JP6661775B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP6661775B2
JP6661775B2 JP2018535972A JP2018535972A JP6661775B2 JP 6661775 B2 JP6661775 B2 JP 6661775B2 JP 2018535972 A JP2018535972 A JP 2018535972A JP 2018535972 A JP2018535972 A JP 2018535972A JP 6661775 B2 JP6661775 B2 JP 6661775B2
Authority
JP
Japan
Prior art keywords
indoor
air
heat exchanger
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018535972A
Other languages
English (en)
Other versions
JPWO2018037496A1 (ja
Inventor
久保田 剛
剛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018037496A1 publication Critical patent/JPWO2018037496A1/ja
Application granted granted Critical
Publication of JP6661775B2 publication Critical patent/JP6661775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/07Remote controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、ダクトを介して空調対象空間の空気調和を行う空気調和装置に関するものである。
従来、空調対象空間の空気調和を行う空気調和装置においては、省エネルギー性および快適性等を向上させることを目的として、風量の制御を行っている。例えば、特許文献1に記載の空気調和装置では、室内ユニットにおける熱交換器の吸込温度および吹出温度の温度差と現在の風量とに基づき、室内ユニットに設けられた送風機の風量を計算して風量を制御している。
一方、ダクトを用いて空調対象空間の空気を吸い込む一般的なダクト式の空気調和装置の室内ユニットにおいては、現地で取り付けるダクトの形状および大きさ等によって静圧の範囲が決まっている。そのため、このようなダクト式の空気調和装置では、静圧の範囲で使用されることを想定して室内ユニットの送風機出力を設定することにより、適切な風量を確保することができるようにしている。
特開平7−4724号公報
しかしながら、実際のダクトによる静圧は、ダクトの曲がり具合等の設置状態によって変化する。そのため、ダクト式の空気調和装置では、室内ユニットが想定している静圧の範囲から外れてしまい、適切な風量を確保することができない。
例えば、静圧が想定したよりも大きい場合には、風量が過小となり、能力の低下または冷房運転時の吹き出し温度の低下等によって快適性が損なわれてしまうことがある。また、例えば、静圧が想定したよりも小さい場合には、風量が過大となり、冷房運転時に熱交換器およびドレンパンに付着する凝縮水が吹出空気とともに室内ユニットから排出されてしまうことがある。
本発明は、上記課題に鑑みてなされたものであって、ダクトの静圧が想定する範囲から外れた場合であっても、適切なダクト風量を確保することができる空気調和装置を提供することを目的とする。
本発明の空気調和装置は、室外ユニットおよび室内ユニットを備え、前記室外ユニットおよび前記室内ユニットが配管で接続され、前記室外ユニット、前記室内ユニットおよび前記配管内を冷媒が流れることによって調和された室内空気を、ダクトを介して送風する空気調和装置であって、前記室外ユニットは、前記冷媒を圧縮する圧縮機と、室外空気と前記冷媒との間で熱交換を行う室外側熱交換器と、前記圧縮機から吐出される冷媒の圧力である高圧圧力を検知する高圧圧力検知器と、前記室外側熱交換器に流入または前記室外側熱交換器から流出する冷媒の温度である室外側液管温度を検知する室外側液管温度検知器とを備え、前記室内ユニットは、前記冷媒を減圧する絞り装置と、室内空気と前記冷媒との間で熱交換を行う室内側熱交換器と、前記室内側熱交換器に前記室内空気を供給する室内側送風機と、前記室内側送風機を制御する室内側制御装置と、前記室内側熱交換器に吸い込まれる空気の吸込空気温度を検知する吸込空気温度検知器と、前記室内側熱交換器から吹き出す空気の吹出空気温度を検知する吹出空気温度検知器と、前記室内側熱交換器と前記絞り装置との間に設けられ、前記室内側熱交換器に流入または前記室内側熱交換器から流出する冷媒の温度である室内側液管温度を検知する室内側液管温度検知器と、前記室内側熱交換器に対して前記室内側液管温度検知器とは反対側に設けられ、前記室内側熱交換器から流出または前記室内側熱交換器に流入する冷媒の温度である室内側ガス管温度を検知する室内側ガス管温度検知器とを備え、前記室内側制御装置は、前記室内側液管温度と、前記室内側ガス管温度と、前記高圧圧力と、前記室外側液管温度と、前記絞り装置の開度とに基づき、前記室内側熱交換器の冷媒側能力を算出し、前記冷媒側能力と、前記吸込空気温度および前記吹出空気温度とに基づき、前記室内側熱交換器を通過する空気の風量を算出し、算出された前記室内側熱交換器を通過する空気の風量に基づき、前記ダクトの風量が適切であるか否かを判断し、前記ダクトの風量が過大または過小であると判断した場合に、前記室内側送風機の出力を調整するものである。
以上のように、本発明の空気調和装置によれば、室内側熱交換器を通過する空気の風量または室内側熱交換器の温度効率を算出することにより、ダクトの静圧が想定する範囲から外れた場合であっても、適切なダクト風量を確保することができる。
本実施の形態1に係る空気調和装置の回路構成の一例を示すブロック図である。 図1の室内側制御装置の機能について説明するための機能ブロック図である。 図1の室内ユニットの設置例を示す概略図である。 図1の空気調和装置における冷房運転モードおよび暖房運転モードでの冷媒の流れについて説明するための概略図である。 図4の室内ユニットによる冷房運転時の風量チェック処理の流れの一例を示すフローチャートである。 図4の室内ユニットによる暖房運転時の風量チェック処理の流れの一例を示すフローチャートである。 図1の室内側送風機を通過する空気の風量と、機外静圧との関係について説明するための概略図である。 実施の形態2に係る室内側制御装置の機能について説明するための機能ブロック図である。 実施の形態2に係る室内ユニットによる冷房運転時の風量チェック処理の流れの一例を示すフローチャートである。 実施の形態2に係る室内ユニットによる暖房運転時の風量チェック処理の流れの一例を示すフローチャートである。
実施の形態1.
以下、本発明の実施の形態1に係る空気調和装置について説明する。
[空気調和装置の回路構成]
図1は、本実施の形態1に係る空気調和装置100の回路構成の一例を示すブロック図である。図1に示すように、空気調和装置100は、室外ユニット1および室内ユニット2で構成されている。
室外ユニット1は、圧縮機11、冷媒流路切替装置12、室外側熱交換器13、室外側送風機14、室外側制御装置15、高圧圧力検知器31、および室外側液管温度検知器32を備えている。室内ユニット2は、絞り装置21、室内側熱交換器22、室内側送風機23、室内側制御装置24、吸込空気温度検知器33、吹出空気温度検知器34、室内側液管温度検知器35、および室内側ガス管温度検知器36を備えている。そして、圧縮機11、冷媒流路切替装置12、室外側熱交換器13、絞り装置21および室内側熱交換器22が配管によって接続されることにより、冷媒が流れる冷媒回路が形成されている。
なお、図1の例では、1台の室外ユニット1と1台の室内ユニット2とが接続される場合を示すが、室外ユニット1および室内ユニット2の台数は、それぞれ2台以上でもよい。例えば、1台の室外ユニット1に対して複数台の室内ユニット2が接続されてもよい。また、例えば、複数の室外ユニット1に対して1または複数の室内ユニット2が接続されてもよい。
(室外ユニット)
圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機11は、例えば、駆動周波数を任意に変化させることにより、時間あたりの冷媒送出量である容量を制御するインバータ圧縮機等からなる。
冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12としては、上述した四方弁に限らず、例えば他の弁を組み合わせて使用してもよい。
室外側熱交換器13は、ファン等の室外側送風機14によって供給される室外空気と冷媒との間で熱交換を行う。具体的には、室外側熱交換器13は、冷房運転の際に、冷媒を蒸発させ、その際の気化熱により空調対象空間内の室内空気を冷却する凝縮器として機能する。また、室外側熱交換器13は、暖房運転の際に、冷媒の熱を室内空気に放熱して冷媒を凝縮させる蒸発器として機能する。
室外側制御装置15は、室外ユニット1の各部から受け取る各種情報などに基づき、室外ユニット1全体の動作を制御する。具体的には、室外側制御装置15は、例えば冷媒回路中に設けられた各種センサからの情報に基づき、圧縮機11の圧縮機周波数、冷媒流路切替装置12の流路の切替、室外側送風機14の回転数などを制御する。
また、室外側制御装置15は、室内ユニット2の室内側制御装置24と伝送線によって接続され、互いに制御情報などのデータのやりとりを行うことができる。このような室外側制御装置15は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、または各種機能を実現する回路デバイスなどのハードウェア等で構成されている。
高圧圧力検知器31は、圧縮機11の吐出側の配管に設けられ、圧縮機11から吐出された高圧の冷媒の圧力を検知する。室外側液管温度検知器32は、冷房運転時における室外側熱交換器13の下流側の液配管16に設けられ、液配管16を流れる冷媒の温度を検知する。
(室内ユニット)
絞り装置21は、冷媒を圧して膨張させる。絞り装置21は、例えば、電子式膨張弁などの開度の制御を行うことができる弁で構成されている。
室内側熱交換器22は、ファン等の室内側送風機23によって供給される室内空気と冷媒との間で熱交換を行う。これにより、室内空間に供給される調和空気である暖房用空気または冷房用空気が生成される。室内側熱交換器22は、冷房運転の際に蒸発器として機能する。また、室内側熱交換器22は、暖房運転の際に凝縮器として機能する。
室内側送風機23は、室内側制御装置24によって風速が制御され、室内側熱交換器22に対して室内空気を供給する。室内側送風機23には、複数段階のノッチが設定されている。室内側送風機23は、室内側制御装置24の制御に基づき設定されたノッチ毎に、室内側熱交換器22に対して供給する室内空気の風速を異ならせることができる。
室内側制御装置24は、室内ユニット2の各部から受け取る各種情報、およびリモートコントローラ3に対する利用者の操作による設定などに基づき、室内ユニット2全体の動作を制御する。具体的には、室内側制御装置24は、例えば室外側制御装置15からの制御情報、または冷媒回路中に設けられた各種センサからの情報に基づき、室内側送風機23の回転数などを制御する。
また、室内側制御装置24は、室外ユニット1の室外側制御装置15と伝送線によって接続され、互いに制御情報などのデータの送受信を行うことができる。さらに、室内側制御装置24は、伝送線によってリモートコントローラ3が接続され、互いにデータの送受信を行うことができる。
このような室内側制御装置24は、例えばマイクロコンピュータ、CPUなどの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェア等で構成されている。
吸込空気温度検知器33は、空気の上流側、すなわち吸込側に設けられている。吸込空気温度検知器33は、室内側送風機23によって吸い込まれた室内空気の温度を検知する。吹出空気温度検知器34は、空気の下流側、すなわち吹出側に設けられている。吹出空気温度検知器34は、室内側熱交換器22によって調和されて吹き出す調和空気の温度を検知する。
室内側液管温度検知器35は、絞り装置21と室内側熱交換器22との間の液配管25に設けられ、液配管25を流れる冷媒の温度を検知する。室内側ガス管温度検知器36は、冷房運転時における室内側熱交換器22の下流側のガス配管26に設けられ、ガス配管26を流れる冷媒の温度を検知する。
また、室内側制御装置24には、リモートコントローラ3が接続されている。リモートコントローラ3は、利用者が操作することにより、例えば、空気調和装置100における運転モード設定、温度設定、風量設定等の各種設定を行い、空気調和装置100の動作を制御するためのものである。リモートコントローラ3は、利用者の操作に応じた操作信号を室内側制御装置24に送信する。
(室内側制御装置の構成)
図2は、図1の室内側制御装置24の機能について説明するための機能ブロック図である。図2に示すように、室内側制御装置24は、冷媒流量算出部41、エンタルピ算出部42、冷媒側能力算出部43、風量算出部44、比較処理部45、駆動制御部46、通知処理部47および記憶部48で構成されている。
冷媒流量算出部41は、高圧圧力検知器31によって検知された室外側高圧圧力と、室内側液管温度検知器35によって検知された室内側液管温度と、絞り装置21の開度とが入力される。冷媒流量算出部41は、入力された室外側高圧圧力および室内側液管温度に基づき、記憶部48に記憶された、絞り装置21の開度と、開度に関連する係数である流量係数Cvとの関係を示すテーブルを参照して、室内側熱交換器22を流れる冷媒の冷媒流量を算出する。冷媒流量算出部41は、算出した冷媒流量を冷媒側能力算出部43に対して出力する。
エンタルピ算出部42は、高圧圧力検知器31によって検知された室外側高圧圧力と、室外側液管温度検知器32によって検知された室外側液管温度と、室内側液管温度検知器35によって検知された室内側液管温度と、室内側ガス管温度検知器36によって検知された室内側ガス管温度とが入力される。エンタルピ算出部42は、入力された室外側高圧圧力と、室外側液管温度と、室内側液管温度と、室内側ガス管温度とに基づき、室内側熱交換器22における流出入側の冷媒側エンタルピ差である出入口エンタルピ差を算出する。エンタルピ算出部42は、算出した出入口エンタルピ差を冷媒側能力算出部43に対して出力する。
冷媒側能力算出部43は、冷媒流量算出部41から入力された室内側熱交換器22の冷媒流量と、エンタルピ算出部42から入力された室内側熱交換器22の出入口エンタルピ差とに基づき、室内側熱交換器22の冷媒側能力を算出する。冷媒側能力算出部43は、算出した冷媒側能力を風量算出部44に対して出力する。
風量算出部44は、冷媒側能力算出部43で算出された室内側熱交換器22の冷媒側能力と、吸込空気温度検知器33によって検知された吸込空気温度と、吹出空気温度検知器34によって検知された吹出空気温度とが入力される。風量算出部44は、入力された室内側熱交換器22の冷媒側能力と、吸込空気温度と、吹出空気温度とに基づき、室内側熱交換器22を通過する空気の風量を算出する。風量算出部44は、算出した風量を比較処理部45に対して出力する。
比較処理部45は、記憶部48に予め記憶された定格風量の範囲を読み出し、入力された室内側熱交換器22を通過する空気の風量と、記憶部48から読み出した定格風量の範囲とに基づき、ダクト風量が適切な風量であるか否かを判断する処理を行う。定格風量の範囲は、適切なダクト風量を得るための、室内側熱交換器22を通過する空気の風量の範囲である。定格風量の範囲は、例えば、吹出空気の冷風感、凝縮水の室内ユニット2からの排出等を考慮して予め設定される。
比較処理部45は、判断処理の結果、ダクト風量が適切な風量でないと判断した場合に、室内側送風機23の出力を調整するための制御情報を生成し、駆動制御部46に対して出力する。また、比較処理部45は、ダクト風量が適切な風量でないと判断した場合で、室内側送風機23の出力調整ができないと判断したときに、異常を示す情報を生成し、通知処理部47に対して出力する。
駆動制御部46は、比較処理部45から制御情報を受信する。駆動制御部46は、受信した制御情報に基づき、室内側送風機23を駆動するための駆動信号を生成し、室内側送風機23に対して出力する。
通知処理部47は、比較処理部45から異常を示す情報を受信する。通知処理部47は、受信した情報に基づき、例えばリモートコントローラ3に異常を示す通知を表示させるための制御信号を生成し、リモートコントローラ3に対して出力する。なお、このような通知は、リモートコントローラ3に表示させることに限られない。例えば、室外ユニット1または室内ユニット2に各種情報を表示するための表示部等が設けられている場合には、制御信号を室外ユニット1または室内ユニット2に対して送信し、室外ユニット1または室内ユニット2に表示させてもよい。
記憶部48は、室内側制御装置24で行われる各種処理に必要なプログラムおよびデータ等の各種情報を記憶する。例えば、記憶部48は、冷媒流量算出部41において使用するテーブル、および比較処理部45において使用する設定風量の範囲を示す情報を予め記憶している。記憶部48は、冷媒流量算出部41からの要求に基づき、記憶されたテーブルを冷媒流量算出部41に供給する。また、記憶部48は、比較処理部45からの要求に基づき、記憶された設定風量の範囲を示す情報を比較処理部45に供給する。さらに、記憶部48は、比較処理部45から、判断処理の結果に応じた室内側送風機23に対する設定情報等を受け取り、記憶することもできる。
[室内ユニットの設置例]
次に、本実施の形態1に係る空気調和装置100における室内ユニット2の設置例について説明する。図3は、図1の室内ユニット2の設置例を示す概略図である。
室内ユニット2は、例えば、居室やサーバルーム等の空調対象空間である室内空間4とは異なる天井裏等の空間5に設置されている。リモートコントローラ3は、室内空間4に設置されている。
室内ユニット2には、室内空気を吸い込むための吸込口2aと、室内側熱交換器22によって熱交換された調和空気を吹き出すための吹出口2bとが形成されている。吸込口2aには、ダクト6aの一端が接続されている。ダクト6aの他端は、室内空間4と空間5とを仕切る天井7の吸込口7aに接続されている。また、吹出口2bには、ダクト6bの一端が接続されている。ダクト6bの他端は、天井7の吹出口7bに接続されている。
これにより、室内ユニット2は、室内側送風機23を用いて室内空間4の空気を、吸込口7aおよびダクト6aを介して吸い込み、室内側熱交換器22によって調和された空気を、吹出口7bおよびダクト6bを介して室内空間4に吹き出すことができる。
[空気調和装置の動作]
次に、上記構成を有する空気調和装置100における冷房運転モードおよび暖房運転モードでの冷媒の動作について説明する。
図4は、図1の空気調和装置100における冷房運転モードおよび暖房運転モードでの冷媒の流れについて説明するための概略図である。図4において、冷媒流路切替装置12の実線で示す状態が冷房運転モードでの状態であり、冷媒の流れ方向を実線で示す。また、冷媒流路切替装置12の点線で示す状態が暖房運転モードでの状態であり、冷媒の流れ方向を点線で示す。
(冷房運転モード)
まず、冷房運転モードでの冷媒の動作について説明する。冷房運転モードでは、冷媒流路切替装置12が図4の実線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。
圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外側熱交換器13に流入する。室外側熱交換器13に流入した高温高圧のガス冷媒は、室外空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって室外側熱交換器13から流出する。室外側熱交換器13から流出した高圧の液冷媒は、室外ユニット1から流出し、液側配管を介して室内ユニット2に流入する。
室内ユニット2に流入した高圧の液冷媒は、絞り装置21によって減圧されて低温低圧の気液二相冷媒となり、室内側熱交換器22に流入する。室内側熱交換器22に流入した低温低圧の気液二相冷媒は、室内空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低温低圧のガス冷媒となって室内側熱交換器22から流出する。
室内側熱交換器22から流出した低温低圧のガス冷媒は、室内ユニット2から流出し、ガス側配管を介して室外ユニット1に流入する。室外ユニット1に流入した低温低圧のガス冷媒は、冷媒流路切替装置12を通過して、圧縮機11へ吸入される。
(暖房運転モード)
次に、暖房運転モードでの冷媒の動作について説明する。暖房運転モードでは、冷媒流路切替装置12が図4の点線で示す状態に切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。
圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外ユニット1から流出する。室外ユニット1から流出した高温高圧のガス冷媒は、ガス側配管を介して室内ユニット2に流入する。
室内ユニット2に流入した高温高圧のガス冷媒は、室内側熱交換器22に流入する。室内側熱交換器22に流入した高温高圧のガス冷媒は、室内空気と熱交換して放熱しながら凝縮し、過冷却状態の高圧の液冷媒となって室内側熱交換器22から流出する。
室内側熱交換器22から流出した高圧の液冷媒は、絞り装置21によって減圧されて低温低圧の気液二相冷媒となり、室内ユニット2から流出する。室内ユニット2から流出した低温低圧の気液二相冷媒は、液側配管を介して室外ユニット1に流入する。
室外ユニット1に流入した低温低圧の気液二相冷媒は、室外側熱交換器13に流入する。室外側熱交換器13に流入した低温低圧の気液二相冷媒は、室外空気と熱交換して吸熱および蒸発し、低温低圧のガス冷媒となって室外側熱交換器13から流出する。
室外側熱交換器13から流出した低温低圧のガス冷媒は、冷媒流路切替装置12を通過して、圧縮機11へ吸入される。
[風量チェック処理]
本実施の形態1に係る空気調和装置100では、運転モードとして、上述した冷房運転モードおよび暖房運転モードに加えて、風量チェック運転モードを有している。風量チェック運転モードによる風量チェック処理は、冷房運転時または暖房運転時に、例えば、リモートコントローラ3または室内ユニット2に設けられたスイッチ等の図示しない操作部が操作され、風量チェック運転モードが選択された場合に行われる。
(冷房運転時)
以下、冷房運転時の風量チェック運転モードによる処理について説明する。図5は、図4の室内ユニット2による冷房運転時の風量チェック処理の流れの一例を示すフローチャートである。
まず、リモートコントローラ3等が操作され、風量チェック運転モードが選択されると、風量チェック運転が開始される(ステップS1)。次に、室内側制御装置24は、室内側送風機23を最大風速で運転するように制御する(ステップS2)。具体的には、室内側制御装置24は、室内側送風機23の風速ノッチを風速が最大となる段階に設定するための制御情報を生成し、室内側制御装置24の駆動制御部46を介して室内側送風機23に対して送信する。
次に、室内側制御装置24は、予め設定された時間が経過したか否かを判断する(ステップS3)。ここで、室内側送風機23を最大風速で運転させてから設定時間だけ経過するのを待つのは、空気調和装置100の運転を安定させるためである。設定時間が経過したと判断した場合(ステップS3;Yes)には、処理がステップS4に移行する。一方、設定時間が経過していないと判断した場合(ステップS3;No)には、処理がステップS3に戻り、設定時間が経過するまで、ステップS3の処理を繰り返す。
設定時間が経過したとき、室内側制御装置24の風量算出部44は、室内側熱交換器22を通過する空気の風量を算出する。室内側熱交換器22を通過する空気の風量は、室内側熱交換器22の空気側能力と、吸込空気温度および吹出空気温度とに基づいて算出することができる。また、室内側熱交換器22の空気側能力は、室内側熱交換器22の冷媒側能力と同等であるものと考えることができる。そこで、本実施の形態1では、室内側熱交換器22の冷媒側能力を算出し、算出した冷媒側能力と、室内側熱交換器22における吸込空気温度および吹出空気温度とに基づき、室内側送風機23の風量を算出する。
まず、ステップS4において、室内側制御装置24の冷媒側能力算出部43は、室内側熱交換器22の冷媒側能力を算出する。具体的には、冷媒側能力算出部43は、室内側熱交換器22を流れる冷媒の流量である冷媒流量と、室内側熱交換器22における流出入側の冷媒側エンタルピ差とに基づき、室内側熱交換器22の冷媒側能力を算出する。
ここで、室内側熱交換器22の冷媒流量を算出する方法について説明する。室内側制御装置24の冷媒流量算出部41は、室内側熱交換器22における冷媒流量を、室内ユニット2の絞り装置21の前後の差圧と、絞り装置21の開度とに基づいて算出する。
絞り装置21の前後差圧の算出方法について説明する。絞り装置21における冷媒の上流側の圧力である一次側圧力は、室外ユニット1における圧縮機11の吐出側に設けられた高圧圧力検知器31の値を用いることができる。また、絞り装置21における冷媒の下流側の圧力である二次側圧力は、絞り装置21と室内側熱交換器22との間に設けられた室内側液管温度検知器35の値を用いて取得することができる。これは、絞り装置21の二次側では、冷媒が気液二相状態となっており、二次側の圧力をその点の冷媒温度の飽和圧力として算出することができるからである。
なお、絞り装置21の一次側圧力は、室外ユニット1における圧縮機11から室内ユニット2における絞り装置21の間であれば、いずれの位置に設置してもよい。すなわち、高圧圧力検知器31は、例えば室外ユニット1に限らず、室内ユニット2に設けてもよい。
また、絞り装置21は、開度が大きくなるにしたがって有効流路面積が増大する。そのため、絞り装置21の開度に関する流量係数Cvの値が増大する。そこで、本実施の形態1では、例えば、絞り装置21の開度と流量係数Cvとの関係を示すテーブルを、室内側制御装置24の記憶部48に予め記憶しておく。なお、流量係数Cvを取得する方法としては、この例に限られず、例えば、絞り装置21の開度に基づいて流量係数Cvを算出するための演算式等を記憶部48に予め記憶しておいてもよい。
そして、冷媒流量算出部41は、室内側熱交換器22の冷媒流量を、上述したようにして算出した絞り装置21の前後差圧と開度に応じた流量係数Cvとに基づき、室内側熱交換器22の冷媒流量を算出する。
また、室内側制御装置24のエンタルピ算出部42は、室内側熱交換器22における流出入側の冷媒側エンタルピ差である出入口エンタルピ差を、室内側熱交換器22における流出入側の温度および圧力に基づいて算出する。
室内側熱交換器22における出入口エンタルピ差の算出方法について説明する。冷媒のエンタルピは、一般に、温度および圧力に基づいて算出することができる。したがって、室内側熱交換器22における冷媒流入側のエンタルピは、室内ユニット2の入り口の入口エンタルピから算出する。これは、室内ユニット2の流入側における冷媒が過冷却領域にあり、絞り装置21等による圧力の変化に対するエンタルピの変化が無視できる程度であるからである。そのため、入口エンタルピは、その温度の飽和点のエンタルピとして算出する。
また、室内側熱交換器22における冷媒流出側のエンタルピは、室内ユニット2の出口の出口エンタルピから算出する。このとき、出口エンタルピは、圧力を室内側液管温度検知器35によって得られる液配管温度の飽和圧力とし、温度を室内側ガス管温度検知器36によって得られるガス配管温度として、これらの圧力および温度を用いて算出する。
エンタルピ算出部42は、このようにして算出した入口エンタルピおよび出口エンタルピの差分により、室内側熱交換器22における流出入側の冷媒側エンタルピ差を算出する。そして、冷媒側能力算出部43は、算出した冷媒流量に冷媒側エンタルピ差を乗算することにより、冷媒側能力を算出する。
次に、ステップS5において、風量算出部44は、室内側熱交換器22を通過する空気の風量を算出する。具体的には、風量算出部44は、ステップS4で算出した冷媒側能力と、室内側熱交換器22の吸込空気温度および吹出空気温度とに基づき、室内側熱交換器22の空気側能力を算出する。空気側能力は、例えば、吸込空気温度と吹出空気温度との差に、室内側熱交換器22を通過する空気の風量を乗算することによって算出することができる。
ここで、上述したように、室内側熱交換器22の空気側能力は、ステップS4で算出した冷媒側能力と同等であるものと考えることができる。したがって、風量算出部44は、ステップS4で算出した冷媒側能力に基づき、空気側能力の値が算出した冷媒側能力の値となるように、室内側熱交換器22を通過する空気の風量を算出する。
次に、室内側制御装置24の比較処理部45は、ステップS5で算出した風量と、記憶部48に記憶された定格風量の範囲とを比較することにより、ダクト風量が過大であるか否かを判断する(ステップS6)。算出した風量が定格風量の範囲内である場合(ステップS6;No)には、ダクト風量が過大ではないと判断し、処理がステップS7に移行する。
次に、比較処理部45は、ステップS5で算出した風量と、定格風量の範囲とを比較することにより、ダクト風量が過小であるか否かを判断する(ステップS7)。算出した風量が定格風量の範囲内である場合(ステップS7;No)には、ダクト風量が適切であると判断し、処理がステップS8に移行する。そして、室内側制御装置24は、風量チェック運転を停止し(ステップS8)、一連の処理が終了する。
一方、ステップS6において、算出した風量が定格風量の範囲よりも大きい場合(ステップS6;Yes)には、ダクト風量が過大であると判断し、処理がステップS9に移行する。比較処理部45は、風速を下げることができるか否かを判断する(ステップS9)。
風速を下げることができると判断した場合(ステップS9;Yes)には、処理がステップS10に移行する。比較処理部45は、室内側送風機23の風速ノッチを1段階下げるように、室内側制御装置24の駆動制御部46を介して室内側送風機23を制御し、送風機出力を調整する(ステップS10)。そして、処理がステップS3に戻る。一方、室内側送風機23の風速ノッチが最小段階にあり、風速を下げることができないと判断した場合(ステップS9;No)には、処理がステップS13に移行する。
また、ステップS7において、算出した風量が定格風量の範囲よりも小さい場合(ステップS7;Yes)には、ダクト風量が過小であると判断し、処理がステップS11に移行する。比較処理部45は、風速を上げることができるか否かを判断する(ステップS11)。
風速を上げることができると判断した場合(ステップS11;Yes)には、処理がステップS12に移行する。比較処理部45は、室内側送風機23の風速ノッチを1段階上げるように、駆動制御部46を介して室内側送風機23を制御し、送風機出力を調整する(ステップS12)。そして、処理がステップS3に戻る。一方、室内側送風機23の風速ノッチが最大段階にあり、風速を上げることができないと判断した場合(ステップS11;No)には、処理がステップS13に移行する。
ステップS13において、室内側制御装置24の比較処理部45は、通知処理部47を介して、例えばリモートコントローラ3に対して異常を示す情報を送信する。リモートコントローラ3は、室内側制御装置24から受信した情報に基づき、ダクト6aおよび6bの静圧が室内ユニット2による設定範囲外であることを表示し、利用者または施工者に対して通知する。そして、一連の処理が終了する。
(暖房運転時)
次に、暖房運転時の風量チェック運転モードによる処理について説明する。図6は、図4の室内ユニット2による暖房運転時の風量チェック処理の流れの一例を示すフローチャートである。
まず、リモートコントローラ3等が操作され、風量チェック運転モードが選択されると、風量チェック運転が開始される(ステップS21)。次に、室内側制御装置24は、室内側送風機23を最大風速で運転するように制御する(ステップS22)。
次に、室内側制御装置24は、予め設定された時間が経過したか否かを判断する(ステップS23)。設定時間が経過したと判断した場合(ステップS23;Yes)には、処理がステップS24に移行する。一方、設定時間が経過していないと判断した場合(ステップS23;No)には、処理がステップS23に戻り、設定時間が経過するまで、ステップS23の処理を繰り返す。
設定時間が経過したとき、冷媒側能力算出部43は、室内側熱交換器22の冷媒側能力を算出する(ステップS24)。具体的には、冷媒側能力算出部43は、室内側熱交換器22の冷媒流量と、室内側熱交換器22における流出入側の冷媒側エンタルピ差とに基づき、冷媒側能力を算出する。
室内側熱交換器22の冷媒流量は、冷房運転時と同様に、冷媒流量算出部41で算出される。また、室内側熱交換器22における流出入側の冷媒側エンタルピ差は、室内側熱交換器22における入口エンタルピおよび出口エンタルピの差により、エンタルピ算出部42で算出される。
入口エンタルピは、高圧圧力検知器31によって得られる室外側高圧圧力と、室内側ガス管温度検知器36によって得られるガス配管温度とに基づき算出することができる。出口エンタルピは、室内側液管温度検知器35によって得られる液配管温度の飽和点のエンタルピとして算出することができる。そして、冷媒側能力算出部43は、算出した冷媒流量に冷媒側エンタルピ差を乗算することにより、冷媒側能力を算出する。
次に、風量算出部44は、室内側熱交換器22を通過する空気の風量を算出する(ステップS25)。具体的には、風量算出部44は、ステップS24で算出した冷媒側能力と、室内側熱交換器22の吸込空気温度および吹出空気温度とに基づき、室内側熱交換器22の空気側能力を算出する。そして、風量算出部44は、ステップS24で算出した冷媒側能力に基づき、空気側能力の値が冷媒側能力の値となるように、室内ユニット2の風量を算出する。
次に、比較処理部45は、冷房運転時と同様に、ステップS25で算出した風量と、定格風量の範囲とを比較することにより、ダクト風量が過大であるか否かを判断する(ステップS26)。算出した風量が定格風量の範囲内である場合(ステップS26;No)には、風量が過大ではないと判断し、処理がステップS27に移行する。
比較処理部45は、ステップS25で算出した風量と、定格風量の範囲とを比較することにより、ダクト風量が過小であるか否かを判断する(ステップS27)。算出した風量が定格風量の範囲内である場合(ステップS27;No)には、ダクト風量が適切であると判断し、処理がステップS28に移行する。そして、室内側制御装置24は、風量チェック運転を停止し(ステップS28)、一連の処理が終了する。
一方、ステップS26において、算出した風量が定格風量の範囲よりも大きい場合(ステップS26;Yes)には、ダクト風量が過大であると判断し、処理がステップS29に移行する。比較処理部45は、風速を下げることができるか否かを判断する(ステップS29)。
風速を下げることができると判断した場合(ステップS29;Yes)には、処理がステップS30に移行する。比較処理部45は、室内側送風機23の風速ノッチを1段階下げるように、駆動制御部46を介して室内側送風機23を制御し、送風機出力を調整する(ステップS30)。そして、処理がステップS23に戻る。一方、室内側送風機23の風速ノッチが最小段階にあり、風速を下げることができないと判断した場合(ステップS29;No)には、処理がステップS33に移行する。
また、ステップS27において、算出した風量が定格風量の範囲よりも小さい場合(ステップS27;Yes)には、ダクト風量が過小であると判断し、処理がステップS31に移行する。室内側制御装置24は、風速を上げることができるか否かを判断する(ステップS31)。
風速を上げることができると判断した場合(ステップS31;Yes)には、処理がステップS32に移行する。比較処理部45は、室内側送風機23の風速ノッチを1段階上げるように、駆動制御部46を介して室内側送風機23を制御し、送風機出力を調整する(ステップS32)。そして、処理がステップS23に戻る。一方、室内側送風機23の風速ノッチが最大段階にあり、風速を上げることができないと判断した場合(ステップS31;No)には、処理がステップS33に移行する。
ステップS33において、比較処理部45は、通知処理部47を介して、例えばリモートコントローラ3に対して、異常を示す情報を送信する。そして、一連の処理が終了する。
なお、このような風量チェック処理を行う風量チェック運転は、室内ユニット2を設置して試運転等を行う場合に実施すると好ましい。また、室内ユニット2の設置後、例えばダクトの長さ、吹出口の数等を変更した場合にも、風量チェック運転を行うことにより、室内ユニット2外の機外静圧が変化した場合でも、適切にダクト風量を確保することができる。
図7は、図1の室内側送風機23を通過する空気の風量と、機外静圧との関係について説明するための概略図である。図7において、実線aは、室内側送風機23が予め設定された一定の出力で運転している場合の特性を示す。また、実線Aならびに点線BおよびCは、ダクト形状が同一である場合で室内側送風機23の出力を変化させた場合の負荷曲線を示す。
実線aと負荷曲線Aとの交点xを基準点とすると、室内側送風機23を通過する空気の定格風量は「V1」であり、定格機外静圧は「P1」である。一方、ダクトの抵抗によって決定される機外静圧が基準よりも大きい場合、運転ポイントが基準点xよりも左側に移動し、例えば実線aと負荷曲線Bとの交点zの位置となる。このときの室内側送風機23を通過する空気の風量は「V3」となり、定格風量V1よりも小さくなる。また、機外静圧が基準よりも小さい場合、運転ポイントが基準点xよりも右側に移動し、例えば実線aと負荷曲線Cとの交点yの位置となる。このときの室内側送風機23を通過する空気の風量は「V2」となり、定格風量V1よりも大きくなる。
このような特性から、室内側送風機23を通過する空気の風量がわかれば、機外静圧を検出することができる。そこで、実際の静圧と、基準となる室内ユニット2の設定静圧とに差が生じている場合には、例えばリモートコントローラ3等に表示させることで、ダクトの調整を容易に行うことができる。
以上のように、本実施の形態1に係る空気調和装置100は、室内側熱交換器22を通過する空気の風量を算出することにより、ダクトの静圧が想定する範囲から外れた場合であっても、ダクトの静圧が検出され、適切なダクト風量を確保することができる。
また、本実施の形態1では、算出した室内側熱交換器22を通過する空気の風量に基づいてダクトの静圧を算出し、算出したダクトの静圧をリモートコントローラ3等に表示させるため、ダクトの調整を容易に行うことができる。さらに、本実施の形態1では、算出した室内側熱交換器22を通過する空気の風量に基づき、ダクト風量が過大または過小であると判断された場合に、室内側送風機23の出力を調整するため、適切なダクト風量を確保することができる。さらにまた、室内側送風機23の出力を調整できない場合には、利用者に対して異常が通知されるため、異常発生時に迅速な対応を行うことができる。
実施の形態2.
次に、本発明の実施の形態2に係る空気調和装置について説明する。本実施の形態2は、風量をより簡易的に算出する点で、上述した実施の形態1と相違する。なお、以下の説明において、上述した実施の形態1と共通する部分については、同一の符号を付し、説明を省略する。
本実施の形態2における空気調和装置100は、実施の形態1と同様に、図1および図2の構成を有しているため、ここでは説明を省略する。
[室内側制御装置の構成]
図8は、本実施の形態2に係る室内側制御装置24の機能について説明するための機能ブロック図である。図8に示すように、温度効率算出部49、比較処理部45、駆動制御部46、通知処理部47および記憶部48で構成されている。
温度効率算出部49は、高圧圧力検知器31によって検知された室外側高圧圧力と、室内側液管温度検知器35によって検知された室内側液管温度と、吸込空気温度検知器33によって検知された吸込空気温度と、吹出空気温度検知器34によって検知された吹出空気温度とが入力される。温度効率算出部49は、入力された室外側高圧圧力と、室内側液管温度と、吸込空気温度と、吹出空気温度とに基づき、室内側熱交換器22の温度効率を算出する。温度効率算出部49は、算出した温度効率を比較処理部45に対して出力する。
温度効率は、室内側熱交換器22を流れる冷媒と、室内側送風機23により供給される空気との間で行われる熱交換の効率を示す。温度効率は、室内側熱交換器22の風量と一定の関係性を有している。そのため、温度効率を算出することにより、室内側熱交換器22の風量を推定することができる。
比較処理部45は、記憶部48に記憶された、定格風量の範囲に対応する温度効率の値である基準温度効率の範囲を読み出し、入力された室内側熱交換器22の温度効率と、記憶部48から読み出した基準温度効率の範囲とに基づき、ダクト風量が適切な風量であるか否かを判断する処理を行う。比較処理部45は、判断処理の結果、ダクト風量が適切な風量でないと判断した場合に、室内側送風機23の出力を調整するための制御情報を生成し、駆動制御部46に対して出力する。また、比較処理部45は、ダクト風量が適切な風量でないと判断した場合で、室内側送風機23の出力調整ができないと判断したときに、異常を示す情報を生成し、通知処理部47に対して出力する。
記憶部48は、例えば、比較処理部45において使用する基準温度効率の範囲を示す情報を予め記憶している。記憶部48は、比較処理部45からの要求に基づき、記憶された基準温度効率の範囲を示す情報を比較処理部45に供給する。
[風量チェック処理]
(冷房運転時)
冷房運転時の風量チェック運転モードによる処理について説明する。図9は、本実施の形態2に係る室内ユニット2による冷房運転時の風量チェック処理の流れの一例を示すフローチャートである。
まず、リモートコントローラ3等が操作され、風量チェック運転モードが選択されると、風量チェック運転が開始される(ステップS41)。室内側制御装置24は、室内側送風機23を最大風速で運転するように制御する(ステップS42)。
次に、室内側制御装置24は、予め設定された時間が経過したか否かを判断する(ステップS43)。設定時間が経過したと判断した場合(ステップS43;Yes)には、処理がステップS44に移行する。一方、設定時間が経過していないと判断した場合(ステップS43;No)には、処理がステップS43に戻り、設定時間が経過するまで、ステップS43の処理を繰り返す。
設定時間が経過したとき、温度効率算出部49は、室内側熱交換器22の温度効率を算出する(ステップS44)。具体的には、温度効率算出部49は、吸込空気温度検知器33によって検知された吸込空気温度Tinと、吹出空気温度検知器34によって検知された吹出空気温度Toutと、室内側液管温度検知器35によって検知された液配管温度Tとに基づき、冷房運転時における室内側熱交換器22の温度効率ηを算出する。温度効率ηは、式(1)に基づき算出することができる。
[数1]
η=(Tin−Tout)/(Tin−T) ・・・(1)
ここで、上述のようにして算出した温度効率ηと風量との間には、以下のような関係がある。例えば、風量が大きくなると、温度効率ηが小さくなり、風量が小さくなると、温度効率ηが大きくなる。
そこで、本実施の形態2では、定格風量の範囲に対応する温度効率ηの値である基準温度効率ηの範囲を予め記憶部48に記憶しておく。そして、比較処理部45は、ステップS44で算出した温度効率ηと、基準温度効率ηの範囲とを比較する(ステップS45)。
ステップS45における比較によって、例えば、温度効率ηが定格風量に対応する基準温度効率ηの範囲内である場合には、ダクト風量が適切であると判断することができる。また、温度効率ηが定格風量に対応する基準温度効率ηの範囲よりも小さい場合には、ダクト風量が過大であると判断することができる。さらに、温度効率ηが定格風量に対応する基準温度効率ηの範囲よりも大きい場合には、ダクト風量が過小であると判断することができる。
比較処理部45は、ステップS44で算出した温度効率ηと基準温度効率ηとの大小関係に基づき、ダクト風量が過大であるか否かを判断する(ステップS46)。算出した温度効率ηが基準温度効率ηの範囲内である場合(ステップS46;No)には、ダクト風量が過大ではないと判断し、処理がステップS47に移行する。
次に、比較処理部45は、温度効率ηと基準温度効率ηとの大小関係に基づき、ダクト風量が過小であるか否かを判断する(ステップS47)。算出した温度効率ηが基準温度効率ηの範囲内である場合(ステップS47;No)には、ダクト風量が適切であると判断し、処理がステップS48に移行する。そして、室内側制御装置24は、風量チェック運転を停止し(ステップS48)、一連の処理が終了する。
一方、ステップS46において、温度効率ηが基準温度効率ηの範囲よりも小さい場合(ステップS46;Yes)には、ダクト風量が過大であると判断し、処理がステップS49に移行する。比較処理部45は、風速を下げることができるか否かを判断する(ステップS49)。
風速を下げることができると判断した場合(ステップS49;Yes)には、処理がステップS50に移行する。室内側制御装置24は、室内側送風機23の風速ノッチを1段階下げるように、室内側送風機23を制御し、送風機出力を調整する(ステップS50)。そして、処理がステップS43に戻る。一方、室内側送風機23の風速ノッチが最小段階にあり、風速を下げることができないと判断した場合(ステップS49;No)には、処理がステップS53に移行する。
また、ステップS47において、温度効率ηが基準温度効率ηの範囲よりも大きい場合(ステップS47;Yes)には、ダクト風量が過小であると判断し、処理がステップS51に移行する。比較処理部45は、風速を上げることができるか否かを判断する(ステップS51)。
風速を上げることができると判断した場合(ステップS51;Yes)には、処理がステップS52に移行する。比較処理部45は、室内側送風機23の風速ノッチを1段階上げるように、駆動制御部46を介して室内側送風機23を制御し、送風機出力を調整する(ステップS52)。そして、処理がステップS43に戻る。一方、室内側送風機23の風速ノッチが最大段階にあり、風速を上げることができないと判断した場合(ステップS51;No)には、処理がステップS53に移行する。
ステップS53において、比較処理部45は、通知処理部47を介して、例えばリモートコントローラ3に対して、異常を示す情報を送信する。リモートコントローラ3は、室内側制御装置24から受け取った情報に基づき、ダクト6aおよび6bの静圧が室内ユニット2による設定範囲外であることを表示し、利用者または施工者に対して通知する。そして、一連の処理が終了する。
(暖房運転時)
次に、暖房運転時の風量チェック運転モードによる処理について説明する。図10は、本実施の形態2に係る室内ユニット2による暖房運転時の風量チェック処理の流れの一例を示すフローチャートである。
まず、リモートコントローラ3等が操作され、風量チェック運転モードが選択されると、風量チェック運転が開始される(ステップS61)。室内側制御装置24は、室内側送風機23を最大風速で運転するように制御する(ステップS62)。
次に、室内側制御装置24は、予め設定された時間が経過したか否かを判断する(ステップS63)。設定時間が経過したと判断した場合(ステップS63;Yes)には、処理がステップS64に移行する。一方、設定時間が経過していないと判断した場合(ステップS63;No)には、処理がステップS63に戻り、設定時間が経過するまで、ステップS63の処理を繰り返す。
設定時間が経過したとき、温度効率算出部49は、室内側熱交換器22の温度効率を算出する(ステップS64)。具体的には、温度効率算出部49は、吸込空気温度検知器33によって検知された吸込空気温度Tinと、吹出空気温度検知器34によって検知された吹出空気温度Toutと、凝縮温度Tとに基づき、暖房運転時における室内側熱交換器22の温度効率ηを算出する。温度効率ηは、式(2)に基づき算出することができる。
[数2]
η=(Tout−Tin)/(T−Tin) ・・・(2)
なお、凝縮温度Tは、例えば高圧圧力検知器31によって検知された圧力に基づき算出することができる。また、例えば、室内ユニット2側に圧力検知器を設け、圧力検知器によって検知された圧力に基づいても算出することができる。
比較処理部45は、ステップS64で算出した温度効率ηと、記憶部48に予め記憶された基準温度効率ηとを比較する(ステップS65)。ステップS65における比較によって、例えば、温度効率ηが定格風量に対応する基準温度効率ηの範囲内である場合には、ダクト風量が適切であると判断することができる。また、温度効率ηが定格風量に対応する基準温度効率ηの範囲よりも小さい場合には、ダクト風量が過大であり、基準温度効率ηの範囲よりも大きい場合には、ダクト風量が過小であると判断することができる。
比較処理部45は、基準温度効率ηと算出した温度効率ηとの大小関係に基づき、ダクト風量が過大であるか否かを判断する(ステップS66)。温度効率ηが基準温度効率ηの範囲内である場合(ステップS66;No)には、ダクト風量が過大ではないと判断し、処理がステップS67に移行する。
次に、比較処理部45は、基準温度効率ηと温度効率ηとの大小関係に基づき、ダクト風量が過小であるか否かを判断する(ステップS67)。温度効率ηが基準温度効率ηの範囲内である場合(ステップS67;No)には、ダクト風量が適切であると判断し、処理がステップS68に移行する。そして、室内側制御装置24は、風量チェック運転を停止し(ステップS68)、一連の処理が終了する。
一方、ステップS66において、温度効率ηが基準温度効率ηの範囲よりも小さい場合(ステップS66;Yes)には、ダクト風量が過大であると判断し、処理がステップS69に移行する。比較処理部45は、風速を下げることができるか否かを判断する(ステップS69)。
風速を下げることができると判断した場合(ステップS69;Yes)には、処理がステップS70に移行する。室内側制御装置24は、室内側送風機23の風速ノッチを1段階下げるように、駆動制御部46を介して室内側送風機23を制御し、送風機出力を調整する(ステップS70)。そして、処理がステップS63に戻る。一方、室内側送風機23の風速ノッチが最小段階にあり、風速を下げることができないと判断した場合(ステップS69;No)には、処理がステップS73に移行する。
また、ステップS67において、温度効率ηが基準温度効率ηの範囲よりも大きい場合(ステップS67;Yes)には、風量が過小であると判断し、処理がステップS71に移行する。比較処理部45は、風速を上げることができるか否かを判断する(ステップS71)。
風速を上げることができると判断した場合(ステップS71;Yes)には、処理がステップS72に移行する。比較処理部45は、室内側送風機23の風速ノッチを1段階上げるように、駆動制御部46を介して室内側送風機23を制御し、送風機出力を調整する(ステップS72)。そして、処理がステップS63に戻る。一方、室内側送風機23の風速ノッチが最大段階にあり、風速を上げることができないと判断した場合(ステップS71;No)には、処理がステップS73に移行する。
ステップS73において、比較処理部45は、通知処理部47を介して、例えばリモートコントローラ3に対して、異常を示す情報を送信する。リモートコントローラ3は、室内側制御装置24から受け取った情報に基づき、ダクト6aおよび6bの静圧が室内ユニット2による設定範囲外であることを表示し、利用者または施工者に対して通知する。そして、一連の処理が終了する。
以上のように、本実施の形態2に係る空気調和装置100は、室内側熱交換器22を通過する空気の風量に対応する室内側熱交換器22の温度効率を算出する。これにより、実施の形態1と同様に、ダクトの静圧が想定する範囲から外れた場合であっても、ダクトの静圧が検出され、適切なダクト風量を確保することができる。
また、本実施の形態2では、室内側熱交換器22の吸込空気温度および吹出空気温度と、圧縮機11から吐出される冷媒の高圧圧力または室内側液管温度とに基づき、室内側熱交換器22の温度効率を算出する。これにより、実施の形態1と比較して使用するパラメータが少なくて済むため、ダクト風量の判断を簡易的に算出することができる。
さらに、本実施の形態2では、実施の形態1と同様に、算出した室内側熱交換器22を通過する空気の風量に基づいてダクトの静圧を算出し、算出したダクトの静圧をリモートコントローラ3等に表示させるため、ダクトの調整を容易に行うことができる。さらにまた、本実施の形態2では、実施の形態1と同様に、算出した室内側熱交換器22を通過する空気の風量に基づき、ダクト風量が過大または過小であると判断された場合に、室内側送風機23の出力を調整するため、適切なダクト風量を確保することができる。さらに、室内側送風機23の出力を調整できない場合には、利用者に対して異常が通知されるため、異常発生時に迅速な対応を行うことができる。
以上、本発明の実施の形態1および実施の形態2について説明したが、本発明は、上述した実施の形態1および実施の形態2に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用ができる。
例えば、実施の形態1および2では、室内側送風機23を最大風速で運転させてから風量チェック処理を行うように説明したが、これに限られず、室内側送風機23を最小風速で運転させてから風量チェック処理を行ってもよい。
また、実施の形態1および2で説明した風量チェック処理を行うことにより、例えば、室内側熱交換器22の空気吸い込み側に設けられた図示しないフィルタの目詰まり、または室内側熱交換器22に汚れが付着することによる詰まり等による異常を検出することもできる。このようにフィルタまたは熱交換器に詰まりが発生すると、ダクト静圧の増大と同様に、汚れ等による風路抵抗が増加する。そのため、このような異常を上述した風量チェック処理によって検出することができる。なお、このような異常検出のための風量チェック処理は、例えば定期メンテナンスの際に実施すると好ましい。
1 室外ユニット、2 室内ユニット、2a 吸込口、2b 吹出口、3 リモートコントローラ、4 室内空間、5 空間、6a、6b ダクト、7 天井、11 圧縮機、12 冷媒流路切替装置、13 室外側熱交換器、14 室外側送風機、15 室外側制御装置、16 液配管、21 絞り装置、22 室内側熱交換器、23 室内側送風機、24 室内側制御装置、25 液配管、26 ガス配管、31 高圧圧力検知器、32 室外側液管温度検知器、33 吸込空気温度検知器、34 吹出空気温度検知器、35 室内側液管温度検知器、36 室内側ガス管温度検知器、41 冷媒流量算出部、42 エンタルピ算出部、43 冷媒側能力算出部、44 風量算出部、45 比較処理部、46 駆動制御部、47 通知処理部、48 記憶部、49 温度効率算出部、100 空気調和装置。

Claims (5)

  1. 室外ユニットおよび室内ユニットを備え、前記室外ユニットおよび前記室内ユニットが配管で接続され、前記室外ユニット、前記室内ユニットおよび前記配管内を冷媒が流れることによって調和された室内空気を、ダクトを介して送風する空気調和装置であって、
    前記室外ユニットは、
    前記冷媒を圧縮する圧縮機と、
    室外空気と前記冷媒との間で熱交換を行う室外側熱交換器と、
    前記圧縮機から吐出される冷媒の圧力である高圧圧力を検知する高圧圧力検知器と、
    前記室外側熱交換器に流入または前記室外側熱交換器から流出する冷媒の温度である室外側液管温度を検知する室外側液管温度検知器と
    を備え、
    前記室内ユニットは、
    前記冷媒を減圧する絞り装置と、
    室内空気と前記冷媒との間で熱交換を行う室内側熱交換器と、
    前記室内側熱交換器に前記室内空気を供給する室内側送風機と、
    前記室内側送風機を制御する室内側制御装置と
    前記室内側熱交換器に吸い込まれる空気の吸込空気温度を検知する吸込空気温度検知器と、
    前記室内側熱交換器から吹き出す空気の吹出空気温度を検知する吹出空気温度検知器と、
    前記室内側熱交換器と前記絞り装置との間に設けられ、前記室内側熱交換器に流入または前記室内側熱交換器から流出する冷媒の温度である室内側液管温度を検知する室内側液管温度検知器と、
    前記室内側熱交換器に対して前記室内側液管温度検知器とは反対側に設けられ、前記室内側熱交換器から流出または前記室内側熱交換器に流入する冷媒の温度である室内側ガス管温度を検知する室内側ガス管温度検知器と
    を備え、
    前記室内側制御装置は、
    前記室内側液管温度と、前記室内側ガス管温度と、前記高圧圧力と、前記室外側液管温度と、前記絞り装置の開度とに基づき、前記室内側熱交換器の冷媒側能力を算出し、
    前記冷媒側能力と、前記吸込空気温度および前記吹出空気温度とに基づき、前記室内側熱交換器を通過する空気の風量を算出し、
    算出された前記室内側熱交換器を通過する空気の風量に基づき、前記ダクトの風量が適切であるか否かを判断し、
    前記ダクトの風量が過大または過小であると判断した場合に、前記室内側送風機の出力を調整する
    空気調和装置。
  2. 前記冷媒側能力は、
    前記室内側液管温度、前記高圧圧力、および前記絞り装置の開度に基づき算出される前記室内側熱交換器を流れる冷媒の冷媒流量と、
    前記室内側液管温度、室内側ガス管温度、前記高圧圧力および前記室外側液管温度に基づき算出される前記室内側熱交換器の流出入側におけるエンタルピ差と
    に基づき算出される
    請求項に記載の空気調和装置。
  3. 前記室内ユニットは、
    利用者の操作に応じて前記空気調和装置の動作を制御するリモートコントローラ
    が接続され、
    前記室内側制御装置は、
    算出した前記風量に基づき前記ダクトの静圧を算出し、
    算出した前記ダクトの静圧を前記リモートコントローラに表示させる
    請求項またはに記載の空気調和装置。
  4. 前記室内側制御装置は、
    前記室内側熱交換器を通過する空気の風量が設定風量の範囲よりも大きい場合に、前記風量が過大であると判断し、
    前記室内側熱交換器を通過する空気の風量が前記設定風量の範囲よりも小さい場合に、前記風量が過小であると判断する
    請求項1に記載の空気調和装置。
  5. 前記室内側制御装置は、
    前記室内側熱交換器を通過する空気の風量が過大または過小であると判断した場合で、前記室内側送風機の出力が最大または最小であるときに、利用者に対して異常であることを通知する
    請求項1〜のいずれか一項に記載の空気調和装置。
JP2018535972A 2016-08-24 2016-08-24 空気調和装置 Active JP6661775B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074633 WO2018037496A1 (ja) 2016-08-24 2016-08-24 空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2018037496A1 JPWO2018037496A1 (ja) 2019-04-11
JP6661775B2 true JP6661775B2 (ja) 2020-03-11

Family

ID=61246526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018535972A Active JP6661775B2 (ja) 2016-08-24 2016-08-24 空気調和装置

Country Status (3)

Country Link
JP (1) JP6661775B2 (ja)
GB (1) GB2567973B (ja)
WO (1) WO2018037496A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180952A1 (ja) * 2018-03-23 2019-09-26 三菱電機株式会社 空気調和装置
KR102506516B1 (ko) * 2018-10-22 2023-03-03 엘지전자 주식회사 공기조화기 및 그의 제어방법
JP7485970B2 (ja) 2022-03-31 2024-05-17 ダイキン工業株式会社 熱負荷予測システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230046A (ja) * 1989-02-28 1990-09-12 Matsushita Seiko Co Ltd ダクト式空気調和機
JPH05264136A (ja) * 1992-03-24 1993-10-12 Mitsubishi Electric Corp 空気調和機の熱交換器汚れ検出装置
JP2002327950A (ja) * 2001-04-27 2002-11-15 Daikin Ind Ltd 空気調和装置
JP2007225158A (ja) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp 除霜運転制御装置および除霜運転制御方法
JP4989511B2 (ja) * 2008-02-22 2012-08-01 三菱電機株式会社 空気調和装置
JP5163772B2 (ja) * 2009-06-12 2013-03-13 ダイキン工業株式会社 生理機能活性化装置
EP2746700B1 (en) * 2011-08-19 2017-05-03 Mitsubishi Electric Corporation Air conditioner
JP6170763B2 (ja) * 2013-07-05 2017-07-26 アズビル株式会社 表示装置および方法
JP6250148B2 (ja) * 2014-05-13 2017-12-20 三菱電機株式会社 空気調和システム
JP6385568B2 (ja) * 2015-04-24 2018-09-05 三菱電機株式会社 空気調和機

Also Published As

Publication number Publication date
GB2567973A (en) 2019-05-01
GB2567973B (en) 2021-04-21
GB201820889D0 (en) 2019-02-06
JPWO2018037496A1 (ja) 2019-04-11
WO2018037496A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
US10151505B2 (en) Air-conditioning apparatus
EP2889554A1 (en) Air conditioning system and method of controlling the same
WO2016170668A1 (ja) 空気調和機
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
KR20130018917A (ko) 공기 조화 장치의 운전 제어 장치 및 이를 구비한 공기 조화 장치
JP7257782B2 (ja) 空気調和システム
WO2007094343A1 (ja) 空気調和装置
JP2008064439A (ja) 空気調和装置
JP6661775B2 (ja) 空気調和装置
EP3121526A1 (en) Heat source side unit and air conditioner
US20150184910A1 (en) Air conditioner
JPWO2019193639A1 (ja) 空気調和システム
WO2018221052A1 (ja) 制御装置、それを備えたマルチ型空気調和システム、及び制御方法並びに制御プログラム
JP2020098079A (ja) 空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラム
WO2017209188A1 (ja) マルチ型空気調和装置
KR20060089441A (ko) 냉난방 공기조화기에서 실행 가능한 제상운전 방법
JP2018146169A (ja) 空調機
JP2019100591A (ja) 空気調和装置
JP6520045B2 (ja) 空調機の運転方法、その運転方法を用いた空調機
KR20070077639A (ko) 멀티 공기조화기 및 그 제어방법
JPWO2018073904A1 (ja) 空気調和装置の室内機及び空気調和装置
JP2010210222A (ja) 空気調和機およびその制御方法
JP2016084987A5 (ja)
KR20050075099A (ko) 멀티형 공기조화기의 전자팽창밸브 제어 방법
KR101064483B1 (ko) 주파수 보정 기능을 갖는 멀티형 공기조화기 및 멀티형공기조화기의 인버터 압축기의 주파수 보정 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200212

R150 Certificate of patent or registration of utility model

Ref document number: 6661775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250