JP6673533B2 - モータ駆動装置、及びモータ駆動システム - Google Patents

モータ駆動装置、及びモータ駆動システム Download PDF

Info

Publication number
JP6673533B2
JP6673533B2 JP2019537405A JP2019537405A JP6673533B2 JP 6673533 B2 JP6673533 B2 JP 6673533B2 JP 2019537405 A JP2019537405 A JP 2019537405A JP 2019537405 A JP2019537405 A JP 2019537405A JP 6673533 B2 JP6673533 B2 JP 6673533B2
Authority
JP
Japan
Prior art keywords
inverter
motor
motor drive
bus voltage
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019537405A
Other languages
English (en)
Other versions
JPWO2019163729A1 (ja
Inventor
哲 平良
哲 平良
良知 林
良知 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019163729A1 publication Critical patent/JPWO2019163729A1/ja
Application granted granted Critical
Publication of JP6673533B2 publication Critical patent/JP6673533B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Description

本発明は、交流電源から供給される交流電力を受電して負荷であるモータを駆動するモータ駆動装置、及びモータ駆動システムに関する。
モータ駆動装置において、モータを駆動するインバータ装置の前段に配置されるコンバータ装置及び周辺機器は、モータ駆動装置を含むモータ駆動システムの最大負荷を考慮して、それらの容量が選定されている。
ところが、実際の運転環境において、モータ駆動システムの負荷が最大負荷となるのは、ある特定の僅かな運転期間のみである。従って、モータ駆動システムにおいて、最大負荷を考慮して周辺機器を選定することは、システムの規模が大型化し、システム構築のコストが上昇する要因となっていた。
上記課題に対し、下記特許文献1には、以下の技術が開示されている。
(1)交流電源からコンバータ装置に供給される入力電流又は入力電力が所定の範囲外となった場合、その旨の情報を、通信手段によって後段のインバータ装置に伝える。
(2)入力電流又は入力電力が所定の範囲外である旨の情報を受信したインバータ装置は、モータを駆動する際のトルク又は回転速度を制限し、インバータ装置からモータに供給される交流電力を小さくする。これにより、コンバータ装置の交流側に許容値を超えた過大な入力電流が流れることが防止される。
特開2013−153607号公報
上述のように、特許文献1の技術では、コンバータ装置とインバータ装置との双方が通信手段を備える必要がある。従って、特許文献1の技術を採用した場合には、専用の通信手段が必要とされると共に、通信手段を成す、通信回路及び通信線を敷設するための工数が必要とされる。このため、システム構築の期間が長くなり、システム構築のコストが上昇するという課題が生ずる。
また、専用の通信手段を有する構成の場合、通信の際のノイズの影響、及び通信線を介して回り込むノイズ電流によって機器の誤動作を引き起こすといった懸念も生ずる。
さらに、通信手段を有するシステムの場合、コンバータ装置の検知情報がインバータ装置に送信される際の遅延時間が問題となることがある。例えば、コンバータ装置とインバータ装置との間の通信において、きめ細かい制御を行うためにアナログ値を送信する場合には、ノイズ対策のために冗長ビットを追加することがよく行われる。このようなシステムの場合、送信される情報量が多くなり、遅延時間の影響が顕著に現れる。このため、モータに対するトルク制限又は回転速度制限の制御が遅延し、コンバータ装置の入力側すなわち交流側に、想定以上の入力電流又は入力電力が発生し、機器を破損させるおそれがある。
本発明は、上記に鑑みてなされたものであって、コンバータ装置とインバータ装置とに通信手段を設けることなく、コンバータ装置の交流側に想定以上の入力電流又は入力電力が発生するのを抑止することができるモータ駆動装置、及びモータ駆動システムを得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、交流電源から供給される交流電力を受電してモータを駆動するモータ駆動装置である。モータ駆動装置は、交流電力を直流電力に変換するコンバータ回路、及びコンバータ回路から供給される直流電力を交流電力に変換してモータへ供給することによりモータを駆動するインバータ回路を備える。また、モータ駆動装置は、コンバータ回路の交流側に流れる入力電流、又はコンバータ回路に供給される入力電力が上限値を超えないように制御するコンバータ制御部を備える。また、モータ駆動装置は、コンバータ回路とインバータ回路をつなぐ直流母線の電圧である母線電圧を検出し、母線電圧の検出値が設定された下限値に達するとインバータ回路の出力電力が小さくなるように制限するインバータ制御部を備える。
本発明によれば、コンバータ装置とインバータ装置とに通信手段を設けることなく、コンバータ装置の交流側に想定以上の入力電流又は入力電力が発生するのを抑止できるという効果を奏する。
実施の形態1に係るモータ駆動装置を含むモータ駆動システムの構成図 実施の形態1に係るモータ駆動装置の動作説明に供する図 実施の形態1のコンバータ装置における動作フローを示すフローチャート 実施の形態1のインバータ装置における動作フローを示すフローチャート 実施の形態1におけるコンバータ制御部及びインバータ制御部の各演算部の機能をソフトウェアで実現するハードウェア構成の一例を示すブロック図 実施の形態1におけるコンバータ制御部及びインバータ制御部の各演算部の機能をソフトウェアで実現するハードウェア構成の他の例を示すブロック図 実施の形態1の変形例に係るモータ駆動システムの構成図 実施の形態2に係るモータ駆動装置の動作説明に供する図 実施の形態3に係るモータ駆動装置を含むモータ駆動システムの構成図 実施の形態3に係るモータ駆動装置の動作説明に供する図 実施の形態4に係るモータ駆動装置の動作説明に供する図 実施の形態5に係るモータ駆動システムを示す構成図 実施の形態5のインバータ装置における動作フローを示すフローチャート 実施の形態5のインバータ装置における動作フローを示すフローチャート 実施の形態5の上位制御装置における動作フローを示すフローチャート 実施の形態6に係るモータ駆動システムを示す構成図 実施の形態6のインバータ装置における動作フローを示すフローチャート 実施の形態6のインバータ装置における動作フローを示すフローチャート 実施の形態6の上位制御装置における動作フローを示すフローチャート
以下に添付図面を参照し、本発明の実施の形態に係るモータ駆動装置について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。また、以下の説明において、モータは三相モータを例示するが、三相モータ以外のモータを使用してもよい。また、電源は三相交流を例示するが、三相以外の交流電源を使用してもよい。また、図面に記載の半導体素子は一例であり、他の記号の半導体スイッチ素子を使用してもよい。また、以下の説明では、物理的な接続と電気的な接続とを区別せずに、単に「接続」と称する。
実施の形態1.
図1は、実施の形態1に係るモータ駆動装置50を含むモータ駆動システム100の構成図である。図1に示すように、実施の形態1に係るモータ駆動システム100は、配線用遮断器4と、リアクトル5と、モータ駆動装置50と、モータ6とを有する。また、モータ駆動装置50は、交流電源3から交流電力が供給されるコンバータ装置1と、コンバータ装置1から直流電力が供給されるインバータ装置2とを有する。図1では、コンバータ装置1の一例として、交流側の電流を制御可能な三相パルス幅変調(PulseWidth Modulation:以下「PWM」と表記)コンバータを示している。
なお、本実施の形態では、コンバータ装置1の一例としてPWMコンバータを用いた場合を説明するが、交流側の電流を制御可能なコンバータであれば、PWMコンバータに限定する必要はない。
図1において、交流電源3は、コンバータ装置1に交流電力を供給する電力供給源である。交流電源3とコンバータ装置1との間には、配線用遮断器4及びリアクトル5が配置されている。リアクトル5は、電気エネルギーを一時的に蓄積する回路要素を含む装置である。配線用遮断器4は、交流電源3とコンバータ装置1とを接続する電気配線に配され、交流電源3とコンバータ装置1との間に流れる電流を遮断可能な装置である。配線用遮断器4の一例は、MCCB(Molded Case Circuit Breaker)である。モータ6は、モータ駆動装置50の駆動対象である。図示しない負荷が工作機械である場合、モータ6は、サーボモータ及びスピンドルモータである。
なお、本実施の形態では周辺機器として配線用遮断器4とリアクトル5を示したが、配線用遮断器4は備えなくてもよいし、これら以外の周辺機器を備えていてもよい。
コンバータ装置1は、制御部10と、コンバータ回路12と、平滑コンデンサ14とを有する。コンバータ回路12とリアクトル5との間には、電流検出器16が配置されている。
図1では、電流検出器16は一相のみに設けられているが、全三相に設けられていてもよい。三相の電流を検出することによって、電流検出値にアンバランスが生じた場合に平均値を用いることが可能なため、電圧不平衝時にロバスト性が高いというメリットが得られる。
コンバータ回路12は、トランジスタ素子とダイオードとが逆並列に接続されたスイッチング素子12aを複数用いて構成される。なお、コンバータ回路12におけるスイッチング素子12aの配置及び接続は公知であり、ここでの説明は割愛する。
インバータ装置2は、制御部20と、平滑コンデンサ22と、インバータ回路24とを有する。
インバータ回路24は、トランジスタ素子とダイオードとが逆並列に接続されたスイッチング素子24aを複数用いて構成される。なお、インバータ回路24におけるスイッチング素子24aの配置及び接続は公知であり、ここでの説明は割愛する。
コンバータ回路12とインバータ回路24は、直流母線7を用いて接続される。直流母線7は、コンバータ回路12とインバータ回路24とをつなぐ電気配線である。直流母線7は、高電位側導体7Pと、低電位側導体7Nとを有する。コンバータ回路12において、直流母線7に接続される側が直流側であり、交流電源3に接続される側が交流側である。また、インバータ回路24において、直流母線7に接続される側が直流側であり、モータ6に接続される側が交流側である。
コンバータ回路12は、交流電源3から供給される交流電力を、配線用遮断器4及びリアクトル5を介して受電する。コンバータ回路12は、受電した交流電力を直流電力に変換してインバータ回路24に供給する。インバータ回路24は、コンバータ回路12から供給される直流電力を任意の大きさ及び任意の周波数の交流電力に変換してモータ6に供給することでモータ6を駆動する。
平滑コンデンサ14は、コンバータ回路12の後段において、コンバータ回路12の両端に並列に接続される。平滑コンデンサ14の一端は直流母線7の高電位側導体7Pに接続され、平滑コンデンサ14の他端は直流母線7の低電位側導体7Nに接続される。コンバータ回路12によって変換された直流電力は、平滑コンデンサ14に蓄電される。
平滑コンデンサ22は、インバータ回路24の前段において、インバータ回路24の両端に並列に接続される。平滑コンデンサ22の一端は直流母線7の高電位側導体7Pに接続され、平滑コンデンサ22の他端は直流母線7の低電位側導体7Nに接続される。
上記のように、平滑コンデンサ14及び平滑コンデンサ22は、共に直流母線7の高電位側導体7Pと、直流母線7の低電位側導体7Nとの間に接続されている。このため、平滑コンデンサ14の一端と平滑コンデンサ22の一端とは同電位であり、平滑コンデンサ14の他端と平滑コンデンサ22の他端とは同電位である。つまり、平滑コンデンサ14と平滑コンデンサ22は互いに並列に接続される。また、コンバータ回路12によって変換された直流電力は、平滑コンデンサ22にも蓄電される。なお、本実施の形態では平滑コンデンサ14、22を備えた構成を説明するが、少なくともいずれか一方を備えていればよい。
次に、制御部10の機能について説明する。制御部10は、入力電流判定部10aと、コンバータ制御演算部10bと、駆動部10cとを有する。電流検出器16は、リアクトル5とコンバータ回路12との間に流れる電流である入力電流Iを検出する。電流検出器16の検出値Iaは、入力電流判定部10a及びコンバータ制御演算部10bに入力される。
入力電流判定部10aは、電流検出器16の検出値Iaが電流上限値を超えていないかを判定する。入力電流判定部10aは、この判定結果である信号をコンバータ制御演算部10bへ送信する。
コンバータ制御演算部10bは、コンバータ回路12をPWM制御するためのPWM信号を生成する。コンバータ制御演算部10bは、PWM信号を生成する際に、入力電流Iが電流上限値を超えないように、PWM信号のパルス幅を調整する。すなわち、コンバータ制御演算部10bは、従来のコンバータ制御で用いる信号に加えて、入力電流判定部10aから送られてきた信号を用いて、入力電流Iが上限値を超えないように制御する。
上述のように、入力電流Iは、入力電流判定部10a及びコンバータ制御演算部10bの機能によって、電流上限値を超えないように制御される。電流上限値は、制御部10の内部に設定される。電流上限値は、外部から動的に入力されるものであってもよい。
また、電流上限値に代えて、電力上限値を用いてもよい。電力上限値は、内部で保持されるものであってもよく、又は外部から入力されるものであってもよい。なお、一般的に、モータ駆動システム100を動作させるときの交流電源3の出力電圧は、予め決められている。このため、コンバータ装置1に供給される入力電力は、電流検出器16の検出値Iaに基づいて算出可能である。また、精度のよい制御を行うため、交流電源3の出力電圧、又はコンバータ装置1の入力電圧を検出する電圧検出部を設けてもよい。この構成の場合、コンバータ装置1への入力電力は、電圧検出部の検出値と、電流検出器16の検出値Iaとに基づいて、動的に求められる。
駆動部10cは、コンバータ制御演算部10bで生成されるPWM信号を用いて、コンバータ回路12のスイッチング素子12aを駆動するための駆動信号を生成する。コンバータ回路12のスイッチング素子12aがPWM信号によってPWM制御されることにより、入力電流Iの大きさが調整される。
次に、制御部20の機能について説明する。制御部20は、母線電圧判定部20aと、インバータ制御演算部20bと、駆動部20cとを有する。
母線電圧判定部20aは、直流母線7の電圧である母線電圧Vを所定値と比較する。母線電圧Vは、コンバータ装置1の出力電圧であり、インバータ装置2の入力電圧である。また、図1の回路構成の場合、母線電圧Vは、平滑コンデンサ14及び平滑コンデンサ22の各電圧に等しい。母線電圧判定部20aの判定結果は、インバータ制御演算部20bに入力される。
インバータ制御演算部20bは、インバータ回路24をPWM制御するためのPWM信号を生成する。インバータ制御演算部20bは、PWM信号を生成する際に、モータ6の出力トルクがトルク指令に一致するように、PWM信号のパルス幅を調整する。或いは、インバータ制御演算部20bは、PWM信号を生成する際に、モータ6の回転速度が回転速度指令に一致するように、PWM信号のパルス幅を調整する。
上記の機能に加え、実施の形態1のインバータ制御演算部20bには、母線電圧Vの判定結果に基づいて、モータ6への出力電力を制御する機能が付加される。具体的に、母線電圧判定部20aの内部には、母線電圧Vの下限値が設定される。下限値は、外部から動的に入力されるものであってもよい。母線電圧判定部20aは、母線電圧Vと予め定められた下限値とに基づいて、母線電圧Vの低下を検出する。母線電圧判定部20aによって、母線電圧が予め定められた下限値に到達したと判定された場合、インバータ制御演算部20bは、モータ6への出力電力を制限する。このとき、インバータ制御演算部20bは、インバータ回路24の出力電力を制限する制限部として動作する。出力電力の制限は、トルク指令又は回転速度指令を下げる方向に制御することで行うことができる。インバータ制御演算部20bは、PWM信号を生成する際に、母線電圧Vが下限値を下回らないように、PWM信号のパルス幅を調整する。
駆動部20cは、インバータ制御演算部20bで生成されたPWM信号を用いて、インバータ回路24のスイッチング素子24aを駆動するための駆動信号を生成する。インバータ回路24のスイッチング素子24aがPWM制御されることにより、出力電力の大きさが調整される。なお、インバータ回路24の出力電力がインバータ装置2の出力電力としてモータ6へ出力される。
なお、コンバータ装置1の制御部10と、インバータ装置2の制御部20とを符号無しで示す場合には、制御部10を「コンバータ制御部」と呼び、制御部20を「インバータ制御部」と呼ぶ。
次に、実施の形態1に係るモータ駆動装置50の動作について、図1及び図2の図面を参照して説明する。図2は、実施の形態1に係るモータ駆動装置50の動作説明に供する図である。
図2の上段部には、入力電流Iの時間変化波形が示されている。図2の中段部には、母線電圧Vの時間変化波形が示されている。図2の下段部には、インバータ装置2の出力電力の時間変化波形が示されている。
前述したように、実施の形態1に係るコンバータ装置1では、入力電流Iが電流上限値を超えないように制御される。図2において、時刻t1は、この制御が開始される時刻である。時刻t1において、入力電流Iは、波形で見ると、図示のように山側の振幅がA1に抑えられ、谷側の振幅がA2に抑えられている。波形が正負対称であれば、A2=−A1である。
入力電流Iに制限がかけられると、図示のように母線電圧Vは、時刻t1の値K1から低下して行く。母線電圧Vが低下する一方で、インバータ装置2の出力電力は上昇する。母線電圧Vが低下するのは、入力電流Iに制限がかけられているにも関わらず、インバータ装置2の出力電力が増加して行くからである。インバータ装置2の出力電力は、モータ6によって消費される電力と等価である。すなわち、モータ6の消費電力が、コンバータ装置1からの供給電力を上回るため、母線電圧Vは低下して行く。
母線電圧Vの値がK2に達する時刻t2において、インバータ装置2の出力電力に制限がかけられる。前述の通り、インバータ装置2の出力電力の制限は、トルク指令又は回転速度指令を下げる方向に制御することで行うことができる。図2の例では、時刻t2においてインバータ装置2の出力電力がP1に達し、出力電力の制限によって、インバータ装置2の出力電力がP2に低下させられる様子が示されている。この制御によって、母線電圧Vの低下が下げ止まる。従って、システムに必要な必要最低限の母線電圧を維持できるため、母線電圧Vの低下によってシステムが停止することはなく、システムの動作は継続される。
なお、図2では、母線電圧Vが下限値K2に達したときをトリガとしてステップ的にトルク指令又は回転速度指令を切り替えて行く例を示しているが、この例に限定されない。インバータ制御演算部20bにPID(Proportional Integral Differential)制御系を構成し、母線電圧Vの検出値Vdと下限値K2との差分値に応じて、連続的にトルク指令又は回転速度指令を変更してもよい。なお、ステップ的に実施すると比較的簡単にシステムが構成できる。また、連続的に実施するとトルク変化、又は回転数変化を滑らかにできる。
図3は、実施の形態1のコンバータ装置1における動作フローを示すフローチャートである。図4は、実施の形態1のインバータ装置2における動作フローを示すフローチャートである。
まず、図3において、入力電流判定部10aは、電流検出器16が検出した入力電流Iの検出値Iaを受け取り(ステップS101)、検出値Iaと閾値Isとを比較する(ステップS102)。この閾値Isは、図2で示したA1もしくはA2の値、すなわち入力電流Iにおける電流上限値に対応する。
検出値Iaが閾値Is以上である場合(ステップS103、Yes)、入力電流判定部10aは、入力電流制限信号をコンバータ制御演算部10bに対して送信し、コンバータ制御演算部10bは、入力電流制限信号を用いて入力電流を制限する(ステップS104)。この際、入力電流判定部10aは、入力電流制限信号に基づき、入力電流を制限するようにPWM信号を生成する。ステップS104の処理の終了後、ステップS101に戻り、上述した処理を繰り返す。
一方、検出値Iaが閾値Is未満である場合(ステップS103、No)、コンバータ制御演算部10bは、ステップS104の処理をスキップしてPWM信号を生成し、ステップS101に戻る。以降、上述した処理を繰り返す。
なお、上記のステップS103の判定処理では、検出値Iaと閾値Isとが等しい場合を“Yes”と判定してステップS104に移行しているが、“No”と判定してステップS101に戻ってもよい。すなわち、検出値Iaと閾値Isとが等しい場合を“Yes”又は“No”の何れで判定してもよい。
また、図4において、母線電圧判定部20aは、母線電圧Vの検出値Vdを受け取る(ステップS201)。なお、母線電圧判定部20aが母線電圧を検出してもよい。母線電圧判定部20aは、検出値Vdと閾値Vsとを比較する(ステップS202)。この閾値Vsは、図2で示した母線電圧Vの下限値K2に対応する。
母線電圧判定部20aは、検出値Vdが閾値Vs未満であったか否かの判定結果を出力信号としてインバータ制御演算部20bに送信する。検出値Vdが閾値Vs未満である場合(ステップS203、Yes)、インバータ制御演算部20bにトルク指令又はまたは回転数を制限する出力電力制限信号を出力する。インバータ制御演算部20bは、母線電圧判定部20aの判定結果を受けて、上述したインバータ装置2の出力電力に制限をかける処理を行う(ステップS204)。具体的には、出力電力を制限するようにPWM信号を生成する。ステップS204の処理の終了後、ステップS201に戻り、上述した処理を繰り返す。
一方、検出値Vdが閾値Vs以上である場合(ステップS203、No)、インバータ制御演算部20bは、ステップS204の処理をスキップして、ステップS201に戻る。以降、上述した処理を繰り返す。
なお、上記のステップS203の判定処理では、検出値Vdと閾値Vsとが等しい場合を“No”と判定してステップS204に移行しているが、“Yes”と判定してステップS201に戻ってもよい。すなわち、検出値Vdと閾値Vsとが等しい場合を“Yes”又は“No”の何れで判定してもよい。
以上のように、実施の形態1におけるコンバータ装置1は、入力電流Iの検出値Iaに基づいて入力電流I又は入力電力が上限値を超えないように制御する機能を有する。また、実施の形態1におけるインバータ装置2は、入力電流I又は入力電力の制限による母線電圧Vの低下を検出して、モータ6への出力電力を制限する機能を有する。従って、実施の形態1に係るモータ駆動装置50では、システムの動作を継続しながら、入力電流I又は入力電力を設定した制限値以下に抑制すること、すなわち入力電流又は入力電力のピークカットが可能となる。
これにより、コンバータ装置1とインバータ装置2とに通信手段を設けることなく、コンバータ装置1の交流側に想定以上の入力電流I又は入力電力が発生するのを抑止することができる。その結果、モータ駆動システム100の負荷が、背景技術の項で説明した最大負荷となること、すなわち従来の様にある特定の僅かな運転期間のみに負荷が過大となるのを回避することができる。これにより、インバータ装置2、並びにインバータ装置2の前段に配置されるコンバータ装置1、及び配線用遮断器4、リアクトル5といった周辺機器は、従来の様にモータ駆動システム100の最大負荷を考慮して選定する必要がなくなる。また、通信回路及び通信線を敷設する必要もないので、システム規模の大型化、システム構築のコスト上昇を抑制することが可能となる。更に、通信手段を用いることがないので、ノイズによる誤動作及び通信エラーの懸念がなくなる。また、通信による遅延がないため、制御の高速性が得られる。
なお、従来、コンバータ制御及びインバータ制御を行う場合、保護又は制御精度を高めるため、入力電流及び母線電圧の検出信号を用いた制御を行うことが一般的である。本実施に係るモータ駆動装置によれば、既に使用されている検出信号を用いることによって、上記の効果を得ることが可能となる。
次に、実施の形態1におけるコンバータ制御演算部10b及びインバータ制御演算部20bの機能をソフトウェアで実現するためのハードウェア構成について、図5及び図6の図面を参照して説明する。図5は、実施の形態1におけるコンバータ制御演算部10b及びインバータ制御演算部20bの機能をソフトウェアで実現するハードウェア構成の一例を示すブロック図である。図6は、実施の形態1におけるコンバータ制御演算部10b及びインバータ制御演算部20bの機能をソフトウェアで実現するハードウェア構成の他の例を示すブロック図である。
実施の形態1におけるコンバータ制御演算部10b及びインバータ制御演算部20bの機能をソフトウェアで実現する場合には、図5に示すように、演算を行うプロセッサ200、プロセッサ200によって読みとられるプログラムが保存されるメモリ202、及び信号の入出力を行うインタフェース204を含む構成とすることができる。
プロセッサ200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ202には、RAM(RandomAccess Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)、BD(Blu−ray(登録商標) Disk)を例示することができる。
メモリ202には、コンバータ制御演算部10b及びインバータ制御演算部20bの機能を実行するプログラム及びプロセッサ200によって参照されるテーブルが格納されている。プロセッサ200は、インタフェース204を介して必要な情報を授受し、メモリ202に格納されたプログラムをプロセッサ200が実行し、メモリ202に格納されたテーブルをプロセッサ200が参照することにより、上述したコンバータ制御演算部10b及びインバータ制御演算部20bによる演算処理を行うことができる。プロセッサ200による演算結果は、インタフェース204を介して他の機能部に出力することができる。
図5に示すプロセッサ200及びメモリ202は、図6のように処理回路203に置き換えてもよい。処理回路203は、単一回路、複合回路、ASIC(Application Specific IntegratedCircuit)、FPGA(Field−ProgrammableGate Array)、又は、これらを組み合わせたものが該当する。なお、コンバータ制御演算部10b及びインバータ制御演算部20bにおける一部の処理を処理回路203で実施し、処理回路203で実施しない処理をプロセッサ200及びメモリ202で実施してもよい。
図7は、実施の形態1の変形例に係るモータ駆動システムの構成図である。実施の形態1では、コンバータ装置1の交流側に電流検出器16を設けたが、図7に示すように、コンバータ装置1の直流側に直流母線7の電流を検出する電流検出器18を設けてもよい。例えば、コンバータ装置1の直流側正極端に電流検出器18を設け、コンバータ回路12の出力電流を検出する場合を考える。コンバータ回路12の入力電力と出力電力の関係は等しいことから、コンバータ回路12の出力電流を検出すれば、コンバータ回路12への入力電流を算出することができる。従って、電流検出器18をコンバータ装置1の直流側に設けた場合も、コンバータ回路12への入力電流Iに基づいて制御を行う実施の形態1の手法を適用することが可能である。
実施の形態2.
実施の形態2では、コンバータ装置1に母線電圧の制御機能が付加されている場合の制御例について説明する。図8は、実施の形態2に係るモータ駆動装置の動作説明に供する図である。なお、実施の形態2に係るモータ駆動装置の基本構成は、実施の形態1と同一である。
図1の構成において、実施の形態2のコンバータ制御演算部10bは、母線電圧Vを制御する機能を有する。このとき、コンバータ制御演算部10bは、母線電圧Vを制御する電圧制御部として動作する。なお、コンバータ装置1において、母線電圧Vを決められた値に制御する場合には、母線電圧Vの情報が必要である。この場合、コンバータ装置1の制御部10は、母線電圧Vを検出するための母線電圧検出部を有する。
図8の上段部には、入力電流Iの時間変化波形が示されている。図8の中段部には、母線電圧Vの時間変化波形が2つ示されている。2つの波形のうち、太破線で示される波形は図2に示したものと同一であり、太実線で示される波形は、コンバータ装置1における母線電圧制御機能を利用して、母線電圧Vを通常時の値K1よりも高めの値K3に設定したときの波形である。なお、通常時の値K1は、一般的にはコンバータ装置1の制御部10が電流制御を行う上で必要最小限の電圧指令値を指す。従って、値K3は、コンバータ装置1の制御部10が電流制御を行う上で必要な最低電圧値よりも高い値である。なお、通常時の値K1は、例えば、公称値としてもよい。
また、図8の下段部には、インバータ装置2の出力電力の時間変化波形が2つ示されている。時刻t2から時刻t3までの間に示される2つの波形のうち、太破線で示される波形は図2に示されるものと同一であり、太実線で示される波形は、母線電圧VをK3に設定したときに対応する波形である。
図8において、時刻t1では、図2で説明したように、入力電流Iには制限がかけられ、母線電圧Vは、低下して行く。図2の例では、図8の太破線で示されるように、インバータ装置2の出力電力がP1に達する時刻t2において、出力電力に制限をかける制御が行われていた。これに対し、母線電圧VをK3に設定した場合には、母線電圧Vが下限値であるK2に達するまでの時間が長くなり、インバータ装置2の出力電力を制限する開始時刻を延ばすことが可能となる。図8の例では、時刻t3においてインバータ装置2の出力電力がP3に達し、出力電力の制限によって、インバータ装置2の出力電力がP2に低下させられる様子が示されている。
実施の形態2の制御によれば、コンバータ装置1が母線電圧Vの検出値を用いて、母線電圧を高くする制御を実現できる。すなわち、母線電圧Vを制御するためのコンバータ制御演算部10bにおける電圧指令値をK1よりも高いK3に設定できるため、母線電圧VがK3の状態から下限値であるK2に達するまでの電圧幅を確保できる。これにより、インバータ装置2が出力電力を制限する開始時刻を遅くすることができるという効果が得られる。なお、一般的に平滑コンデンサに蓄えられるエネルギーは、電圧の2乗に比例する。このため、母線電圧を上げる効果は単なる比例ではなく、2乗の効果が得られる。
実施の形態3.
実施の形態1,2は、モータ駆動装置50が1台のモータ6を駆動する実施の形態であった。実施の形態3では、モータ駆動装置50が複数台のモータ6を駆動する実施の形態について説明する。
図9は、実施の形態3に係るモータ駆動装置50Aを含むモータ駆動システム100Aの構成図である。図9において、モータ駆動装置50Aには、モータ6Aを駆動するインバータ装置2Aと、モータ6Bを駆動するインバータ装置2Bとが示されている。インバータ装置2A,2Bは、複数のインバータ装置の例示である。インバータ装置2A,2Bは、共通の直流母線7に互いに並列に接続される。インバータ装置2A,2Bの個々の構成は、同一である。モータ6A,6Bは、複数のモータの例示である。なお、図1の構成と同一又は同等の構成部には同一の符号及び同一名称を付し、重複する説明は割愛する。
次に、実施の形態3に係るモータ駆動装置50Aの動作について、図9及び図10の図面を参照して説明する。図10は、実施の形態3に係るモータ駆動装置50Aの動作説明に供する図である。
図10の上段部には、入力電流Iの時間変化波形が示されている。図10の上段部に示される波形は、図2の上段部に示されるものと同等である。図2の中上段部には、母線電圧Vの時間変化波形が示されている。図10の中上段部に示される波形は、図2の中段部に示されるものと同等である。図10の中下段部には、インバータ装置2Aの出力電力の時間変化波形が示されている。図10の下段部には、インバータ装置2Bの出力電力の時間変化波形が示されている。
図10において、時刻t11まではインバータ装置2Aのみが動作し、時刻t11からはインバータ装置2Aとインバータ装置2Bの双方が動作する状況が示されている。時刻t11以降では、インバータ装置2Aの出力電力P11にインバータ装置2Bの出力電力P21が加わる。このため、時刻t11以降では、インバータ装置全体の出力電力が大きくなり、入力電流Iが大きくなって行く。そして、時刻t12のときに入力電流Iに制限がかけられ、母線電圧Vは、時刻t12の値K1から低下して行く。インバータ装置2A,2Bの双方が動作を継続することにより、母線電圧Vは図示のように低下し続ける。そして、母線電圧Vの値がK2に達する時刻t13において、インバータ装置2Aの出力電力に制限がかけられる。前述の通り、インバータ装置2Aの出力電力の制限は、トルク指令又は回転速度指令を下げる方向に制御することで行われる。図10の例では、時刻t13においてインバータ装置2Aの出力電力がP11からP12に下げられる様子が示されている。この制御によって、母線電圧Vの低下が下げ止まる。従って、母線電圧Vの低下によって、システムが停止することはなく、システムの動作は継続される。
なお、図10の例では、インバータ装置2Aの出力電力に制限をかける場合を例示したが、この例に限定されない。インバータ装置2Bの出力電力に制限をかけてもよいし、インバータ装置2A,2Bの双方の出力電力に制限をかけてもよい。
また、特定のインバータ装置のみに出力電力の制限機能を付与してもよい。1つの例として、生産工程におけるタクトタイムに及ぼす影響が小さいインバータ装置のみに出力電力の制限機能を付与し、当該制限機能が付与されたインバータ装置において出力電力の制限を実施する例が挙げられる。この例によれば、生産性を維持しつつ、入力電流及び入力電力のピークカットが可能となる。
複数のインバータ装置のうちの1つに出力電力の制限機能を付与するためには、予め、該当するインバータ装置のメモリ202に記憶させておいてもよいし、ユーザが外部から該当するインバータ装置のインバータ制御演算部20bに入力できるようにしておいてもよい。
また、他の1つの例として、母線電圧Vの検出値Vdが予め定められた設定値まで低下した場合に、一部のインバータ装置を回生状態に制御する例が挙げられる。なお、設定値としては、下限値K2であってもよいし、下限値K2よりも大きな値が選ばれてもよい。この例によれば、一部のインバータ装置を回生状態に制御しない場合に比して、出力電力を制限する開始時刻を延ばすという効果が得られるのと共に、モータ駆動装置50Aが制限動作となる時間を短くできるという効果も得られる。
実施の形態4.
実施の形態1から3は、力行時の実施の形態であったが、実施の形態4では、回生時の実施の形態について説明する。本実施の形態では、回生エネルギーのピークカットを目的とするため、エネルギーの流れの向きが力行時と逆になるが、その他は実施の形態1から3と同様である。
実施の形態4では、コンバータ装置1の交流側の入力電流と入力電圧の力率の符号が負となる。すなわち、実施の形態4では、エネルギーが回生となるような位相の関係性となる。
図11は、実施の形態4に係るモータ駆動装置の動作説明に供する図である。実施の形態4において、入力電流Iの振幅を制限すると、母線電圧Vは上昇する。これは、モータ6からの回生エネルギーを制限することなく、コンバータ装置1の交流側に回生する入力電流Iあるいは入力電力を制限するためである。そのため、実施の形態4では、母線電圧Vの上限値K4を設け、母線電圧Vがこの上限値K4に達するとモータ6からインバータ装置2を介してコンバータ装置1へ回生されるエネルギーを制限し、母線電圧Vを上げ止める。
母線電圧判定部20aにより母線電圧Vが上限値K4に達したと判定された結果を、インバータ制御演算部20bが受信すると、インバータ制御演算部20bは、モータ6からの回生エネルギーを制限するために、インバータ回路24からの回生出力電力を調整する。
実施の形態4によれば、実施の形態1から3の様に力行制御を行う場合に加えて、回生制御を行う場合にも、回生時におけるコンバータ装置1の交流側の入力電流I又は入力電力のピークを抑制することができる。これにより、周辺機器の容量を抑制する効果が得られる。つまり、周辺機器の容量が小さくても、力行制御に加えて回生制御を実施することができる。
実施の形態5.
実施の形態1〜3は、母線電圧判定部20aによって母線電圧Vが下限値K2に到達した、すなわち、コンバータ装置1が過負荷状態であると判定された場合、インバータ装置2A及び2Bインバータ制御演算部20bがモータ6〜6Bへの出力電圧を制限する実施の形態であった。本実施の形態5では、インバータ装置2A及び2Bが、母線電圧判定部20aの判定結果を通信経路38a及び38bを介して上位制御装置500に通知することにより、上位制御装置500がコンバータ装置1の過負荷状態を認識し、過負荷状態である場合、インバータ装置2A及び2Bの少なくともどちらか一方に対し、対応する通信経路38a及び38bを介して、対応するモータ6A及び6Bの出力を制限したモータ動作指令を生成し出力するものである。そして、インバータ装置2A及び2Bのうち少なくともどちらか一方は、モータ動作指令に基づいて、対応するモータ6A及び6Bの出力を低下させるように出力電力を制御する。以下、実施の形態5について詳述する。
図12は、実施の形態5に係るモータ駆動システム100Bを示す構成図である。なお、図12では、図9で示した実施の形態3に係る構成要素と同一または同等である構成要素には同一の符号を付しており、以下の説明では、実施の形態3と重複する説明を割愛する。
モータ駆動システム100Bは、図9に示した実施の形態3のモータ駆動システム100Aに準じた構成を有している。ただし、モータ駆動システム100Bは、モータ駆動装置50Bと、例えばNC制御装置等の上位制御装置500と、を備え、当該モータ駆動装置50Bを構成するインバータ装置2A及びインバータ装置2Bは、通信経路38a及び38bを介して、上位制御装置500にそれぞれ接続されている。上位制御装置500は、通信経路38a及び38bを介して、インバータ装置2A及び2Bに対しモータ動作指令を送信し、インバータ装置2A及び2Bは、通信経路38a及び38bを介して、インバータ装置2A及び2B自身の状態(例えば、モータに流れる電流、モータ回転数、母線電圧等)を、上位制御装置500対して送信する。このように、インバータ装置2A及び2Bと上位制御装置500とは、通信経路38a及び38bを介して、互いに信号を送受信することができる。
なお、実施の形態5では、モータ6Aとして、例えば工作機械の主軸で使用されることの多いスピンドルモータを採用しており、モータ6Bとして、例えば工作機械の送り軸で使用されることが多くスピンドルモータよりも加減速に要する時間(以下、加減速時間)の短いサーボモータを採用しているが、モータ6A及び6Bとしてこれら以外を採用してもよい。
次に、実施の形態5に係るモータ駆動システム100Bの動作について、図13〜図15を併せ参照して説明する。このうち、図13及び図14は、実施の形態5に係るモータ駆動システム100Bを構成するインバータ装置2A及び2Bの動作フローを示すフローチャートである。また、図15は、実施の形態5に係るモータ駆動システム100Bを構成する上位制御装置500の動作フローを示すフローチャートである。
インバータ装置2A及び2Bは、図13に示すように、母線電圧判定部20aによって母線電圧の検出値Vdを受領する(ステップS301)。なお、母線電圧判定部20aによって母線電圧を検出してもよい。母線電圧判定部20aは、検出値Vdと閾値Vsとを比較し、コンバータ装置1が過負荷状態であるか否か(すなわち、コンバータ装置1が電流制限中であるか否か)を判定する(ステップS302)。この閾値Vsは、図2で示した母線電圧Vの下限値K2に対応する。母線電圧判定部20aは、検出値Vdが閾値Vs未満であれば、コンバータ装置1は過負荷状態であり、入力電流Iを制限するように動作を行っている、すなわち電流制限中であると判定する。一方、母線電圧判定部20aは、検出値Vdが閾値Vs以上であれば、コンバータ装置1は過負荷状態ではなく、入力電流Iを制限するような動作を行っていない、すなわち電流制限中ではないと判定する。そして、インバータ装置2A及び2Bは、ステップS302での判定結果を、対応する通信経路38a及び38bを介して上位制御装置500に通知する(ステップS303)。インバータ装置2A及び2Bは、ステップS303の処理が終わると、ステップS301の処理に戻り、ステップS301〜ステップS303の処理を繰り返す。ステップS301〜ステップS303の処理は、インバータ装置2A及び2Bの母線電圧判定部20aでコンバータ装置1が過負荷状態であるか否か(すなわち、コンバータ装置1が電流制限中か否か)を判定し、上位制御装置500に通知する処理となっている。
上位制御装置500は、図15に示すように、インバータ装置2A及び2Bでの判定結果を、通信経路38a及び38bを介して受信する(ステップS304)。インバータ装置2A及び2Bから送信された判定結果のうち少なくとも一方が、コンバータ装置1が電流制限中であるとの判定結果である場合(ステップS305、Yes)、上位制御装置500は、モータ6A及び6B両方の出力を制限することを決定し(ステップS306)、制御対象であるモータを駆動するインバータ装置2A及び2Bに対し、これらモータ6A及び6Bの出力総和を低減させる、モータ出力を制限したモータ動作指令を出力する(ステップS307)。なお、インバータ装置2A及び2Bから送信された判定結果が、コンバータ装置1が電流制限中でない場合(ステップS305、No)、上位制御装置500は、ステップS306の処理は行わずにステップS307の処理に移行する。すなわち、インバータ装置2A及び2Bから送信された判定結果が、両方とも、コンバータ装置1が電流制限中でない場合、モータ6A及び6Bに対する出力制限は行わず、通常のモータ動作指令を出力する(ステップS307)。以上のステップS304〜S307が上位制御装置500の処理であり、上位制御装置500は、ステップS304〜S307の処理を繰り返し実行する。
また、インバータ装置2A及び2Bは、図14に示すように、上位制御装置500からのモータ動作指令を受信し(ステップS308)、受信したモータ動作指令に応じた交流電力をモータ6A及び6Bに出力されるように動作する(ステップS309)。以上のステップS308、S309は、インバータ装置2A及び2Bが上位制御装置500から受信したモータ動作指令に基づいて行う処理であり、インバータ装置2A及び2Bは、これらステップS308及びS309の処理を繰り返し実行する。
実施の形態5によれば、コンバータ装置1が入力電流Iを制限するような場合、上位制御装置500がモータ6A及び6Bの両方の出力を制限するモータ動作指令を該当するインバータ装置に出力し、当該インバータ装置2A及び2Bが制御対象のモータ6A及び6Bの出力総和を低減させるように出力電力を制御するため、コンバータ装置1の電流制限動作を解消することができ、コンバータ装置1の寿命劣化、破損といった悪影響をシステム停止させることなく解消することができる。
実施の形態6
実施の形態5では、インバータ装置2A及び2Bは、それぞれ、通信経路38a及び38bを介して、上位制御装置500に接続される実施の形態であった。実施の形態6は、インバータ装置2A及び2Bは、直列に、いわゆるデイジーチェーン接続にて、通信経路39a1、39a2、39b1、及び39b2を介して、上位制御装置500に接続される実施の形態である。以下、詳述する。
図16は、実施の形態6に係るモータ駆動システム100Cを示す構成図である。なお、図16では、図12で示した実施の形態5に係る構成要素と同一または同等である構成要素には同一の符号を付しており、以下の説明では、実施の形態5と重複する説明を割愛する。
モータ駆動システム100Cは、図12に示した実施の形態5のモータ駆動システム100Bに準じた構成を有している。ただし、モータ駆動システム100Cは、上位制御装置500とインバータ装置2Bのインバータ制御演算部20bとは、通信経路39b1及び39b2で接続されており、インバータ装置2Bのインバータ制御演算部20bとインバータ装置2Aのインバータ制御演算部20bとは、通信経路39a1及び39a2で接続されており、上位制御装置500とインバータ装置2Aのインバータ制御演算部20bとは、直接的に接続されておらず、間接的に接続されている(いわゆる、デイジーチェーン接続にて接続されている)。このように構成されたモータ駆動システム100Cでは、例えば、上位制御装置500からインバータ装置2Aに対し出力されるモータ動作指令は、インバータ装置2Bのインバータ制御演算部20bを介してインバータ装置2Aのインバータ制御演算部20bに入力されることになる。同様に、インバータ装置2Aから上位制御装置500に対し出力される、コンバータ装置1が電流制限中であるか否かの判定結果は、インバータ装置2Bのインバータ制御演算部20bを介して上位制御装置500に入力されることになる。
次に、実施の形態6に係るモータ駆動システム100Cの動作について、図17〜図19を併せ参照して説明する。このうち、図17は、実施の形態6に係るモータ駆動システム100Cを構成するインバータ装置2Bの動作フローを示すフローチャートであり、図18は、実施の形態6に係るモータ駆動システム100Cを構成するインバータ装置2Bの動作フローを示すフローチャートである。また、図19は、実施の形態6に係るモータ駆動システム100Cを構成する上位制御装置500の動作フローを示すフローチャートである。
インバータ装置2Aは、図16及び図17に示すように、母線電圧判定部20aによって母線電圧の検出値Vdを受領する(ステップS401)。なお、母線電圧判定部20aによって母線電圧を検出してもよい。母線電圧判定部20aは、検出値Vdと閾値Vsとを比較し、コンバータ装置1が過負荷状態であるか否か(すなわち、コンバータ装置1が電流制限中であるか否か)を判定し(ステップS402)、検出値Vdが閾値Vs未満であったか否かの判定結果を出力信号としてインバータ制御演算部20bに送信する。この閾値Vsは、図2で示した母線電圧Vの下限値K2に対応する。検出値Vdが閾値Vs未満である場合(ステップS403、Yes)、母線電圧判定部20aは、インバータ制御演算部20bに対し、トルク指令又は回転数を制限する出力電力制限信号を出力する。インバータ制御演算部20bは、母線電圧判定部20aの判定結果を受けて、上述したインバータ装置2Aの出力電力に制限をかける処理を行う(ステップS404)。具体的には、インバータ制御演算部20bは、出力電力を制限するようにPWM信号を生成する。ステップS404の処理の終了後、母線電圧判定部20aは、ステップS405の処理を実行する。一方、検出値Vdが閾値Vs以上である場合(ステップS403、No)、母線電圧判定部20aは、ステップS404の処理を行わず、ステップS405の処理を実行する。そして、母線電圧判定部20aは、ステップS405にて、通信経路39a1を介してインバータ装置2Aが出力電力に制限をかけているか否かをインバータ装置2Bに通知する。以上のステップS401〜S405の処理がインバータ装置2Aの処理であり、インバータ装置2Aは、ステップS401〜S405の処理を繰り返し実行する。
インバータ装置2Bは、図16及び図18に示すように、通信経路39a1を介して、インバータ装置2Aが出力電力の制限を行っているか否かの判定結果を受領する(ステップS406)。また、インバータ装置2Bは、通信経路39b1を介して、インバータ装置2Aが出力電力の制限を行っているか否かの判定結果を上位制御装置500に対して通知する(ステップS407)。以上のステップS406、S407の処理がインバータ装置2Bの処理であり、インバータ装置2Bは、ステップS406、S407の処理を繰り返し実行する。
上位制御装置500は、図16及び図19に示すように、通信経路39b1を介して、インバータ装置2Aが出力電力の制限を行っているか否かの判定結果を受領する(ステップS408)。インバータ装置2Aが出力電力の制限を行っているとの判定結果である場合(ステップS409、Yes)、上位制御装置500は、モータ6A及び6B両方の出力を制限することを決定し(ステップS410)、通信経路39b2を介して制御対象であるモータを駆動するインバータ装置2A及び2Bに対し、これらモータ6A及び6Bの出力総和を低減させる、モータ出力を制限したモータ動作指令を出力する(ステップS411)。一方、インバータ装置2Aが出力電力の制限を行っていないとの判定結果である場合(ステップS409、No)、上位制御装置500は、ステップS410の処理を行わずにステップS411の処理に移行する。すなわち、上位制御装置500は、インバータ装置2Aが出力電力の制限を行っていないとの判定結果である場合、コンバータ装置1は入力電流Iを制限していないものと判断し、モータ6A及び6Bに対する出力制限を行わず、通信経路39b1を介してインバータ装置2A及び2Bに対し通常のモータ動作指令を出力する(ステップS411)。以上のステップS408〜S411の処理が上位制御装置500の処理であり、ステップS408〜S411の処理を繰り返し実行する。
実施の形態6によれば、インバータ装置2A及び2Bは、直列に、いわゆるデイジーチェーン接続にて、通信経路39a1、39a2、39b1、及び39b2を介して、上位制御装置500に接続されることとした。これにより、実施の形態5の作用効果に準じた作用効果を奏することができるとともに、配線を簡素化することができるため、配線数を削減することや管理に係る工数を削減することができるようになる。
なお、実施の形態5及び実施の形態6では、インバータ装置2A及び2Bの両方が、母線電圧判定部20aの判定結果を通信経路38a及び38bを介して上位制御装置500に通知していたが、この構成に限らない。インバータ装置2A及び2Bのどちらか一方のみが、母線電圧判定部20aの判定結果を対応する通信経路38a及び38bを介して上位制御装置500に通知することとしてもよい。
また、実施の形態5あるいは実施の形態6では、コンバータ装置1が電流制限中であるとの判定結果である場合、上位制御装置500は、モータ6A及び6B両方の出力を制限することを決定し、制御対象であるモータを駆動するインバータ装置2A及び2Bに対し、モータ出力総和を制限したモータ動作指令を出力していたが、これに限らない。工作機械のような複数のモータを使用する産業機械においては、サイクルタイムが長くならないよう維持しながら、モータ動作指令を出力し、コンバータ装置1の電流制限動作を解消することが望ましい。そのため、コンバータ装置1が電流制限中であるとの判定結果である場合、上位制御装置500は、スピンドルモータであるモータ6Aのモータ出力を制限しないモータ動作指令を出力し、サーボモータであるモータ6Bのモータ出力を制限するモータ動作指令を出力するとよい。加減速時間の長いスピンドルモータであるモータ6Aのモータ出力を変化させず、加減速時間の短いサーボモータであるモータ6Bのモータ出力を制限するため、サイクルタイムに影響を与えることなく、コンバータ装置1の電流制限動作を解消することができる。さらに、容量の小さいコンバータ装置を選定することができるようになるため、工作機械の低コスト化に寄与することができる。
また、実施の形態5あるいは実施の形態6では、インバータ装置2A及び2Bは、母線電圧の検出値Vdが閾値Vs未満であるか否かの判定結果を、対応する通信経路を介して上位制御装置に通知することとしたが、この構成に限らない。インバータ装置2A及び2Bは、母線電圧の検出値Vdを、対応する通信経路を介して上位制御装置に通知し、上位制御装置において、母線電圧の検出値Vdが閾値Vs未満であるか否か判定してもよい。
なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 コンバータ装置、2,2A,2B インバータ装置、3 交流電源、4 配線用遮断器、5 リアクトル、6,6A,6B モータ、7 直流母線、7P 高電位側導体、7N 低電位側導体、10,20 制御部、10a 入力電流判定部、10b コンバータ制御演算部、20b インバータ制御演算部、10c,20c 駆動部、12 コンバータ回路、12a,24a スイッチング素子、14,22 平滑コンデンサ、16,18 電流検出器、20a 母線電圧判定部、24 インバータ回路、38a,38b,39a1,39a2,39b1,39b2 通信経路、50,50A,50B,50C モータ駆動装置、100,100A,100B,100C モータ駆動システム、200 プロセッサ、202 メモリ、203 処理回路、204 インタフェース。

Claims (13)

  1. 交流電源から供給される交流電力を受電してモータを駆動するモータ駆動装置であって、
    前記交流電力を直流電力に変換するコンバータ回路と、
    前記コンバータ回路から供給される直流電力を交流電力に変換して前記モータへ供給することにより前記モータを駆動するインバータ回路と、
    前記コンバータ回路の交流側に流れる入力電流、又は前記コンバータ回路に供給される入力電力が上限値を超えないように制御するコンバータ制御部と、
    前記コンバータ回路と前記インバータ回路をつなぐ直流母線の電圧である母線電圧を検出し、前記母線電圧の検出値が設定された下限値に達すると前記インバータ回路の出力電力が小さくなるように制限するインバータ制御部と、
    を備えたことを特徴とするモータ駆動装置。
  2. 前記コンバータ制御部は、前記入力電流が前記上限値を超えないように前記コンバータ回路のスイッチング素子をパルス幅変調制御し、
    前記インバータ制御部は、前記母線電圧が前記下限値を下回らないように前記インバータ回路のスイッチング素子をパルス幅変調制御することを特徴とする請求項1に記載のモータ駆動装置。
  3. 前記インバータ制御部は、前記モータへの出力電力制限値を連続的に変化させることを特徴とする請求項1又は2に記載のモータ駆動装置。
  4. 前記コンバータ制御部は、前記母線電圧を制御するための電圧指令値を、電流制御をする上で必要な最低電圧値よりも高い値に設定することを特徴とする請求項1から3の何れか1項に記載のモータ駆動装置。
  5. 前記モータのエネルギーを回生制御する場合、前記インバータ制御部は、前記母線電圧が設定された上限値に達すると、前記インバータ回路の回生出力電力の絶対値が小さくなるように制限することを特徴とする請求項1から4の何れか1項に記載のモータ駆動装置。
  6. 前記インバータ回路と前記インバータ制御部とを有するインバータ装置を複数備え、複数の前記インバータ装置は、前記直流母線に互いに並列に接続されていることを特徴とする請求項1から5の何れか1項に記載のモータ駆動装置。
  7. 複数の前記インバータ装置のうちの特定の前記インバータ装置において、前記インバータ制御部が、前記インバータ回路の出力電力を制限することを特徴とする請求項6に記載のモータ駆動装置。
  8. 前記母線電圧が、予め定められた設定値まで低下した場合には、複数の前記インバータ装置のうちの一部の前記インバータ装置が回生状態に制御されることを特徴とする請求項6に記載のモータ駆動装置。
  9. 複数の前記インバータ装置は、モータ動作指令を生成し出力する上位制御装置に通信経路を介して接続され、当該上位制御装置から出力されたモータ動作指令に基づいて、それぞれに接続されたモータを駆動することを特徴とする請求項6から8の何れか1項に記載のモータ駆動装置。
  10. 複数の前記インバータ装置は、それぞれ、前記上位制御装置に接続されることを特徴とする請求項9に記載のモータ駆動装置。
  11. 複数の前記インバータ装置は、直列に、前記上位制御装置に接続されることを特徴とする請求項9に記載のモータ駆動装置。
  12. 複数の前記インバータ装置のうち少なくとも1つは、前記母線電圧の検出値が設定された下限値に達したか否かを判定し、その判定結果を前記上位制御装置に通知することを特徴とする請求項9から11の何れか1項に記載のモータ駆動装置。
  13. 請求項12に記載のモータ駆動装置と、モータ動作指令を生成し出力する上位制御装置とを含むモータ駆動システムであって、
    前記上位制御装置は、複数の前記インバータ装置のうち少なくとも1つから通知された前記判定結果が、前記母線電圧の検出値が設定された下限値に達した旨を示すとき、モータの出力総和を低減させる前記モータ動作指令を出力することを特徴とするモータ駆動システム。
JP2019537405A 2018-02-23 2019-02-19 モータ駆動装置、及びモータ駆動システム Active JP6673533B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/006813 2018-02-23
PCT/JP2018/006813 WO2019163110A1 (ja) 2018-02-23 2018-02-23 モータ駆動装置
PCT/JP2019/005963 WO2019163729A1 (ja) 2018-02-23 2019-02-19 モータ駆動装置、及びモータ駆動システム

Publications (2)

Publication Number Publication Date
JPWO2019163729A1 JPWO2019163729A1 (ja) 2020-02-27
JP6673533B2 true JP6673533B2 (ja) 2020-03-25

Family

ID=67686838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019537405A Active JP6673533B2 (ja) 2018-02-23 2019-02-19 モータ駆動装置、及びモータ駆動システム

Country Status (4)

Country Link
US (1) US11095244B2 (ja)
JP (1) JP6673533B2 (ja)
CN (1) CN111758216A (ja)
WO (2) WO2019163110A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155103A (zh) * 2023-08-28 2023-12-01 浙江艾罗网络能源技术股份有限公司 逆变器功率控制方法及其相关设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348162A (ja) * 1986-08-11 1988-02-29 Mitsubishi Electric Corp 可変電圧・可変周波インバ−タの制御装置
US6023135A (en) * 1998-05-18 2000-02-08 Capstone Turbine Corporation Turbogenerator/motor control system
US7183740B2 (en) * 2003-06-05 2007-02-27 Toyota Jidosha Kabushiki Kaisha Motor drive apparatus, vehicle having the same mounted therein, and computer readable storage medium having a program stored therein to cause computer to control voltage conversion
JP4066914B2 (ja) * 2003-08-25 2008-03-26 富士電機システムズ株式会社 モータ駆動制御装置
GB0415511D0 (en) * 2004-07-10 2004-08-11 Trw Ltd Motor drive voltage-boost control
JP2006262632A (ja) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd モータ駆動用インバータ制御装置
US7715698B2 (en) * 2005-08-31 2010-05-11 Thor Power Corporation Control electronics for brushless motors
JP4759356B2 (ja) 2005-09-22 2011-08-31 東芝三菱電機産業システム株式会社 電力変換装置
JP5124954B2 (ja) * 2006-02-13 2013-01-23 株式会社日立製作所 交流電動機システム,交流電動機システムの制御方法およびそれにかかわる電力変換装置
JP4823708B2 (ja) * 2006-02-13 2011-11-24 三菱電機株式会社 直流電源装置
JP5179747B2 (ja) 2006-11-27 2013-04-10 東芝三菱電機産業システム株式会社 電力変換装置
CN101286726B (zh) * 2008-06-12 2011-05-04 杭州优迈科技有限公司 一种电机驱动装置及电机驱动控制方法
US8415909B2 (en) * 2010-04-22 2013-04-09 General Electric Company Power control on a multi-motion electric drive system
JP5500563B2 (ja) * 2010-09-06 2014-05-21 三菱電機株式会社 交流モータ駆動装置
CN102624022A (zh) * 2011-01-30 2012-08-01 上海康威特吉能源技术有限公司 一种光伏并网发电系统及其直流母线电压控制方法
JP5319798B2 (ja) 2012-01-25 2013-10-16 ファナック株式会社 入力される電流もしくは電力に応じてトルク指令を制限するモータ制御装置
JP5562504B1 (ja) * 2013-10-02 2014-07-30 三菱電機株式会社 交流モータ駆動システム
JP5954313B2 (ja) * 2013-12-26 2016-07-20 株式会社安川電機 モータ制御システム、制御装置及び制御方法
CN106464002B (zh) * 2014-05-02 2020-09-08 施耐德电气It公司 不间断电源系统及其操作方法
US10050576B2 (en) * 2015-02-19 2018-08-14 Mitsubishi Electric Corporation Inverter control device and air conditioner
JP6219888B2 (ja) * 2015-07-03 2017-10-25 ファナック株式会社 Pwmコンバータを有するモータ駆動装置
JP6017100B1 (ja) * 2015-07-09 2016-10-26 三菱電機株式会社 モータ制御装置
JP2017112726A (ja) * 2015-12-16 2017-06-22 トヨタ自動車株式会社 交流電動機の制御システム

Also Published As

Publication number Publication date
WO2019163110A1 (ja) 2019-08-29
US20200373868A1 (en) 2020-11-26
WO2019163729A1 (ja) 2019-08-29
JPWO2019163729A1 (ja) 2020-02-27
US11095244B2 (en) 2021-08-17
CN111758216A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
JP5260719B2 (ja) 停電の有無を判定する停電判定部を有するモータ駆動装置
US9048733B2 (en) Motor driving device having reactive current instruction generating unit
JP6599942B2 (ja) 電源電圧の電圧低下量に応じてモータを制御するモータ制御装置及び工作機械システム
JP2017147806A (ja) 電動機制御装置および電動機制御方法
CN101156312B (zh) 伺服电动机的控制装置
US9496802B2 (en) Inverter device
US9608534B2 (en) Power conversion system, and voltage detection device thereof
WO2019239628A1 (ja) コンバータ及びモータ制御装置
CN105340163A (zh) 逆变器装置
WO2018117058A1 (ja) 放電機能を有する電力変換装置
JP5223367B2 (ja) 駆動装置
JP6673533B2 (ja) モータ駆動装置、及びモータ駆動システム
JP6420381B2 (ja) モータ駆動装置
JP6197690B2 (ja) モータ制御システム
JP2012239247A (ja) モータ制御装置
JP6608761B2 (ja) Dcリンクコンデンサの電圧変動を抑制するモータ駆動装置
CN112994584A (zh) 马达驱动装置
JP5940840B2 (ja) 電力変換装置
JP7153794B2 (ja) 制御装置及び故障判定方法
JP6608096B1 (ja) コンバータ及びモータ制御装置
JP4780305B2 (ja) インバータ装置
JP6858834B1 (ja) 電力変換装置の制御装置
JP7341370B1 (ja) 電力変換器
JP6616199B2 (ja) モータの減速用速度変化率を変更する手段を有するモータ制御装置
JP2021164344A (ja) モータ駆動装置、モータ駆動方法、およびモータ駆動プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190710

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6673533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250