WO2016170668A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2016170668A1
WO2016170668A1 PCT/JP2015/062476 JP2015062476W WO2016170668A1 WO 2016170668 A1 WO2016170668 A1 WO 2016170668A1 JP 2015062476 W JP2015062476 W JP 2015062476W WO 2016170668 A1 WO2016170668 A1 WO 2016170668A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
evaporator
fan
air conditioner
Prior art date
Application number
PCT/JP2015/062476
Other languages
English (en)
French (fr)
Inventor
慎太郎 穴井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1711575.9A priority Critical patent/GB2553422B/en
Priority to PCT/JP2015/062476 priority patent/WO2016170668A1/ja
Priority to JP2017513925A priority patent/JP6385568B2/ja
Publication of WO2016170668A1 publication Critical patent/WO2016170668A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This invention relates to an air conditioner adopting a heat pump system.
  • an air conditioner adopting a heat pump system is composed of a compressor, a condenser, an expansion valve and an evaporator, piping for circulating the refrigerant by connecting them, and a blower.
  • the refrigerant is compressed in the compressor, sent to the condenser as a high-pressure gas state, condensed in the condenser, sent to the expansion valve as a high-pressure liquid state, and expanded and depressurized in the expansion valve.
  • the low-temperature gas-liquid two-phase state is sent to the evaporator, the refrigerant is evaporated in the evaporator, and the low-pressure gas state is sent again to the compressor to adjust the indoor temperature using the refrigeration cycle.
  • the room is cooled by an evaporator.
  • the air is configured to pass through the evaporator by a blower.
  • the air flow is determined by the user. For example, there is a case where it is desired to exert a predetermined air volume and capacity by calculating the indoor heat load. However, when a duct is connected, a desired air flow rate may not be exhibited due to the air path pressure loss of the duct.
  • the amount of air flow that is reduced by calculating the air path pressure loss of the duct in advance is predicted, and the air amount is set to be increased.
  • the amount of air flow is predicted from the load applied to the motor of the blower, and feedback is applied to the motor so as to obtain a predetermined amount of air flow.
  • the desired air flow rate may not be exhibited due to the air path pressure loss of the duct, or complicated control parameters are set so that feedback can be applied in advance based on the relationship between the motor load and air flow rate. There was a need to do.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner that can be adjusted to a predetermined air volume without grasping duct pressure loss, motor characteristics, and fan characteristics. .
  • An air conditioner includes a refrigerant circuit in which a compressor that compresses a refrigerant, a condenser that condenses the refrigerant, an expansion valve that depressurizes, and an evaporator that evaporates are connected by a pipe that circulates the refrigerant.
  • a blower for blowing air to the evaporator;
  • a controller for controlling the operation of the compressor, the expansion valve and the blower, and In the memory of the controller, data indicating the relationship between the heat exchange efficiency of the condenser and the evaporator and the blast volume is stored. The controller calculates the air flow rate of the blower from the heat exchange efficiency and the state of the refrigeration cycle based on the data.
  • the controller can calculate the air flow rate from the heat exchange efficiency and the state of the refrigeration cycle using the table described above, and can adjust the air flow rate based on the calculation result.
  • the blower it is possible to adjust the air flow to a predetermined level without grasping duct pressure loss, motor characteristics, and fan characteristics.
  • FIG. 1 is a schematic diagram showing a configuration of an air conditioner according to the present embodiment.
  • This air conditioner includes a refrigerant circuit (composed of a compressor 1, a condenser 2, an expansion valve 3, an evaporator 4 and a pipe 20), a fan 5, a motor 6, a controller 7, a pressure measuring sensor 8, and a temperature measuring sensor 9. To 11 and an intake air state measuring sensor 12.
  • the compressor 1 sucks low-pressure gas refrigerant and compresses it into a high-pressure gas refrigerant.
  • the compressor 1 may be capable of arbitrarily changing the operating frequency by inverter control, or may be a constant speed that cannot change the operating frequency.
  • the condenser 2 condenses the refrigerant in a high-pressure gas state into a refrigerant in a high-pressure liquid state by exchanging heat with an external fluid.
  • the external fluid used for heat exchange may be a gas such as air or a liquid such as water.
  • the expansion valve 3 expands and decompresses the high-pressure liquid refrigerant into the low-pressure gas-liquid two-phase refrigerant. Needless to say, it can be replaced if there is a similar effect.
  • an electronic expansion valve or a capillary tube may be used.
  • the evaporator 4 evaporates the low-pressure gas-liquid two-phase refrigerant flowing from the expansion valve 3 into a low-pressure gas refrigerant by exchanging heat with air, and returns the refrigerant to the compressor.
  • the fan 5 is for sending air to the evaporator 4 to exchange heat between the air and the low-pressure gas-liquid two-phase refrigerant of the evaporator 4.
  • the type of fan may be a sirocco fan or a plug fan.
  • a push-in method or a pulling method may be used.
  • the motor 6 is for driving the fan 5.
  • the motor is capable of controlling the rotational speed for adjusting the air flow rate, but it is needless to say that the motor can be replaced if the same effect can be obtained.
  • the pressure measuring sensor 8 measures the pressure of the condenser 2.
  • the temperature measuring sensor 9 measures the outlet temperature of the condenser 2.
  • the temperature measuring sensor 10 measures the heat exchanger temperature Te of the evaporator 4.
  • the temperature measuring sensor 11 measures the outlet temperature of the evaporator 4.
  • the suction air state measurement sensor 12 measures the dry bulb temperature and wet bulb temperature of the air flowing into the evaporator 4. If the wet bulb temperature cannot be measured, the relative humidity may be measured, and the wet bulb temperature may be calculated based on the air physical property data stored in the memory (not shown) of the controller 7.
  • the controller 7 is constituted by a microcomputer, and data indicating air physical properties, refrigerant physical properties, and capacity calculation formulas are stored in a non-volatile memory or the like, and the heat exchange efficiency ⁇ and the air flow rate GA as shown in Table 1 below are stored. Table data indicating the relationship is stored.
  • the controller 7 obtained from the sensors 8 to 12 in order to produce the refrigerant circulation amount Gr according to the predetermined refrigeration cycle (entrance / entrance enthalpy of the evaporator 4 and outlet enthalpy of the evaporator 4) and capacity shown in FIG.
  • the compressor 1 and the expansion valve 3 are controlled based on the pressure / temperature data, the blown air amount is calculated, and the fan 5 is driven by controlling the motor 6 until a predetermined blown air amount is obtained.
  • controller 7 can be replaced with a device other than the microcomputer as long as the same effect can be obtained. Moreover, the controller 7 may be provided in either the indoor unit or the outdoor unit, or may be provided in both.
  • the controller 7 calculates the condenser temperature based on the refrigerant physical property data stored in the memory, based on the condenser pressure PCm obtained by the pressure measuring sensor 8.
  • the controller 7 calculates the degree of supercooling SCm based on the condenser outlet temperature and the condenser temperature obtained by the temperature measuring sensor 9.
  • the controller 7 calculates the evaporator pressure Pe using the refrigerant physical property data stored in the memory based on the heat exchanger temperature Te obtained by the temperature measuring sensor 10.
  • the evaporator pressure Pe is used for calculating the refrigerant circulation amount Gr.
  • the refrigerant circulation amount Gr is expressed by the following equation (1) by the displacement volume V of the compressor 1 and the density ⁇ of the refrigerant to be compressed.
  • the displacement volume V of the compressor is determined by the compressor used, and the density ⁇ of the refrigerant to be compressed is calculated from the refrigerant physical property data stored in the memory by the controller 7 based on the evaporator pressure Pe.
  • the controller 7 calculates the degree of superheat SHm based on the evaporator outlet temperature obtained by the temperature measurement sensor 11 and the heat exchanger temperature Te described above. Further, the controller 7 calculates the intake air enthalpy based on the air dry bulb temperature, the wet bulb temperature obtained by the intake air state measurement sensor 12 and the air physical property data stored in the memory.
  • the refrigerant used in the air conditioner only needs to be able to use the refrigeration cycle.
  • a single refrigerant such as R22, a mixed refrigerant such as R410A, or a natural refrigerant such as CO2 may be used.
  • this air conditioner does not need to be configured only with the members shown in FIG.
  • a liquid reservoir accumulator
  • an oil separator may be provided to recover the refrigerator oil.
  • FIG. 3 is a flowchart showing the flow of processing during the cooling operation of the air conditioner.
  • the controller 7 determines whether or not the set air flow rate is obtained based on the preset evaporation capacity Qe and the air flow rate GA (steps S1 to S3), and if the controller 7 is away from the set air flow rate (step S4). No), the air flow rate is adjusted, and the refrigeration cycle is changed to satisfy the evaporation capacity Qe (steps S5 to S7).
  • the evaporation capacity Qe is expressed by the following equation (2) using the refrigerant circulation amount Gr and the evaporator inlet / outlet enthalpy difference ⁇ Hr.
  • ⁇ Hr evaporator inlet / outlet enthalpy difference
  • ⁇ Hr is a value limited by the refrigerant, and therefore, in the following, a case where R410A is used is shown as an example.
  • ⁇ Hr is generally about 150 to 200 kJ / kg from the viewpoint of unit protection. Therefore, ⁇ Hr is controlled to be, for example, 175 kJ / kg.
  • the standard outdoor temperature is about 35 ° C., and when the condenser 2 is placed outdoors and installed to exchange heat with air, the temperature of the condenser 2 is 35 for heat exchange. More than °C is necessary. Although it is better that there is a temperature difference, the condenser pressure PCm is preferably about 30 kgf / Cm2G from the viewpoint of unit protection. At this time, the temperature of the condenser is about 50 ° C.
  • the evaporator outlet enthalpy Hro is also limited by the refrigerant. From the viewpoint of unit protection, the pressure and superheat range are almost the same value, which is about 425 KJ / kg.
  • the target superheat SHm is preferably about 2-5 ° C from the viewpoint of unit protection. Here, it is set to 2 ° C.
  • the compressor 1 may be controlled to satisfy this Gr.
  • the frequency may be changed.
  • the temperature difference required to bring the refrigerant circulation amount Gr flowing into the evaporator to the state of the superheat degree SHm is determined by the heat exchange efficiency ⁇ . This is because the higher the efficiency of the heat exchanger, the more refrigerant can be evaporated. Further, the efficiency of the heat exchanger is determined by the size of the heat exchanger and the amount of air blown. The larger the heat exchanger and the greater the amount of blast, the higher the efficiency of the heat exchanger. The efficiency of the heat exchanger is expressed by GA ⁇ ⁇ from the heat exchange efficiency ⁇ and the air flow rate GA.
  • the evaporation capacity is expressed by the following equation (3) using the heat exchange efficiency.
  • Qe GA ⁇ ⁇ ⁇ ⁇ hA ----- (3)
  • Qe is the evaporation capacity
  • GA is the air flow rate
  • is the heat exchange efficiency
  • ⁇ hA is the air enthalpy difference.
  • the enthalpy difference is the enthalpy difference when the air in state A becomes the air in state C, indicating that the sucked air is completely cooled to the heat exchanger temperature. ing. However, in reality, all of the sucked air is not cooled to the heat exchanger temperature, and only the state B in FIG. 5 is obtained. At this time, the enthalpy difference between the state A and the state B is represented by ⁇ ⁇ ⁇ hA.
  • the efficiency of the heat exchanger is determined by the size of the heat exchanger and the air flow rate.
  • the relationship between the heat exchange efficiency ⁇ and the blown air amount GA can be grasped in advance by desk calculations or tests.
  • the relationship as shown in Table 1 is obtained for each heat exchanger, and the data of the table is stored in the memory of the controller 7 to determine the air flow rate. It is not necessary to be concerned with the table as shown in Table 1, and it may be given by an approximate expression.
  • the reason for dividing by 60 and 0.83 m 3 / kg is to convert the volume flow rate into a mass flow rate in units.
  • 0.83 m3 / kg is a specific volume of general air.
  • the state A of the intake air is found to be 27 ° C. dry bulb and 19 ° C. wet bulb by the intake air state measurement sensor 12.
  • the enthalpy hAA in the state A can be calculated as 53.8 kJ / kg by the controller 7 from the air physical properties.
  • the heat exchanger temperature Te_cal can be calculated to be 5.8 ° C.
  • the air diagram at this time is shown in FIG.
  • Te obtained by the intake air state measurement sensor 12 is compared with Te_cal obtained by calculation. From the accuracy of a general temperature sensor, when the difference between Te and Te_cal is 0.5 ° C. or more, it is determined that the blowing rate is different from the set value. Of course, since the accuracy differs depending on the sensor, a value other than 0.5 ° C. may be used as the determination value.
  • Te_cal is 5.8 ° C., so the value is 0.8 ° C. lower. This indicates that the efficiency of the heat exchanger is lower than that obtained from the set air flow rate. That is, the actual air flow rate is smaller than the set air flow rate, and it is necessary to increase the air flow rate by increasing the rotational speed of the fan 5.
  • the air flow rate can be adjusted to the set value by checking the value of Te each time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

ダクト圧損やモータ特性、ファン特性を把握することなく所定の風量に調整することができる空気調和機を提供する。空気調和機は、冷媒を圧縮する圧縮機(1)、冷媒を凝縮する凝縮器(2)、減圧する膨張弁(3)および蒸発する蒸発器(4)が、冷媒を循環させる配管で連結された冷媒回路と、蒸発器(4)に空気を送風する送風機(5)と、前記圧縮機(1)、、膨張弁(3)および送風機(5)の動作を制御するコントローラ(7)と、を具備している。コントローラ(7)のメモリには、凝縮器および蒸発器の熱交換効率と送風量の関係を示すデータが格納され、コントローラ(7)は、前記データに基づいて熱交換効率と冷凍サイクルの状態から、送風機(5)の送風量を計算する。

Description

空気調和機
 この発明は、ヒートポンプ方式を採用した空気調和機に関するものである。
 一般に、ヒートポンプ方式を採用した空気調和機は、圧縮機、凝縮器、膨張弁および蒸発器と、これらを連結して冷媒を循環させる配管、ならびに送風機で構成されている。同空気調和機では、圧縮機において冷媒を圧縮し、高圧のガス状態として凝縮器に送り、凝縮器において冷媒を凝縮し、高圧の液状態として膨張弁に送り、膨張弁において冷媒を膨張減圧し、低圧の気液二相状態として蒸発器に送り、蒸発器において冷媒を蒸発し、低圧のガス状態として再び圧縮機に送ることで冷凍サイクルを利用して室内の温度を調整している。
 例えば、冷房運転では室内は蒸発器によって冷却される。このとき、蒸発器と室内空気とを熱交換するために送風機によって空気が蒸発器を通過するように構成されている。
 上述した空気調和機では、送風量は使用者によって決定される。例えば、室内の熱負荷計算により所定の風量や能力を発揮させたい場合などがある。しかし、ダクトを接続した場合などは、そのダクトの風路圧損により希望する送風量を発揮できない場合がある。
 このような場合、従来は、事前にダクトの風路圧損を求めることで低下する送風量を予測し、送風量を大きくするよう設定していた。また、送風機のモータにかかる負荷から送風量を予測し、所定の送風量となるようにモータへフィードバックをかけるようしていた。
特開2003-269772
 しかし、ダクトを接続した場合などはそのダクトの風路圧損により欲しい送風量が発揮できない場合があったり、モータの負荷と送風量の関係から事前にフィードバックをかけられるように複雑な制御パラメータを設定する必要があった。
 例えば、特許文献1に記載の空気調和機では、ファンを駆動するモータの負荷(静圧)と電流値、回転数の関係を事前に把握しておき、風量を検知、調整している。しかし、ファンとモータの2つの特性を把握して制御アルゴリズムを組む必要があるため、構成が複雑になるといった問題があった。
 本発明は、上記した問題を解決するためになされたもので、ダクト圧損やモータ特性、ファン特性を把握することなく所定の風量に調整することができる空気調和機を提供することを目的としている。
 この発明に係る空気調和機は、冷媒を圧縮する圧縮機、冷媒を凝縮する凝縮器、減圧する膨張弁および蒸発する蒸発器が、冷媒を循環させる配管で連結された冷媒回路と、
 前記蒸発器に空気を送風する送風機と、
 前記圧縮機、膨張弁および送風機の動作を制御するコントローラと、を備え、
 当該コントローラのメモリには、前記凝縮器および蒸発器の熱交換効率と送風量の関係を示すデータが格納され、
 前記コントローラは、前記データに基づき、熱交換効率と冷凍サイクルの状態から前記送風機の送風量を計算することを特徴とする。
 この発明に係る空気調和機において、コントローラは、前述のテーブルを用いて、熱交換効率と冷凍サイクルの状態から送風量を計算することが可能であり、その計算結果を基に送風量を調整できる送風機を具備することで、ダクト圧損やモータ特性、ファン特性を把握することなく所定の風量に調整することができる。
この発明の実施の形態に係る空気調和機の構成を説明する概略図である。 同実施の形態に係る空気調和機の冷凍サイクル図(その1)である。 同実施の形態に係る空気調和機の冷房運転時の動作を示すフローチャートである。 同実施の形態に係る空気調和機の冷凍サイクル図(その2)である。 同実施の形態に係る空気調和機の空気線図(その1)である。 同実施の形態に係る空気調和機の空気線図(その2)である。 同実施の形態に係る空気調和機の冷凍サイクル図(その3)である。 同実施の形態に係る空気調和機の冷凍サイクル図(その4)である。
 以下、この発明の実施の形態に係る空気調和機ついて、図面を参照して説明する。なお、本文中に出てくる数値などは、動作の説明のため便宜的に仮定したものであることをここで宣言しておく。
 図1は本実施の形態に係る空気調和機の構成を示す概略図である。この空気調和機は冷媒回路(圧縮機1、凝縮器2、膨張弁3、蒸発器4および配管20で構成)、ファン5、モータ6、コントローラ7、圧力測定用センサ8、温度測定用センサ9~11および吸込空気状態測定用センサ12により構成されている。
 最初に、冷媒回路を構成する部材と周辺部材の機能を説明する。圧縮機1は、低圧のガス状態の冷媒を吸入し高圧のガス状態の冷媒へと圧縮する。ここで、圧縮機1はインバータ制御により運転周波数を任意に変化させることができるものでもよいし、運転周波数を変化させることができない一定速のものでもよい。
 凝縮器2は、高圧のガス状態の冷媒を外部流体と熱交換させることで高圧の液状態の冷媒へと凝縮させる。ここで、熱交換に用いられる外部流体は空気などの気体でもよいし、水などの液体でもよい。
 膨張弁3は、高圧の液状態の冷媒を低圧の気液二相状態の冷媒へと膨張させ減圧させる。同様の効果が得られるものがあれば代替することができるのは言うまでもない。例えば、電子膨張弁でもよいし、キャピラリーチューブでもよい。
 蒸発器4は、膨張弁3から流入する低圧の気液二相状態の冷媒を空気と熱交換させることで低圧のガス状態の冷媒へと蒸発させ圧縮機に返す。
 ファン5は、空気と蒸発器4の低圧の気液二相状態の冷媒とを熱交換させるために空気を蒸発器4に送るためのものである。同様の効果が得られるものであれば代替することができるのは言うまでもない。例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また押し込み方式でもよいし、引っぱり方式でもよい。
 モータ6は、ファン5を駆動させるためのものである。本実施の形態では送風量調整のために回転数制御できるモータとしているが、同様の効果が得られるものであれば代替することができるのは言うまでもない。
 次に、各センサの機能を説明する。圧力測定用センサ8は、凝縮器2の圧力を測定する。温度測定用センサ9は、凝縮器2の出口温度を測定する。温度測定用センサ10は、蒸発器4の熱交換器温度Teを測定する。温度測定用センサ11は、蒸発器4の出口温度を測定する。
 吸込空気状態測定用センサ12は、蒸発器4へ流入する空気の乾球温度および湿球温度を測定する。湿球温度を測定できない場合は相対湿度を測定できるようにし、コントローラ7のメモリ(図示せず)に格納された空気物性のデータを基に湿球温度を演算するようしてもよい。
 次に、コントローラ7の構成と機能について説明する。コントローラ7はマイクロコンピュータで構成されており、不揮発性メモリ等に空気物性、冷媒物性、能力演算式を示すデータが格納され、また下記表1に示すような熱交換効率εと送風量GAとの関係を示すテーブルデータが格納されている。
Figure JPOXMLDOC01-appb-T000001
 コントローラ7は、図2に示す所定の冷凍サイクル(蒸発器4の出入口エンタルピ)および蒸発器4の出口エンタルピ)や能力に応じた冷媒循環量Grを作り出すために、センサ8~12から得られた圧力・温度データを基に圧縮機1や膨張弁3を制御し、送風量を演算し、所定の送風量を得るまでモータ6を制御してファン5を駆動させる。
 なお、コントローラ7は、同様の効果が得られるものであればマイクロコンピュータ以外のもので代替することができるのは言うまでもない。また、コントローラ7は、室内機・室外機どちらか一方に具備させてもよいし、両方に具備していてもよい。
 次に、図2に示した冷凍サイクル図に表示された各種値の求め方を説明する。コントローラ7は、圧力測定用センサ8で得られた凝縮器圧力PCmを基に、メモリに格納された冷媒物性のデータを用いて凝縮器温度を演算する。またコントローラ7は、温度測定用センサ9で得られた凝縮器出口温度と凝縮器温度を基に過冷却度SCmを演算する。
 コントローラ7は、温度測定用センサ10で得られた熱交換器温度Teを基に、メモリに格納された冷媒物性のデータを用いて蒸発器圧力Peを演算する。この蒸発器圧力Peは冷媒循環量Grの算出に用いられる。
冷媒循環量Grは、圧縮機1の押しのけ容積Vと圧縮される冷媒の密度ρによって、下記式(1)のように表される。
Gr=V×ρ-----(1)
ここで、圧縮機の押しのけ容積Vは用いた圧縮機により決まり、圧縮される冷媒の密度ρは、蒸発器圧力Peを基にコントローラ7がメモリに格納された冷媒物性のデータから演算する。
コントローラ7は、温度測定用センサ11で得られた蒸発器出口温度と前述の熱交換器温度Teを基に過熱度SHmを演算する。またコントローラ7は、吸込空気状態測定用センサ12で得られた空気の乾球温度、湿球温度およびメモリに格納された空気物性のデータを基に吸込空気エンタルピを演算する。
 なお、空気調和機に用いる冷媒は、冷凍サイクルを利用できればよいことは言うまでもない。例えば、R22のような単一冷媒でもよいし、R410Aのような混合冷媒でもよいし、CO2のような自然冷媒でもよい。
 また、この空気調和機は、図1に示した部材だけで構成される必要はない。例えば、圧縮機1を保護するために液溜め(アキュムレータ)を具備していてもよいし、冷凍機油回収のために油分離器を具備していてもよい。
 次に、図3に基づいて、本実施の形態に係る空気調和機の動作を説明する。図3は、空気調和機の冷房運転時における処理の流れを示すフローチャートである。
 コントローラ7は、あらかじめ設定された蒸発能力Qe、送風量GAを基に設定された送風量が得られているか判断し(ステップS1~S3)、設定された送風量から離れていた場合(ステップS4においてNo)、送風量を調整し、蒸発能力Qeを満たすように冷凍サイクルを変化させる(ステップS5~S7)。
蒸発能力Qeは、冷媒循環量Gr、蒸発器出入口エンタルピ差ΔHrを用いて、下記式(2)のように表される。
Qe=Gr×ΔHr ------(2)
ここで、蒸発器出入口エンタルピ差ΔHrは冷媒により制限される値であるため、以下では、一例として、R410Aを用いた場合を示す。ΔHrはユニット保護の観点から150~200kJ/kg程度が一般的な値となる。そこでΔHrを例えば175kJ/kgとなるように制御する。
また、標準的な屋外温度は35℃程度であるとされ、凝縮器2が屋外に置かれ、かつ空気と熱交換するよう設置された場合は、熱交換させるために凝縮器2の温度は35℃以上必要である。温度差があるほどよいが、ユニット保護の観点から凝縮器圧力PCmは30kgf/Cm2G程度が望ましいため、この圧力となるように制御する。この時、凝縮器の温度は50℃程度となる。
蒸発器出口エンタルピHroについても、冷媒により制限される。ユニット保護の観点から、取れる圧力と過熱度の範囲ではほぼ同じ値であり、425KJ/kg程度となる。
上述の結果、蒸発器入口エンタルピHriを決めることができ、
   Hri=Hro-ΔHr
      =425KJ/kg-175KJ/kg
      =250KJ/kg
となる。PCmが30kgf/Cm2Gであるため、凝縮器出口の冷媒温度が31℃である必要がある。
 すなわち、凝縮器2の温度が50℃であったので、目標とする過冷却度SCmは、
           SCm=50℃-31℃=19℃
となる。
 目標とする過熱度SHmはユニット保護の観点から2~5℃程度が望ましい。ここでは2℃とする。
 蒸発能力Qeが例えば28kWであれば、上記から
   Gr=Qe/ΔHr
     =28kW/175kJ/kg
     =0.16kg/s
となるため、このGrを満たすように圧縮機1を制御してやればよい。例えば回転数制御型であれば、周波数を変化させればよい。
 上述した状態が成り立つ冷凍サイクルは一つしかない。この冷凍サイクルになるまで圧力測定用センサ8、温度測定用センサ9~11のデータを基にコントローラ7に演算させて、圧縮機1および膨張弁3を制御し、その時の熱交換器温度をTeとする。図4にこの時の冷凍サイクルを示す。
蒸発器に流入する冷媒循環量Grを過熱度SHmの状態にするのに必要な温度差は、熱交換効率εによって決まる。熱交換器の効率が高いほど、より多くの冷媒を蒸発させることができるためである。また、熱交換器の効率は熱交換器の大きさと送風量によって決まる。熱交換器が大きく、送風量が多いほど熱交換器の効率は高くなる。熱交換器の効率は熱交換効率εと送風量GAからGA×εで表される。
 蒸発能力は、熱交換効率を用いて下記式(3)のように表される。
Qe=GA×ε×ΔhA-----(3)
ここで、Qeは蒸発能力、GAは送風量、εは熱交換効率、ΔhAは空気エンタルピ差である。
 図5の空気線図に示すように、エンタルピ差は、状態Aの空気が状態Cの空気になった際のエンタルピ差であり、吸込んだ空気が熱交換器温度まで完全に冷やされることを示している。しかし、実際は吸込んだ空気の全てが熱交換器温度まで冷やされることはなく、図5の状態Bにしかならない。この時、状態Aと状態Bのエンタルピ差がε×ΔhAで表される。
 前述した通り、熱交換器の効率は熱交換器の大きさと送風量によって決まる。この熱交換効率εと送風量GAの関係は、机上の計算や試験により事前に把握することができる。熱交換器ごとに表1のような関係が得られ、そのテーブルのデータをコントローラ7のメモリに格納しておいて送風量の判定を行う。なお、表1のようなテーブルに拘る必要はなく、近似式で与えてもよい。
 蒸発能力Qeが28kW、送風量GAが60m3/minであったとする。前述の表1からεが0.69であるとコントローラ7により演算させる。この時のΔhAは
  ΔhA=Qe/(GA×ε)
     =28kW/((60m3/min/60/0.83m3/kg)×0.69)
     =33.7kJ/kg
となる。ここで、60と0.83m3/kgで除算しているのは体積流量を質量流量へと単位換算するためである。また0.83m3/kgは一般的な空気の比容積である。
 吸込空気状態測定用センサ12により吸込空気の状態Aが乾球27℃、湿球19℃であると分かったとする。この時、空気物性より状態AのエンタルピhAAは、コントローラ7よって53.8kJ/kgと演算でき、これにより状態CのエンタルピhACは、
   hAC=hAA-ΔhA
      =53.8kJ/kg-33.7kJ/kg
      =20.1kJ/kg
となる。コントローラ7のメモリに格納された空気物性のデータから熱交換器温度Te_calは5.8℃であると演算できる。この時の空気線図を図6に示す。
 ここで、吸込空気状態測定用センサ12により得られたTeと、演算により得られたTe_calを比較する。一般的な温度センサの精度からTeとTe_calとの差が0.5℃以上あった場合に送風量が設定値と違うと判断する。もちろん、センサによって精度は違うため0.5℃以外を判定値としてもよい。
 図7に示すような冷凍サイクルで安定し、Teが5℃であったとすると、Te_calが5.8℃であるので、0.8℃低い値となっている。この場合、熱交換器の効率が設定した送風量から得られるものより低いということを表している。すなわち、設定した送風量より実際の送風量が小さいということであり、ファン5の回転数を上げて送風量を増加させる必要がある。
逆に、図8に示すような冷凍サイクルで安定し、Teが7℃であったとすると、1.2℃高い値であるため、熱交換器の効率が設定した送風量から得られるものより高いということを表し、ファン5の回転数を下げて送風量を下げる必要がある。
 送風量を変化させることで冷凍サイクルも変わってくるため、都度Teの値を確認することで、送風量を設定値へと調整することができる。
 なお、本実施の形態では、蒸発器についてのみ記載したが、凝縮器であっても同様の考え方で送風量を調整することができることは言うまでもない。
  1  圧縮機
  2  凝縮器
  3  膨張弁
  4  蒸発器
  5  ファン
  6  モータ
  7  コントローラ
  8  圧力測定用センサ
  9~11  温度測定用センサ
 12  吸込空気状態測定用センサ

Claims (3)

  1.  冷媒を圧縮する圧縮機、冷媒を凝縮する凝縮器、減圧する膨張弁および蒸発する蒸発器が、冷媒を循環させる配管で連結された冷媒回路と、
     前記蒸発器に空気を送風する送風機と、
     前記圧縮機、膨張弁および送風機の動作を制御するコントローラと、を備え、
     当該コントローラのメモリには、前記凝縮器および蒸発器の熱交換効率と送風量の関係を示すデータが格納され、
     前記コントローラは、前記データに基づき、熱交換効率と冷凍サイクルの状態から前記送風機の送風量を計算することを特徴とする空気調和機。
  2.  前記送風機は、ファンとモータが直結されている、請求項1に記載の空気調和機。
  3.  前記送風機は、ファンとモータがプーリまたはベルトを介して間接的に接続されている請求項1に記載の空気調和機。
PCT/JP2015/062476 2015-04-24 2015-04-24 空気調和機 WO2016170668A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1711575.9A GB2553422B (en) 2015-04-24 2015-04-24 Air-conditioning apparatus
PCT/JP2015/062476 WO2016170668A1 (ja) 2015-04-24 2015-04-24 空気調和機
JP2017513925A JP6385568B2 (ja) 2015-04-24 2015-04-24 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062476 WO2016170668A1 (ja) 2015-04-24 2015-04-24 空気調和機

Publications (1)

Publication Number Publication Date
WO2016170668A1 true WO2016170668A1 (ja) 2016-10-27

Family

ID=57142963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062476 WO2016170668A1 (ja) 2015-04-24 2015-04-24 空気調和機

Country Status (3)

Country Link
JP (1) JP6385568B2 (ja)
GB (1) GB2553422B (ja)
WO (1) WO2016170668A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440406A (zh) * 2019-08-05 2019-11-12 珠海格力电器股份有限公司 一种风机控制方法、装置及机组设备
WO2023145016A1 (ja) * 2022-01-28 2023-08-03 三菱電機株式会社 診断装置およびそれを有する冷凍サイクル装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9937953B2 (en) 2011-04-19 2018-04-10 Ford Global Technologies, Llc Trailer backup offset determination
US10611407B2 (en) 2015-10-19 2020-04-07 Ford Global Technologies, Llc Speed control for motor vehicles
US10384607B2 (en) 2015-10-19 2019-08-20 Ford Global Technologies, Llc Trailer backup assist system with hitch angle offset estimation
US9836060B2 (en) 2015-10-28 2017-12-05 Ford Global Technologies, Llc Trailer backup assist system with target management
US10155478B2 (en) 2015-12-17 2018-12-18 Ford Global Technologies, Llc Centerline method for trailer hitch angle detection
US10106193B2 (en) 2016-07-01 2018-10-23 Ford Global Technologies, Llc Enhanced yaw rate trailer angle detection initialization
US10046800B2 (en) 2016-08-10 2018-08-14 Ford Global Technologies, Llc Trailer wheel targetless trailer angle detection
GB2567973B (en) * 2016-08-24 2021-04-21 Mitsubishi Electric Corp Air-conditioning apparatus
GB201614460D0 (en) 2016-08-24 2016-10-05 Rotech Group Ltd Improvements in and relating to underwater excavation apparatus
US10222804B2 (en) 2016-10-21 2019-03-05 Ford Global Technologies, Llc Inertial reference for TBA speed limiting
US10710585B2 (en) 2017-09-01 2020-07-14 Ford Global Technologies, Llc Trailer backup assist system with predictive hitch angle functionality
US11077795B2 (en) 2018-11-26 2021-08-03 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning
US10829046B2 (en) 2019-03-06 2020-11-10 Ford Global Technologies, Llc Trailer angle detection using end-to-end learning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886489A (ja) * 1994-09-16 1996-04-02 Toshiba Corp 空気調和装置
JP2002022245A (ja) * 2000-07-13 2002-01-23 Daikin Ind Ltd 空調システム
JP2007033003A (ja) * 2005-07-29 2007-02-08 Fujitsu General Ltd ファンコンベクタ
JP2014129925A (ja) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp 空気調和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269772A (ja) * 2002-03-13 2003-09-25 Sanyo Electric Co Ltd 冷凍装置、空気調和装置及びそれらの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886489A (ja) * 1994-09-16 1996-04-02 Toshiba Corp 空気調和装置
JP2002022245A (ja) * 2000-07-13 2002-01-23 Daikin Ind Ltd 空調システム
JP2007033003A (ja) * 2005-07-29 2007-02-08 Fujitsu General Ltd ファンコンベクタ
JP2014129925A (ja) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440406A (zh) * 2019-08-05 2019-11-12 珠海格力电器股份有限公司 一种风机控制方法、装置及机组设备
WO2023145016A1 (ja) * 2022-01-28 2023-08-03 三菱電機株式会社 診断装置およびそれを有する冷凍サイクル装置

Also Published As

Publication number Publication date
GB201711575D0 (en) 2017-08-30
JPWO2016170668A1 (ja) 2017-11-30
GB2553422A (en) 2018-03-07
JP6385568B2 (ja) 2018-09-05
GB2553422B (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6385568B2 (ja) 空気調和機
AU2016279490B2 (en) Air conditioner
WO2016117128A1 (ja) 空気調和装置
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
JP5979112B2 (ja) 冷凍装置
AU2014411657B2 (en) Air-conditioning apparatus
JP2006300370A (ja) 空気調和機
JP6067178B2 (ja) 熱源側ユニット及び空気調和装置
JP6479181B2 (ja) 空気調和装置
JP6576468B2 (ja) 空気調和機
WO2017179210A1 (ja) 冷凍装置
JPWO2018037496A1 (ja) 空気調和装置
JP6537629B2 (ja) 空気調和装置
JPWO2016207992A1 (ja) 空気調和機
JP6415019B2 (ja) 空気調和装置
KR101266098B1 (ko) 공기조화기 및 그 제어방법
JP2017155983A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201711575

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150424

ENP Entry into the national phase

Ref document number: 2017513925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889907

Country of ref document: EP

Kind code of ref document: A1