JP6655744B1 - 液体容器 - Google Patents

液体容器 Download PDF

Info

Publication number
JP6655744B1
JP6655744B1 JP2019064625A JP2019064625A JP6655744B1 JP 6655744 B1 JP6655744 B1 JP 6655744B1 JP 2019064625 A JP2019064625 A JP 2019064625A JP 2019064625 A JP2019064625 A JP 2019064625A JP 6655744 B1 JP6655744 B1 JP 6655744B1
Authority
JP
Japan
Prior art keywords
container
liquid
liquid metal
container body
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019064625A
Other languages
English (en)
Other versions
JP2020165712A (ja
Inventor
優志 木村
優志 木村
仙入 克也
克也 仙入
博史 原
博史 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Machinery Systems Co Ltd filed Critical Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority to JP2019064625A priority Critical patent/JP6655744B1/ja
Application granted granted Critical
Publication of JP6655744B1 publication Critical patent/JP6655744B1/ja
Publication of JP2020165712A publication Critical patent/JP2020165712A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】液体金属をより効率よく流すことができる。【解決手段】高エネルギーの荷電粒子線が照射される液体金属を収容する容器本体と、液体容器の内面と接し、液体金属の流れ方向に沿って配置され、液体金属の流れを整流する整流板と、を備え、容器本体は、液体金属の流れ方向に交差する方向に溶接線が形成され、整流板は、溶接線と重なる位置の容器本体側の端部が、容器本体と離れており、端部と容器本体との距離が、整流板の延在方向に直交する位置によって変化する形状である。【選択図】図6

Description

本発明は、液体容器に関する。
中性子線照射装置は、大強度の荷電粒子線(陽子ビーム)を水銀などの液体金属に照射して核破砕反応を引き起こすことで中性子を発生させる。発生した中性子は、研究に最適な中性子ビームに整えられ、物質の構造や動きを研究するために利用される。核破砕反応には、大量の発熱が伴い、その熱量を除去するため液体金属は、荷電粒子線の照射される領域で流動し続けていることが望ましい。このように液体金属を流動させるため、ターゲット(ターゲット容器)と呼ばれる装置が用いられている(例えば、特許文献1参照)。
ターゲット容器は、液体金属を流動させる液体容器があり、その外側は、液体金属が漏洩した場合も閉じ込められるように保護容器で覆われている。保護容器は、二重になっており、内側保護容器は、液体容器と内側保護容器との間で液体金属の漏洩を検知するヘリウムが流れ、外側保護容器は、内側保護容器と外側保護容器との間で陽子ビームによる発熱を除去するための冷却水が流れる。
ターゲット容器は、水銀などの液体金属を扱うため、液体金属が外部に漏れないような気密性に優れた液体容器を必要とする。また、各容器は、陽子ビーム入射時に瞬間的に生じる圧力および熱応力に耐え得ることを必要とする。このように、ターゲット容器は、多重に形成され、かつ漏洩を防ぎ、内圧に耐え得る構造を要することから、金属同士を溶接により接合して構成されている。特許文献2には、一般的な金属同士の溶接方法が記載されている。
特許第4392098号公報 特開昭63−13688号公報
ここで、ターゲット容器の液体金属を流す領域には、整流板を配置している。ターゲット容器の液体容器は、液体金属の流れ方向において、複数に分割した構造体を溶接で接合するため、整流板と溶接位置が交差する部分が生じる。ターゲット容器の製造時の溶接の影響を避けるため、溶接位置と重なる位置の整流板は、その部分のみ容器と非接触とする。しかしながら、整流板と容器との距離が広くなると、液体金属の流れに影響が生じるため、離間距離を短くする。しかしながら、離間距離が短いと、溶接時に影響が生じる場合がある。
本発明は、上述した課題を解決するものであり、液体金属をより効率よく流すことができる液体容器を提供することを目的とする。
上述の目的を達成するために、本発明の一態様に係る液体容器は、高エネルギーの荷電粒子線が照射される液体金属を収容する容器本体と、前記液体容器の内面と接し、前記液体金属の流れ方向に沿って配置され、前記液体金属の流れを整流する整流板と、を備え、前記容器本体は、液体金属の流れ方向に交差する方向に溶接線が形成され、前記整流板は、前記溶接線と重なる位置の前記容器本体側の端部が、前記容器本体と離れており、前記端部と前記容器本体との距離が、前記整流板の延在方向に直交する位置によって変化する形状である。
前記整流板は、前記延在方向に直交する方向において、前記端部が、前記容器本体側に凸の曲面形状であることが好ましい。
前記整流板は、前記延在方向に直交する方向において、前記端部の前記容器本体側に最も近い位置が、中央側に配置されていることが好ましい。
前記整流板は、前記延在方向に直交する方向において、前記端部の前記容器本体側に最も近い位置が、前記延在方向に直交する方向の端部であることが好ましい。
前記整流板は、前記端部と前記容器本体との最短距離が、1mm以上2mm以下であることが好ましい。
前記整流板は、前記端部と前記容器本体との最長距離が、5mm以上10mm以下であることが好ましい。
本発明によれば、容器の溶接部と整流板とが重なる位置が好適に溶接された状態とすることができる。これにより、液体容器の耐久性を高くすることができる。また、製造時に欠陥を発生しにくくすることができる。
図1は、本発明の実施形態に係る液体容器が適用される中性子線照射装置の一例を示す模式図である。 図2は、本発明の実施形態に係る液体容器が適用される中性子線照射装置の一例を示す模式図である。 図3は、本発明の実施形態に係る液体容器が適用されるターゲット容器の一例を示す斜視図である。 図4は、本発明の実施形態に係る液体容器の概略構成を示す上面図である。 図5は、本発明の実施形態に係る液体容器の溶接位置の周辺の構造を示す斜視図である。 図6は、図4のA−A断面図である。 図7は、図4のB−B断面図である。 図8は、整流板の変形例を示す模式図である。 図9は、整流板の変形例を示す模式図である。 図10は、整流板の変形例を示す模式図である。 図11は、整流板の変形例を示す模式図である。
以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
以下の実施形態においては、中性子線照射装置100が、機器または構造物のような検査対象物に中性子線Nを照射して、その検査対象物の内部を非破壊で検査する検査装置に適用される場合で説明する。中性子線照射装置100は、放射線療法に使用することもできる。中性子線照射装置100は、被照射体Sに中性子線Nを照射する。
図1は、本実施形態に係る液体容器が適用される中性子線照射装置の一例を示す模式図である。図1に示すように、中性子線照射装置100は、荷電粒子を加速して荷電粒子線(例えば、陽子ビーム)Pを射出する加速装置102と、加速装置102から射出された荷電粒子線Pの照射状態を調整する調整装置103と、荷電粒子線Pの照射により中性子線Nを発生するターゲット105と、ターゲット105で発生した中性子線Nを減速する減速装置106と、減速装置106から射出された中性子線Nを平行化するコリメータ107と、を備えている。コリメータ107から射出された中性子線Nが被照射体Sに照射される。
加速装置102は、円形加速器または直線加速器を含む。加速装置102は、荷電粒子(陽子、電子、または重粒子)を加速して、荷電粒子線(陽子線、電子線、または重粒子線)Pを生成して射出する。
調整装置103は、複数の電磁石を含み、加速装置102から射出された荷電粒子線Pの照射状態を調整する。荷電粒子線Pの照射状態は、荷電粒子線Pの進行方向の調整および荷電粒子線Pの整形を含む。調整装置103は、荷電粒子線Pの発散を抑制し、荷電粒子線Pを集束させる。調整装置103は、加速装置102から射出された荷電粒子線Pを走査装置104に導く。
本実施形態において、中性子線照射装置100は、荷電粒子線Pを走査する走査装置104を備える。走査装置104は、荷電粒子線Pを走査し、ターゲット105に対する荷電粒子線Pの照射位置を調整する。また、走査装置104は、ターゲット105に照射される荷電粒子線Pを整形する。なお、走査装置104は無くてもよい。
加速装置102から射出され、調整装置103および走査装置104を通過した荷電粒子線Pは、ターゲット105に照射される。ターゲット105は、荷電粒子線Pの照射により、中性子線Nを発生する。ターゲット105を、中性子線発生部材、と称してもよい。ターゲット105は、例えばベリリウム(Be)、リチウム(Li)、またはそれらを含む化合物で形成された液体を含む。ターゲット105については後述する。
減速装置106は、ターゲット105で発生した中性子線Nを減速する。減速装置106は、中性子線Nの進路において、ターゲット105と被照射体Sとの間に配置される。ターゲット105は、高エネルギーの高速中性子を発生する。減速装置106は、高速中性子のエネルギーを低減して、低速で低エネルギーの中性子(熱中性子または熱外中性子)を生成する。
コリメータ107は、減速装置106から射出された中性子線Nを平行化する。コリメータ107により平行化され、そのコリメータ107から射出された中性子線Nが被照射体Sに照射される。
次にターゲット105について説明する。図2は、本実施形態に係る液体容器が適用される中性子線照射装置の一例を示す模式図である。図2では、図1のターゲット105に関係する部分を詳細に示している。図2に示すようにターゲット105は、ターゲット容器2と、液体金属供給部3と、を備えている。
ターゲット容器2は、気密・液密に形成された容器であって、その内部には液体金属L(本実施形態では水銀)が流通している。加速装置102で生成された荷電粒子線Pがターゲット容器2内の液体金属原子(水銀原子)に衝突することで核破砕反応を生じる。ターゲットとして液体金属Lを用いることで、液体金属L自体が冷却材としての役割を果たすため、より大強度の荷電粒子線Pを照射することが可能となり、より高い中性子発生効率を得られる。
液体金属供給部3は、ターゲット容器2に接続され、ターゲット容器2に液体金属Lを供給する。液体金属供給部3は、液体金属Lを貯留するタンク4と、タンク4内の液体金属Lをターゲット容器2内に供給する供給流路5と、供給流路5を通じて液体金属Lをターゲット容器2内に圧送するポンプ6と、ターゲット容器2から排出された液体金属Lを回収する回収流路7と、を有する。
ターゲット容器2の詳細な構成について説明する。図3は、本実施形態に係る液体容器が適用されるターゲット容器の一例を示す斜視図である。図4は、本発明の実施形態に係る液体容器の概略構成を示す上面図である。
図2および図3に示すように、本実施形態に係るターゲット容器2は、平面視で略長方形状の外観を呈している。以降の説明において、ターゲット容器2の長辺が延びる方向を長軸方向と呼び、ターゲット容器2の短辺が延びる方向(長軸方向に平面視で直交する方向)を短軸方向と呼ぶ。さらに、ターゲット容器2の上下方向であって長軸方向および短軸方向に直交する高さ方向を厚さ方向と呼ぶ。さらに、ターゲット容器2の短軸方向および厚さ方向に沿って、長軸方向の周り方向を周方向(長軸方向に直行する断面(例えば、図5参照)における各容器の外周に沿う方向)と呼ぶ。また、ターゲット容器2の長軸方向において、荷電粒子線Pが照射される側を先端側と呼び、先端側の反対側となり液体金属Lが供給および排出される側を後端側と呼ぶ。即ち、ターゲット容器2は、照射される荷電粒子線Pに長軸方向の先端側を向けて配置されている。
ターゲット容器2は、図3に示すように、三重構造の容器である。具体的に、ターゲット容器2は、液体金属Lが流通する液体容器20と、液体容器20を外側から覆う内側保護容器22と、内側保護容器22をさらに外側から覆う外側保護容器23と、を有する。ターゲット容器2は、ステンレス鋼などの固体金属により形成される。なお、図3においては、ターゲット容器2の各容器21,22,23の肉厚を省略して線にて示している。
液体容器20は、容器本体21と、ビームタンプ26と、整流板27と、を有する。容器本体21は、液密性・気密性を有し、内部の流通空間Vfに液体金属Lが流通する。容器本体21は、長軸方向における後端側に、上述した液体金属供給部3の供給流路5に繋がる供給口24と、回収流路7に繋がる回収口25と、が形成されている。供給口24および回収口25は、短軸方向の各端寄りに配置されて間隔を空けて設けられ、本実施形態では互いに同じく後端側に向かって開口して形成されている。
ビームダンプ26は、容器本体21の流通空間Vf内において後端側に設けられている。ビームダンプ26は中実の部材であり、先端側から容器本体21に入射した荷電粒子線Pが後端側へ漏洩することを抑制するものである。ビームダンプ26は、供給口24と回収口25との間で先端側に向かって延び、その先端側の端部から容器本体21の先端側の端部までの距離を、一例として1m程度空けて配置されている。このビームダンプ26は、容器本体21に対して一体に形成されることが望ましいが、別の部材として設けることも可能である。
整流板27は、流通空間Vf内に液体金属Lの流れを案内する、つまり、液体金属Lの流れを整流する。整流板27は、供給口24および回収口25の短軸方向の内側でビームダンプ26を挟むように一対設けられている。一対の整流板27は、後端側から先端側の途中に至り長軸方向に延在し、厚さ方向で容器本体21の上下の内壁に当接して配置されていることで、ビームダンプ26を間において供給口24側と回収口25側とを仕切るように設けられている。また、一対の整流板27は、長軸方向で先端側に向かうに従って互いに漸次接近するように形成されている。なお、図3では、他の構成との関係で、一対の整流板27として、供給口24側と回収口25側とに、1つずつの整流板27を示しているが、本実施形態の液体容器20は、図4に示すように、供給口24側の流路を複数の整流板27で形成し、排出口25側の流路を複数の整流板27で形成している。それぞれの整流板27は、短軸方向の位置、長軸方向の位置が異なる。
上述したターゲット容器2において、容器本体21は、荷電粒子線Pが照射される先端側に、液体金属Lを流通する狭隘流路が形成されている。狭隘流路は、短軸方向の両側が開口し、短軸方向の一側から先端部28(容器本体21)の先端側を経て短軸方向の他側に到り、流通空間Vf内に通じている。従って、流通空間Vf内の液体金属Lは、狭隘流路の一側の開口部から他側の開口部に流動し、流速が上がる。
液体容器20は、供給口24から供給された液体金属Lが、供給口24側の整流板27により案内されて、先端側に向かい、先端の狭隘流路に流入する。液体容器20は、狭隘流路を通過した液体金属Lが、排出口25側の案内板27により案内されて、排出口25から排出される。液体容器20は、このように、液体金属Lが所定の方向に流れ、荷電粒子線Pが照射される先端の狭隘流路に液体金属Lが流れる状態とする。
内側保護容器22は、容器本体21を外側から覆っている。内側保護容器22は、万が一容器本体21から液体金属Lが漏洩した場合でも閉じ込めることができるように、液密性・気密性を有して形成されている。内側保護容器22は、その内面と容器本体21の外面との間に第一空間V1を有するように形成されている。第一空間V1は、不活性ガス(例えば、ヘリウム)が封入される。そして、ターゲット容器2の使用中に不活性ガスの圧力(分圧)を監視することで、不活性ガスの分圧に変化が生じた場合(例えば分圧が低下した場合)に容器本体21から液体金属Lの一部が漏洩していると判断することができる。
外側保護容器23は、内側保護容器22を外側から覆っている。外側保護容器23は、液密性・気密性を有して形成されている。外側保護容器23は、その内面と内側保護容器22の外面との間に第二空間V2を有するように形成されている。第二空間V2は、内側保護容器22と外側保護容器23自体で生じる核発熱を冷却するための冷却水が流通する。
次に、図3及び図4に加え、図6、図7を用いて、液体容器20について、より詳細に説明する。図5は、本発明の実施形態に係る液体容器の溶接位置の周辺の構造を示す斜視図である。図6は、図4のA−A断面図である。図7は、図4のB−B断面図である。
液体容器20の容器本体21は、図4に示すように、調軸方向に複数に分割した分割体30を溶接により接合した構造であり、分割体30の境界に溶接線32が形成される。溶接線32は、短軸方向に延び、容器本体21の外周の全周に形成される。分割体30は、溶接線32が形成される部分に開先40が形成されている。溶接線32は、例えば電子ビーム溶接で形成される。また、溶接線32は、容器本体21の外周側から溶接を行い、内周面を平坦にする裏波溶接で形成される。これにより、容器本体21の溶接線32の内面側は、凹部がなく、平坦な形状となる。
次に、整流板27は、複数の分割体30に跨って配置されている。このため、整流板27は、溶接線32と重なる部分がある。整流板27は、分割体30毎に分割している。図5から図7に示す整流板27は、分割整流板27aと、分割整流板27bと、を示している。分割整流板27a、27bは、対応する分割体30に固定されている。分割整流板27aと分割整流板27bとは、溶接線32が形成される分割体30の端部の互いに向かいった面が凹凸形状となり、凸部と凹部が噛み合う構造となる。これにより、短軸方向から見た場合に、分割整流板27aと分割整流板27bとが重なる形状となる。
分割整流板27a、27bは、厚さ方向の端部が分割体30と対面し、固定されている。本実施形態では、分割整流板27a、27bは、溶接で分割体30に固定される。分割整流板27a、27bの分割体30との接続位置にはフィレット42が形成される。フィレット42は、分割整流板27a、27bと分割体30とを連結する。つまり整流板27は、容器本体21に固定されている。
また、整流板27は、溶接線32と重なる位置において、容器本体21側の端部50が、容器本体21と離間している。これにより、液体容器20は、整流板27と溶接線32とが重なる位置で、整流板27と容器本体21との間に開口51が形成される。つまり、整流板27は、溶接線32と重なる部分が容器本体21と離間し、その他の部分は、容器本体21に固定されている。
端部50は、図6に示すように、整流板27の延在方向に直交する断面において、容器本体21側の端面52が容器本体21側に凸の円弧形状である。本実施形態では、中心線32が頂点54となる半円形状である。これにより、整流板27は、整流板27の延在方向に直交する断面において、位置に応じて、容器本体21との距離が変化する形状となる。整流板27は、端部50の頂点54と容器本体21とを結んだ位置が、端部50と容器本体21との最短距離tとなる。また、整流板27は、端部50の幅方向の端と容器本体21とを結んだ位置が、端部50と容器本体21との最長距離tとなる。
整流板27は、図7に示すように、整流板27の延在方向おいて、端部50が形成される範囲が、距離Lとなる。整流板27は、距離L1の範囲以外が、容器本体21と連結している。
以下、液体容器20の製造方法について説明する。容器本体21の分割体30を作成する。次に、分割体30の内部に分割整流板27a、27bを接地し、溶接により固定する。溶接により分割整流板27a、27bと分割体30との接続部にフィレット42を形成する。次に、分割体30と分割体30とを突合せ、開先40の位置を溶接する。溶接としては、裏波溶接を行うことができる各種溶接を用いることができ、例えば、電子ビーム溶接を用いることができる。液体容器20は、分割体30同士を溶接することで、開先40に溶接線32を形成する。各分割体30同士を接続することで、液体容器20を製造する。
液体容器20は、以上のように、溶接線31と重なる位置の整流板27の端部50を、容器本体21と離間し、かつ、端部50と容器本体21との距離が、整流板27の延在方向に直交する位置によって変化する形状とすることで、溶接線32の形成時に、端部50と容器本体21との間に、容器本体21を加工する成分、例えば高温のガス等が溜まることを抑制でき、加工時に容器本体21に欠陥が生じることを抑制できる。また、端部50と容器本体21との距離が、整流板27の延在方向に直交する位置によって変化する形状とすることで、整流板27と容器本体21との距離が短い部分を設けることができ、液体金属Lが開口51を通過して流れにくい状態とすることができる。これにより、液体容器20を流れる液体金属Lの流れを整流板27で好適に案内することができる。
整流板27は、端部50と容器本体21との最短距離tを1mm以上2mm以下とすることが好ましい。最短距離tを、上記範囲とすることで、開口51を介して液体金属を移動することを抑制することができ、かつ、製造時に欠陥の発生を抑制することができる。また、整流板27は、端部50と容器本体21との最長距離tを5mm以上10mm以下であることが好ましい。最長距離tを上記範囲とすることで、加工時に容器本体21の内面に欠陥が生じることをより確実に抑制することができる。
整流板27は、整流板27の延在方向おいて、端部50が形成される距離Lの範囲に溶接線32を含めばよい。ここで、距離Lは、3mm以上8mm以下とすることが好ましい。これにより、容器本体21の内面に欠陥が生じることを抑制することができる。
整流板27は、本実施形態のように、延在方向に直交する方向において、端部50が、容器本体21側に凸の曲面形状であることで、溶接時に容器本体21に欠陥を生じさせる雰囲気の滞留を抑制することができる。
整流板27は、本実施形態のように、整流板27の延在方向に直交する方向において、端部50の容器本体21側に最も近い位置が、中央側に配置されていることで、加工しやすくすることができる。
ここで、本実施形態では、整流板27の端部51の端面52の形状を、中央部が最短距離となる半円形状としたが、これに限定されない。溶接線と重なる位置の整流板27の端部の端面は、種々の形状とすることができる。端面は、頂点が1箇所であり、1つの頂点から離れるにしたがって、容器本体21から離れる形状であればよく、曲面、R形状、直線形状、台形形状等、種々の形状とすることができる。
図8は、整流板の変形例を示す模式図である。図8に示す整流板127は、端部150の端面152が直線形状である。また、頂点154が、幅方向の端部に設けられている。つまり、端面152が、1つの斜面で形成されている。このように、整流板152は、延在方向に直交する方向において、端部152の容器本体21側に最も近い位置が、延在方向に直交する方向の端部とすることで、最長距離をより離すことができる。また、斜面に沿って、例えば高温のガス等の欠陥の原因になる雰囲気を容器本体20から離すことができる。これにより、欠陥の原因になる雰囲気が溜まることを抑制でき、加工時に容器本体21に欠陥が生じることを抑制できる。
図9は、整流板の変形例を示す模式図である。図9に示す整流板127aは、端部150aの端面152aが直線形状である。また、頂点154aが、幅方向の中央に設けられている。つまり、端部150aが、角錐形状となる。このように、中心に頂点154aを配置する場合に、端面152aを直線形状としてもよい。
図10は、整流板の変形例を示す模式図である。図10に示す整流板127bは、端部150bの端面152bが階段形状である。また、頂点154bが、幅方向の端部に設けられている。つまり、端部150bが、容器本体21の内面と平行であり、かつ、容器本体21との距離が異なる2の面が設けられている。端面152bは、頂点154bの面が、最短距離の面となり、もう1つの面が最長距離の面となる。なお、本実施形態では、段差を1段階として、容器本体21の内面と平行な面を2つとしたが、段差を複数設け、多段の階段形状としてもよい。また、平坦面と曲面を組み合わせた形状としてもよい。
図11は、整流板の変形例を示す模式図である。図11に示す整流板127cは、端部150cの端面152cが台形形状である。頂点154cが、幅方向の中央に設けられている。つまり、端部150cが、容器本体21の内面と平行であり、かつ、容器本体21との距離が一定で、頂点154cとなる面と、頂点154cの面から離れるにしたがって、容器本体21から離れる2つの傾斜面が設けられている。このように台形形状としてもよい。
2 ターゲット容器
3 液体金属供給部
4 タンク
5 供給流路
6 ポンプ
7 回収流路
20 液体容器
21 容器本体
22 内側保護容器
23 外側保護容器
24 供給口
25 回収口
26 ビームダンプ
27 整流板
30 分割体
32 溶接線
40 開先
42 フィレット
44 連結部
50 端部
51 開口
52 端面
54 頂点
56 中心線
100 中性子線照射装置
102 加速装置
103 調整装置
104 走査装置
105 ターゲット
106 減速装置
107 コリメータ
F 仮想面
L 液体金属
N 中性子線
P 荷電粒子線
S 被照射体
t1 最短距離
t2 最長距離
V1 第一空間
V2 第二空間
Vf 流通空間

Claims (6)

  1. 高エネルギーの荷電粒子線が照射される液体金属を収容する容器本体と、
    前記液体容器の内面と接し、前記液体金属の流れ方向に沿って配置され、前記液体金属の流れを整流する整流板と、を備え、
    前記容器本体は、液体金属の流れ方向に交差する方向に溶接線が形成され、
    前記整流板は、前記溶接線と重なる位置の前記容器本体側の端部が、前記容器本体と離れており、前記端部と前記容器本体との距離が、前記整流板の延在方向に直交する位置によって変化する形状である液体容器。
  2. 前記整流板は、前記延在方向に直交する方向において、前記端部が、前記容器本体側に凸の曲面形状である請求項1に記載の液体容器。
  3. 前記整流板は、前記延在方向に直交する方向において、前記端部の前記容器本体側に最も近い位置が、中央側に配置されている請求項1または請求項2に記載の液体容器。
  4. 前記整流板は、前記延在方向に直交する方向において、前記端部の前記容器本体側に最も近い位置が、前記延在方向に直交する方向の端部である請求項1または請求項2に記載の液体容器。
  5. 前記整流板は、前記端部と前記容器本体との最短距離が、1mm以上2mm以下である請求項1から請求項4のいずれか一項に記載の液体容器。
  6. 前記整流板は、前記端部と前記容器本体との最長距離が、5mm以上10mm以下である請求項1から請求項5のいずれか一項に記載の液体容器。
JP2019064625A 2019-03-28 2019-03-28 液体容器 Active JP6655744B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064625A JP6655744B1 (ja) 2019-03-28 2019-03-28 液体容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064625A JP6655744B1 (ja) 2019-03-28 2019-03-28 液体容器

Publications (2)

Publication Number Publication Date
JP6655744B1 true JP6655744B1 (ja) 2020-02-26
JP2020165712A JP2020165712A (ja) 2020-10-08

Family

ID=69624461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064625A Active JP6655744B1 (ja) 2019-03-28 2019-03-28 液体容器

Country Status (1)

Country Link
JP (1) JP6655744B1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392098B2 (ja) * 2000-01-25 2009-12-24 独立行政法人 日本原子力研究開発機構 中性子散乱施設用ターゲット
JP2000243597A (ja) * 1999-02-19 2000-09-08 Japan Atom Energy Res Inst 中性子散乱施設用ターゲット
JP2003072882A (ja) * 2001-08-30 2003-03-12 Mitsubishi Heavy Ind Ltd 液体貯留タンク及び冷却用ジャケットの取付方法
US20100195781A1 (en) * 2007-07-10 2010-08-05 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Neutron beam radiation apparatus
JP6741556B2 (ja) * 2016-10-31 2020-08-19 三菱重工機械システム株式会社 ターゲット容器、及びターゲット容器の製造方法
JP6351897B1 (ja) * 2018-03-27 2018-07-04 三菱重工機械システム株式会社 液体容器、および液体容器の製造方法

Also Published As

Publication number Publication date
JP2020165712A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
KR100445836B1 (ko) 레이저 용접 방법 및 레이저 용접 장치
JP5061836B2 (ja) 羽根車の溶接方法及び羽根車
EP2886241B1 (en) Welding system and welding method
JP5234471B2 (ja) レーザ溶接装置およびレーザ溶接方法
US8759712B2 (en) Method of manufacturing a stiffened plate by hybrid laser arc welding
JP6144175B2 (ja) 中性子捕捉療法装置
US20140124489A1 (en) Hybrid Welding Method of Laser Welding and Arc Welding for T-Joint
US8872446B2 (en) Welding method and superconducting accelerator
JP2013043197A (ja) 水中溶接装置及び方法
JP5849804B2 (ja) 二次電池の溶接装置および二次電池の製造方法
JP6351897B1 (ja) 液体容器、および液体容器の製造方法
JP2018021881A (ja) 中性子発生装置用のターゲット及び冷却構造
CN117460596A (zh) 用于燃料电池的双极板和用于对双极板进行焊接的方法
JP6655744B1 (ja) 液体容器
JP6741556B2 (ja) ターゲット容器、及びターゲット容器の製造方法
JP2015202506A (ja) 溶接構造物、レーザ溶接方法及びレーザ溶接装置
JP4846392B2 (ja) 水中補修溶接方法
JP7190361B2 (ja) 液体容器の製造方法および液体容器
US10637010B2 (en) Method for manufacturing energy storage device and apparatus for manufacturing energy storage device
CN112355471A (zh) 一种水下激光原位修复装置及其使用方法
JP6200410B2 (ja) 補修溶接方法及び補修溶接用プラグ、並びに原子炉容器
JP2018065154A (ja) レーザ溶接装置及びレーザ溶接方法
JP5213245B2 (ja) レーザー溶接装置
JP5587918B2 (ja) 羽根車の溶接方法、溶接装置及び羽根車
JP2015104729A (ja) レーザ溶接方法及び装置、構造物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190924

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6655744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150