TP(1)〜TP(n)を形成するように指示する。ここでのタップ係数TP(1)〜TP(n)の所定の値としては、例えば最も大きな値(第1の値)である。
上記した指示に応答して、タップ係数決定回路5は、ステップS11において、停止可能バッファ回路10を停止させるようなバッファ制御信号BCTを形成するとともに、最も大きな値を有するタップ係数TP(1)〜TP(n)を形成する。形成されたバッファ制御信号BCTおよびタップ係数TP(1)〜TP(n)は、タップ係数レジスタ7においてそれぞれ対応するビットW0z、W1〜Wnに格納される。これにより、ステップS11において、停止可能バッファ回路10は停止状態となり、乗算回路15(1)〜15(n)のそれぞれには、最も大きな値のタップ係数TP(1)〜TP(n)が供給されることになる。停止可能バッファ回路10が停止することにより、加算回路11には、停止可能バッファ回路10からの入力データD0は供給されなくなり、乗算回路15(1)〜15(n)からの帰還データのみが供給されることになる。
また、ステップS11において、制御回路6は、データエラー率判定回路3および遅延決定回路4を動作させる。この場合、制御回路6は、遅延決定回路4に対して、所定の遅延時間を示す遅延時間情報SD(1)〜SD(n)を形成するように指示する。この指示に応答して、遅延決定回路4は、それぞれ所定の遅延時間を示す遅延時間情報SD(1)〜SD(n)を形成する。ここでの所定の遅延時間は、例えば可変遅延回路16(1)〜16(n)のそれぞれにおいて設定することが可能な最も短い遅延時間である。形成された遅延時間情報SD(1)〜SD(n)は、対応する可変遅延回路16(1)〜16(n)に供給される。このとき、形成された遅延時間情報SD(1)〜SD(n)は、遅延レジスタ8の対応するビットDD1〜DDnに、格納されるようにしてもよいし、格納されないようにしてもよい。
ステップS11において、クロック信号SCCKが変化することにより、第1サンプリング回路12および第2サンプリング回路13は、加算回路11からの加算データの波形をサンプリングする。このとき、停止可能バッファ回路10は、停止状態にあるため、加算回路11には、入力データD0の波形は供給されず、乗算回路15(1)〜15(n)のそれぞれからの帰還データの波形のみが供給されることになる。その結果、加算回路11は、乗算回路15(1)〜15(n)からの帰還データを加算して、加算データを形成することになる。そのため、キャリブレーションモードにおいては、乗算回路15(1)〜15(n)からの帰還データのみを加算することによって得られた加算データの波形が、第1サンプリング回路12と第2サンプリング回路13によってサンプリングされることになる。
第1サンプリング回路12によるサンプリングによって得られたサンプリングデータD1は、遅延時間情報SD(1)によって指定された遅延時間だけ、可変遅延回路16(1)によって遅延させられ、乗算回路15(1)に供給される。乗算回路15(1)においては、最も大きな値を有するタップ係数TP(1)と、可変遅延回路16(1)からの遅延されたサンプリングデータとの演算が行われ、反転されて、加算回路11に、帰還データとして供給されることになる。同様に、遅延回路14(1)〜14(n)のそれぞれから出力されたサンプリングデータD2〜Dnは、遅延時間情報SD(2)〜SD(n)によって指定された遅延時間だけ、可変遅延回路16(2)〜16(n)によって遅延させられ、乗算回路15(2)〜15(n)において、最も大きなタップ係数TP(2)〜TP(n)と乗算される。乗算の結果は、反転されて、加算回路11に、帰還データとして供給されることになる。
クロック信号SCCKが変化するたびに、乗算回路15(1)〜15(n)は、反転した帰還データを出力する。そのため、可変遅延回路16(1)〜16(n)の遅延時間が適切な値に設定されていれば、加算回路11から出力される加算データは、クロック信号SCCKの変化に同期して上下に変化する波形となり、この加算データを2値で見た場合には、クロック信号SCCKの変化に同期して、論理値“1”と論理値“0”とが交互にトグルするデータとなる。なお、タップ係数TP(1)〜TP(n)のそれぞれを最も大きな値とすることにより、加算回路11から出力される加算データの波形の変化を大きくすることが可能となっている。
次に、ステップS12において、制御回路6は、データエラー率判定回路3に対して、データエラー率を判定するように指示する。この指示に応答して、データエラー率判定回路3は、第1サンプリング回路12および遅延回路14(1)〜14(n+1)のそれぞれから出力されているサンプリングデータD1〜Dn+1または/および第2サンプリング回路13から出力されているエラー信号E1に基づいて、エラー率を判定する。可変遅延回路16(1)〜16(n)の遅延時間が適切に設定され、帰還データの加算のタイミングが適切に設定されていれば、加算データは、クロック信号SCCKに同期して、論理値“1”と論理値“0”が交互に変化(トグル)するデータとなる。このように論理値が交互に変わる加算データを、クロック信号SCCKに同期して、第1サンプリング回路12でサンプリングすると、サンプリングデータD1も論理値“1”と論理値“0”とが交互に発生するデータとなる。
遅延回路14(1)〜14(n+1)によって構成されたシフトレジスタは、サンプリングデータD1をシフトして、サンプリングデータD2〜Dn+1を形成している。そのため、これらのサンプリングデータD2〜Dn+1のそれぞれも、可変遅延回路16(1)〜16(n)の遅延時間が適切に設定されていれば、論理値“1”と論理値“0”とが交互に発生するデータとなる。
データエラー率判定回路3は、例えばサンプリングデータD1〜Dn+1のそれぞれの値が、交互に論理値“1”と論理値“0”となっていない割合を、エラー率として把握する。交互に論理値“1”と論理値“0”となっていない割合(エラー率)が、高いほど、可変遅延回路16(1)〜16(n)に設定した遅延時間が適切でない、すなわち加算するタイミングが適切でないと言うことになる。ここでは、サンプリングデータD1〜Dn+1を例にして、エラー率の把握を説明したが、例えばエラー信号E1の論理値が交互に変化しない割合をエラー率として把握してもよいし、サンプリングデータD1〜Dn+1とエラー信号E1の両方で、エラー率を把握するようにしてもよい。
この実施の形態1においては、エラー率に対して所定の閾値が設定される。データエラー率判定回路3は、ステップS12において、所定の閾値と把握したエラー率とを比較することにより、エラー率の判定を行う。エラー率が、所定の閾値よりも大きい場合、データエラー率判定回路3は、遅延決定回路4に対して、遅延量の調整(ステップS13)を指示する。
この指示を受けて遅延決定回路4は、遅延時間情報SD(1)〜SD(n)を変更する。遅延時間情報SD(1)〜SD(n)を変更することにより、可変遅延回路16(1)〜16(n)における遅延時間が変更される。例えば、可変遅延回路16(1)〜16(n)に設定可能な最も短い遅延時間から、遅延時間情報SD(1)〜SD(n)を変更することにより、遅延時間は長くなる。この場合、遅延時間情報SD(1)〜SD(n)の全てを変更してもよいし、一部の遅延時間情報のみを変更するようにしてもよい。遅延時間情報SD(1)〜SD(n)を変更したあと、再び、クロック信号SCCKが変化することにより、変更した遅延時間情報SD(1)〜SD(n)に応じた新たなサンプリングデータD1〜Dn+1と新たなエラー信号E1がデータエラー率判定回路3に供給される。なお、停止可能バッファ回路10は、停止状態を維持している。
新たなサンプリングデータD1〜Dn+1と新たなエラー信号E1とに基づいて、データエラー率判定回路3は、ステップS12で再びエラー率を把握し、所定の閾値との比較を行う。エラー率が閾値よりも小さくなるまで、ステップS12とステップS13が繰り返される。
エラー率が、所定の閾値よりも小さくなると、データエラー率判定回路3は、そのとき遅延決定回路4が形成している遅延時間情報SD(1)〜SD(n)を、遅延レジスタ8の対応するビットDD1〜DDnに格納するように、ステップS14において、遅延決定回路4へ指示する。この指示に応答して、遅延決定回路4は、エラー率が閾値よりも小さくなったときに、形成していた時間情報SD(1)〜SD(n)を遅延レジスタ8の対応するビットDD1〜DDnに格納する。
次に、ステップS15において、データエラー率判定回路3は、タップ係数決定回路5に対して、停止可能バッファ回路10を動作させるようなバッファ制御信号BCTを形成するように指示する。これにより、タップ係数決定回路5は、停止可能バッファ回路10を動作させるバッファ制御信号BCTを形成し、タップ係数レジスタ7のビットW0zに格納する。ビットW0zに格納されたバッファ制御信号BCTによって、停止可能バッファ回路10は動作を開始し、入力データD0を加算回路11へ供給することが可能となる。
ステップS15の次にステップS16が実行される。遅延時間を調整するキャリブレーションは、ステップS15で終了し、次に、DFE1は等化モードへ移行する。等化モードへの移行に際して、遅延レジスタ8に格納されている遅延時間情報SD(1)〜SD(n)は、維持され、タップ係数レジスタ7のビットW0zに格納されているバッファ制御信号BCTも維持される。
<等化モード>
等化モードは、DFE1において、信号配線BPB(図9)の伝達特性を等化し、DFE1に供給された入力データD0(図8では、線形増幅回路VGAから供給された入力データ)に対応する出力データODが出力されるように、入力データD0の波形を整形するモードである。
等化モードにおいて、制御回路6は、データエラー率判定回路3およびタップ係数決定回路5を動作させる。特に制限されないが、この実施の形態1においては、等化モードのとき、遅延決定回路4は非動作の状態にされる。遅延決定回路4は非動作の状態にされるが、遅延レジスタ8に格納された遅延時間情報SD(1)〜SD(n)は、等化モードにおいても継続して出力される。同様に、タップ係数レジスタ7のビットW0zに格納されたバッファ制御信号BCTも継続して出力されている。
等化モードにおいては、入力データD0は、動作状態とされた停止可能バッファ回路10を介して、加算回路11に供給される。また、加算回路11には、乗算回路15(1)〜15(n)のそれぞれから帰還データが供給される。停止可能バッファ回路10からの入力データD0と、乗算回路15(1)〜15(n)のそれぞれからの帰還データとが、加算回路11によって加算され、加算により得られた加算データが、第1サンプリング回路12および第2サンプリング回路13により、クロック信号SCCKに同期してサンプリングされる。
第1サンプリング回路12の出力端子Qから出力されるサンプリングデータD1および遅延回路14(1)〜14(n)のそれぞれの出力端子Qから出力されるサンプリングデータD2〜Dnは、遅延レジスタ8の対応するビットDD1〜DDnから出力されている遅延時間情報SD(1)〜SD(n)によって表された遅延時間だけ、可変遅延回路16(1)〜16(n)によって遅延されて、乗算回路15(1)〜15(n)に供給される。乗算回路15(1)〜15(n)のそれぞれにおいて、遅延時間情報SD(1)〜SD(n)によって表された遅延時間だけ遅延されたサンプリングデータD1〜Dnが、対応するタップ係数TP(1)〜TP(n)と乗算され、帰還データとして加算回路11に供給される。
この実施の形態1においては、第1サンプリング回路12の出力端子QからサンプリングデータD1が出力されてから、このサンプリングデータD1に対応する帰還データが、加算回路11あるいは第1サンプリング回路12の入力端子DIに供給するまでの遅延時間を、可変遅延回路16(1)に供給する遅延時間情報SD(1)によって変えることが可能である。同様に、遅延回路14(1)〜14(n)のそれぞれの出力端子QからサンプリングデータD2〜Dnが出力されてから、サンプリングデータD2〜Dnに対応する帰還データが、加算回路11または第1サンプリング回路12の入力端子DIに供給されるまでの遅延時間も、可変遅延回路16(2)〜16(n)に供給されている遅延時間情報SD(2)〜SD(n)によって変えることができる。
先に述べたキャリブレーションモードにおける調整によって、エラー率が低減するように、遅延時間情報SD(1)〜SD(n)の値が設定されている。すなわち、この実施の形態1においては、エラー率が低減するタイミングで、加算回路11にサンプリングデータD1〜Dnのそれぞれに対応した帰還データが供給されるように、遅延時間情報SD(1)〜SD(n)によって可変遅延回路16(1)〜16(n)の遅延時間が定められている。これにより、転送レートが異なっても、先に説明したキャリブレーションモードを、転送レートごとに実行することにより、転送レートに適したタイミングで、帰還データが加算回路11に供給されるようにすることが可能となり、適切な等化を行うことが可能となる。その結果、DFE1は、入力データの波形により整合した波形を有する出力データを形成することが可能となる。
なお、等化モードにおいては、データエラー率判定回路3から、サンプリングデータD1〜Dn+1または/およびエラー信号E1が、タップ係数決定回路5に供給される。このタップ係数決定回路5は、供給されたサンプリングデータD1〜Dn+1または/およびエラー信号E1に基づいて、等化を行うのに適したタップ係数TP(1)〜TP(n)を形成して、対応する乗算回路15(1)〜15(n)へ供給する。
図3は、実施の形態1に係わるDFEの動作を模式的に示した説明図である。図3は、図12(A)に類似している。図3を用いて、図12(A)の場合との相違を説明する。図1では、可変遅延回路からサンプリングデータを乗算回路に供給するようにしているが、図3では、図12(A)との整合を図るために、乗算回路15(1)でタップ係数TP(1)を乗算した後、可変遅延回路16(1)に供給され、入力データの波形W(0)に加算されている。乗算回路15(1)によって入力データの波形W(−1)にタップ係数TP(1)が乗算され、乗算結果(帰還データ)が、可変遅延回路16(1)により、遅延時間情報SD(1)によって表された遅延時間だけ遅延されて、入力データの波形W(0)に加算される。図12で説明したように、対応する転送レートが変わった場合、乗算回路15(1)の乗算結果が加算されるタイミングは、tb(−1)Rとなってしまう。
これに対して、実施の形態1では、変更した転送レートにおいて、キャリブレーションモードを実行することにより、その転送レートに適した遅延時間情報SD(1)が求められる。等化モードにおいては、この求めた遅延時間情報SD(1)によって表される遅延時間DLだけ、乗算結果が加算されるタイミングが変更され、加算されるタイミングは適切なタイミングtb(−1)となる。これにより、適切な等化を行うことが可能となる。また、加算するタイミングが、図3の斜線で示した領域EQ1、EQ2まで変化するのを防ぐことが可能となり、間違った等化が行われるのを防ぐことも可能となる。ここでは、可変遅延回路16(1)および遅延時間情報SD(1)を例にして説明したが、他の可変遅延回路16(2)〜16(n)および遅延時間情報SD(2)〜SD(n)についても同様である。
図1に示したように、第1サンプリング回路12、第2サンプリング回路13および遅延回路14(1)〜14(n+1)は、クロック信号SCCKに同期して動作する。このクロック信号SCCKは、転送レートを変更すると、それに合わせて周波数が変更される。そのため、サンプリングデータD1〜Dn+1およびエラー信号E1の周期も、転送レートの変更に合わせて変わる。しかしながら、高速な信号処理が要求される乗算回路15(1)〜15(n)は、アナログ回路によって構成されている。特に、第1サンプリング回路12が出力するサンプリングデータD1に対応した帰還データを生成する乗算回路15(1)には、最も高速な信号処理が要求される。乗算回路15(1)〜15(n)をアナログ回路で構成することにより、乗算回路15(1)〜15(n)での遅延時間を短縮することが可能であるが、転送レートがかわっても、遅延時間はほぼ一定となるため、加算するタイミングが適切なタイミングでなくなることが危惧される。これに対して、実施の形態1においては、キャリブレーションモードで求めた遅延時間情報によって表される遅延時間で、加算するタイミングの変更が行われることになる。
図1では、可変遅延回路16(1)〜16(n)の後段に乗算回路15(1)〜15(n)を設ける例を説明したが、図3に示したように、乗算回路の後段に可変遅延回路を設けるようにしてもよい。
(実施の形態2)
図4は、実施の形態2に係わるDFEの構成を示すブロック図である。図4は、図1に類似しているので、ここでは相違点を主に説明する。DFE1は、図1では、可変遅延回路16(1)〜16(n)を備えていたが、実施の形態2に係わるDFE1には、可変遅延回路16(1)〜16(n)は設けられていない。第1サンプリング回路12の出力端子Qおよび遅延回路14(1)〜14(n)の出力端子Qから出力されるサンプリングデータD1〜Dnが、対応する乗算回路15(1)〜15(n)に供給されている。それぞれの乗算回路15(1)〜15(n)において、対応するタップ係数TP(1)〜TP(n)とサンプリングデータD1〜Dnとの乗算が行われ、乗算の結果が、帰還データとして加算回路11に供給されている。
また、制御ユニット2は、図1では、遅延決定回路4および遅延レジスタ8を備えていたが、実施の形態2では、遅延決定回路4および遅延レジスタ8を備えていない。実施の形態2においても、データエラー率判定回路23を備えているが、図1に示したデータエラー率判定回路3と異なり、サンプリングデータD1〜Dnまたは/およびエラー信号E1とに基づいて位相調整信号PHCを形成する。
また、実施の形態2においては、図1と比較すると、位相補間回路の構成が異なっている。図4に示す位相補間回路PHI1は、2個の調整レジスタ20および21と、加算回路22とを備えている。調整レジスタ20には、CDR回路(クロックデータリカバリ回路)CDRCからの位相情報が格納される。また、調整レジスタ21には、データエラー率判定回路23からの位相制御信号PHCに基づいた位相情報が格納される。調整レジスタ20に格納された位相情報と調整レジスタ21に格納された位相情報との和が、加算回路22によって求められる。位相補間回路PHI1には、クロック発生回路CGCからクロック信号CCKが供給されている。このクロック信号CCKの位相が、加算回路22によって求められた位相情報の和の値に従って、変更され、クロック信号CCKの位相が調整される。図4において、SCCK1は、調整された位相を有するクロック信号を示している。
CDR回路CDRCから調整レジスタ20に供給される位相情報は、例えばクロック信号CCKの位相を変更する変更量であり、調整レジスタ21に格納されている位相情報も、クロック信号CCKの位相を変更する変更量である。加算回路22によって、これらの変更量の和を求める。クロック信号CCKの位相は、2つの変更量の和によって示された量だけ変更され、クロック信号SCCK1として、位相補間回路PHI1から出力されることになる。
この実施の形態2において、調整レジスタ21に格納されている変更量は、データエラー率判定回路23から出力されている位相調整信号PHCに基づいて変化または維持される。例えば、位相調整信号PHCが第1状態を示していると、調整レジスタ21に格納されている変更量は、減少または増加し、減少または増加した変更量が調整レジスタ21に格納される。一方、位相調整信号PHCが第2状態を示していると、調整レジスタ21に格納されている変更量は変化せずに維持される。すなわち、位相調整信号PHCが第1状態を示している場合には、クロック信号SCCK1の位相は進み(または遅れ)、進む位相の量(または遅れる位相の量)は、調整レジスタ21に格納されている変更量によって定まる。これに対して、位相調整信号PHCが第2状態を示している場合には、クロック信号SCCK1の位相は変化しない。位相調整信号PHCの状態によって、調整レジスタ21に格納される変更量を変更する構成としては、例えば、調整レジスタ21に、位相調整信号PHCが第1状態のときにダウンまたはアップするカウンタを接続することにより、達成することが可能である。勿論、この構成に限定されるものではない。
位相補間回路PHI1によって形成されたクロック信号SCCK1は、第1サンプリング回路12および第2サンプリング回路13のそれぞれのクロック入力端子ckに供給されている。また、この実施の形態2においては、クロック信号SCCK1が、遅延回路14(1)〜14(n+1)のクロック入力端子ckにも供給されている。
次に、実施の形態2で実施されるキャリブレーションモードを説明する。
<キャリブレーションモード>
図5は、実施の形態2に係わるキャリブレーションモードの動作を示すフローチャート図である。図5において、ステップS20は、図2で説明したステップS10と同じであるため、説明は省略する。また、ステップS21は、ステップS11と類似している。すなわち、ステップS11で説明した遅延決定回路4、遅延レジスタ8および可変遅延回路16(1)〜16(n)の動作を除いて、ステップS21における動作は、ステップS11と同じである。そのため、ステップS21の詳しい説明は省略するが、このステップS21において、停止可能バッファ回路10が停止状態にされる。また、所定の値のタップ係数TP(1)〜TP(n)が形成され、乗算回路15(1)〜15(n)に供給される。また、クロック信号SCCK1は周期的に変化する。クロック信号SCCK1の変化に同期して、第1サンプリング回路12の入力端子DIに供給される加算データは、理想的には論理値“1”と論理値“0”とが交互に発生するデータとなる。
ステップS22は、図2で説明したステップS12と類似しているので、相違点を主に説明する。データエラー率判定回路23は、データエラー率判定回路3と同様に、サンプリングデータD1〜Dn+1または/およびエラー信号E1を基にして、エラー率を把握する。把握したエラー率が所定の閾値よりも大きい場合、データエラー率判定回路23は、第1状態の位相調整信号PHCを形成し、把握したエラー率が所定の閾値よりも小さい場合、第2状態の位相調整信号PHCを形成する。位相調整信号PHCが第1状態のとき、ステップS22の次にステップS23が実行され、位相調整信号PHCが第2状態のとき、次にステップS24が実行される。
ステップS23においては、位相補間回路PHI1内の位相量の調整が行われる。これにより、第1サンプリング回路12、第2サンプリング回路13および遅延回路14(1)〜14(n+1)のクロック入力端子ckに供給されているクロック信号SCCK1の位相が調整されることになる。例えば、位相調整信号PHCが第1状態となることにより、調整レジスタ21に格納されている変更量が減少する。これにより、加算回路22によって求められた変更量が減少することになる。変更量が減少することにより、クロック信号SCCK1の位相が、進むことになる。
クロック信号SCCK1の位相が進むと、クロック信号SCCK1のハイレベルへの立ち上がりが早くなる。その結果、第1サンプリング回路12が、その入力端子DIに供給されている加算回路11からの加算データの波形をサンプリングするタイミング(サンプリングのタイミング)が早くなる。反対に、調整レジスタ21に格納されている変更量を増加させた場合、クロック信号SCCK1の位相が遅れるため、第1サンプリング回路12が、その入力端子DIに供給されている加算回路11からの加算データの波形をサンプリングするタイミングが遅くなる。すなわち、データエラー率判定回路23からの位相調整信号PHCによって、第1サンプリング回路12が、その入力端子DIに供給されている加算回路11からの加算データをサンプリングするタイミングが調整されることになる。
<<加算データのアイパターン>>
実施の形態1で述べたように、キャリブレーションモードにおいては、停止可能バッファ回路10が停止状態にされる。また、乗算回路15(1)〜15(n)のそれぞれは、反転した乗算結果を帰還データとして形成する。そのため、加算回路11から出力される加算データの波形は、理想的には、論理値”1”と論理値”0”とが交互に生じる(トグルする)データの波形となる。
図6は、実施の形態2に係わるDFE1の動作を示す波形図である。図6において、横軸は時間を示し、縦軸は電圧を示している。図6(A)は、第1サンプリング回路12の入力端子DIにおける電圧の変化を、模式的にアイパターンで示している。また、図6(B)は、位相補間回路PHI1から出力されるクロック信号SCCK1の波形を示している。図6では、早い転送レート(例えば、規格Gen4)に合わせたDFE1を、遅い転送レート(例えば、規格Gen1)のDFE1として流用する場合が示されている。この場合、規格Gen4に合わせて乗算回路15(1)の遅延時間が設定され、第1サンプリング回路12が、その入力端子DIに供給されている加算データの波形をサンプリングするタイミングは、時刻tfに設定されているものとする。
乗算回路15(1)はアナログ回路によって構成されているため、転送レートが遅くなっても、遅延時間はほぼ一定である。そのため、乗算回路15(1)によって形成された帰還データは、早いタイミングで加算回路11に供給され、第1サンプリング回路12の入力端子DIに供給されることになる。図6(A)で説明すると、乗算回路15(1)は、時間的に前の入力データの波形W(−1)にタップ係数TP(1)を乗算して形成された帰還データを、時刻teのタイミングで加算回路11に供給することになる。これにより、第1サンプリング回路12の入力端子DIにおける現在の入力データの波形W(0)の電圧は、早いタイミングで変化し、その後低下するような歪んだ形状となる(図6(A))。
早い転送レート(規格Gen4)では、図6(B)において、時刻tfでクロック信号SCCK1をハイレベルに立ち上げても、第1サンプリング回路12は、入力端子DIにおけるアイパターンが大きく開いたときに、サンプリングを行うことが可能である。しかしながら、転送レートが遅くなると、図6(A)に示すように入力データの波形W(0)は、歪み、時刻tfのタイミングでは、アイパターンが狭くなり始めている。そのため、時刻tfのタイミングで、入力データの波形W(0)をサンプリングすると、等化が不十分あるいは誤った等化が行われる可能性がある。
この実施の形態2においては、ステップS22において、エラー率が閾値よりも大きいと判定された場合、位相補間回路PHI1内の位相量の調整がステップS23において実行される。すなわち、位相調整信号PHCが第1状態となり、調整レジスタ21に格納されている変更量が減少される。これにより、クロック入力端子ckに供給されるクロック信号SCCK1の位相は進められる。すなわち、図6(B)に示すように、クロック信号SCCK1は、一点鎖線で示すように時刻tfで立ち上がるのではなく、実線で示すように時刻teで立ち上がるようになる。この例では、PHDで示される量だけ、位相が進むことになる。この位相量PHDは、調整レジスタ21において、位相調整信号PHCが第1状態になる前後における変更量の差分に相当する。これにより、アイパターンが開いた状態で、第1サンプリング回路12は、サンプリングを行うことが可能となる。
ステップS23の後、再びステップS22が実行される。ステップS22において、再び、エラー率が閾値よりも大きいと判定された場合には、位相調整信号PHCが第1状態を示すため、調整レジスタ21の変更量が減少し、クロック信号SCCK1の位相がさらに進むことになる。すなわち、第1サンプリング回路12のサンプリングのタイミングが早くなる。エラー率が閾値よりも小さくなるまで、ステップS22とS23が繰り返して実行される。ステップS22において、エラー率が閾値よりも小さいと判定されると、データエラー率判定回路23は、位相調整信号PHCを第2状態にする。これにより、調整レジスタ21は、エラー率が閾値よりも小さいと判定されたときの変更量(遅延量)を格納し、保持することになる(ステップS24)。
ステップS25およびS26は、図2のステップS15およびS16と同じであるので、説明を省略する。また、実施の形態2に係わるDFE1において実行される等化モードの動作は、可変遅延回路16(1)〜16(n)による遅延がないことを除いて、実施の形態1で説明した等化モードの動作と同じであるため、説明は省略する。
実施の形態1においては、サンプリングデータに対応する帰還データが、第1サンプリング回路12の入力端子DIに到達するまでの遅延時間が、キャリブレーションモードにおいて、転送レートに合わせて調整され、調整された遅延時間が、等化モードにける波形の等化に用いられていた。すなわち、サンプリングデータに対応する帰還データの遅延時間を調整するようにしていた。これに対して、この実施の形態2においては、サンプリングデータに対応する帰還データの遅延時間を調整するのではなく、第1サンプリング回路12においてサンプリングするタイミングが、キャリブレーションモードにおいて、転送レートに合わせて調整され、調整されたサンプリングのタイミングが、等化モードにおける波形の等化に用いられる。すなわち、キャリブレーションモードにおいては、第1サンプリング回路12および遅延回路14(1)〜14(n)から出力されるサンプリングデータが、理想的には論理値“1”と論理値“0”とを交互に示す加算データと対応するように、第1サンプリング回路12のサンプリングのタイミングが調整され、等化モードでは、この調整されたサンプリングのタイミングを用いて等化が行われる。
また、この実施の形態2においては、転送レートに合わせて、アイパターンが大きく開いているタイミングでサンプリングを行うことが可能となるため、転送レートが異なっても、誤った等化が行われるのを防ぐことが可能であるとともに、波形等化の効果が大きいタイミングでサンプリングを行うことが可能となる。
さらに、この実施の形態2によれば、第1サンプリング回路12から出力されているサンプリングデータを、加算回路11を介して第1サンプリング回路12へ帰還させるフィードバックのループに、可変遅延回路を設けなくて済む。最も転送レートの高い規格Gen4に合うように、DFE1を設計する場合、このフィードバックのループ(特に、乗算回路15(1)を含むフィードバックのループ)の遅延時間が、最も高い転送レートでも等化を行うことが可能なように、短くすることが要求される。実施の形態2によれば、フィードバックのループに可変遅延回路を設けることが要求されないため、コストの上昇を抑制することが可能である。また、フィードバックのループに含まれる乗算回路の設計も容易になる。
この実施の形態2において、調整レジスタ21と加算回路22は、サンプリング用のクロック信号の位相にオフセットを加えるオフセット回路を構成していると見なすことができる。この場合、オフセット回路は、デジタル回路によって構成することが可能であるため、小型化が可能であり、コストの上昇を抑制することが可能である。
(実施の形態3)
図7は、実施の形態3に係わるDFEの構成を示すブロック図である。図7は、図4に類似しているので、ここでは相違点を主に説明する。図7において、DFE1および制御ユニット2は、図4に示したDFE1および制御ユニット2と同じであるため、説明は省略する。
図7において、PHI2は、位相補間回路を示している。この位相補間回路PHI2は、図4に示した位相補間回路PHI1と同様に、CDR回路CRDCからの位相情報を格納する調整レジスタ20と、位相調整信号PHCに基づいた位相情報を格納する調整レジスタ21を備えている。さらに、この実施の形態3において、位相補間回路PHI2は、位相情報を格納する調整レジスタ32と加算回路33を備えている。調整レジスタ20、21および32のそれぞれに格納される位相情報は、実施の形態2と同様に、位相の変更量である。
加算回路33は、調整レジスタ20、21および32のそれぞれに格納されている位相の変更量の和を算出する。算出された位相量の和に基づいて、位相補間回路PHI2は、供給されているクロック信号CCKの位相を変更し、変更されたクロック信号をクロック信号SCCK1として出力する。
図7において、30は温度センサーを示し、31は温度遅延調整回路を示している。温度センサーは、例えば図9に示した半導体装置LS−DFEの半導体基板に形成されている。勿論、これに限定されるものではなく、温度センサー30は、半導体装置LS−DFEの外部に設置してもよい。温度センサー30は、周囲の温度に従って変化する温度データを形成し、温度遅延調整回路31へ供給する。温度遅延調整回路31は、温度データに対応した位相の変更量を出力する。この温度遅延調整回路31から出力された位相の変更量が、調整レジスタ32に格納される。
温度遅延調整回路31は、特に制限されないが、テーブルを備えている。このテーブルには、複数の温度データと、それぞれの温度データに対応した変更量とを対として登録されている。温度遅延調整回路31は、温度センサー30から温度データが供給されたとき、テーブルから、供給された温度データと対を構成する変更量を求め、求めた変更量を位相の変更量として、調整レジスタ32に格納する。
上記したテーブルには、例えば半導体装置LS−DFEを出荷する前のテストの段階で、温度データと、そのときの位相の変更量を測定して、温度データと対となる変更量を登録する。例えば、規格Gen4に合わせて設計したDFEを、規格Gen1のDFEとして用いる場合、実施の形態2で説明したキャリブレーションモードで動作させる。これにより、調整レジスタ21には、規格Gen1に適した変更量が格納されることになる。次に、半導体装置LS−DFEの周囲温度を変化させて、そのときに温度センサー30から出力される温度データを測定する。また、この周囲温度のときに、調整レジスタ32に格納されている変更量を変化させながら、データエラー率判定回路23から出力される位相調整信号PHCが、第1状態から第2状態へ変わったときの調整レジスタ32の変更量を測定する。この測定した温度データと調整レジスタ32の変更量を、上記したテーブルに対として登録する。周囲温度を変えながら、上記した測定と登録を繰り返すことにより、テーブルに複数の温度データと変更量が登録されることになる。
テーブルへの温度データと変更量の測定および登録は、上記した方法に限定されない。例えば、データエラー率判定回路23を用いずに、所定の周囲温度のときに、DFE1の等化効率が良くなる変更量を測定して、テーブルに登録するようにしてもよい。
半導体装置LS−DFEの周囲温度に従った温度データが温度センサー30から出力され、そのときの周囲温度に対応した変更量が、温度遅延調整回路31から調整レジスタ32に格納されることになる。これにより、周囲温度が変化しても、等化効率の良いタイミングでサンプリングを行うことが可能となる。さらに、サンプリングのタイミングは、キャリブレーションモードにおいて調整レジスタ21に格納された変更量にも基づいているため、転送レートが異なっても、実施の形態2で説明したように、等化効率の良いタイミングでサンプリングを行うことが可能となる。
上記したキャリブレーションモードの動作は、シリアルデータの受信を行う前に実施することが要求される。そのため、半導体装置LS−DFEを製造するときの製造プロセスのバラツキにより生じる乗算回路15(1)〜15(n)等の遅延時間の変化または/およびそのときの周囲温度における遅延時間に対しては、適切なサンプリングのタイミングを求め、調整することが可能である。この実施の形態3によれば、シリアルデータの受信を行っているときに、周囲温度が変化し、遅延時間が変化した場合も、これに合わせてサンプリングのタイミングを微調整することが可能である。すなわち、シリアルデータを受信している等化モードでも、DFE1を等化効率のよい状態に保つことが可能である。
図7では、サンプリングのタイミングを、周囲温度の変化に応じて微調整する例を示したが、実施の形態1で述べた可変遅延回路16(1)〜16(n)の遅延時間を、温度センサーからの温度データで微調整するようにしてもよい。また、調整レジスタ32として複数の調整レジスタを設け、それぞれの調整レジスタに、互いに異なる変更量を格納し、温度センサー30からの温度データに基づいて、温度遅延調整回路31により複数の調整レジスタから温度データに対応した調整レジスタを選択するようにしてもよい。この場合には、選択された調整レジスタに格納されている変更量が、加算回路33に供給され、加算されることになる。
さらに、調整レジスタ21には、半導体装置LS−DFEを出荷する前に、転送レートに対応した適切な変更値を格納するようにしてもよい。この場合には、キャリブレーションモードを実行することが要求されず、周囲温度の変化に応じて、サンプリングのタイミングを微調整することが可能である。そのため、シリアルデータを受信している等化モードのとき、周囲温度が変化しても、DFE1を等化効率のよい状態に保つことが可能となる。
実施の形態1〜3において述べたキャリブレーションモードは、キャリブレーション回路によって実行されると見なすことができる。この場合、実施の形態1に係わるキャリブレーション回路は、第1サンプリング回路12が、出力端子Qからサンプリングデータを出力してから、出力したサンプリングデータに対応する帰還データ(あるいは複数の帰還データの加算により求められた加算データ)が第1サンプリング回路12の入力端子DIに供給されるまでの遅延時間を調整することになる。また、実施の形態2および3に係わるキャリブレーション回路は、第1サンプリング回路12がサンプリングを行うタイミング(サンプリングのタイミング)を調整することになる。
また、キャリブレーションモードがキャリブレーション回路によって実行されると見なす場合、キャリブレーション回路によって、停止可能バッファ回路(バッファ回路)10が停止される。これにより、加算回路11には、入力データが供給されなくなるため、加算回路11は、帰還データをキャリブレーション用の加算データとして出力すると見なすことができる。
実施の形態1に係わるキャリブレーション回路は、可変遅延回路16(1)〜16(n)と、この可変遅延回路における遅延を変える判定回路とを備えていると見なすことができる。図1を参照にして述べると、判定回路は、データエラー率判定回路3および遅延決定回路4を備えている。この判定回路は、第1サンプリング回路12からのサンプリングデータが、キャリブレーションの加算データに対応したサンプリングデータとなるように、可変遅延回路における遅延を変更する。
実施の形態1〜3において、位相補間回路PHI、PHI1およびPHI2は、第1サンプリング回路12、第2サンプリング回路13および遅延回路14(1)〜14(n+1)に供給されるクロック信号SCCK、SCCK1を形成するクロック信号形成回路と見なすことができる。
実施の形態2および3においては、キャリブレーションモードのとき、加算回路11から出力されている加算データは、第1サンプリング回路12のサンプリングのタイミングを調整するデータ(基準データ)と見なすことができる。このように見なした場合、第1サンプリング回路12から出力されるサンプリングデータが、サンプリングのタイミング(遅延時間)を調整するデータ(基準データ)に対応するように、第1サンプリング回路に供給されるサンプリング用の第1クロック信号SCCK1の位相が、位相補間回路PHI1、PHI2によって調整される。
実施の形態1〜3においては、DFE1をアナログ回路で構成し、制御ユニット2をデジタル回路で構成する例を示したが、これに限定されるものではない。例えば、DFE1および制御ユニット2の両方をアナログ回路によって構成してもよいし、両方をデジタル回路によって構成してもよい。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
1 DFE
2 制御ユニット
3 データエラー率判定回路
4 遅延決定回路
5 タップ係数決定回路
6 制御回路
7 タップ係数レジスタ
8 遅延レジスタ
10 停止可能バッファ回路
11 加算回路
12 第1サンプリング回路
13 第2サンプリング回路
14(1)〜14(n+1) 遅延回路
15(1)〜15(n) 乗算回路
16(1)〜16(n) 可変遅延回路
CDRC クロックデータリカバリ回路
EPP 電子装置
LS−DFE 半導体装置
PHI 位相補間回路

Claims (9)

  1. 入力データが供給されるバッファ回路と、
    前記バッファ回路からの前記入力データと帰還データとを加算し、加算データを出力する加算回路と、
    前記加算回路からの加算データをサンプリングし、サンプリングデータを出力する第1サンプリング回路と、
    前記第1サンプリング回路からのサンプリングデータにタップ係数を乗算して、前記帰還データを形成する乗算回路と、
    前記第1サンプリング回路からのサンプリングデータに基づいて、前記タップ係数を決定するタップ係数決定回路と、
    前記第1サンプリング回路がサンプリングデータを出力してから、出力したサンプリングデータに対応する加算データが前記第1サンプリング回路に供給されるまでの遅延時間、または加算データを前記第1サンプリング回路がサンプリングするタイミングを調整するキャリブレーション回路と、
    を備え、
    前記キャリブレーション回路は、前記遅延時間またはサンプリングするタイミングの調整を行うとき、前記バッファ回路から前記加算回路に前記入力データが供給されるのを停止させ、前記帰還データを、前記加算データとする、半導体装置。
  2. 請求項に記載の半導体装置において、
    前記キャリブレーション回路は、前記乗算回路に結合された可変遅延回路と、前記第1サンプリング回路からのサンプリングデータに基づいて、前記可変遅延回路における遅延を変える判定回路とを備え、
    前記キャリブレーション回路は、前記遅延時間の調整を行うとき、前記加算データを、前記第1サンプリング回路に供給し、前記判定回路は、前記第1サンプリング回路からのサンプリングデータが、前記第1サンプリング回路に供給した前記加算データに対応したサンプリングデータとなるように、前記可変遅延回路における遅延を変える、半導体装置。
  3. 請求項に記載の半導体装置において、
    前記半導体装置は、前記第1サンプリング回路からのサンプリングデータが供給される直列接続された複数の遅延回路を備え、
    前記判定回路は、前記第1サンプリング回路からのサンプリングデータと前記複数の遅延回路からの出力とに基づいて、前記可変遅延回路における遅延を変える、半導体装置。
  4. 請求項に記載の半導体装置において、
    前記半導体装置は、クロック信号を形成するクロック信号形成回路を備え、
    前記複数の遅延回路のそれぞれは、前記クロック信号形成回路によって形成されたクロック信号に同期して動作し、前記第1サンプリング回路は、前記クロック信号形成回路によって形成されたクロック信号に同期して、サンプリングを行う、半導体装置。
  5. 請求項に記載の半導体装置において、
    前記遅延時間の調整のとき、前記タップ係数は、所定の値にされる、半導体装置。
  6. 入力データと帰還データとを加算し、加算データを出力する加算回路と、
    前記加算回路からの加算データを、第1クロック信号に同期して、サンプリングし、サンプリングデータを出力する第1サンプリング回路と、
    前記第1サンプリング回路からのサンプリングデータにタップ係数を乗算して、前記帰還データを形成する乗算回路と、
    前記第1サンプリング回路からのサンプリングデータに基づいて、前記タップ係数を決定するタップ係数決定回路と、
    前記加算回路から、前記加算データとして、前記第1サンプリング回路のサンプリングのタイミングを調整する基準データが出力されているとき、前記第1サンプリング回路から出力されるサンプリングデータが、前記基準データに対応するように、前記第1クロック信号の位相を調整する位相調整回路と、
    直列的に接続され、それぞれ前記第1クロック信号に同期して動作する複数の遅延回路と、
    を備え、
    前記第1サンプリング回路の出力は、直列的に接続された前記複数の遅延回路の初段の遅延回路に供給され、
    前記位相調整回路は、前記第1サンプリング回路の出力と前記複数の遅延回路の出力とに基づいて、前記第1クロック信号の位相を調整する、半導体装置。
  7. 請求項に記載の半導体装置において、
    前記半導体装置は、入力データが供給され、供給された入力データを前記加算回路へ供給するバッファ回路を備え、
    遅延時間の調整のとき、前記バッファ回路から前記加算回路への入力データの供給が停止され、前記帰還データが、前記サンプリングのタイミングを調整する前記基準データとされる、半導体装置。
  8. 請求項に記載の半導体装置において、
    前記半導体装置は、温度を検出する温度センサーを備え、
    前記位相調整回路は、温度センサーからの温度データに基づいて、前記第1クロック信号の位相を調整する、半導体装置。
  9. 入力データと帰還データとを加算し、加算データを出力する加算回路と、
    前記加算回路からの加算データをサンプリングし、サンプリングデータを出力する第1サンプリング回路と、
    前記第1サンプリング回路からのサンプリングデータにタップ係数を乗算して、前記帰還データを形成する乗算回路と、
    前記第1サンプリング回路からのサンプリングデータに基づいて、前記タップ係数を決定するタップ係数決定回路と、
    温度を検出する温度センサーと、
    前記第1サンプリング回路のサンプリングのタイミングを、前記温度センサーからの温度データに基づいて変える位相調整回路と、
    を備えている、半導体装置。
JP2016181410A 2016-09-16 2016-09-16 半導体装置 Active JP6697990B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016181410A JP6697990B2 (ja) 2016-09-16 2016-09-16 半導体装置
CN201710699221.6A CN107832246B (zh) 2016-09-16 2017-08-16 半导体装置
EP17188232.7A EP3297238B1 (en) 2016-09-16 2017-08-29 Semiconductor device
TW106131103A TWI741027B (zh) 2016-09-16 2017-09-12 半導體裝置
US15/702,341 US10483957B2 (en) 2016-09-16 2017-09-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181410A JP6697990B2 (ja) 2016-09-16 2016-09-16 半導体装置

Publications (2)

Publication Number Publication Date
JP2018046489A JP2018046489A (ja) 2018-03-22
JP6697990B2 true JP6697990B2 (ja) 2020-05-27

Family

ID=59799221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181410A Active JP6697990B2 (ja) 2016-09-16 2016-09-16 半導体装置

Country Status (5)

Country Link
US (1) US10483957B2 (ja)
EP (1) EP3297238B1 (ja)
JP (1) JP6697990B2 (ja)
CN (1) CN107832246B (ja)
TW (1) TWI741027B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11163001B2 (en) * 2018-04-04 2021-11-02 Intel Corporation Reduction of skew between positive and negative conductors carrying a differential pair of signals
JP2020155859A (ja) 2019-03-19 2020-09-24 キオクシア株式会社 半導体集積回路及び受信装置
TWI827809B (zh) * 2019-04-04 2024-01-01 丹麥商卡普雷斯股份有限公司 測量測試樣本之電性的方法,以及多層測試樣本
US11212227B2 (en) * 2019-05-17 2021-12-28 Pensando Systems, Inc. Rate-optimized congestion management
JP7273670B2 (ja) * 2019-09-18 2023-05-15 キオクシア株式会社 半導体集積回路、受信装置、及び半導体集積回路の制御方法
US12081642B2 (en) 2019-10-29 2024-09-03 International Business Machines Corporation Time dependent line equalizer for data transmission systems
US10812301B1 (en) * 2019-10-29 2020-10-20 International Business Machines Corporation Time dependent line equalizer for data transmission systems
WO2022118440A1 (ja) 2020-12-03 2022-06-09 株式会社ソシオネクスト 位相補間回路、受信回路及び半導体集積回路
CN114706448A (zh) * 2020-12-17 2022-07-05 中兴通讯股份有限公司 信号采样方法、信号采样装置及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238092A (ja) * 1996-02-29 1997-09-09 Canon Inc 無線通信システム
US20080240224A1 (en) * 2006-04-18 2008-10-02 Carballo Juan A Structure for one-sample-per-bit decision feedback equalizer (dfe) clock and data recovery
US8446942B2 (en) * 2008-03-11 2013-05-21 Nec Corporation Waveform equalization circuit and waveform equalization method
US8135100B2 (en) * 2008-08-20 2012-03-13 International Business Machines Corporation Adaptive clock and equalization control systems and methods for data receivers in communications systems
US8385401B2 (en) * 2008-10-20 2013-02-26 Avago Technologies Fiber Ip (Singapore) Pte. Ltd Equalizer and method for performing equalization
US8675724B2 (en) * 2009-10-20 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Decision feedback equalizers and operating methods thereof
JP2011151765A (ja) * 2009-12-22 2011-08-04 Renesas Electronics Corp データフィルタ回路及び判定帰還型等化器
JP2013109637A (ja) * 2011-11-22 2013-06-06 Renesas Electronics Corp メモリインターフェース回路、および、そのメモリインターフェース回路の動作方法
JP6079388B2 (ja) * 2013-04-03 2017-02-15 富士通株式会社 受信回路及びその制御方法
US9325489B2 (en) * 2013-12-19 2016-04-26 Xilinx, Inc. Data receivers and methods of implementing data receivers in an integrated circuit
TWI532327B (zh) * 2014-09-17 2016-05-01 國立交通大學 嵌入決策回授等化器之相位偵測裝置與時脈資料回復電路
US10341145B2 (en) * 2015-03-03 2019-07-02 Intel Corporation Low power high speed receiver with reduced decision feedback equalizer samplers

Also Published As

Publication number Publication date
US20180083607A1 (en) 2018-03-22
TW201826727A (zh) 2018-07-16
TWI741027B (zh) 2021-10-01
JP2018046489A (ja) 2018-03-22
US10483957B2 (en) 2019-11-19
EP3297238A1 (en) 2018-03-21
CN107832246B (zh) 2023-08-04
EP3297238B1 (en) 2020-12-09
CN107832246A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
JP6697990B2 (ja) 半導体装置
US11277254B2 (en) Receiver with enhanced clock and data recovery
US11489703B2 (en) Edge based partial response equalization
US8243866B2 (en) Analog baud rate clock and data recovery
US7493509B2 (en) Intra-pair differential skew compensation method and apparatus for high-speed cable data transmission systems
KR101300659B1 (ko) 등화기를 갖는 수신기 및 그것의 등화방법
CN113364450B (zh) 校准电路与其相关的校准方法
US8937994B2 (en) Partial response decision feedback equalizer with selection circuitry having hold state
US20080219390A1 (en) Receiver Circuit
US6614296B2 (en) Equalization of a transmission line signal using a variable offset comparator
JP2016512942A (ja) データシンボル遷移ベースのクロック同期を行うマルチワイヤオープンドレインリンク
US9722590B1 (en) Skew adjustment circuit, semiconductor device, and skew calibration method
JPWO2008032492A1 (ja) 判定負帰還型波形等化方法および等化器
KR102497232B1 (ko) 신호 수신 회로 및 그것의 동작 방법
CN110612500A (zh) 多线路时偏的测量和校正方法
JP2011130093A (ja) 受信回路
KR101736796B1 (ko) 데이터 신호의 잡음 제거 장치 및 방법
US9401827B2 (en) Semiconductor device and information processing system
US20140247862A1 (en) Sending and receiving system, method of sending and receiving, and receiving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6697990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150