JP6600929B1 - X線回折測定装置システム及びx線回折測定装置 - Google Patents

X線回折測定装置システム及びx線回折測定装置 Download PDF

Info

Publication number
JP6600929B1
JP6600929B1 JP2018143036A JP2018143036A JP6600929B1 JP 6600929 B1 JP6600929 B1 JP 6600929B1 JP 2018143036 A JP2018143036 A JP 2018143036A JP 2018143036 A JP2018143036 A JP 2018143036A JP 6600929 B1 JP6600929 B1 JP 6600929B1
Authority
JP
Japan
Prior art keywords
ray
rays
plane
measurement object
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018143036A
Other languages
English (en)
Other versions
JP2020020616A (ja
Inventor
洋一 丸山
洋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulstec Industrial Co Ltd
Original Assignee
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulstec Industrial Co Ltd filed Critical Pulstec Industrial Co Ltd
Priority to JP2018143036A priority Critical patent/JP6600929B1/ja
Application granted granted Critical
Publication of JP6600929B1 publication Critical patent/JP6600929B1/ja
Publication of JP2020020616A publication Critical patent/JP2020020616A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】 搬送ライン上を流れる測定対象物に複数の入射角でX線を照射してsin2ψ法により残留応力を求めるX線回折測定装置を小型で単純な構造にする。【解決手段】 X線回折測定装置1−1〜1−4を搬送ラインLNの移動方向に沿って複数配置する。X線回折測定装置1−1〜1−4は、X線管を、中心軸が測定対象物OBの平面と略平行且つ搬送ラインLNの移動方向と略垂直になるよう配置し、X線管の中心軸と出射されるX線の光軸とを含む基準平面が測定対象物OBの平面と成す角度がそれぞれ異なるとともに、X線照射点を結んだラインが、搬送ラインLNの移動方向と一致するように位置決めされる。X線回折測定装置1−1〜1−4は、X線撮像器を、受光平面が基準平面に略垂直で、標準の回折角で回折X線が発生したとき、受光平面と基準平面が交差するライン上のX線強度分布におけるピークが所定位置になるよう配置される。【選択図】図2

Description

本発明は、搬送ライン上を流れる測定対象物に複数の入射角でX線を照射して、X線回折像を撮像し、sinψ法により測定対象物の残留応力を求めるX線回折測定装置システム及びX線回折測定装置に関する。
搬送ライン上を流れる測定対象物にX線を照射し、X線回折像を撮像することで、測定対象物の残留応力を求めるX線回折測定装置として、例えば特許文献1に示されるように、測定対象物に複数の入射角で一度にX線を照射して、sinψ法により残留応力を求めるX線回折測定装置が考案されている。搬送ライン上を流れる測定対象物に照射されるX線の照射箇所は変化していくが、X線の照射とX線回折像の撮像(回折角の検出)を瞬時に行えば、測定対象物の定めた点におけるX線回折像(回折角)を得ることができるので、この装置によれば、搬送ライン上を流れる測定対象物であっても残留応力を測定することができる。
特開平5−107124号公報
しかしながら、特許文献1の図ではX線源が非常に小型で描かれているが、実際にX線回折測定装置に使用されるX線管はもっと大型であり、複数のX線管を備えて測定対象物に複数の入射角で一度にX線を照射する構造にしようとすると、X線回折測定装置が複雑な構造で大型になるという問題がある。このため、搬送ライン上を流れる測定対象物をsinψ法により残留応力を測定するX線回折測定装置は実現していない。
本発明はこの問題を解消するためなされたもので、その目的は、搬送ライン上を流れる測定対象物に複数の入射角でX線を照射して、X線回折像を撮像し、sinψ法により測定対象物の残留応力を求めるX線回折測定装置システム及びX線回折測定装置において、X線回折測定装置を小型で単純な構造にすることが可能なX線回折測定装置システム及びX線回折測定装置を提供することにある。
上記目的を達成するために、本発明の特徴は、一定方向に流れる搬送ライン上に載置された測定対象物に対してX線を出射するX線出射手段と、測定対象物にて回折したX線を受光して、回折X線の強度分布を検出するX線撮像器とを備えたX線回折測定装置を複数備え、それぞれのX線回折測定装置におけるX線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置を備えたX線回折測定システムにおいて、それぞれのX線回折測定装置におけるX線出射手段は、中心軸が測定対象物の平面と略平行且つ搬送ラインの移動方向と略垂直になるよう配置されたX線管と、X線管から出射されたX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物に対して出射するコリメータとからなり、それぞれのX線回折測定装置は、X線管の中心軸とコリメータから出射されるX線の光軸とを含む基準平面が測定対象物の平面と成す角度が異なるとともに、それぞれのX線回折測定装置のコリメータから出射されるX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるよう配置され、それぞれのX線回折測定装置におけるX線撮像器は、受光平面が基準平面に略垂直で、コリメータから出射されるX線により測定対象物にて標準の回折角で回折X線が発生したとき、受光平面と基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されているX線回折測定システムとしたことにある。
これによれば、それぞれのX線回折測定装置は、X線管、コリメータ及びX線撮像器を、1つの平面内にX線管の中心軸、コリメータの中心軸及びX線撮像器の受光平面内のラインが含まれるように配置しているため、小型で単純な構造にすることができる。そして、それぞれのX線回折測定装置をすべて同一構造にしても、それぞれのX線回折測定装置において基準平面が測定対象物の平面と成す角度が異なるようにし、出射されるX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるようにすれば、sinψ法により残留応力を求めることができる。すなわち、搬送ライン上に載置された測定対象物は移動しているので、それぞれのX線回折測定装置のX線出射のタイミングを適切にすれば、それぞれのX線回折測定装置から出射されるX線を測定対象物の同一点に照射されるようにすることができる。そして、それぞれのX線回折測定装置において基準平面が測定対象物の平面と成す角度が異なるようにすれば、それぞれのX線回折測定装置ごとの測定対象物の回折面法線の方向は同一平面に平行で異なる方向になるので、それぞれのX線回折測定装置ごとにX線の回折角及び基準平面と測定対象物の平面が成す角度が得られれば、sinψ法により残留応力を求めることができる。X線回折測定装置ごとのX線の回折角は、コンピュータ装置に入力する回折X線の強度分布のデータから、X線撮像器の受光平面と基準平面が交差するライン方向の強度プロファイルのピーク位置を求めれば、既知のパラメータを用いて計算することができる。
また、本発明の他の特徴は、それぞれのX線回折測定装置は、X線出射手段とX線撮像器とを内部に備える筐体を備え、筐体は、コリメータから出射されるX線の照射点であって、照射点にて標準の回折角で回折X線が発生したとき、回折X線の強度分布のピークがX線撮像器の所定位置になる照射点で、2つの可視の平行光が交差するよう可視の平行光を出射する可視光出射手段が取り付けられていることにある。
これによれば、2つの可視の平行光の照射点が1つになるようにそれぞれのX線回折測定装置の位置を調整し、それぞれのX線回折測定装置の1つになった照射点が搬送ラインの移動方向に平行な1つのライン上になるようにすれば、それぞれのX線回折測定装置を適切な位置にすることができるので、それぞれのX線回折測定装置の位置調整を簡単に行うことができる。
また、本発明の他の特徴は、それぞれのX線回折測定装置の筐体は、X線管の中心軸と略平行又は略垂直な平面部分を有し、その平面部分は重力方向に対する傾き角度を測定する角度計であって、X線管の中心軸方向おける傾き角度とX線管の中心軸に垂直な方向における傾き角度を測定する角度計を取り付けていることにある。
これによれば、測定対象物の平面が重力方向に略垂直になっていれば、角度計が示すX線管の中心軸方向における傾き角度が0になるようX線回折測定装置の姿勢を調整すれば、X線管の中心軸を測定対象物の平面と略平行にすることができる。また、角度計が示すX線管の中心軸方向に垂直な方向における傾き角度が設定値になるようX線回折測定装置の姿勢を調整すれば、基準平面と測定対象物の平面が成す角度を設定値にすることができる。これにより、それぞれのX線回折測定装置の姿勢調整を簡単に行うことができる。
また、本発明の他の特徴は、一定方向に流れる搬送ライン上に載置された測定対象物に対して、X線を複数の方向から同時に出射するX線出射手段と、X線出射手段から出射されるそれぞれのX線ごとに、測定対象物にて回折したX線を受光して回折X線の強度分布を検出する複数のX線撮像器と、それぞれの出射されるX線ごとにX線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置とを備えたX線回折測定装置において、X線出射手段は、中心軸が測定対象物の平面と略平行且つ搬送ラインの移動方向と略垂直になるよう配置されるとともにX線出射口を複数有するX線管と、それぞれのX線出射口から出射されるそれぞれのX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物に対して出射する複数のコリメータとからなり、それぞれのX線出射口とそれぞれのコリメータとは、X線管の中心軸とそれぞれのコリメータから出射されるX線の光軸とを含むそれぞれの基準平面が測定対象物の平面と成す角度が異なるとともに、それぞれのコリメータから出射されるX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるように配置され、複数のX線撮像器のそれぞれは、受光平面がそれぞれの基準平面の内対応するものに略垂直で、それぞれのコリメータの内対応するものから出射されるX線により測定対象物にて標準の回折角で回折X線が発生したとき、受光平面と対応する基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されていることを特徴とするX線回折測定装置としたことにある。
これによれば、X線回折測定装置はコリメータ及びX線撮像器を複数備えるが、X線管は1つであり、複数のコリメータ及びX線撮像器は、限られた箇所にまとめて配置することができるため、装置を小型で単純な構造にすることができる。そして、出射されるそれぞれのX線においてそれぞれの基準平面が測定対象物の平面と成す角度が異なるようにし、出射されるそれぞれのX線が測定対象物に照射される点を結んだラインが、搬送ラインの移動方向と平行になるようにすれば、sinψ法により残留応力を求めることができる。すなわち、搬送ライン上に載置された測定対象物は移動しているので、それぞれのX線が測定対象物に照射される点の間隔を等間隔にし、X線出射のタイミングを適切にすれば、出射されるそれぞれのX線を測定対象物の同一点に照射されるようにすることができる。そして、出射されるそれぞれのX線ごとに測定対象物の回折面法線の方向は異なる方向になるので、出射されるそれぞれのX線ごとにX線の回折角とそれぞれの基準平面と測定対象物の平面が成す角度が得られれば、sinψ法により残留応力を求めることができる。よって、これによれば、X線回折測定装置は1台で済むので装置のコストを大幅に減らすことができる。なお、この場合は、出射されるそれぞれのX線ごとの測定対象物の回折面法線の方向は同一平面に平行にならないため、sinψ法により計算される残留応力は、回折面法線の方向が同一平面に平行になる場合に比べ精度が落ちる。しかし、回折面法線の方向を測定対象物の平面に投影した方向の角度変化は小さいため、残留応力の測定精度は通常の工業用であれば十分なものである。
本発明の一実施形態に係るX線回折測定システムのそれぞれのX線回折測定装置の全体概略図である。 搬送ラインの移動方向に図1のX線回折測定装置を複数並べたX線回折測定システムを示す図である。 本発明の一実施形態に係るX線回折測定システムにより残留応力を測定できることを理論的に示す図であり、(a)は通常のsinψ法を表す図、(b)は本発明の実施形態におけるsinψ法を表す図である。 本発明の別の実施形態に係るX線回折測定装置の外観図である。 本発明の別の実施形態に係るX線回折測定装置において、それぞれのX線照射点における回折面法線方向を測定対象物の平面に投影させた方向を示した図である。
本発明の一実施形態に係るX線回折測定システムの構成について図1及び図2を用いて説明する。図2に示すように、このX線回折測定システムは、搬送ラインLNの移動方向に沿ってX線回折測定装置1−1〜1−4を配置したものであり、それぞれのX線回折測定装置1−1〜1−4はすべて同じ構造であって、図1に示すように搬送ラインLN上に載置された測定対象物OBにX線を照射して発生する回折X線を検出するものである。図1は、搬送ラインLNの移動方向からX線回折測定装置1を見た図であり、紙面垂直方向が搬送ラインLNの移動方向である。測定対象物OBは長尺状の平板であり、材質はX線回折測定が可能であればどのような材質のものでもよいが、本実施形態では鉄の場合でX線回折測定装置1のX線出射方向及び回折X線の方向が示されている。
図1に示すように、X線回折測定装置1は、筐体40内にX線を出射するX線管10、X線管10から出射されるX線を通過させるコリメータ13、測定対象物OBのX線照射点で発生する回折X線を受光してX線強度分布を測定するX線撮像器14、及びコリメータ13から出射されるX線の光軸上の所定箇所で2つのレーザ光が交差するようにレーザ光を出射するレーザ照射器20,30を収容している。また、筐体40内には、X線管10、X線撮像器14、レーザ照射器20,30に接続されて作動制御したり、検出信号を入力したりするための各種回路も内蔵されており、図1において筐体40外で2点鎖線で囲まれた各種回路は、筐体40内の2点鎖線内に納められている。なお、図1においては、回路基板、電線、固定具及び空冷ファン等は省略されている。
筐体40は、略直方体状に形成され、底面、上面及び側面はX線管10の中心軸と略平行になっており、前面及び後面はX線管10の中心軸と略垂直になっている。図1及び図2では省略されているが、筐体40は上方から支持装置により固定されており、該支持装置は図1及び図2の高さ方向に位置調整が可能で、筐体40の各面に垂直な3軸周りに傾き調整が可能になっている。よって、該支持装置を操作することで、X線回折測定装置1は測定対象物OBに対する位置と姿勢を調整することができるようになっている。
X線管10は、長尺状に形成され、筐体40内の上部にて筐体40に固定されており、高電圧電源65からの高電圧の供給を受け、X線制御回路52により制御されて、X線出射口11からX線を出射する。X線制御回路52は、後述するコンピュータ装置60を構成するコントローラ61から作動開始の指令が入力すると、X線管10から一定の強度のX線が出射されるように、X線管10に高電圧電源65から供給される駆動電流及び駆動電圧を制御する。また、X線管10は、図示しない冷却装置を備えていて、X線制御回路52は、この冷却装置に供給される駆動信号も制御する。これにより、X線管10は温度が一定に保たれる。
X線管10から出射されるX線の光軸は、測定対象物OBに所定の入射角でX線を入射させるため、X線管10の中心軸の垂直方向(筐体40の前面及び後面)と所定の角度を成している。X線管10から出射されるX線は拡散するX線であるが、円筒状パイプであるコリメータ13に多くが入射し、コリメータ13の先端から出射することでコリメータ13の中心軸に平行なX線になる。コリメータ13は、先端が筐体40の底面に形成された孔から僅かに突出して筐体40の底面に固定されるとともに、反対側の先端がプレート12に固定されている。コリメータ13は中心軸がX線管10から出射されるX線の光軸と一致するように固定されており、X線管10の中心軸の垂直方向(筐体40の前面及び後面)と所定の角度を成している。
コリメータ13の先端から出射したX線は測定対象物OBに照射され、照射箇所で回折X線が発生する。発生した回折X線は、筐体40の底面に開けられた孔40cから筐体40内に入射してX線撮像器14で受光される。回折X線は出射X線の光軸に対する角度がブラッグの条件に合致する角度である箇所で強度の高いX線となるが、本実施形態ではX線管10のターゲットはクロム、測定対象物OBの材質は鉄であるので、211面で強い回折が起こったとき、その時の回折角は156.4°である。よって、出射X線の照射点と強度の高いX線を検出する点を結ぶラインと出射X線の光軸が成す角度は23.6°であり、X線撮像器14は法線方向がコリメータ13の中心軸と23.6°の角度になるようプレート12に固定されている。また、X線撮像器14は、X線管10の中心軸と出射X線の光軸(コリメータ13の中心軸)とを含む平面(以下、基準平面という)と交差するラインがX線撮像器14の中心ラインになり、出射X線の照射点がコリメータ13の先端から所定の距離にあるとき、中心ラインの方向における回折X線の強度のピーク位置がX線撮像器14の中心位置になるようプレート12に固定されている。
X線撮像器14はX線CCD又はX線CMOS等からなる固体撮像素子であり、信号取出回路54から作動信号が入力すると、画素ごとにX線の強度に相当する強度の信号を信号取出回路54に出力する。信号取出回路54は、後述するコントローラ61から作動開始の指令が入力すると、X線撮像器14に作動信号を出力し、入力する画素ごとの信号強度をデジタルデータにし、画素位置がわかるデジタルデータとともにコントローラ61へ出力する。よって、コントローラ61がX線制御回路52と信号取出回路54に作動指令を出力すると、コントローラ61にはX線撮像器14におけるX線強度分布のデータが入力して記憶される。
また、X線管10の中心軸が、測定対象物OBの平面と平行になるようにX線回折測定装置1の姿勢が調整されたとき、測定対象物OBの回折面法線の方向はX線管10の中心軸に対し垂直になるようになっている。すなわち、X線管10の中心軸に垂直な平面と出射X線の光軸が成す角度と、X線管10の中心軸に垂直な平面と出射X線の照射点と強度の高いX線を検出する点を結ぶラインとが成す角度は共に11.8°で等しくなっている。また、基準平面と筐体40の底面および上面とは垂直になるようになっており、コリメータ13は筐体40の底面に対し11.8°傾いて固定されている。
筐体40の底面には、レーザ照射器20,30が取り付けられており、レーザ照射器20,30は、レーザ制御回路58,50から駆動信号が入力すると、設定された強度のレーザ光を出射する。レーザ照射器20,30は、円筒状の枠体21,31にレーザ光源22,32を固定具23,33で固定し、円筒状の枠体21,31の先端近傍にコリメーティングレンズ24,34を固定したものであり、レーザ光源22,32から出射されたレーザ光は、コリメーティングレンズ24,34で平行光になって出射される。レーザ照射器20,30から出射されるレーザ光は、コリメータ13の先端から所定距離にある出射X線の光軸上の点で交差するようになっており、作業者は、測定対象物OBにおける2つのレーザ光の照射点が合致するようX線回折測定装置1の位置を調整することで、出射X線の照射点をコリメータ13の先端から所定距離にあるようにすることができる。上述したように、この所定距離とは、回折X線の強度のピーク位置がX線撮像器14の中心位置になる距離である。また、それぞれのX線回折測定装置1の1つになったレーザ光の照射点が搬送ラインLNの移動方向に平行な1つのライン上になるようにすれば、後述するコントローラ61の制御により、それぞれのX線回折測定装置1から出射されるX線を測定対象物OBの同一点に照射することができる。
また、筐体40の上面には角度計41が取り付けられており、角度計41は傾き角度検出回路56から作動信号が入力すると、検出した重力方向に対する筐体40の上面の傾きに相当する信号を傾き角度検出回路56に出力する。傾き角度検出回路56は作動開始の指令をコントローラ61から入力すると作動を開始し、角度計41から入力する信号を傾き角度のデジタルデータにしてコントローラ61に出力する。コントローラ61は入力した傾き角度のデジタルデータから傾き角度を表示装置63に表示するので、作業者は表示装置63に表示される値から傾き角度を知ることができる。角度計41は検出する傾き角度が、X線管10の中心軸方向の重力方向に対する傾き角度Aと、X線管10の中心軸の垂直方向の重力方向に対する傾き角度Bであるように筐体40の上面にセットされている。よって、測定対象物OBの平面の傾きが0であるようになっていれば、作業者は傾き角度Aが0になり、傾き角度Bが設定された角度になるようX線回折測定装置1の姿勢を調整することで、X線管10の中心軸が、測定対象物OBの平面と平行になり、基準平面の測定対象物OBの平面に対する角度を設定された角度にすることができる。このように、作業者はレーザ照射器20,30から出射されるレーザ光の照射点を合致させることと、表示装置63に表示される角度を0及び設定された角度にすることで、X線回折測定装置1の位置と姿勢を調整することができる。
コンピュータ装置60は、コントローラ61、入力装置62及び表示装置63からなる。コントローラ61は、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、大容量記憶装置に記憶されたプログラムを実行してX線回折測定装置1−1〜1−4の作動を制御するとともに、入力したデジタルデータを用いて演算を行う。入力装置62は、コントローラ61に接続されて、作業者により、各種パラメータ、作動指示などの入力のために利用される。表示装置63も、コントローラ61に接続されて、X線回折測定システムの各種の設定状況、作動状況及び測定結果などを表示する。
図2に示すように搬送ラインLNの側面の近傍には、測定対象物OBの先端を検出するための端検出センサ67が取り付けられている。端検出センサ67は搬送ラインLNの反対側の側面近傍から出射されるレーザ光の受光の有無により、測定対象物OBの先端がレーザ光ライン部分に来たことを検出するものであり、レーザ光の受光がなくなるとコントローラ61に「先端検出」を意味する信号を出力する。コントローラ61は入力装置62から測定開始の指令を入力した後、「先端検出」を意味する信号が入力すると時間計測を開始し、それぞれのX線回折測定装置1−1〜1−4から出射されるX線の照射点が予め設定されている測定点になったとき、それぞれのX線回折測定装置1−1〜1−4のX線制御回路52及び信号取出回路54へ作動開始と作動停止の指令を出力する。X線回折測定装置1−1〜1−4から出射されるX線は測定対象物OBの同一点に照射されるようにする必要があり、このためコントローラ61には、搬送ラインLNの移動速度、測定点の測定対象物OBの先端からの距離、レーザ光ライン部分からのそれぞれのX線回折測定装置1−1〜1−4のX線照射点までの距離等、制御に必要なパラメータが記憶されている。
X線回折測定装置1−1〜1−4は、いずれも上述したように位置と姿勢が調整されるが、図2に示すように、X線回折測定装置1−1〜1−4はX線の入射方向を、より詳しくは基準平面の測定対象物OBの平面に対する角度を異ならせて、位置と姿勢が調整されている。そして、この基準平面の測定対象物OBの平面に対する角度はコントローラ61に記憶されている。また、これ以外にコントローラ61には、X線照射点からX線撮像器14までの距離、測定対象物OBの標準の回折角2Θ、ヤング率及びポアソン比等、残留応力の計算に必要なパラメータが記憶されている。コントローラ61は、それぞれのX線回折測定装置1−1〜1−4の信号取出回路54から入力するX線の強度分布を表すデジタルデータが入力すると、これらのデータを処理し、図1の横方向におけるX線の強度プロファイルのピーク位置を検出し、このピーク位置から回折角2Θを計算する。そして、それぞれのX線回折測定装置1−1〜1−4における回折角2Θと、予め記憶されている上記パラメータを用いてsinψ法により残留応力を計算し、計算結果を測定対象物OBの測定点と対応させて表示装置63に表示する。
ここで、それぞれのX線回折測定装置1−1〜1−4における回折角2Θが得られると、sinψ法により残留応力が計算できることを説明する。図3はsinψ法による残留応力の測定を示した図であり、(a)は通常のsinψ法による残留応力の測定であり、(b)は本実施形態におけるsinψ法による残留応力の測定である。通常のsinψ法では図3の(a)に示すように、測定対象物OBの平面である試料面を紙面垂直周りに回転させることで出射X線の試料面に対する入射角を変化させ、回折面法線方向と試料面の法線方向が成す角度ψごとに回折角2Θを求めている。回折角2Θの半分の角度であるブラッグ角Θと回折面間隔dには2dsinΘ=nλのブラッグの式が成り立ち、回折面法線方向と試料面の法線方向が成す角度ψが変化すると回折面間隔dは変化するので回折角2Θも変化する。この変化においてsinψと回折角2Θにはグラフを描くと直線関係があり、この直線の傾きは残留応力に比例するので、sinψと回折角2Θの関係直線の傾きから残留応力を求めるのがsinψ法である。試料面を紙面垂直周りに回転させるとは、別の表現をすると、出射X線の光軸と出射X線の照射点と強度の高いX線を検出する点を結ぶラインを含む平面(本実施形態では基準平面に等しい)を変化させないように、回折面法線方向と試料面の法線方向が成す角度ψを変化させるということである。
しかし、回折面法線方向と試料面の法線方向が成す角度ψを、図3の(a)の紙面に平行で回折面法線方向に垂直な方向周りに試料面を回転させることで変化させたとしても、ブラッグ角Θと回折面間隔dにはブラッグの式が成り立ち、sinψと回折角2Θには同様に傾きが残留応力に比例する直線関係が成り立つ。すなわち、出射X線の光軸と出射X線の照射点と強度の高いX線を検出する点を結ぶラインを含む平面(本実施形態では基準平面に等しい)の試料面に対する角度が変化するよう、回折面法線方向を試料面の法線方向に対して変化させ、そのときのX線照射点における試料面の法線を含み回折面法線方向に平行な平面が一定であれば、sinψ法により残留応力を測定することができる。図3の(b)はこのような回折面法線方向の変化を示した図であり、図3の(a)の右方向を正面方向にして示した図である。それぞれのX線回折測定装置1−1〜1−4は、基準平面の測定対象物OBの平面に対する角度を異ならせており、X線照射点における測定対象物OBの法線を含み回折面法線方向に平行な平面は、すべてのX線回折測定装置1−1〜1−4において同一であるので、図3の(b)のように回折面法線方向を試料面法線方向に対して変化させた場合と同じであり、それぞれのX線回折測定装置1−1〜1−4で得られる回折角2Θからsinψ法により残留応力を計算することができる。
上記説明からも理解できるように、上記実施形態においては、一定方向に流れる搬送ラインLN上に載置された測定対象物OBに対してX線を出射するX線出射手段と、測定対象物OBにて回折したX線を受光して、回折X線の強度分布を検出するX線撮像器14とを備えたX線回折測定装置1を複数備え、それぞれのX線回折測定装置1におけるX線撮像器14により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置60を備えたX線回折測定システムにおいて、それぞれのX線回折測定装置1におけるX線出射手段は、中心軸が測定対象物OBの平面と略平行且つ搬送ラインLNの移動方向と略垂直になるよう配置されたX線管10と、X線管10から出射されたX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物OBに対して出射するコリメータ13とからなり、それぞれのX線回折測定装置1は、X線管10の中心軸とコリメータ13から出射されるX線の光軸とを含む基準平面が測定対象物OBの平面と成す角度が異なるとともに、それぞれのX線回折測定装置1のコリメータ13から出射されるX線が測定対象物OBに照射される点を結んだラインが、搬送ラインLNの移動方向と平行になるよう配置され、それぞれのX線回折測定装置1におけるX線撮像器14は、受光平面が基準平面に略垂直で、コリメータ13から出射されるX線により測定対象物OBにて標準の回折角で回折X線が発生したとき、受光平面と基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されている。
これによれば、それぞれのX線回折測定装置1は、X線管10、コリメータ13及びX線撮像器14を、1つの平面内にX線管10の中心軸、コリメータ13の中心軸及びX線撮像器14の受光平面内のラインが含まれるように配置しているため、小型で単純な構造にすることができる。そして、それぞれのX線回折測定装置1をすべて同一構造にしても、それぞれのX線回折測定装置1において基準平面が測定対象物OBの平面と成す角度が異なるようにし、出射されるX線が測定対象物OBに照射される点を結んだラインが、搬送ラインLNの移動方向と一致するようにすれば、sinψ法により残留応力を求めることができる。すなわち、搬送ラインLN上に載置された測定対象物OBは移動しているので、それぞれのX線回折測定装置1のX線出射のタイミングを適切にすれば、それぞれのX線回折測定装置1から出射されるX線を測定対象物OBの同一点に照射するようにすることができる。そして、それぞれのX線回折測定装置1において基準平面が測定対象物OBの平面と成す角度が異なるようにすれば、それぞれのX線回折測定装置1ごとの測定対象物OBの回折面法線の方向は同一平面で異なる方向になるので、それぞれのX線回折測定装置1ごとにX線の回折角及び基準平面と測定対象物OBの平面が成す角度が得られれば、sinψ法により残留応力を求めることができる。
また、上記実施形態においては、それぞれのX線回折測定装置1は、X線出射手段とX線撮像器14とを内部に備える筐体40を備え、筐体40は、コリメータ13から出射されるX線の照射点であって、照射点にて標準の回折角で回折X線が発生したとき、回折X線の強度分布のピークがX線撮像器14の所定位置になる照射点で、2つの可視の平行光が交差するよう可視の平行光を出射するレーザ照射器20,30が取り付けられている。
これによれば、2つのレーザ光の照射点が1つになるようにそれぞれのX線回折測定装置1の位置を調整し、それぞれのX線回折測定装置1の1つになったレーザ光の照射点が、搬送ラインLNの移動方向に平行な1つのライン上になるようにすれば、それぞれのX線回折測定装置1を適切な位置にすることができるので、それぞれのX線回折測定装置1の位置調整を簡単に行うことができる。
また、上記実施形態においては、それぞれのX線回折測定装置1の筐体40は、X線管10の中心軸と略平行又は略垂直な平面部分を有し、その平面部分は重力方向に対する傾き角度を測定する角度計41であって、X線管10の中心軸方向おける傾き角度とX線管10の中心軸に垂直な方向における傾き角度を測定する角度計41を取り付けている。
これによれば、測定対象物OBの平面が重力方向に略垂直になるようになっていれば、角度計41が示すX線管10の中心軸方向における傾き角度が0になるようX線回折測定装置1の姿勢を調整すれば、X線管10の中心軸を測定対象物OBの平面と略平行になるようにすることができる。また、角度計41が示すX線管10の中心軸方向に垂直な方向における傾き角度が設定値になるようX線回折測定装置1の姿勢を調整すれば、基準平面と測定対象物OBの平面が成す角度を設定値にすることができる。これにより、それぞれのX線回折測定装置1の姿勢調整を簡単に行うことができる。
(変形例)
上記実施形態においては、同一構造のX線回折測定装置1−1〜1−4を搬送ラインLNの移動方向に配置し、X線回折測定装置1−1〜1−4ごとに基準平面が測定対象物OBの平面と成す角度が異なるようにして、X線回折測定装置1−1〜1−4ごとに得られる回折角2Θから残留応力を計算するようにした。しかし、1台のX線回折測定装置でX線出射手段が複数の方向にX線を出射し、出射されるX線ごとの基準平面が測定対象物OBの平面と成す角度が異なるようにされていて、出射されるX線ごとに回折X線を受光するX線撮像器14があれば、同様に残留応力を計算することができる。図4はこのX線回折測定装置2の外観を筐体を取り外した状態で見た図である。なお、図4においては構造をわかりやすくするため、コリメータ73−1〜73−4及びX線撮像器74−1〜74−4(74−4は図4ではX線管70で隠れている)を取り付けるプレートは除かれている。また、回路基板、電線、固定具及び空冷ファン等も除かれている。
X線管70は筐体の上部にて筐体に固定され、高電圧電源からの高電圧の供給を受けるとX線を出射するものであるが、複数のX線出射口71−1〜71−4を有し、X線管70の内部にあるターゲットで発生したX線は広範囲の方向に進むようになっているため、X線出射口71−1〜71−4(71−4は図4では隠れている)から出射するX線は、略同一の強度で出射する。そして、それぞれのX線出射口71−1〜71−4から出射するX線が入射するコリメータ73−1〜73−4が配置され、コリメータ73−1〜73−4の中心軸は、コリメータ73−1〜73−4の先端から出射されるX線の測定対象物OBの所定の箇所に照射されるようになっている。また、X線出射口71−1〜71−4から出射するX線の光軸もコリメータ73−1〜73−4の中心軸と略同一になるようになっている。出射されたX線が測定対象物OBに照射される箇所は上記実施形態と同様、搬送ラインLNの移動方向に平行な1つのライン上であり、X線照射点の間隔は同一であるようになっている。よって、X線の出射タイミングを適切にすることで、測定対象物OB上のX線照射点は、それぞれの出射されるX線ごとに同じ点にすることができる。なお、測定対象物OBの先端又は後端付近にX線が照射されるときは、搬送ラインLNに照射されるX線がある場合があるが、回折X線の強度データを検出しなければよいので、これは問題にはならない。
コリメータ73−1〜73−4から出射されるX線のそれぞれにより発生する回折X線を受光するX線撮像器74−1〜74−4(74−4は図4ではX線管70で隠れている)は、出射されるX線のそれぞれの基準平面と交差するラインが中心線で、このライン方向のX線の強度プロファイルのピークが中心点になるよう取り付けられている。この変形例の場合、出射されるそれぞれのX線の光軸は、X線管70の中心軸付近の点で交差するようになっているため、X線の照射点を含むX線管70の中心軸に垂直な平面に対する出射X線の光軸が成す角度は、X線の照射点がX線回折測定装置2から遠くなるほど小さくなる。このため、回折X線の強度プロファイルのピーク点は、X線の照射点がX線回折測定装置2から遠くなるほど、X線の照射点を含むX線管70の中心軸に垂直な平面より遠い位置に発生する。これを示したものが図5であり、図5において出射するX線は実線、ピークを発生させる回折X線は点線で示されている。よって、X線撮像器74−1〜74−4の取付け位置は、X線の照射点がX線回折測定装置2から遠いものに対応するものほど、X線管70の先端から遠い位置に取り付けられている。
また、X線の照射点を含むX線管70の中心軸に垂直な平面に対するX線の光軸が成す角度は、X線の照射点により変化するため、それぞれのX線の照射点における回折面法線の方向は、1つの平面内にならない。図5では、それぞれのX線の照射点における回折面法線の方向を紙面に投影させた方向(測定対象物の平面に投影させた方向)を矢印で示しているが、それぞれのX線の照射点における回折面法線の方向は、X線の照射点がX線回折測定装置2から遠いほど、図5の1点鎖線のラインからずれる。図5の1点鎖線のラインはX線の照射点を含むX線管70の中心軸に垂直な平面を上方から見たラインである。上記実施形態では、すべてのX線照射点(すべてのX線回折測定装置1−1〜1−4)における回折面法線の方向は1つの平面内になるようにできたが、この変形例では1つのX線管70から複数のX線を出射することにより、回折面法線の方向を1つの平面内にすることができない。このため、sinψ法による残留応力の測定精度は上記実施形態よりやや劣ることになる。しかし、図5に示すように、それぞれのX線の照射点における回折面法線の方向を紙面に投影させた方向の1点鎖線のラインからのずれは少量である。実際に計算した値で示すと、X線管70の中心軸とそれぞれの出射X線の光軸が交差する点(X線の発生点)からX線の照射点を含むX線管70の中心軸に垂直な平面までの距離をLとすると、X線管70の中心軸を紙面に投影したライン(X線管70の中心軸を含み測定対象物OBの平面に垂直な面が、測定対象物OBの平面と交差するライン)から3Lの距離にあるX線照射点では、回折面法線の方向を紙面(測定対象物OBの平面)に投影させた方向と1点鎖線のラインが成す角度は3.3°、6Lの距離にあるX線照射点では5.6°、9Lの距離にあるX線照射点では7.0°である。よって、X線の照射点のX線回折測定装置2からの距離を設定した範囲内にしておけば残留応力の測定精度の悪化は僅かであり、通常の工業用の測定であれば十分対応することができる。
なお、本変形例においても、上記実施形態におけるレーザ照射器20,30及び角度計41は同様に取り付けられており、使用目的は上記実施形態と同じである。レーザ照射器はコリメータ73−4から出射するX線の光軸上の点であって、回折X線の発生箇所がX線撮像器74−4(図4ではX線管70で隠れている)の中心点でX線の強度プロファイルがピークとなる点で交差するよう取り付けられている。また、角度計の取り付けられ方は上記実施形態と同じであり、角度計が示す値を両方向とも0にすることで、X線管70の中心軸は測定対象物OBの平面と平行になり、それぞれのコリメータ73−1〜73−4から出射するX線の基準平面が測定対象物OBの平面とが成す角度は設定された角度になるとともに、レーザ照射器によるレーザ光照射点が1つになれば、それぞれのX線の照射点は1つのライン上になる。
このように上記変形例では、一定方向に流れる搬送ラインLN上に載置された測定対象物OBに対して、X線を複数の方向から同時に出射するX線出射手段と、X線出射手段から出射されるそれぞれのX線ごとに、測定対象物OBにて回折したX線を受光して回折X線の強度分布を検出する複数のX線撮像器74−1〜74−4と、それぞれの出射されるX線ごとにX線撮像器74−1〜74−4により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置60とを備えたX線回折測定装置2において、X線出射手段は、中心軸が測定対象物OBの平面と略平行且つ搬送ラインLNの移動方向と略垂直になるよう配置されるとともにX線出射口71−1〜71−4を複数有するX線管70と、それぞれのX線出射口71−1〜71−4から出射されるそれぞれのX線を中心軸と所定の角度を成す光軸を有する平行なX線にして測定対象物OBに対して出射する複数のコリメータ73−1〜73−4とからなり、それぞれのX線出射口71−1〜71−4とそれぞれのコリメータ73−1〜73−4とは、X線管70の中心軸とそれぞれのコリメータ73−1〜73−4から出射されるX線の光軸とを含むそれぞれの基準平面が測定対象物OBの平面と成す角度が異なるとともに、それぞれのコリメータ73−1〜73−4から出射されるX線が測定対象物OBに照射される点を結んだラインが、搬送ラインLNの移動方向と平行になるように配置され、複数のX線撮像器74−1〜74−4のそれぞれは、受光平面がそれぞれの基準平面の内対応するものに略垂直で、それぞれのコリメータ73−1〜73−4の内対応するものから出射されるX線により測定対象物OBにて標準の回折角で回折X線が発生したとき、受光平面と対応する基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されている。
これによれば、X線回折測定装置2はコリメータ73−1〜73−4及びX線撮像器74−1〜74−4を複数備えるが、X線管70は1つであり、複数のコリメータ73−1〜73−4及びX線撮像器74−1〜74−4は、限られた箇所にまとめて配置することができるため、装置を小型で単純な構造にすることができる。よって、これによれば、X線回折測定装置は1台で済むので装置のコストを大幅に減らすことができる。
さらに、本発明の実施にあたっては、上記実施形態および変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
上記実施形態ではX線回折測定装置を4台にしたが、X線回折測定装置の台数は複数であればコスト及び測定精度の兼ね合いで適宜決めればよい。また、上記変形例では1台のX線回折測定装置から出射されるX線を4つにしたが、出射されるX線の数は、複数であればコスト及び測定精度の兼ね合いで適宜決めればよい。
また、上記実施形態及び変形例では、測定対象物OBで標準の回折角で回折X線が発生したときX線撮像器の中心位置がX線強度プロファイルのピーク位置になるよう、X線回折測定装置の位置を調整するとし、この位置調整のため2つのレーザ照射器を設けた。しかし、対象とする測定対象物OBすべてにおいてX線強度プロファイルのピークを検出できれば、標準の回折角で回折X線が発生したときのピーク位置は、X線撮像器の中心位置からずれた位置であってもよい。
また、上記実施形態及び変形例では、2つのレーザ照射器からレーザ光を出射X線の光軸上の所定の点で交差するよう照射する構成にしたが、照射するのは可視の平行光であればレーザ光でなくてもよく、LED光やSLD光を平行光にして出射するものであってもよい。
また、上記実施形態及び変形例では、角度計をX線回折測定装置の筐体の上面に取り付けたが、X線管の中心軸と略平行又は略垂直な平面であれば、X線管の中心軸方向おける傾き角度とX線管の中心軸に垂直な方向における傾き角度を検出することは可能であるので、取り付ける面はこれ以外の面であってもよい。
また、上記実施形態及び変形例では2つのレーザ照射器を取り付け、2つのレーザ光照射点が1つになるようにしてX線回折測定装置の位置を調整するようにしたが、測定対象物OBが限定されたものであり、X線回折測定装置の位置を適切な支持機構で一定にできるならば、2つのレーザ照射器はなくしてもよい。また、上記実施形態及び変形例では角度計を取り付け、検出される傾きが適切な値になるようにしてX線回折測定装置の姿勢を調整するようにしたが、測定対象物OBが限定されたものであり、X線回折測定装置の姿勢を適切な支持機構で一定にできるならば、角度計もなくしてもよい。
また、上記実施形態及び変形例ではコンピュータ装置がX線撮像器から入力するデータを用いて残留応力を測定するとしたが、測定効率を重要視しなければ、コンピュータ装置はデータを入力するまで、または回折角を計算するまでにし、残留垂直応力の計算は別の装置で行うようにしてもよい。この場合、別の装置にデータを入力する方法としては、記録媒体を介する方法、ネット回線等を使用して転送する方法等、様々な方法が考えられる。また、さらに時間がかかってもよければ演算の一部またはすべてを手計算により行ってもよい。
1,2…X線回折測定装置、10…X線管、11…X線出射口、12…プレート、13…コリメータ、14…X線撮像器、20,30…レーザ照射器、21,31…枠体、22,32…レーザ光源、23,33…固定具、24,34…コリメーティングレンズ、40…筐体、41…角度計、50,58…レーザ制御回路、52…X線制御回路、54…信号取出回路、56…傾き角度検出回路、60…コンピュータ装置、61…コントローラ、62…入力装置、63…表示装置、65…高電圧電源、67…端検出センサ、70…X線管、71−1〜71−4…X線出射口、73−1〜73−4…コリメータ、74−1〜74−4…X線撮像器、OB…測定対象物、LN…搬送ライン

Claims (4)

  1. 一定方向に流れる搬送ライン上に載置された測定対象物に対してX線を出射するX線出射手段と、
    前記測定対象物にて回折したX線を受光して、回折X線の強度分布を検出するX線撮像器とを備えたX線回折測定装置を複数備え、
    前記それぞれのX線回折測定装置における前記X線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置を備えたX線回折測定システムにおいて、
    前記それぞれのX線回折測定装置におけるX線出射手段は、中心軸が前記測定対象物の平面と略平行且つ前記搬送ラインの移動方向と略垂直になるよう配置されたX線管と、前記X線管から出射されたX線を前記中心軸と所定の角度を成す光軸を有する平行なX線にして前記測定対象物に対して出射するコリメータとからなり、
    前記それぞれのX線回折測定装置は、前記X線管の中心軸と前記コリメータから出射されるX線の光軸とを含む基準平面が前記測定対象物の平面と成す角度が異なるとともに、前記それぞれのX線回折測定装置のコリメータから出射されるX線が前記測定対象物に照射される点を結んだラインが、前記搬送ラインの移動方向と平行になるよう配置され、
    前記それぞれのX線回折測定装置におけるX線撮像器は、受光平面が前記基準平面に略垂直で、前記コリメータから出射されるX線により前記測定対象物にて標準の回折角で回折X線が発生したとき、前記受光平面と前記基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されていることを特徴とするX線回折測定システム。
  2. 請求項1に記載のX線回折測定システムにおいて、
    前記それぞれのX線回折測定装置は、前記X線出射手段と前記X線撮像器とを内部に備える筐体を備え、
    前記筐体は、前記コリメータから出射されるX線の照射点であって、前記照射点にて標準の回折角で回折X線が発生したとき、前記回折X線の強度分布のピークが前記X線撮像器の所定位置になる照射点で、2つの可視の平行光が交差するよう可視の平行光を出射する可視光出射手段が取り付けられていることを特徴とするX線回折測定システム。
  3. 請求項1又は請求項2に記載のX線回折測定システムにおいて、
    前記それぞれのX線回折測定装置の筐体は、前記X線管の中心軸と略平行又は略垂直な平面部分を有し、
    前記平面部分は重力方向に対する傾き角度を測定する角度計であって、前記X線管の中心軸方向おける傾き角度と前記X線管の中心軸に垂直な方向における傾き角度を測定する角度計を取り付けていることを特徴とするX線回折測定システム。
  4. 一定方向に流れる搬送ライン上に載置された測定対象物に対して、X線を複数の方向から同時に出射するX線出射手段と、
    前記X線出射手段から出射されるそれぞれのX線ごとに、前記測定対象物にて回折したX線を受光して回折X線の強度分布を検出する複数のX線撮像器と、
    前記それぞれの出射されるX線ごとに前記X線撮像器により検出される回折X線の強度分布を、sinψ法により残量応力を算出するためのデータとして入力して記憶するコンピュータ装置とを備えたX線回折測定装置において、
    前記X線出射手段は、中心軸が前記測定対象物の平面と略平行且つ搬送ラインの移動方向と略垂直になるよう配置されるとともにX線出射口を複数有するX線管と、前記それぞれのX線出射口から出射されるそれぞれのX線を前記中心軸と所定の角度を成す光軸を有する平行なX線にして前記測定対象物に対して出射する複数のコリメータとからなり、
    前記それぞれのX線出射口とそれぞれのコリメータとは、前記X線管の中心軸と前記それぞれのコリメータから出射されるX線の光軸とを含むそれぞれの基準平面が前記測定対象物の平面と成す角度が異なるとともに、前記それぞれのコリメータから出射されるX線が前記測定対象物に照射される点を結んだラインが、前記搬送ラインの移動方向と平行になるように配置され、
    前記複数のX線撮像器のそれぞれは、受光平面が前記それぞれの基準平面の内対応するものに略垂直で、前記それぞれのコリメータの内対応するものから出射されるX線により前記測定対象物にて標準の回折角で回折X線が発生したとき、前記受光平面と前記対応する基準平面が交差するライン上の回折X線の強度分布におけるピークが、所定位置になるように配置されていることを特徴とするX線回折測定装置。
JP2018143036A 2018-07-31 2018-07-31 X線回折測定装置システム及びx線回折測定装置 Expired - Fee Related JP6600929B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143036A JP6600929B1 (ja) 2018-07-31 2018-07-31 X線回折測定装置システム及びx線回折測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143036A JP6600929B1 (ja) 2018-07-31 2018-07-31 X線回折測定装置システム及びx線回折測定装置

Publications (2)

Publication Number Publication Date
JP6600929B1 true JP6600929B1 (ja) 2019-11-06
JP2020020616A JP2020020616A (ja) 2020-02-06

Family

ID=68462287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143036A Expired - Fee Related JP6600929B1 (ja) 2018-07-31 2018-07-31 X線回折測定装置システム及びx線回折測定装置

Country Status (1)

Country Link
JP (1) JP6600929B1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141661A (en) * 1974-10-07 1976-04-08 Hitachi Ltd Atsuenban no keijoseigyosochi
JPH0371008A (ja) * 1989-08-09 1991-03-26 Kawasaki Steel Corp 金属帯の反り検出方法及び検出装置
FR2672997B1 (fr) * 1991-02-19 1994-10-07 Lorraine Laminage Procede de mesure non destructive en ligne d'une caracteristique d'un produit fabrique en continu, et dispositif associe.
JP4302852B2 (ja) * 2000-03-31 2009-07-29 Jfeスチール株式会社 金属材表面酸化物の測定方法およびx線回折装置
IL159824A (en) * 2004-01-12 2012-05-31 Xurity Ltd Xrd means for identifying materials in a volume of interest and a method therefor
US7486772B2 (en) * 2005-11-17 2009-02-03 Xintek, Inc. Systems and methods for x-ray imaging and scanning of objects
JP5339253B2 (ja) * 2009-07-24 2013-11-13 国立大学法人金沢大学 X線応力測定方法
NL2009049C2 (en) * 2012-06-21 2013-12-24 Entech Scient B V Method and device for identifying unknown substances in an object.
JP2014190899A (ja) * 2013-03-28 2014-10-06 Pulstec Industrial Co Ltd X線回折測定装置及びx線回折測定システム
US9927378B2 (en) * 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line

Also Published As

Publication number Publication date
JP2020020616A (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5835191B2 (ja) 回折環形成装置及び回折環形成システム
JP6767045B2 (ja) 計測用x線ct装置と座標測定機の座標合せ治具
JP7164524B2 (ja) X線ct装置
JP2011092612A (ja) 放射線画像撮影システム
JP6055970B2 (ja) X線回折装置を用いた表面硬さ評価方法およびx線回折測定装置
JP5967394B2 (ja) 回折環形成装置及びx線回折測定装置
JP6361086B1 (ja) X線回折測定装置及びx線回折測定方法
JP5915943B2 (ja) 回折環形成システム及びx線回折測定システム
JP6264591B1 (ja) 熱膨張係数測定方法及びx線回折測定装置
JP6060474B1 (ja) X線回折測定装置
JP6048547B1 (ja) X線回折測定装置
JP6037237B2 (ja) X線回折測定装置およびx線回折測定装置による測定方法
JP6600929B1 (ja) X線回折測定装置システム及びx線回折測定装置
JP6128333B2 (ja) X線回折測定方法
JP2019109052A (ja) X線回折測定装置
JP6155538B2 (ja) X線回折測定装置及びx線回折測定方法
JP5967491B2 (ja) X線回折測定装置およびx線回折測定装置におけるx線入射角検出方法
JP5949704B2 (ja) 回折環形成方法
JP6115597B2 (ja) X線回折測定装置
JP7251602B2 (ja) X線ct装置
JP5962737B2 (ja) X線回折測定装置およびx線回折測定方法
JP6212835B1 (ja) X線回折測定装置およびx線回折像の回折像幅測定方法
JP7280516B2 (ja) X線回折測定装置
JP7472431B2 (ja) X線回折測定装置
JP6195140B1 (ja) X線回折測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190922

R150 Certificate of patent or registration of utility model

Ref document number: 6600929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees