JP6593661B2 - 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム - Google Patents

無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム Download PDF

Info

Publication number
JP6593661B2
JP6593661B2 JP2018049004A JP2018049004A JP6593661B2 JP 6593661 B2 JP6593661 B2 JP 6593661B2 JP 2018049004 A JP2018049004 A JP 2018049004A JP 2018049004 A JP2018049004 A JP 2018049004A JP 6593661 B2 JP6593661 B2 JP 6593661B2
Authority
JP
Japan
Prior art keywords
power transmission
resonator
power
frequency
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018049004A
Other languages
English (en)
Other versions
JP2018093730A (ja
Inventor
健一 浅沼
浩司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2018093730A publication Critical patent/JP2018093730A/ja
Application granted granted Critical
Publication of JP6593661B2 publication Critical patent/JP6593661B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/58Wireless transmission of information between a sensor or probe and a control or evaluation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本開示は、共振器間の相対位置を検出する位置検出装置に関する。また、本開示は、このような位置検出装置を備え、かつ、非接触で電力を送電する無線電力伝送のための送電装置および受電装置ならび無線電力伝送システムにも関する。
近年、携帯電話機や電気自動車などの移動性を伴う電子機器やEV機器において、無線充電を行うために種々の無線電力伝送システムの開発が進んでいる。無線電力伝送技術には、複数のコイルを対向させる電磁誘導方式および磁界共鳴方式、ならびに、複数の金属板を対向させる電界結合方式がある。電磁誘導方式による無線電力伝送システムは、送電コイル(送電アンテナ)を備えた送電装置と、受電コイル(受電アンテナ)を備えた受電装置とを含み、送電コイルによって生じた磁界を受電コイルが捕捉することにより、電極を直接に接触させることなく電力を送電することができる(特許文献1)。
また、特許文献2は、電界結合方式による無線電力伝送システムの例を開示している。
上記無線電力伝送システムにおいて、電力伝送を行う際に送受電コイルの位置がずれている場合、送電効率が低下するだけでなく、コイルの漏れ磁束によりコイル外の金属異物を加熱させるリスクも生じる。従って、送電コイルと受電コイルとの間の位置あわせは、安全かつ高効率に無線電力伝送をするために重要である。
国際公開第2011/033660号パンフレット 国際公開第2007/107642号パンフレット 特開2009−118587号公報
しかし、かかる従来技術では、送電コイルと受電コイルとの間の位置あわせを高精度で行う送電装置が求められていた。
本開示の一態様に係る送電装置は、
第1コイルを含む第1共振器を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器及び負荷を備えた受電装置の位置を検出する送電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器のインダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器のインダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器のインダクタンス値Lin(f2)を検出し、k2=1−Lin(f2)/Lin(f1)の式によって算出される結合係数kを算出し、前記結合係数kに基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する、ものである。
本開示の一態様によると、送電コイルと受電コイルとの間の位置あわせを高精度で行う送電装置を提供できる。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
図1は、本開示による位置検出装置の限定的ではない例示的な実施形態の基本構成を示すブロック図である。 図2は、測定回路が第2共振器に接続され、発振器が第1共振器に接続されている構成例を示す図である。 図3は、発振回路および測定回路の両方が第2共振器に接続されている構成例を示す図である。 図4は、本開示による位置検出装置の基本的な動作を説明するための図である。 図5は、実施形態1に係る無線電力伝送システムの概略構成を示すブロック図である。 図6は、実施形態1に係る無線電力伝送システムの動作原理を説明する図である。 図7は、実施形態1に係る無線電力伝送装置の位置あわせ動作のフローチャートである。 図8は、実施形態2に係る無線電力伝送システムの概略構成を示すブロック図である。 図9は、実施形態3に係る無線電力伝送システムの概略構成を示すブロック図である。 図10は、実施形態4に係る無線電力伝送システムの概略構成を示すブロック図である。 図11Aは、実施形態5に係る無線電力伝送システムを示す図である。 図11Bは、実施形態5に係る無線電力伝送システムの動作を説明するための図である。 図11Cは、実施形態5に係る無線電力伝送システムの動作を説明するための図である。 図12Aは、実施形態5に係る無線電力伝送システムの変形例を示す平面図である。 図12Bは、実施形態5に係る無線電力伝送システムの変形例を示す右側面図である。 図13は、実施形態1〜3に係る無線電力伝送システムの第1の実施例を示す図である。 図14は、実施形態1〜3に係る無線電力伝送システムの第2の実施例を示す図である。 図15は、実施形態1に係る無線電力伝送システムの第3の実施例を示す回路図である。 図16は、図15を用いた結合係数の推定結果を示す図である。
(本開示の基礎となった知見)
本発明者らは、「背景技術」の欄において記載した無線電力伝送システムの送電装置に関し、以下の問題が生じることを見いだした。
特許文献1の無線電力伝送システムの送電装置は、受電装置の負荷を変化させ、送電側から所定の周波数範囲において反射係数を測定する。こうして得た反射係数が最小となる周波数の差から送受電コイル間の結合係数を推定し、前記結合係数に基づいて位置あわせを行っている。
しかし、特許文献1では、送電装置に設けられた第1共振器、受電装置に設けられた第2共振器、負荷などのパラメ−タが確定している場合にのみ前記結合係数を正確に推定できる。よって、負荷が変動する場合は、正確に前記結合係数を推定できないという課題がある。また、特許文献1では、受電側の負荷の制御や、広帯域な反射係数測定が必須であるため、位置あわせ制御が低速であり、追随性に課題があった。
なお、特許文献1で推定される結合係数は、後述する結合係数k[[k2=1−Lin(f2)/Lin(f1)]の式によって算出されるk]とは異なるものである。
特許文献2は、電界結合方式による無線電力伝送システムの例を開示するものであって、第1共振器に対する第2共振器の相対位置を検出する指標である結合係数kに基づく位置あわせを開示していない。
特許文献3は、前記第1共振器に対する前記第2共振器の相対位置を検出する指標である結合係数ki[ki2=1−Ls/Lw]の式によって算出されるki]を開示している。前記結合係数kは、前記第1共振器の第1コイルから出力される全磁束に対する、前記第2共振器の第2コイルを通過する磁束の割合を示すものである。従って、前記受電装置の前記負荷が変動しても磁束密度の強さは変動するが、前記第1コイルから出力される全磁束に対する、前記第2コイルを通過する磁束の割合は変動しない。従って、前記結合係数kは、負荷変動に対して強い指標であるので、前記結合係数kを用いることは、位置あわせを行うのに適している。
特許文献3は、前記結合係数kiを算出するのに、前記第2コイルの両端が開放されている状態の時の前記第1共振器のインダクタンス値Lwを測定する。そして、前記第2コイルの両端が短絡している状態の時の前記第1共振器のインダクタンス値Lsを測定する。これらLwとLsの測定は同一の周波数fcにて行われている(たとえば特許文献3の段落0362及び図73)。
しかし、特許文献3は、前記第2コイルの両端が開放されている状態と短絡している状態とに切り替える方法については、何も開示していない。
一般的には、前記第2コイルの両端が実質的に開放されている状態と短絡している状態とに切り替えるには、例えば、前記受電装置の前記第2コイルの両端に短絡用スイッチを設け、前記短絡用スイッチを制御する制御回路を前記受電装置に設ける。そして、前記送電装置から前記受電装置に信号を送って前記短絡用スイッチを制御する必要がある。よって、前記短絡用スイッチ及び前記制御回路が必要となり部品点数が増加する。さらに、前記送電装置から前記受電装置に信号を送って、前記短絡用スイッチを用いて前記第2コイルの両端の導通と非導通を制御しなければならないという煩わしさ、及びコストの増加を招くという課題があった。
従って、コスト増を招くことなく、簡易な構成で、前記負荷が変動した場合でも、送電コイルと受電コイルとの間の位置あわせを高精度で行う送電装置が望まれている。
以上の考察により、本発明者らは、以下の発明の各態様を想到するに至った。
本開示の一態様は、
第1コイルを含む第1共振器を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器及び負荷を備えた受電装置の位置を検出する送電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器のインダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器のインダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器のインダクタンス値Lin(f2)を検出し、k2=1−Lin(f2)/Lin(f1)の式によって算出される結合係数kを算出し、前記結合係数kに基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する、ものである。
上記態様によると、前記第2コイルの両端にキャパシタを設け、コイル及びキャパシタを含む並列共振回路を前記受電装置に設ける。このことにより、前記発振回路で前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)で駆動すると、前記キャパシタに電流が流れないので、前記第2コイルの両端が実質的に開放されている状態を作り出せる。また、前記共振周波数(fr)よりも高い第2の周波数(f2)で駆動すると、前記キャパシタに電流が流れるので、前記第2コイルの両端が短絡している状態を作り出せる。
よって、前記第2共振器の両端が実質的に開放されている状態の時の前記第1共振器のインダクタンス値Lin(f1)を測定するには、前記発振回路で第1の周波数(f1)の交流電力を発振し、前記第1共振器のインダクタンス値Lin(f1)を測定すればよい。また、前記第2コイルの両端が短絡している状態の時の前記第1共振器のインダクタンス値Lin(f2)を測定するには、前記発振回路で第2の周波数(f2)の交流電力を発振し、前記第1共振器のインダクタンス値Lin(f2)を測定すればよい。測定した前記第1共振器のインダクタンス値Lin(f1)とインダクタンス値Lin(f2)から前記結合係数を算出することができる。
従って、本開示の一態様によると、前記第2コイルの両端にキャパシタを設けるだけで、前記第2コイルの両端が実質的に開放されている状態と前記第2コイルの両端が短絡している状態とを作り出すことができる。そのため、前記短絡用スイッチ及び前記制御回路を前記受電装置に設ける必要はなく、前記送電装置から信号を送って前記短絡用スイッチを制御する煩わしさをなくすことができる。その結果、前記結合係数を用いて位置あわせを行うので、コスト増を招くことなく、簡易な構成で前記負荷が変動しても高精度で位置あわせを行うことができる。
尚、特許文献3は、前記第2コイル及びキャパシタを含む並列共振回路を有する第2共振器を備えた受電装置を開示していない。従って、前記発振回路で前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)で駆動して、前記第2コイルの両端が実質的に開放されている状態を作り出していない。そして、前記共振周波数(fr)よりも高い第2の周波数(f2)で駆動して、前記第2コイルの両端が短絡している状態を作り出していない。
なお、前記「コイルの両端」における「コイル」の定義は、コイル部品単体のみに限定されない。
例えば、後述する図15のように、受電共振器には受電コイルと直列の共振コンデンサ(例えば、C2s)が含まれている。前記受電コイルと前記直列の共振コンデンサを合成した直列インピーダンスが、位置検出を行う周波数f1、f2において誘導性に見える場合、等価的なコイル(単に、等価コイルと呼んでもよい)として扱うことができる。従って、前記等価コイルの両端に並列コンデンサを備えることでも同様の効果を得ることができるので、「コイルの両端」における「コイル」の定義は、コイル部品単体のみに限定されない(図15の説明文参照)。
本開示の具体的な実施形態を説明する前に、本開示による位置検出装置の基本構成を説明する。まず、図1を参照する。図1は、本開示による位置検出装置の限定的ではない例示的な実施形態の基本構成を示すブロック図である。
図1に例示されている位置検出装置1000は、コイルおよびキャパシタを含む並列共振回路から構成された第2共振器20に電磁的に結合した第1共振器10に対する第2共振器20の相対位置を検出する装置である。この位置検出装置1000は、第1共振器10と、第1共振器10に接続された発振回路150と、発振回路150に接続された測定回路160とを備えている。
発振回路150は、第2共振器20の共振周波数(fr)よりも低い第1の周波数(f1)、および、共振周波数(fr)よりも高い第2の周波数(f2)で発振できるように構成されている。また、測定回路160は、第1共振器10の入力インダクタンス値を測定するように構成されている。この測定回路160は、第1の周波数f1で発振回路150が発振しているときに測定回路160が測定した第1共振器10の入力インダクタンス値Lin(f1)と、第2の周波数f2で発振回路150が発振しているときに測定回路160が測定した第1共振器10の入力インダクタンス値Lin(f2)との比に基づいて、第1共振器10に対する第2共振器20の相対位置を検出するように構成されている。後に詳しく説明するように、入力インダクタンス値の比であるLin(f1)/Lin(f2)を用いて、第1共振器10と第2共振器20との間の結合係数kを算出または推定することができる。結合係数kは、第1共振器10に対する第2共振器20の相対位置に依存して変化する。つまり、第1共振器10と第2共振器20とが電磁的に結合していないとき、結合係数kはゼロまたはゼロに近似される小さな値を持つ。一方、第1共振器10と第2共振器20とが電磁的に結合しているときは、第1共振器10に第2共振器20が接近してくると結合係数kが増加し、逆に第1共振器10から第2共振器20が離れると結合係数kは減少する。このため、結合係数kの算出値または推定値に基づいて、第1共振器10に対する第2共振器20の相対位置を決定することが可能になる。
本開示の相対位置検出装置では、異なる周波数で得られた2つの入力インダクタンス値の比、すなわち、Lin(f1)/Lin(f2)を用いる点に特徴を有している。なお、本開示において、第1共振器の入力インダクタンス値を測定することは、この入力インダクタンス値を直接的に測定することのみならず、入力インダクタンス値を変換した他の物理パラメータを測定することをも含むものとする。ある条件のもとでは、第1共振器10と第2共振器20とを電磁的に結合する電磁場の周波数が入力インダクタンス値に比例する(例えば電圧・周波数コンバータ)。また、ある条件のもとでは、第1共振器10と第2共振器20とを電磁的に結合する電磁場の周波数が入力インダクタンス値の2乗に反比例する(例えば自励式発振回路における発振周波数)。このため、第1共振器10または第2共振器20を流れる交流電流または交流電圧の周波数を測定することにより、実効的に「第1共振器の入力インダクタンス値」を測定することができ、その結果として、結合係数kの値を取得することが可能になる。
本開示における「相対位置」とは、空間座標中の絶対的な位置ではなく、第2共振器が第1共振器に接近しているか、第1共振器から遠ざかっているかをリアルタイムで検出するための基礎となる「相対距離情報」である。
次に、図2および図3を参照して、位置検出装置1000が第2の共振器20を備えている構成例を説明する。図2の例では、測定回路160が第2共振器に接続され、発振器150は第1共振器10に接続されている。図3の例では、発振回路150および測定回路160の両方が第2共振器20に接続されている。これらの例では、第2共振器20が位置検出装置1000に含まれており、位置検出装置1000の移動に伴って第2共振器20が移動する。
次に、図4を参照して本開示による位置検出装置の基本的な動作を説明する。前述したように、発振回路150は、第1共振器10と第2共振器20との間の電磁的な結合を実現するための電界または磁界の振動を周波数f1、f2で形成できれば、第1共振器10および第2共振器20のいずれに接続されていてもよいし、両方に接続されていてもよい。また、測定回路160も、第1共振器10と第2共振器20とが電磁的に結合されていれば、第1共振器10および第2共振器20のいずれに接続されていても、第1共振器10の入力インダクタンス値、あるいは、第2共振器10の入力インダクタンス値を直接的または間接的に測定し、それによって結合係数kを検出することが可能である。
本開示の位置検出装置は、無線電力伝送システムに使用される送電装置および受電装置の構成要素の少なくとも一部を利用して構成され得る。このため、この位置検出装置は、無線電力伝送システムに用いることが好都合である。しかし、この位置検出装置は、他の用途に使用することもできる。例えば、第1共振器10および第2共振器20の一方を「RFタグ」に含めることができる。RFタグは、RFID(Radio Frequency Identification)を行うために、情報を記録するメモリ(記憶素子)とデータの無線送受信を行うためのアンテナとを備える素子である。RFタグは、電子タグ、ICタグ、無線タグ、RFIDタグ等、様々な呼び方をされている。
以下、図面を参照しながら、本開示の実施形態を詳細に説明する。なお、同様の構成要素には同一の符号を付している。
(実施形態1)
図5は、本開示の第1の実施形態に係る無線電力伝送システムの概略構成を示すブロック図である。この無線電力伝送システムは、送電装置100と受電装置200とを備え、送電装置100から受電装置200へ無線で電力を送電することができる。送電装置100は、例えばワイヤレス充電器であり、受電装置200は、例えば携帯情報端末や電気自動車などの二次電池を備えた機器であり得る。本実施形態では、前述した位置検出装置が送電装置100の側に設けられている。このため、送電装置100は、受電装置200に送電するだけでなく、受電装置200における受電共振器210の位置が送電共振器110に対して適切な位置(充電可能な位置)にあるか否かを検出することができる。この検出を、本明細書では「位置あわせ」と呼ぶ。その検出結果は、例えば送電装置100または受電装置200に設けられた光源、ディスプレイ、スピーカなどの表示素子170または表示素子270から光、映像、音声などの情報として使用者に通知され得る。本明細書における「表示素子」は、視覚的情報を提示する素子に限定されず、聴覚的情報(音または音声)のみを提示する素子をも広く含むものとする。
本実施形態の無線電力伝送システムが備える位置検出装置のこのような機能により、使用者は、受電装置200を送電装置100に近づける際、受電共振器210が送電可能な適切な位置に到達したことを知ることができるため、受電装置200の位置あわせを容易に行うことができる。
図5に示されるように、本実施形態における送電装置100は、送電共振器110と、送電回路120と、電源130と、発振回路150と、測定回路160と、表示素子170とを備える。これらの構成要素のうち、送電共振器110、発振回路150、および測定回路160によって位置検出装置が構成されている。以下、位置検出装置の構成および動作を説明する。
送電共振器110は、後に図15を参照して詳しく説明するように、送電コイルL1と、送電コイルL1に直列に接続されたコンデンサC1とを含む共振回路(第1共振回路)である。送電共振器110の共振状態は、発振回路150によって制御される。本実施形態では、位置検出のための第1共振器が無線電力伝送の送電共振器を兼ねている。
発振回路150は、送電共振器110に接続されており、受電共振器210の共振周波数frとは異なる2つの周波数で発振可能である。それら2つの周波数は共振周波数よりも低い第1の周波数f1と、共振周波数よりも高い第2の周波数f2に設定される。第1の周波数f1は共振周波数の例えば85%以下に設定され得るし、第2の周波数f2は共振周波数の例えば115%以上に設定され得る。なお、電力伝送モードでは、受電装置200が備える受電共振器210の共振周波数の交流エネルギが送電共振器110から受電共振器210へ送電される。電力伝送モードの周波数は、受電共振器210の共振周波数に完全に一致する必要はなく、その共振周波数の85〜115%程度の範囲内の値に設定されればよい。また、電力伝送モードの周波数は必ずしも受電共振器210の共振周波数frの85〜115%の範囲内に設定される必要はなく、この範囲とは異なる周波数帯を用いても良い。例えば、電力伝送の周波数帯を100kHz〜200kHzとし、位置検出用の周波数をfr=1000kHzとして設定してもよい。詳細は後述する実施例3で説明する。
測定回路160は、発振回路150から出力される交流エネルギの周波数(発振周波数)の変化を検出することによって受電共振器210の検出を行う。すなわち、測定回路160は、第1の周波数f1で発振回路150が発振しているときに送電共振器110のインダクタンス値Lin(f1)を測定する。また、測定回路150は、第2の周波数f2で発振回路150が発振しているときに送電共振器110のインダクタンス値Lin(f2)を測定する。そして、測定回路160は、後述する原理から、2つのインダクタンス値の比に基づいて送電共振器110に対する受電共振器210の相対位置を検出する。
次に、受電装置200について簡単に説明する。受電装置200は、受電共振器210と、受電回路220と、負荷230と、表示素子270とを備える。受電共振器210は、後に詳しく説明するように、受電コイルL2と、受電コイルL2に並列に接続されたコンデンサC2とを含む共振回路(第2共振回路)であり、共振周波数は所定の値frに設定されている。受電共振器210が送電共振器110から空間を介して非接触で受け取った交流エネルギは、受電回路220において波形を変換し、負荷230に供給される。
本実施形態では、コイル対を用いる磁界共振によって無線電力伝送を行うが、無線電力伝送は、コンデンサ対を用いる電界共振によって行うことも可能である。本開示の位置検出装置は、コイル対の位置あわせのほか、コンデンサ対の位置あわせにも適用できる。以下、コイル対の位置あわせを例に位置あわせの原理を説明するが、この原理はコンデンサ対の位置あわせにも適用され得る。
図6は、本実施形態での位置あわせに使用する結合係数推定方法の動作原理を説明するための図である。ここでは、コイル対の結合係数を推定する手法について説明する。
送電コイルL1(インダクタンス値もL1と表す。)と周波数frで共振する受電コイルL2(インダクタンス値もL2と表す。)とが結合係数kで電磁的に結合しているとき、送電コイルから見た入力インダクタンスLinは次式で求められる。
Lin(f)=L1{1−k2/(1−(fr/f)2)} ・・・式1
図6は、式1を模試的に示すグラフである。
周波数f<<frにおいて、受電共振器210の両端は実質的に開放されて見える。frより低い第1の周波数f1で測定した入力インダクタンス値をLin(f1)とする。一方、周波数f>>frにおいて受電共振器210における並列コンデンサの両端は実質的に短絡しているように見える。frより高い第2の周波数f2で測定した入力インダクタンス値をLin(f2)とする。
f1、f2の大きさが適切に設定されると、式1から以下の近似式が得られる。
Lin(f1)≒L1
Lin(f2)≒L1(1−k2
これらの2つの近似式から、以下の式2が得られる。
2≒1−Lin(f2)/Lin(f1) ・・・式2
この式2によれば、測定値であるLin(f1)およびLin(f2)の比に基づいて結合係数kを算出することができる。ただし、式2は、受電コイル端を完全に開放にした場合の入力インダクタンクスLin_open(f)と受電コイル端を完全に短絡にした場合の入力インダクタンクスLin_short(f)との間に以下の式3、4の関係が成立する特殊な条件に基づく。
Lin_open(f1)=Lin_open(f2) ・・・式3
Lin_short(f1)=Lin_short(f2) ・・・式4
逆に言えば、式3、4が成立する適切な周波数f1とf2を選定したうえで無線電力伝送システムを設計すれば、式2が成立し、結合係数kの推定が可能となる。通常、これらの周波数f1、f2は、共振器の寸法が波長に比べて十分小さいとみなせる周波数範囲に設定すれば実用上問題ない。
なお、自励式の発振回路を用いると、入力インダクタンスの変化を発振周波数の変化に直接変換することができる。すなわち、入力インダクタンスは発振周波数の2乗の逆数で決まるため、結合係数kは次式で書き換えることもできる。
2≒1−f12/f22 ・・・式5
実用上は回路の線形・非線形要素などを含むため、式2、式5は補正が必要であるが、原理的にはこれらの式から結合係数kが推定可能である(補正例の詳細は実施例3において後述する)。
以上のことから、f1とf2の各周波数で発振する動作を連続的に切り替えながら2つの周波数における入力インダクタンス値または発振周波数を測定すれば、測定結果から結合係数kを推定できる。結合係数kは送受電コイル間の距離に応じて変化するから、例えば、推定した結合係数kが所定の閾値以上になった場合、受電コイルが送電コイルに対向する位置に到達したとみなすことができる。位置あわせが完了すると、送電装置100は、発振回路150の代わりに送電回路120を用いて送電を開始する。これにより、安全かつ高効率に受電装置200に無線で電力が供給できる。
以下、図5の各要素の詳細を説明する。
本実施形態における位置検出装置は、第1共振器(送電共振器)110の電気特性(入力インダクタンス、発振周波数、および、これらに依存して変化するパラメータ)を測定する測定回路160と、第2共振器(受電共振器)の共振周波数とは異なる2つの周波数で発振可能な発振回路150を備えている。
送電共振器110は、コイルL1とコンデンサC1を含む。コイルL1は基板パターンで形成された薄型の平面コイルのほか、銅線やリッツ線、ツイスト線などを用いた巻き線コイルなどを用いることができる。十分な検出感度を確保するためには、コイルL1のQ値は、例えば100以上に設定され得るが、100よりも小さい値に設定されていてもよい。コンデンサC1は必要に応じて含まなくても良く、その場合、コイルL1自身が有する自己共振特性を含めて送電共振器110を形成しても良い。
送電回路120は、位置あわせ完了後に送電のための交流エネルギを出力する回路である。送電回路120は、フルブリッジ型のインバータや、D級、E級などの他の種類の送電回路であってもよい。また、通信用の変復調回路や電圧・電流などを測定する各種センサを含めても良い。
電源130は、商用電源、一次電池、二次電池、太陽電池、燃料電池、USB(Universal Serial Bus)電源、高容量のキャパシタ(例えば電気二重層キャパシタ)、商用電源に接続された電圧変換器、または、それらの組み合わせを用いて実現され得る全ての電源を含む。
送電制御回路140は、送電装置100全体の動作を制御するプロセッサであり、例えばCPUとコンピュータプログラムを格納したメモリとの組み合わせによって実現され得る。送電制御回路140は、本実施形態の動作を実現するように構成された専用のハードウェアであってもよい。送電制御回路140は、発振回路150の発振周波数の切替や、送電回路120による送電制御(送電状態の調整)や、測定回路160の検出結果に基づいて表示素子170を発光させる制御を行う。具体的には位置あわせモードにおいては、送電回路120の動作を停止し、発振回路150を駆動する。送電モードにおいては、発振回路150の動作を停止し、送電回路120を駆動する。送電制御回路140は、位置検出装置の測定結果に応じて送電開始周波数および送電電圧を決定する。
発振回路150には、例えばコルピッツ発振回路や、ハートレー発振回路、クラップ発振回路、フランクリン発振回路、ピアス発振回路など、LC共振原理に基づく公知の自励式の発振回路を用いることができる。本実施形態の特徴点は、コイルL1のインピーダンス変化を、周波数の変化に換算して高精度に検出する点にあるため、そのような検出が可能である限り、上記のものに限定されず、他の発振回路および回路トポロジを用いてもよい。なお、送電時に発振回路150を焼損する可能性がある場合は、送電共振器110と発振回路150との間にスイッチを設けて両者の間を送電時に電気的に遮断してもよい。また、結合係数kの決定に式2を用いる場合は、発振回路150と送電回路120の機能は同一なので両回路150、120を共用化してもよい。
測定回路160は、前述の発振周波数を測定したり、送電コイルL1の電圧・電流を測定して入力インダクタンスを算出するために用いられる。なお、図示しないが、測定回路160の少なくとも一部の機能と送電制御回路140の少なくとも一部の機能とは、半導体パッケージ(例えばマイクロコントローラやカスタムIC)によって実現されてもよい。
表示素子170は、測定回路160による検出結果を使用者に通知するように構成されている。表示素子170は、相対位置(近接の程度)を示す「インジケータ」として機能するように構成されており、例えばLEDまたは有機ELなどの光源によって構成され、複数の光源の集合体であってもよい。表示素子170は、送電コイルL1と受電コイルL2との間の距離に応じて、複数の光源のうちの異なる光源を発光させたり、発光させる光源の数を段階的に変動させてもよい。また、表示素子170は、液晶表示素子または有機EL表示素子のようなディスプレイであってもよい。ディスプレイを用いると、画像または文字などで検出結果や位置あわせのレベルを表示させることができる。表示素子170は、光とともに、または光に代えて、音や音声で検出結果や位置あわせのレベルを表示するように構成されていてもよい。
次に、受電装置200の構成要素を説明する。
受電共振器210は、受電コイルL2とコンデンサC2を含む。受電コイルL2とコンデンサC2は、送電共振器110における送電コイルL1およびコンデンサC1と同様のものであってもよいし、異なっていてもよい。重要な点は、インピーダンスZ2=1/jωC2が周波数f1では相対的に大きくなるよう設定され、周波数f2では相対的に小さくなるよう設定される点である。ここで、jは虚数単位、ωは角周波数であり、ω=2π×周波数の関係が成立する。
受電共振器210と受電回路220との間に直列コンデンサを挿入しても良い。なお、受電共振器210は、不要であればコンデンサC2を含まなくても良く、コイルL2自身が有する自己共振特性を含めて受電共振器210を形成しても良い。
受電回路220は、整流回路や周波数変換回路、定電圧・定電流制御回路、通信用の変復調回路などの各種の回路を含み、受け取った交流エネルギを負荷230が利用可能な直流エネルギまたは低周波の交流エネルギに変換するように構成されている。また、受電共振器210の電圧・電流などを測定する各種センサを受電回路220中に含めてもよい。
負荷230は、例えば二次電池や高容量キャパシタであり、受電回路220から出力された電力によって充給電され得る。
本実施形態における受電制御回路240は、受電装置200全体の動作を制御するプロセッサであり、例えばCPUとコンピュータプログラムを格納したメモリとの組み合わせによって実現され得る。受電制御回路240は、この例に限定されず、本実施形態の動作を実現するように構成された専用のハードウェアであってもよい。受電制御回路240は、負荷250への充給電制御や、表示素子270の制御を行う。
本実施形態における発振周波数は、並列コンデンサC2が、ある程度、集中定数回路とみなせる20kHz〜20MHzの低周波域に設定され得る。高い周波数ほど分解能が高く、高速に位置検出できるため、10μsec以下の周期で検出する場合には、発振周波数はその逆数である100kHz〜100MHzに設定され得る。低速でも良い場合は、数kHz〜100kHzに設定され得る。
続いて、図7のフローチャートを参照しながら本実施形態の無線電力伝送システムの動作を説明する。
まず、送電装置100が送電共振器110に対する受電共振器210の接近を感知すると、位置あわせモードを開始する。本実施形態における、この「接近」の感知は、上述した位置検出装置の動作原理に基づくものではなく、例えば、発振周波数や電圧の変化を検出することによって実行され得る。受電共振器210が送電共振器110に接近すると、受電共振器210の内部の金属(基板のグランドやコイルなど)の影響で発振周波数が増加したり、発振回路150から出力される電圧の振幅が低下する場合がある。また、受電共振器210における受電コイルL2が周辺回路への電磁ノイズの影響を低減するための電磁シールド(磁性体)を備えている場合、受電共振器210の接近に伴い、発振周波数が低下する場合もある。したがって、発振周波数や電圧の変化を検出することにより、受電共振器210の接近を感知することができる。送電制御回路140および発振回路150は、例えば1mm秒〜数秒に1回だけ数周期分の交流を発振する断続的発振(間欠動作)を行い、受電コイルL2の接近を感知した場合にのみ連続動作に切替えるように構成され得る。このような間欠動作を行うことにより、消費電力の増加を抑えながら、受電コイルL2の接近を感知することができる。この間欠動作における発振回路150の動作周波数はf1であってもよいし、他の周波数であってもよい。
次に、ステップS600において、送電制御回路140は、発振回路150を周波数f1で動作させる。
ステップS601において、測定回路160は、所定の時間経過後、入力インダクタンスを測定する。
ステップS602において、送電制御回路140は、発振回路150を周波数f2で動作させる。
ステップS603において、測定回路160は、所定の時間経過後、入力インダクタンスを測定する。
この一連の測定結果から結合係数を式2によって算出し(ステップS604)、ステップS605で結合係数kが所定の第一の閾値を超えたか否かを判定する。第一の閾値は例えば0.3〜0.5の範囲内の数値に設定され得る。算出した結合係数kが所定の第一の閾値を超えた場合、受電コイルL2が送電コイルL1に十分に接近したと判断できるため、測定回路160は、そのことを示す情報を送電制御回路140に送る。この情報を受けた送電制御回路140は、発振回路150の発振を停止させる(ステップS606)。この際、送電制御回路140は、表示素子170を発光させたり、表示素子270に位置あわせが完了したことを表示してもよい。これにより、位置あわせが完了したことを使用者に知らせることができる。送電制御回路140がこのような通知の機能を有する場合、送電制御回路140は、「光源制御回路」または「表示制御回路」としての機能を有することになる。
この後、送電制御回路140は、送電回路120を駆動し、無線電力伝送を開始する。なお、無線電力伝送の開始は、発振回路150の発振を停止させた直後ではなく、例えば使用者が受電装置200を送電装置100の上に置くなどして周波数の変動が停止したことを確認してから行われてもよい。
一方、ステップS605において、結合係数kが所定の第一の閾値を超えない場合、位置あわせの途中であるか、受電装置200が送電装置100から離れてしまったか、を判定する必要がある。そこで、ステップS607において、結合係数kが所定の第二の閾値を下回ったか判定する。例えば第一の閾値が0.4に設定されている場合、第二の閾値は、0.01に設定され得る。この例に限らず、第一および第二の閾値は任意に設定してよい。この判定の結果、結合係数kが所定の第二の閾値を下回っていなければ、位置あわせの途中であるため、ステップS600に戻り、位置あわせを再開する。結合係数kが所定の第二の閾値を下回った場合、受電装置200は送電装置100から離れたと判断して、発振回路150の発振を停止し、位置あわせモードを終了させる。
特殊な条件として、結合係数kが所定の第1の閾値を超えず、第2の閾値を下回らないまま、使用者が位置あわせをやめた場合が存在する。この場合においては、例えば、ステップS600〜S605、S607を何度もループすることになる。そのループ回数をカウントし、所定のカウント数を経過した場合に発振回路150の発振を停止し、位置あわせを終了するという例外処理を加えることで、上記無限ループを回避することができる。
なお、ここでは結合係数kを式2により算出したが、式5により算出してもよい。あるいは、式2または式5の補正式により算出してもよい。
以上の動作により、本実施形態の送電装置100の位置検出装置は、受電装置200における受電コイルL2の近接を検出し、そのことを示す情報を出力することができる。これにより、ユーザは受電装置200が適切な位置に到達したことを知ることができるため、位置あわせを容易に行うことができる。
なお、本実施形態における動作は図7に示す動作に限定されない。例えば、ステップS605における判定処理を所定の結合係数kを超えたか否かの絶対量で評価するだけでなく、結合係数kの時間的な変化量が十分小さくなったことによって検出しても良い。また、複数の閾値を設け、結合係数kのレベルに応じて受電コイルL2の近接の程度を示す段階的な情報を表示素子170あるいは表示素子270に出力するようにしてもよい。
(実施形態2)
図8は、本開示の第2の実施形態に係る無線電力伝送システムの概略構成を示すブロック図である。
本実施形態の基本構成は実施の形態1と同様であるが、送電共振器110に含まれる送電コイルと位置あわせに用いる検出コイルとを別にしている点が異なる。位置あわせのための検出コイルを別にすることにより、送電共振器110と発振回路150との間にスイッチが不要になるだけでなく、検出コイルと送電コイルとを異なる位置に配置できるため、送電装置100の設計の自由度が向上する。
また、送電中に受電コイルが移動するような環境(例えば、車載充電器や、自走式ロボット、走行中給電)においては、送電しながら結合係数の時間変化をリアルタイムに計測できる。この計測結果に基づき、例えば結合係数の時間的変化に応じて送電周波数を最適な値に変更したり、安全に送電を停止することができる。これにより、無線電力伝送システムの安全性を高め、かつ、伝送効率を高めることができるという格別の効果がある。
なお、本実施形態では、送電共振器110ではなく検出コイル112が本開示における第1共振器として機能する。したがって、測定回路160は、第1の周波数f1で発振回路150が発振しているときに検出コイル112の入力インダクタンス値Lin(f1)を測定し、第2の周波数f2で発振回路150が発振しているときに検出コイル112の入力インダクタンス値Lin(f2)を測定する。そして、これらの検出値に基づいて、検出コイル112に対する受電共振器210の相対位置が検出される。検出コイル112の送電共振器110に対する配置関係は既知であるため、検出コイル112に対する受電共振器210の相対位置が検出されると、その結果として、送電共振器110に対する受電共振器210の相対位置も検出される。検出コイル112は、典型的には送電共振器110に近接して配置されるため、検出コイル112に受電共振器210が十分に近接するように位置あわせが達成されると、受電共振器210と送電共振器110との距離も十分に小さくなり、無線電力伝送を効率よく実行することができる。
(実施形態3)
図9は、本開示の第3の実施形態に係る無線電力伝送システムの概略構成を示すブロック図である。
本実施形態の基本構成は実施形態1と同様であるが、図1の考え方を図3の考え方に変更し、位置あわせのための発振回路250と測定回路260とを受電装置200に搭載している点、および、送電共振器110が並列コンデンサを備え共振周波数frで共振している点が異なる。
送電装置100に比べ、受電装置200が大きい場合がある。例えば、タブレット端末など大型の受電装置200を、小型の送電装置100から充電する場合がある。このような場合、送電装置100が位置あわせのための表示素子170を有していると、表示素子170が受電装置200で隠れてしまい、正確に位置あわせができているか確認することが困難であるという課題がある。送電装置100が位置あわせのための表示素子170を有している場合でも、使用者の位置あわせ時のユーザビリティが低下する場合がある。
本実施形態の無線電力伝送システムでは、位置あわせモードにおいて、受電装置200が備える発振回路250が周波数f1、f2で発振しているときに、受電装置200が備える測定回路260が、受電共振器210の周波数を測定することにより、受電共振器210の入力インピーダンスを測定することができる。すなわち、送電共振器110と受電共振器210とが電磁界で結合し、送電装置100が位置あわせモードで動作しているときは、受電装置200の受電共振器210においても、2つの周波数f1、f2の発振波形を観測できる。これを測定し、得られた発振周波数f1、f2の比から式5を用いて結合係数kを算出・推定することができる。これを実現するため、本実施形態の発振回路250には、LC共振原理に基づく公知の自励式の発振回路が使用される。なお、本実施の形態で得られる結合係数は、回路の可逆性が成り立つ系であれば、送電共振器側から結合係数を推定した場合も、受電共振器側から推定した場合も、同一の値を示す。すなわち、実施形態1および実施形態2で推定した結合係数と同じ値となる。
本実施形態によれば、例えば、送受電コイル間の結合係数kの変化に応じて受電装置200の表示素子270の表示を変化させることにより、ユーザに正確に位置あわせができているか通知することができる。なお、本実施形態の構成は、受電装置200が送電装置100よりも大型である場合に限定されず、採用可能である。受電装置200が発振回路250を備える場合、本実施形態の構成を採用することは容易である。
(実施形態4)
図10は、本開示の第4の実施形態に係る無線電力伝送システムの概略構成を示すブロック図である。基本構成は実施の形態3と同様であるが、位置あわせのための発振回路150および測定回路160が送電装置100に設けられ、発振回路250が受電装置200に設けられていない点で異なる。
実施形態3と同様にして測定回路250を用いて受電装置200の側で算出・推定した結合係数kに応じて、受電装置200の表示素子270によって、ユーザに現在の位置あわせの程度を通知する機能を実現できる。本実施形態の構成によれば、送電装置100の側と受電装置200の側の両方で位置あわせの程度を検出できる。また、受電装置200には発振回路150が不要であるため、受電装置200を薄型化できるという効果がある。
なお、実施形態3、4では、実施形態2と同様に、受電コイルと検出コイルとを別にしてもかまわない。
(実施形態5)
図11Aは、本開示の第5の実施形態に係る無線電力伝送システムを示す図である。本実施形態では、送電装置100は無線充電装置(送電台)であり、受電装置200はスマートフォンやタブレットといったモバイル端末である。本実施形態では、送電装置100は、送電コイルL1を移動させる移動機構と、移動機構を制御する移動制御回路とをさらに備えている。この点を除く構成は実施の形態1におけるものと同様である。なお、移動制御回路は、送電制御回路140に組み込まれていてもよい。以下の説明では、送電制御回路140が移動制御回路の機能を有しているものとする。
本実施形態では、送電台100への端末200の積載を検知すると、送電制御回路140は、移動機構を制御し、送電コイルL1を、例えば初期位置P1から目標位置P3に向かって移動させる。この移動の初期方向は、図11Aに示すX方向でもY方向でもよいし、それ以外の任意の方向でもよい。
移動の間、送電制御回路140は発振動作を継続し、測定回路160は式2もしくは式5、または式2もしくは式5の補正式に基づく結合係数の推定を継続的に行う。送電コイルL1が端末内の受電コイルL2に接近すると、端末内部の金属(基板のグランドやアンテナなど)の影響により、図11Bに示すように、発振周波数が増加する。発振周波数が増加し、閾値fthを超えると、この閾値を下回らないように移動を継続させることにより、端末に沿って送電コイルL1を受電コイルL2に接近させることができる。この制御には、例えばPID制御(proportional−integral−derivative controller)などの公知の制御技術を用いることができる。
図11Aに示す例では、送電コイルL1が位置P2まで移動すると、図11Cに示すように結合係数kが増加し始める。測定回路160が結合係数kの増加を検出すると、送電制御回路140は、PID制御のパラメータを変更し、結合係数kが閾値kthを超えるように受電コイルL2の中心位置P3を探索する。送電制御回路140は、例えば結合係数kが閾値kthを超えた後、結合係数の変化量が実質的に0になったこと(すなわち極大値に達したこと)を検出すると、送電コイルL1の移動を停止し、送電を開始する。
本実施形態では、図11Aに示す構成の代わりに図12Aおよび図12Bに示す構成を採用してもよい。図12Aは充電中の送電台100および端末200を示す平面図であり、図12Bはその右側面図である。この例では、送電台100は、端末200を支持する位置あわせ補助突起101を備えている。端末200が送電台100の上に積載されるとき、補助突起101の効果により、端末200の積載角度が固定されるため、図11Aに示す構成よりも探索が容易である。
本実施形態では、送電台100への端末200の積載を検知すると、送電制御回路140は、移動機構を制御し、送電コイルL1を位置P1から目標P3に向かって移動させる。この移動の初期方向は、例えば、P1からP1’へ向かう斜め方向に設定され得る。
その後の動作は、図11Bおよび図11Cを参照して説明した上記の動作と同様である。すなわち、移動の間、送電制御回路140は発振回路150の動作を継続させ、測定回路160は結合係数kの推定を連続的に行う。送電コイルL1が端末内の受電コイルL2に接近すると、端末内部の金属(基板のグランドやアンテナなど)の影響により、図11Bに示すように発振周波数が増加する。発振周波数が増加し閾値fthを超えると、この閾値を低下しないように移動を継続させることにより、送電コイルL1を受電コイルL2に接近させる。この制御には、PID制御などの公知の制御技術が用いられる。
送電コイルL1が位置P2まで移動すると、図11Cに示すように、結合係数kが増加し始める。送電制御回路は、結合係数kの増加を検出すると、PID制御のパラメータを変更し、結合係数kが閾値kthを超えるように受電コイルL2の中心位置P3を探索する。送電制御回路140は、例えば結合係数kが閾値kthを超えた後、結合係数の変化量が実質的に0になったこと(すなわち極大値に達したこと)を検出すると、送電コイルL1の移動を停止し、送電を開始する。
以上のように、本実施形態によれば、まず発振周波数が閾値fthを下回らないように送電コイルL1を移動させることにより、送電コイルL1を受電コイルL2に接近させる。その上で、式2もしくは式5、または式2もしくは式5の補正式に基づいて結合係数kが極大値をとる送電コイルL1の位置を探索する。これにより、端末200の位置や向きによらず、送電コイルL1を受電コイルL2の近傍まで自動で接近させることができる。
(その他の実施形態)
上記の実施形態1〜5によれば、位置検出装置は、例えば数μA〜数mAで動作可能であるため、省電力の回路で位置検出を実現し得る。一方、無線電力伝送時は、例えば数W〜数kWの電力を送電共振器110から受電共振器210に伝送する。この無線電力伝送中に受電コイルが急激に位置ずれした場合に、送電モードから位置あわせモードに移行すると、コイルの蓄積エネルギが位置あわせ回路に流入し、位置あわせ回路の耐圧を越え焼損する可能性が生じる。
本実施形態では、無線電力伝送中にコイルに蓄積されたエネルギをグランドに逃がしてから位置あわせモードに移行する。こうすることにより、位置あわせ用の回路の焼損を防ぐことができる。具体的には、無線電力伝送モードから位置あわせモードに切り替える場合、まず、送電回路120に含まれるインバータのうち、グランドに直結されているMOSFETのスイッチをONにする。例えば、後述する図15に示す回路構成においては、送電共振器110内のコイルL1およびグランドに直結されているスイッチQ4をONにする。これにより、送電共振器110内のコイルL1に蓄積されていたエネルギをグランドに逃がす。その後、所定の時間経過後に位置あわせモードを開始すればよい。このような動作は、前述した実施形態のいずれでも実現可能である。
本開示の結合係数推定方法は、無線電力伝送を電磁誘導または磁界共振によって実現する場合に限定されず、他の電力伝送方式によって実現する場合にも適用できる。例えば、コイル対でなく、電極対を電力伝送に用いる電界結合方式(特許文献2)においては、電極間の結合係数は次式で算出できる。
Cin(f)=C1{1−k2/(1−(fr/f)2)} ・・・式6
Cin(f)は送電共振器側の電極について測定され得る入力キャパシタンス値であり、C1は送電電極の容量値である。周波数frは、受電共振器の電極に並列インダクタを備えることで形成される並列共振回路の共振周波数である。本実施形態においては、式2、式5と同様に、2つの周波数における入力キャパシタンスの測定結果から結合係数が推定できる。入力キャパシタンスの測定手段は前述の通り、自励式の発振回路を用いてもよい。
(実施例1)
図13は、送電装置100および受電装置200の実施例を示す図である。この例では、送電装置100は机上に置かれた充電装置であり、受電装置200はタブレット端末やスマートフォンといったモバイル端末である。本実施形態における送電装置100はインジケータI1を備え、受電装置200はインジケータI2およびI2dを備えている。インジケータI1、インジケータI2は前述した表示素子の例である。インジケータI2dは前述した複数の光源の集合体の例としてディスプレイを示している。図13(a)は、位置あわせを開始した状態を示している。図13(b)は、モバイル端末を充電装置に近接させることにより、受電共振器210を送電共振器110に接近させるようにして位置あわせを行う途中の状態を示している。図13(c)は、位置あわせが完了した状態を示している。
充電装置200の受電コイルL2が送電装置100のコイルL1に近接することによる結合係数の変化に応じて、インジケータI1またはインジケータI2、I2dの状態を連続的に変化させ、位置決めのレベルをユーザに通知できる。例えば、位置あわせの程度に応じてインジケータI1、I2の明るさを増加させたり、送電共振器110と受電共振器210の位置あわせの程度を数値または図形描写でリアルタイムで図示しても良い。このようにすることで、ユーザ自身による位置あわせを送電装置もしくは受電装置で直感的にサポートできる。
なお、受電装置200がインジケータI2を備えない場合、受電装置200のディスプレイ上に位置あわせのレベルを示す情報を表示させてもよい。
(実施例2)
図14は、送電装置100および受電装置200の他の例を示す図である。この例では、送電装置100は道路に埋設された送電コイルを備える充電装置であり、受電装置200は、受電コイルを備える電気自動車である。図14(a)は、位置あわせを開始した状態を示している。図14(b)は、電気自動車を後退させることにより、受電共振器210を送電共振器110に接近させるようにして位置あわせを行う途中の状態を示している。図14(c)は、位置あわせが完了した状態を示している。
この例でも、インジケータI1、I2に位置あわせが適切に行われているか否かを通知させることにより、位置あわせをサポートできる。この例における電気自動車の駆動系は、推定した結合係数kの値に基づいて送電共振器110に対する受電共振器210の位置がずれていると判断した場合に、自動で受電装置200が最適な位置まで移動するように構成されていてもよい。このような自動位置あわせは、送電装置100が送電共振器110を受電共振器210に接近するように移動させることによって実行されてもよい。その場合、送電装置100は、位置検出装置の出力に応じて送電共振器110を移動させる駆動機構を備えている。
(回路構成の例)
図15は、本開示に係る実施形態1における無線電力伝送システムの回路構成の例を示す図である。
送電共振器110は、送電コイルL1と、送電コイルL1に直列に接続されたコンデンサC1とを有している。一方、受電共振器210は、受電コイルL2と、受電コイルL2に並列に接続されたコンデンサC2pと、受電コイルL2に直列に接続されたコンデンサC2sとを有している。
この実施例では、送電コイルL1の外形は39mmでインダクタンスはL1=13.6μHに設定されている。受電コイルL2の外形は34mmでインダクタンスはL2=15.8μHに設定されている。直列コンデンサC1の容量は180nF、直列コンデンサC2sおよび並列コンデンサC2pの容量は、それぞれ、C2s=120nF、C2p=1590pFに設定されている。送電コイルL1は100kHzで共振し、受電コイルL2は、115kHzと1000kHzとで共振する。
送電コイルL1はスイッチS1、S2を介して発振回路150に接続されている。本実施例における発振回路150は、自励式のLC発振回路として機能するピアス発振回路である。発振回路150が有する抵抗Rfと抵抗Rdは、回路の励振レベルを調整する素子である。発振回路150は、さらに発振周波数を変更するための調整インダクタLmとスイッチS3を備えている。受電コイルの共振周波数fr=115kHz,fr=1000kHzとは異なる2つの周波数、f1=400kHz(S1とS2オン、S3オフ)、f2=1500kHz(S1とS2オン、S3オン)で発振するようLmおよびC11、C12の値を決定した。C1およびC2sはf1、f2において短絡に見え、C2pはf1では開放、f2では短絡に見えるため、結合係数推定に係る主となるコンデンサはC2pであると考えてよい。なお、本実施例での結合係数の推定式は、式5を補正した次式(式7)を採用している。
2≒1−f12/(f22−f32)・・・式7
発振周波数f3はS1とS2をオフ、S3をオンにした場合の発振周波数である。すなわち、周波数f3を測定することは、調整インダクタLmのインダクタンス値を測定していることと等価である。送電コイルL1が周波数f2で発振しているとき、その発振周波数には、送電コイルL1の入力インダクタンス値に基づく成分と、調整インダクタLmのインダクタンス値に基づく成分とが含まれている。このため、式7の第二項の分母においては、調整インダクタLmの影響を取り除いた上で結合係数を算出している。このように、測定回路160は、式5の代わりに式5に基づく補正式7によって算出される結合係数kに基づいて第1共振器110に対する第2共振器120の相対位置を検出してもよい。なお、自励式のLC発振回路は、前述の通り種々の回路トポロジが存在するため、補正式は式7に限定されない。当業者であれば、異なる回路トポロジを採用したとしても、式5の補正式の導出は容易である。同様に、式2を用いる場合も、回路トポロジに応じて式2を補正した補正式を用いて結合係数kを算出してもよい。
ネットワークアナライザを用いた結合係数の実測結果と、図15の位置検出装置を用いた結合係数の推定結果をあわせて図16に示す。
測定結果を比較すると、実測結果と測定結果が良好に一致していることが判り、本開示の推定式の有効性が確認できる。例えば、結合係数が0.4以上のとき、安全かつ効率よく送電できる送電装置を設計した場合、図7のフローチャートの状態S605において、結合係数が0.4以上となる場合に位置あわせ成功となるよう閾値を設定したとすると、本実施例においては送受電コイルの相対位置ずれが±8mmとなる充電装置を提供することができる。
本開示の第1の態様に係る送電装置は、
第1コイルを含む第1共振器を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器及び負荷を備えた受電装置の位置を検出する送電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器のインダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f2)を検出し、k2=1−Lin(f2)/Lin(f1)の式によって算出される結合係数kを算出し、前記結合係数kに基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する。
上記態様によると、前記第2コイルの両端にキャパシタを設け、前記第2コイル及びキャパシタを含む並列共振回路を前記受電装置に設ける。このことにより、前記発振回路で前記第2共振器(受電共振器)の共振周波数(fr)よりも低い第1の周波数(f1)で駆動すると、前記キャパシタに電流が流れないので、前記第2コイルの両端が実質的に開放されている状態を作り出せる。また、前記共振周波数(fr)よりも高い第2の周波数(f2)で駆動すると、前記キャパシタに電流が流れるので、前記第2コイルの両端が短絡している状態を作り出せる。
よって、前記第2共振器の両端が実質的に開放されて見える状態の時の前記第1共振器(送電共振器)の入力インダクタンス値Lin(f1)を測定するには、前記発振回路で第1の周波数(f1)の前記交流電力を発振し、前記第1共振器の入力インダクタンス値Lin(f1)を測定すればよい。また、前記第2コイルの両端が短絡しているように見える状態の時の前記第1共振器の入力インダクタンス値Lin(f2)を測定するには、前記発振回路で第2の周波数(f2)の前記交流電力を発振し、前記第1共振器の入力インダクタンス値Lin(f2)を測定すればよい。測定した前記第1共振器の入力インダクタンス値Lin(f1)と入力インダクタンス値Lin(f2)から前記結合係数を算出することができる。
例えば、特許文献3では、結合係数を算出するために、前記第2コイルの両端が実質的に開放されている状態と短絡している状態とに切り替える短絡用スイッチおよび前記短絡用スイッチを制御する第1の制御回路とが受電装置に必要である。また、前記第1の制御回路による前記短絡用スイッチの切替えを制御する第2の制御回路を前記送電装置に設ける必要がある。
従って、本開示の第1の態様によると、前記第2コイルの両端にキャパシタを設けるだけで、前記第2コイルの両端が実質的に開放されている状態と前記第2コイルの両端が短絡している状態とを作り出すことができる。そのため、前記第2コイルの両端に設けた前記短絡用スイッチ及び前記第1の制御回路を前記受電装置に設ける必要はなく、前記送電装置から信号を送って前記短絡用スイッチを制御する煩わしさをなくすことができる。その結果、前記結合係数を用いて位置あわせを行うので、コスト増を招くことなく、簡易な構成で前記負荷が変動しても高精度で位置あわせを行うことができる。
本開示の第2の態様に係る送電装置は、本開示の第1の態様に係る送電装置において、前記発振回路に送電周波数、前記第1の周波数(f1)及び前記第2の周波数(f2)を設定し、
前記送電周波数を用いて前記送電装置から前記受電装置に無線電力を送電させ、また、前記第1の周波数(f1)及び前記第2の周波数(f2)を用いて前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる制御回路を備える。
上記態様によると、前記1つの発振回路で、前記送電装置から前記受電装置に、前記送電周波数の前記無線電力を送電し、前記第1の周波数(f1)及び前記第2の周波数(f2)の前記交流電力を送電するので、部品点数が減りコストダウンが図れる。
本開示の第3の態様に係る送電装置は、本開示の第1〜2のうちのいずれか1つの態様に係る送電装置において、
前記第2コイルが短絡しているとき、前記第1の周波数f1に対応する入力インダクタンス値と前記第2の周波数f2に対応する入力インダクタンス値とが実質的に等しい。
本開示の第4の態様に係る送電装置は、本開示の第1〜3のうちのいずれか1つの態様に係る送電装置において、
前記測定回路は、前記発振回路が前記1の周波数から前記第2の周波数に切替え、また、前記2の周波数から前記第1の周波数に切替えてから所定の時間経過後、前記発振された交流電力の電圧、電流の振幅などを監視し、前記振幅が一定幅に収束したときに前記入力インダクタンス値を測定する。
上記態様によると、発振周波数を切替えた瞬間は過渡応答があり測定値が安定しないため、所定時間経過後に測定を開始することで精度よく入力インダクタンスを測定することができる。
本開示の第5の態様に係る送電装置は、本開示の第1〜4のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる。
上記態様によると、前記第1共振器に対する前記第2共振器の位置あわせが完了してから、前記送電装置から前記受電装置に前記無線電力を送電する。従って、安全性を確保しつつ、前記送電装置から前記受電装置に高い伝送効率で前記無線電力を伝送できる。
本開示の第6の態様に係る送電装置は、本開示の第1〜5のうちのいずれか1つの態様に係る送電装置において、
前記第1共振器は、無線電力伝送に使用される送電コイルを含み、
前記発振回路と前記送電コイルとの間の電気的接続を切り替えるスイッチを備え、
前記無線電力伝送の送電時に、前記スイッチによって、前記発振回路と前記送電コイルとの間の電気的接続を遮断する。
上記態様によると、送電時の前記無線電力は、前記位置検出時に出力する交流電力より大きい。よって、送電時の前記無線電力によって、前記発振回路を焼損する可能性がある場合は、前記送電共振器と発振回路との間に前記スイッチを設けて両者の間を送電時に電気的に遮断して、前記位置検出を行う前記発振回路に前記無線電力が侵入してくることを防止することができる。
本開示の第7の態様に係る送電装置は、本開示の第1〜6のうちのいずれか1つの態様に係る送電装置において、
前記送電装置から前記受電装置に前記無線電力を送電する際に使用される第3コイルを含む第3共振器を、前記第1共振器とは別個に設けた。
上記態様によると、位置あわせのための前記第1コイル(検出コイル)を備えた前記第1共振器を別にすることにより、前記第1コイルと前記第3コイル(送電コイル)とを異なる位置に配置できるため、前記送電装置の設計の自由度が向上する。
また、送電中に前記第2コイル(受電コイル)が移動するような環境(例えば、車載充電器や、自走式ロボット、走行中給電)においては、送電しながら結合係数の時間変化をリアルタイムに計測できる。この計測結果に基づき、例えば結合係数の時間的変化に応じて送電周波数を最適な値に変更し、安全に送電を停止することができる。これにより、安全性を高め、かつ、伝送効率を高めることができる。
本開示の第8の態様に係る送電装置は、本開示の第1〜7のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、
前記無線電力の送電を停止させた後、前記第1共振器に蓄積されたエネルギをグランドに放出する制御を行い、前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる。
上記態様によると、無線電力伝送中にコイルに蓄積されたエネルギをグランドに逃がしてから位置あわせモードに移行する。こうすることにより、位置あわせの処理用の回路の焼損を防ぐことができる。
本開示の第9の態様に係る送電装置は、本開示の第1〜8のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる。
本開示の第10の態様に係る送電装置は、本開示の第1〜9のうちのいずれか1つの態様に係る送電装置において、
前記送電コイルに電力を供給する送電回路と、
前記送電回路および前記発振回路を制御する前記制御回路と、
を備え、
前記制御回路は、前記測定回路の測定結果に応じて前記送電回路を制御し、送電状態を調整する。
上記態様によると、前記測定回路による検出結果に基づき、例えば前記結合係数の時間的変化に応じて送電周波数および送電電圧を最適な値に決定し、安全に送電を停止することができる。これにより、無線電力伝送システムの安全性を高め、かつ、伝送効率を高めることができる。
本開示の第11の態様に係る送電装置は、本開示の第1〜10のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記測定回路による検出結果に応じて送電周波数および送電電圧を決定する。
上記態様によると、前記測定回路による検出結果に基づき、例えば前記結合係数の時間的変化に応じて送電周波数および送電電圧の初期値を最適な値に決定し、安全に送電を停止することができる。これにより、無線電力伝送システムの安全性を高め、かつ、伝送効率を高めることができる。
本開示の第12の態様に係る送電装置は、本開示の第1〜11のうちのいずれか1つの態様に係る送電装置において、
前記送電装置は、表示素子を有し、
前記制御回路は、前記結合係数kが所定値を超えたとき前記表示素子を表示させる。
上記態様によると、前記結合係数kが所定値を超えたとき、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあると判断する。前記判断結果によって、例えば、前記送電装置または前記受電装置に設けられた光源、ディスプレイ、スピーカなどの前記表示素子を表示させる。そして、前記表示素子から光、映像、音声などの情報として使用者に通知し、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示素子は、視覚的情報を提示する素子に限定されず、聴覚的情報(音または音声)のみを提示する素子をも広く含むものとする。
本開示の第13の態様に係る送電装置は、本開示の第1〜12のうちのいずれか1つの態様に係る送電装置において、
前記受電装置は、表示部を有し、
前記制御回路は、前記結合係数kが所定値を超えたとき、前記受電装置が前記送電装置から送電可能な領域に位置していることを示す表示情報を前記表示部に表示させるための制御コマンドを、前記受電装置に送出させる制御を行う。
上記態様によれば、前記受電装置に表示部を設けている。一般的な場合では、前記受電装置は前記送電装置の上側に位置するので、前記送電装置に設けられた前記表示部が前記受電装置で隠れてしまう場合がある。従って、前記送電装置の上側に位置する前記受電装置に前記表示部を設けることで、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示部は、例えば、スマ−トフォンのような面積が広い表示画面であってもよい。また、前記表示部は、前記表示素子であってもよい。
本開示の第14の態様に係る送電装置は、
第1コイルを含む第1共振器を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器及び負荷を備えた受電装置の位置を検出する送電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器のインダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)に対応する第1インダクタンス値が前記第1の周波数(f1)の2乗に反比例するとき、且つ、前記第2の周波数(f2)に対応する第2インダクタンスが前記第2の周波数(f2)の2乗に反比例するとき、k2=1−(f1)2/(f2)2の式によって算出される結合係数kを算出し、前記結合係数kに基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する。
上記態様によると、前記発振回路が自励式の発振回路の場合、前記入力インダクタンス値をLとし、前記キャパシタをCとすると、前記自励式の発振回路の周波数fはLC共振原理に基づく発振回路である場合、f=1/(2π×(LC)^(1/2))の式で表すことができる。容量Cは回路定数で既知であるから、前記入力インダクタンス値Lが前記発振回路の周波数の2乗に反比例するので、前記結合係数の式であるk2=1−Lin(f2)/Lin(f1)をk2=1−f12/f22の式に置き換えることができる。このことにより、前記測定回路で前記入力インダクタンスを測定していたが、前記発振回路が発振する周波数f1及びf2の値を用いればよい。よって、前記測定回路で前記入力インダクタンスを測定する必要がなくなるので、前記結合係数を速く算出することができる。なお、前記周波数f1及び前記周波数f2の値は、前記第1共振器の前記周波数f1及び前記周波数f2を前記測定回路が測定してもよい。また、他の発振回路でも同様の考え方が適用でき当業者では容易に類推可能である。
本開示の第15の態様に係る送電装置は、本開示の第14の態様に係る送電装置において、
前記発振回路に送電周波数、前記第1の周波数(f1)及び前記第2の周波数(f2)を設定し、
前記送電周波数を用いて前記送電装置から前記受電装置に無線電力を送電させ、また、前記第1の周波数(f1)及び前記第2の周波数(f2)を用いて前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる制御回路を備える。
上記態様によると、前記1つの発振回路で、前記送電装置から前記受電装置に、前記送電周波数の前記無線電力を送電し、前記第1の周波数(f1)及び前記第2の周波数(f2)の前記交流電力を送電するので、部品点数が減りコストダウンが図れる。
本開示の第16の態様に係る送電装置は、本開示の第14〜15のうちのいずれか1つの態様に係る送電装置において、
前記第2コイルが短絡しているとき、前記第1の周波数f1に対応する入力インダクタンス値と前記第2の周波数f2に対応する入力インダクタンス値とが実質的に等しい。
本開示の第17の態様に係る送電装置は、本開示の第14〜16のうちのいずれか1つの態様に係る送電装置において、
前記測定回路は、前記発振回路が前記1の周波数から前記第2の周波数に切替え、また、前記2の周波数から前記第1の周波数に切替えてから所定の時間経過後、前記発振された交流電力の電圧、電流の振幅などを監視し、前記振幅が一定幅に収束したときに前記入力インダクタンス値を測定する。
上記態様によると、発振周波数を切替えた瞬間は過渡応答があり測定値が安定しないため、所定時間経過後に測定を開始することで精度よく入力インダクタンスを測定することができる。
本開示の第18の態様に係る送電装置は、本開示の第14〜17のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる。
上記態様によると、前記第1共振器に対する前記第2共振器の位置あわせが完了してから、前記送電装置から前記受電装置に前記無線電力を送電する。従って、安全性を確保しつつ、前記送電装置から前記受電装置に高い伝送効率で前記無線電力を伝送できる。
本開示の第19の態様に係る送電装置は、本開示の第14〜18のうちのいずれか1つの態様に係る送電装置において、
前記第1共振器は、無線電力伝送に使用される送電コイルを含み、
前記発振回路と前記送電コイルとの間の電気的接続を切り替えるスイッチを備え、
前記無線電力伝送の送電時に、前記スイッチによって、前記発振回路と前記送電コイルとの間の電気的接続を遮断する。
上記態様によると、送電時の前記無線電力は、前記位置検出時に出力する交流電力より大きい。よって、送電時の前記無線電力によって、前記発振回路を焼損する可能性がある場合は、前記送電共振器と発振回路との間に前記スイッチを設けて両者の間を送電時に電気的に遮断して、前記位置検出を行う前記発振回路に前記無線電力が侵入してくることを防止することができる。
本開示の第20の態様に係る送電装置は、本開示の第14〜19のうちのいずれか1つの態様に係る送電装置において、
前記送電装置から前記受電装置に前記無線電力を送電する際に使用される第3コイルを含む第3共振器を、前記第1共振器とは別個に設けた。
上記態様によると、位置あわせのための前記第1コイル(検出コイル)を備えた前記第1共振器を別にすることにより、前記第1コイルと前記第3コイル(送電コイル)とを異なる位置に配置できるため、前記送電装置の設計の自由度が向上する。
また、送電中に前記第2コイル(受電コイル)が移動するような環境(例えば、車載充電器や、自走式ロボット、走行中給電)においては、送電しながら結合係数の時間変化をリアルタイムに計測できる。この計測結果に基づき、例えば結合係数の時間的変化に応じて送電周波数を最適な値に変更し、安全に送電を停止することができる。これにより、安全性を高め、かつ、伝送効率を高めることができる。
本開示の第21の態様に係る送電装置は、本開示の第14〜20のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、
前記無線電力の送電を停止させた後、前記第1共振器に蓄積されたエネルギをグランドに放出する制御を行い、前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる。
上記態様によると、無線電力伝送中にコイルに蓄積されたエネルギをグランドに逃がしてから位置あわせモードに移行する。こうすることにより、位置あわせの処理用の回路の焼損を防ぐことができる。
本開示の第22の態様に係る送電装置は、本開示の第14〜21のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる。
本開示の第23の態様に係る送電装置は、本開示の第14〜22のうちのいずれか1つの態様に係る送電装置において、
前記送電コイルに電力を供給する送電回路と、
前記送電回路および前記発振回路を制御する前記制御回路と、
を備え、
前記制御回路は、前記測定回路の測定結果に応じて前記送電回路を制御し、送電状態を調整する。
上記態様によると、前記測定回路による検出結果に基づき、例えば前記結合係数の時間的変化に応じて送電周波数および送電電圧を最適な値に決定し、安全に送電を停止することができる。これにより、無線電力伝送システムの安全性を高め、かつ、伝送効率を高めることができる。
本開示の第24の態様に係る送電装置は、本開示の第14〜23のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記測定回路による検出結果に応じて送電周波数および送電電圧を決定する。
上記態様によると、前記測定回路による検出結果に基づき、例えば前記結合係数の時間的変化に応じて送電周波数および送電電圧の初期値を最適な値に決定し、安全に送電を停止することができる。これにより、無線電力伝送システムの安全性を高め、かつ、伝送効率を高めることができる。
本開示の第25の態様に係る送電装置は、本開示の第14〜24のうちのいずれか1つの態様に係る送電装置において、
前記送電装置は、表示素子を有し、
前記制御回路は、前記結合係数kが所定値を超えたとき前記表示素子を表示させる。
上記態様によると、前記結合係数kが所定値を超えたとき、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあると判断する。前記判断結果によって、例えば、前記送電装置または前記受電装置に設けられた光源、ディスプレイ、スピーカなどの前記表示素子を表示させる。そして、前記表示素子から光、映像、音声などの情報として使用者に通知し、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示素子は、視覚的情報を提示する素子に限定されず、聴覚的情報(音または音声)のみを提示する素子をも広く含むものとする。
本開示の第26の態様に係る送電装置は、本開示の第14〜25のうちのいずれか1つの態様に係る送電装置において、
前記受電装置は、表示部を有し、
前記制御回路は、前記結合係数kが所定値を超えたとき、前記受電装置が前記送電装置から送電可能な領域に位置していることを示す表示情報を前記表示部に表示させるための制御コマンドを、前記受電装置に送出させる制御を行う。
上記態様によれば、前記受電装置に表示部を設けている。一般的な場合では、前記受電装置は前記送電装置の上側に位置するので、前記送電装置に設けられた前記表示部が前記受電装置で隠れてしまう場合がある。従って、前記送電装置の上側に位置する前記受電装置に前記表示部を設けることで、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示部は、例えば、スマ−トフォンのような面積が広い表示画面であってもよい。また、前記表示部は、前記表示素子であってもよい。
本開示の第27の態様に係る送電装置は、
第1コイルを含む第1共振器を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器及び負荷を備えた受電装置の位置を検出する送電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で無線電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器の入力インダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f2)を検出し、
前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比に基づいて、前記第1共振器に対する前記第2共振器の相対位置を検出する。
上記態様によると、前記第1共振器に対する前記第2共振器の相対位置を検出は、前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比に基づいて、行っている。「前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比に基づいて」の意味について説明する。
結合係数kを算出する式1[k2=1−Lin(f2)/Lin(f1)]は、
式2[Lin(f2)/Lin(f1)=1−k2]に変形できる。よって、Lin(f2)/Lin(f1)が決まると、結合係数を一意的に決めることができる。従って、前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比に基づいて、前記第1共振器に対する前記第2共振器の相対位置を検出できる。
前記入力インダクタンス値Lin(f2)はキャパシタが短絡した状態になるので、負荷変動の影響を受けない。一方、前記入力インダクタンス値Lin(f1)はキャパシタが解放した状態になるので、負荷変動の影響を受ける。
しかし、特許文献1における結合係数の推定は、受電装置の負荷を変化させ、送電側から所定の周波数範囲において反射係数を測定して、結合係数を推定する。その場合、負荷が変動すると反射係数も変動し、結合係数も変動してしまう。その結果、正確な位置あわせができなくなる。このように、特許文献1のような負荷変動がダイレクトに結合係数の変動となる推定方法に比べ、上記態様である式2の分母である前記入力インダクタンス値Lin(f1)のみが負荷変動を受ける結合係数の方が、位置あわせを正確に行うことができる。そして、前記第2コイルの両端にキャパシタを設けるだけなので、前記受電装置に配置される前記短絡用スイッチや制御回路が不要となり、前記送電装置から信号を送って前記短絡用スイッチを制御しなければならないという煩わしさをなくすことができる。そして、コストの増加はほとんど招かない。
また、上記態様において、前記受電回路と前記負荷との間の電気的接続の導通または非導通を切り替える短絡用負荷スイッチを設け、前記第1共振器に対する前記第2共振器の相対位置を検出している間は、前記短絡用負荷スイッチにより、前記受電回路と前記負荷との間の電気的接続を非導通とし、負荷変動の影響を受けないようにしてもよい。このようにすることで、前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比に基づいて、前記第1共振器に対する前記第2共振器の相対位置を検出する場合でも高精度に位置あわせを行うことができる。
一般的には、前記受電回路と前記負荷との間に、前記負荷に過電流が流れないように保護回路が設けられている。この保護回路を用いて、前記負荷の変動幅が閾値を超えたとき、前記受電回路と前記負荷との間の電気的接続を非導通としてもよい。また、送電前に受電回路と負荷の間の電気的接続を非道通にすることで、前述の入力インダクタンス値Lin(f1)は負荷の影響を排除できさらに高精度に結合係数を推定することが可能である。
本開示の第28の態様に係る送電装置は、本開示の第27の態様に係る送電装置において、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f2)を検出し、
前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比の値と所定の基準値との差が所定の閾値以下の時、前記受電装置が前記送電装置から送電可能な領域に位置していると判断する。
上記態様によると、前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比である、Lin(f2)/Lin(f1)またはLin(f1)/Lin(f2)の値と所定の基準値との差が所定の閾値以下の時、前記受電装置が前記送電装置から送電可能な領域に位置していると判断する。この方法により、Lin(f2)/Lin(f1)またはLin(f1)/Lin(f2)という単純な計算で、前記受電装置が前記送電装置から送電可能な領域に位置していると判断できる。式1のような複雑な計算処理で結合係数kを求める必要がなくなるので、前記測定回路の計算処理の負荷が低減できる。
本開示の第29の態様に係る送電装置は、本開示の第27〜28のうちのいずれか1つの態様に係る送電装置において、
前記発振回路に送電周波数、前記第1の周波数(f1)及び前記第2の周波数(f2)を設定し、
前記送電周波数を用いて前記送電装置から前記受電装置に無線電力を送電させ、また、前記第1の周波数(f1)及び前記第2の周波数(f2)を用いて前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる制御回路を備える。
上記態様によると、前記1つの発振回路で、前記送電装置から前記受電装置に、前記送電周波数の前記無線電力を送電し、前記第1の周波数(f1)及び前記第2の周波数(f2)の前記交流電力を送電するので、部品点数が減りコストダウンが図れる。
本開示の第30の態様に係る送電装置は、本開示の第27〜29のうちのいずれか1つの態様に係る送電装置において、
前記第2コイルが短絡しているとき、前記第1の周波数f1に対応する入力インダクタンス値と前記第2の周波数f2に対応する入力インダクタンス値とが実質的に等しい。
本開示の第31の態様に係る送電装置は、本開示の第27〜30のうちのいずれか1つの態様に係る送電装置において、
前記測定回路は、前記発振回路が前記1の周波数から前記第2の周波数に切替え、また、前記2の周波数から前記第1の周波数に切替えてから所定の時間経過後、前記発振された交流電力の電圧、電流の振幅などを監視し、前記振幅が一定幅に収束したときに前記入力インダクタンス値を測定する。
上記態様によると、発振周波数を切替えた瞬間は過渡応答があり測定値が安定しないため、所定時間経過後に測定を開始することで精度よく入力インダクタンスを測定することができる。
本開示の第32の態様に係る送電装置は、本開示の第27〜31のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる。
上記態様によると、前記第1共振器に対する前記第2共振器の位置あわせが完了してから、前記送電装置から前記受電装置に前記無線電力を送電する。従って、安全性を確保しつつ、前記送電装置から前記受電装置に高い伝送効率で前記無線電力を伝送できる。
本開示の第33の態様に係る送電装置は、本開示の第27〜32のうちのいずれか1つの態様に係る送電装置において、
前記第1共振器は、無線電力伝送に使用される送電コイルを含み、
前記発振回路と前記送電コイルとの間の電気的接続を切り替えるスイッチを備え、
前記無線電力伝送の送電時に、前記スイッチによって、前記発振回路と前記送電コイルとの間の電気的接続を遮断する。
上記態様によると、送電時の前記無線電力は、前記位置検出時に出力する交流電力より大きい。よって、送電時の前記無線電力によって、前記発振回路を焼損する可能性がある場合は、前記送電共振器と発振回路との間に前記スイッチを設けて両者の間を送電時に電気的に遮断して、前記位置検出を行う前記発振回路に前記無線電力が侵入してくることを防止することができる。
本開示の第34の態様に係る送電装置は、本開示の第27〜33のうちのいずれか1つの態様に係る送電装置において、
前記送電装置から前記受電装置に前記無線電力を送電する際に使用される第3コイルを含む第3共振器を、前記第1共振器とは別個に設けた。
上記態様によると、位置あわせのための前記第1コイル(検出コイル)を備えた前記第1共振器を別にすることにより、前記第1コイルと前記第3コイル(送電コイル)とを異なる位置に配置できるため、前記送電装置の設計の自由度が向上する。
また、送電中に前記第2コイル(受電コイル)が移動するような環境(例えば、車載充電器や、自走式ロボット、走行中給電)においては、送電しながら結合係数の時間変化をリアルタイムに計測できる。この計測結果に基づき、例えば結合係数の時間的変化に応じて送電周波数を最適な値に変更し、安全に送電を停止することができる。これにより、安全性を高め、かつ、伝送効率を高めることができる。
本開示の第35の態様に係る送電装置は、本開示の第27〜34のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、
前記無線電力の送電を停止させた後、前記第1共振器に蓄積されたエネルギをグランドに放出する制御を行い、前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる。
上記態様によると、無線電力伝送中にコイルに蓄積されたエネルギをグランドに逃がしてから位置あわせモードに移行する。こうすることにより、位置あわせの処理用の回路の焼損を防ぐことができる。
本開示の第36の態様に係る送電装置は、本開示の第27〜35のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる。
本開示の第37の態様に係る送電装置は、本開示の第27〜36のうちのいずれか1つの態様に係る送電装置において、
前記送電コイルに電力を供給する送電回路と、
前記送電回路および前記発振回路を制御する前記制御回路と、
を備え、
前記制御回路は、前記測定回路の測定結果に応じて前記送電回路を制御し、送電状態を調整する。
上記態様によると、前記測定回路による検出結果に基づき、例えば前記結合係数の時間的変化に応じて送電周波数および送電電圧を最適な値に決定し、安全に送電を停止することができる。これにより、無線電力伝送システムの安全性を高め、かつ、伝送効率を高めることができる。
本開示の第38の態様に係る送電装置は、本開示の第27〜37のうちのいずれか1つの態様に係る送電装置において、
前記制御回路は、前記測定回路による検出結果に応じて送電周波数および送電電圧を決定する。
上記態様によると、前記測定回路による検出結果に基づき、例えば前記結合係数の時間的変化に応じて送電周波数および送電電圧の初期値を最適な値に決定し、安全に送電を停止することができる。これにより、無線電力伝送システムの安全性を高め、かつ、伝送効率を高めることができる。
本開示の第39の態様に係る送電装置は、本開示の第27〜38のうちのいずれか1つの態様に係る送電装置において、
前記送電装置は、表示素子を有し、
前記制御回路は、前記結合係数kが所定値を超えたとき前記表示素子を表示させる。
上記態様によると、前記結合係数kが所定値を超えたとき、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあると判断する。前記判断結果によって、例えば、前記送電装置または前記受電装置に設けられた光源、ディスプレイ、スピーカなどの前記表示素子を表示させる。そして、前記表示素子から光、映像、音声などの情報として使用者に通知し、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示素子は、視覚的情報を提示する素子に限定されず、聴覚的情報(音または音声)のみを提示する素子をも広く含むものとする。
本開示の第40の態様に係る送電装置は、本開示の第27〜39のうちのいずれか1つの態様に係る送電装置において、
前記受電装置は、表示部を有し、
前記制御回路は、前記結合係数kが所定値を超えたとき、前記受電装置が前記送電装置から送電可能な領域に位置していることを示す表示情報を前記表示部に表示させるための制御コマンドを、前記受電装置に送出させる制御を行う。
上記態様によると、前記受電装置に表示部を設けている。一般的な場合では、前記受電装置は前記送電装置の上側に位置するので、前記送電装置に設けられた前記表示部が前記受電装置で隠れてしまう場合がある。従って、前記送電装置の上側に位置する前記受電装置に前記表示部を設けることで、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示部は、例えば、スマ−トフォンのような面積が広い表示画面であってもよい。また、前記表示部は、前記表示素子であってもよい。
本開示の第41の態様に係る受電装置は、
第1コイルを含む第1共振器及び負荷を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器を備えた送電装置の位置を検出する受電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器の入力インダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f2)を検出し、k2=1−Lin(f2)/Lin(f1)の式によって算出される結合係数kを算出し、前記結合係数kに基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する。
上記態様によると、前記第2コイルの両端にキャパシタを設け、前記第2コイル及びキャパシタを含む並列共振回路を前記送電装置に設ける。このことにより、前記発振回路で前記第1共振器(受電共振器)の共振周波数(fr)よりも低い第1の周波数(f1)で駆動すると、前記キャパシタに電流が流れないので、前記第2コイルの両端が実質的に開放されている状態を作り出せる。また、前記共振周波数(fr)よりも高い第2の周波数(f2)で駆動すると、前記キャパシタに電流が流れるので、前記第2コイルの両端が短絡している状態を作り出せる。
よって、前記第2共振器(送電共振器)の両端が実質的に開放されて見える状態の時の前記第2共振器の入力インダクタンス値Lin(f1)を測定するには、前記発振回路で第1の周波数(f1)の前記交流電力を発振し、前記第1共振器の入力インダクタンス値Lin(f1)を測定すればよい。また、前記第2コイルの両端が短絡しているように見える状態の時の前記第1共振器の入力インダクタンス値Lin(f2)を測定するには、前記発振回路で第2の周波数(f2)の前記交流電力を発振し、前記第1共振器の入力インダクタンス値Lin(f2)を測定すればよい。測定した前記第1共振器の入力インダクタンス値Lin(f1)と入力インダクタンス値Lin(f2)から前記結合係数を算出することができる。
例えば、特許文献3では、結合係数を算出するために、前記第2コイルの両端が実質的に開放されている状態と短絡している状態とに切り替える短絡用スイッチおよび前記短絡用スイッチを制御する第1の制御回路とが受電装置に必要である。従って、本開示の一態様によると、前記第2コイルの両端にキャパシタを設けるだけで、前記第2コイルの両端が実質的に開放されている状態と前記第2コイルの両端が短絡している状態とを作り出すことができる。そのため、前記第2コイルの両端に設けた前記短絡用スイッチ及び第1の制御回路を前記送電装置に設ける必要はない。その結果、前記結合係数を用いて位置あわせを行うので、コスト増を招くことなく、簡易な構成で前記負荷が変動しても高精度で位置あわせを行うことができる。
なお、前記「コイルの両端」における「コイル」の定義は、コイル部品単体のみに限定されない。
例えば、送電共振器には送電コイルと直列の共振コンデンサが含まれていてもよい。前記送電コイルと前記直列の共振コンデンサを合成した直列インピーダンスが、位置検出を行う周波数f1、f2において誘導性に見える場合、等価的なコイル(単に、等価コイルと呼んでもよい)として扱うことができる。従って、前記等価コイルの両端に並列コンデンサを備えることでも同様の効果を得ることができるので、「コイルの両端」における「コイル」の定義は、コイル部品単体のみに限定されない。
本開示の第42の態様に係る受電装置は、本開示の第41の態様に係る受電装置において、
前記受電装置は、表示部を有し、前記制御回路は、前記結合係数kが所定値を超えたとき、前記受電装置が前記送電装置から送電可能な領域に位置していることを示す表示情報を前記表示部に表示する。
上記態様によると、前記受電装置に表示部を設けている。一般的な場合では、前記受電装置は前記送電装置の上側に位置するので、前記送電装置に設けられた前記表示素子が前記受電装置で隠れてしまう場合がある。従って、前記送電装置の上側に位置する前記受電装置に前記表示部を設けることで、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示部は、例えば、スマ−トフォンのような面積が広い表示画面であってもよい。また、前記表示部は、小さな表示部であってもよい。
本開示の第43の態様に係る受電装置は、
第1コイルを含む第1共振器及び負荷を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器を備えた送電装置の位置を検出する受電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器の入力インダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)に対応する第1インダクタンス値が前記第1の周波数(f1)の2乗に反比例するとき、且つ、前記第2の周波数(f2)に対応する第2インダクタンスが前記第2の周波数(f2)の2乗に反比例するとき、k2=1−(f1)2/(f2)2の式によって算出される結合係数kを算出し、前記結合係数kに基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する。
本開示の第44の態様に係る受電装置は、本開示の第43の態様に係る受電装置において、
前記受電装置は、表示部を有し、前記制御回路は、前記結合係数kが所定値を超えたとき、前記受電装置が前記送電装置から送電可能な領域に位置していることを示す表示情報を前記表示部に表示させる。
上記態様によると、前記受電装置に表示部を設けている。一般的な場合では、前記受電装置は前記送電装置の上側に位置するので、前記送電装置に設けられた前記表示素子が前記受電装置で隠れてしまう場合がある。従って、前記送電装置の上側に位置する前記受電装置に前記表示部を設けることで、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示部は、例えば、スマ−トフォンのような面積が広い表示画面であってもよい。また、前記表示部は、小さな表示部であってもよい。
本開示の第45の態様に係る送電装置は、
第1コイルを含む第1共振器及び負荷を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器を備えた送電装置の位置を検出する受電装置であって、
前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器の入力インダクタンス値を測定する測定回路と、を備え、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f2)を検出し、
前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比に基づいて、前記第1共振器に対する前記第2共振器の相対位置を検出する。
本開示の第46の態様に係る送電装置は、本開示の第45の態様に係る受電装置において、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記無線電力を発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f2)を検出し、
前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比の値と所定の基準値との差が所定の閾値以下の時、前記受電装置が前記送電装置から送電可能な領域に位置していると判断する。
上記態様によると、前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比である、Lin(f2)/Lin(f1)またはLin(f1)/Lin(f2)の値と所定の基準値との差が所定の閾値以下の時、前記受電装置が前記送電装置から送電可能な領域に位置していると判断する。この方法により、Lin(f2)/Lin(f1)またはLin(f1)/Lin(f2)という単純な計算で、前記受電装置が前記送電装置から送電可能な領域に位置していると判断できる。式1のような複雑な計算処理で結合係数kを求める必要がなくなるので、前記測定回路の計算処理の負荷が低減できる。
本開示の第47の態様に係る送電装置は、本開示の第45〜46のうちのいずれか1つの態様に係る受電装置において、
前記受電装置は、表示部を有し、前記制御回路は、前記結合係数kが所定値を超えたとき、前記受電装置が前記送電装置から送電可能な領域に位置していることを示す表示情報を前記表示部に表示する。
上記態様によると、前記受電装置に表示部を設けている。一般的な場合では、前記受電装置は前記送電装置の上側に位置するので、前記送電装置に設けられた前記表示素子が前記受電装置で隠れてしまう場合がある。従って、前記送電装置の上側に位置する前記受電装置に前記表示部を設けることで、前記受電共振器の位置が前記送電共振器に対して適切な位置(充電可能な位置)にあることを使用者に知らせることができる。前記表示部は、例えば、スマ−トフォンのような面積が広い表示画面であってもよい。また、前記表示部は、小さな表示部であってもよい。
本開示の第48の態様に係る無線電力伝送システムは、本開示の第1〜40のうちのいずれか1つの態様に係る送電装置と、前記受電装置を備える。
本開示の第49の態様に係る無線電力伝送システムは、本開示の第41〜47のうちのいずれか1つの態様に係る受電装置と、前記送電装置を備える。
本開示の第50の態様に係る無線電力伝送システムは、本開示の第1〜40のうちのいずれか1つの態様に係る送電装置と本開示の第41〜47のうちのいずれか1つの態様に係る受電装置とを備える。
本開示の第51の態様に係る無線電力伝送システムは、
第1コイルを含む第1共振器と、前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路とを備えた送電装置と、
第2コイル及びキャパシタを含む並列共振回路を有する第2共振器と、負荷と、前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第2共振器のインダクタンス値を測定する測定回路とを備えた受電装置とを有し、
前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第2共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記交流電力を発振しているときに前記測定回路が測定した前記第2共振器の入力インダクタンス値Lin(f2)を検出し、k2=1−Lin(f2)/Lin(f1)の式によって算出される結合係数kを算出し、前記結合係数kに基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する。
本開示の第52の態様に係る位置検出装置は、コイルおよびキャパシタを含む並列共振回路から構成された第2共振器に電磁的に結合した第1共振器に対する前記第2共振器の相対位置を検出する位置検出装置であって、第1共振器と、第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)および前記共振周波数(fr)よりも高い第2の周波数(f2)で発振可能な発振回路と、前記第1共振器の入力インダクタンス値を測定する測定回路と、を備え、前記測定回路は、前記第1の周波数f1で前記発振回路が発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が発振しているときに前記測定回路が測定した前記第1共振器の入力インダクタンス値Lin(f2)との比に基づいて、前記第1共振器に対する前記第2共振器の相対位置を検出する。
本開示の第53の態様に係る位置検出装置は、本開示の第52の態様に係る位置検出装置において、前記測定回路は、k2=1−Lin(f2)/Lin(f1)の式よって算出される結合係数kに基づいて前記相対位置を検出する。
本開示の第54の態様に係る位置検出装置は、本開示の第52〜53のうちのいずれか1つの態様に係る位置検出装置において、前記発振回路は、自励式の発振回路であり、かつ、前記入力インダクタンス値が発振周波数の2乗に反比例するように構成されており、前記測定回路は、k2=1−f12/f22の式によって算出される結合係数kに基づいて前記相対位置を検出する。
本開示の第55の態様に係る位置検出装置は、本開示の第52〜54のうちのいずれか1つの態様に係る位置検出装置において、前記コイルが短絡しているときの前記入力インダクタンスが第1の周波数f1と第2の周波数f2とで一致するように構成されている。
本開示の第56の態様に係る位置検出装置は、本開示の第52〜55のうちのいずれか1つの態様に係る位置検出装置において、前記測定回路は、前記発振回路の周波数を切替えてから所定の時間経過後、発振が安定した時点で前記入力インダクタンス値を測定するように構成されている。
本開示の第57の態様に係る位置検出装置は、本開示の第52〜56のうちのいずれか1つの態様に係る位置検出装置において、前記第1共振器は、無線電力伝送に使用される送電コイルを含み、前記発振回路と前記送電コイルとの間の電気的接続を切り替えるスイッチを備え、前記スイッチによって無線電力伝送の送電モードと位置検出モードとを切替える。
本開示の第58の態様に係る位置検出装置は、本開示の第52〜57のうちのいずれか1つの態様に係る位置検出装置において、前記第1共振器は、無線電力伝送に使用される送電コイルとは異なる検出コイルを含み、前記第2共振器のコイルと前記検出コイルとの間の結合係数の算出値に基づいて、前記第2共振器のコイルの前記検出コイルに対する相対位置を検出する。
本開示の第59の態様に係る位置検出装置は、本開示の第52〜58のうちのいずれか1つの態様に係る位置検出装置において、無線電力伝送の送電モードから位置検出モードに切替えるとき、送電停止後、前記第1共振器に蓄積されたエネルギをグランドに放出し、位置検出モードに移行する。
本開示の第60の態様に係る位置検出装置は、電磁的に結合した第1共振器に対する第2共振器の相対位置を検出する位置検出装置であって、前記第1共振器は、前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)および前記共振周波数(fr)よりも高い第2の周波数(f2)で発振可能な発振回路に接続されており、前記発振回路は、自励式の発振回路であり、かつ、前記第1共振器の入力インダクタンス値が発振周波数の2乗に反比例するように構成されており、前記位置検出装置は、コイルおよびキャパシタを含む並列共振回路から構成された第2共振器と、前記第2共振器の周波数を測定する測定回路と、を備え、前記測定回路は、前記第1の周波数f1で前記発振回路が発振しているときに前記測定回路が測定した周波数f1と、前記第2の周波数f2で前記発振回路が発振しているときに前記測定回路が測定した周波数f2との比に基づいて、前記第1共振器に対する前記第2共振器の相対位置を検出する。
本開示の第61の態様に係る位置検出装置は、コイルおよびキャパシタを含む並列共振回路から構成された第1共振器に電磁的に結合した第2共振器に対する前記第1共振器の相対位置を検出する位置検出装置であって、第2共振器と、第1共振器の共振周波数(fr)よりも低い第1の周波数(f1)および前記共振周波数(fr)よりも高い第2の周波数(f2)で発振可能な発振回路と、前記第2共振器の入力インダクタンス値を測定する測定回路と、を備え、前記測定回路は、前記第1の周波数f1で前記発振回路が発振しているときに前記測定回路が測定した前記第2共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が発振しているときに前記測定回路が測定した前記第2共振器の入力インダクタンス値Lin(f2)との比に基づいて、前記第2共振器に対する前記第1共振器の相対位置を検出する。
本開示の第62の態様に係る位置検出装置は、本開示の第61の態様に係る位置検出装置において、前記測定回路は、k2=1−Lin(f2)/Lin(f1)の式によって算出される結合係数kに基づいて前記相対位置を検出する。
本開示の第63の態様に係る位置検出装置は、本開示の第61の態様に係る位置検出装置において、前記発振回路は、自励式の発振回路であり、かつ、前記入力インダクタンス値が発振周波数の2乗に反比例するように構成されており、前記測定回路は、k2=1−f12/f22の式によって算出される結合係数kに基づいて前記相対位置を検出する。
本開示の第64の態様に係る位置検出装置は、本開示の第52〜65のうちのいずれか1つの態様に係る位置検出装置において、第1の表示素子と、前記第1の表示素子を制御する制御回路とを備え、算出された結合係数に応じて前記第1の表示素子の表示状態を前記制御回路で制御し、算出した結合係数が所定値を超えたとき、前記第1共振器に対する前記第2共振器の位置合わせが実現したことを示す情報を前記第1の表示素子に表示させる。
本開示の第65の態様に係る位置検出装置は、本開示の第52〜65のうちのいずれか1つの態様に係る位置検出装置において、第2の表示素子と、前記第2の表示素子を制御する制御回路と、を備え、前記制御回路は、算出された結合係数に応じて前記第2の表示素子の表示状態を制御し、算出した結合係数が所定値を超えたとき、前記第1共振器に対する前記第2共振器の位置合わせが実現したことを示す情報を前記第2の表示素子に表示させる。
本開示の第66の態様に係る送電装置は、本開示の第52〜65のうちのいずれか1つの態様に係る位置検出装置と、前記送電コイルに電力を供給する送電回路と、前記送電回路および前記発振回路を制御する送電制御回路とを備えている。
本開示の第67の態様に係る送電装置は、本開示の第52〜65のうちのいずれか1つの態様に係る位置検出装置と、前記送電コイルに電力を供給する送電回路と、前記送電回路および前記発振回路を制御する送電制御回路とを備え、前記送電制御回路は、前記位置検出装置の測定結果に応じて前記送電回路を制御し、送電状態を調整するように構成されている。
本開示の第68の態様に係る送電装置は、本開示の第66〜67のうちのいずれか1つの態様に係る送電装置の前記送電制御回路は、前記位置検出装置による検出結果に応じて送電周波数および送電電圧を決定する。
本開示の第69の態様に係る受電装置は、本開示の第52〜65のうちのいずれか1つの態様に係る位置検出装置と、無線電力伝送によって前記第1共振器から前記第2共振器が受け取った電力を負荷に供給する受電回路とを備える。
本開示の位置検出装置、位置あわせ装置、および無線電力伝送システムは、例えば、電気自動車、AV機器、電池、医療機器などへの充電あるいは給電を行う用途に広く適用可能である。また、RFタグに受電共振器を搭載し、そのリーダ/ライタに送電共振器を搭載することにより、例えば工場における製品または部品の位置ずれの検出に利用することも可能である。本開示の実施形態によれば、位置ずれに起因した効率低下や、漏れ磁束による近接金属の異常発熱リスクを回避することができる。
100 送電装置
110 送電共振器(第1共振器)
120 送電回路
130 電源
140 送電制御回路
150 発振回路
160 測定回路
170 表示素子
200 受電装置
210 受電共振器(第2共振器)
220 受電回路
230 負荷
240 受電制御回路
250 発振回路
260 測定回路
270 表示素子
S1〜S3 スイッチ
I1 第1のインジケータ
I2 第2のインジケータ

Claims (14)

  1. 第1コイルを含む第1共振器を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器及び負荷を備えた受電装置の位置を検出する送電装置であって、
    前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
    前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器のインダクタンス値を測定する測定回路と、を備え、
    前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記交流電力を発振しているときの前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記交流電力を発振しているときの前記第1共振器の入力インダクタンス値Lin(f2)とを測定し、前記入力インダクタンス値Lin(f1)と前記入力インダクタンス値Lin(f2)の比に基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する、
    送電装置。
  2. 前記発振回路に送電周波数、前記第1の周波数(f1)及び前記第2の周波数(f2)を設定し、前記送電周波数を用いて前記送電装置から前記受電装置に無線電力を送電させ、前記第1の周波数(f1)及び前記第2の周波数(f2)を用いて前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる制御回路を備えた、
    請求項1記載の送電装置。
  3. 前記第2コイルが短絡しているとき、前記第1の周波数f1に対応する入力インダクタンス値と前記第2の周波数f2に対応する入力インダクタンス値とが一致する、
    請求項1または2に記載の送電装置。
  4. 前記測定回路は、前記発振回路が前記1の周波数から前記第2の周波数に切替えてから所定の時間経過後、または、前記2の周波数から前記第1の周波数に切替えてから所定の時間経過後、前記発振された交流電力の電圧または電流の振幅を監視し、前記振幅が一定幅に収束したときに前記入力インダクタンス値Lin(f1)または前記入力インダクタンス値Lin(f2)を測定する、
    請求項1〜3のいずれか1項に記載の送電装置。
  5. 送電周波数を用いて前記送電装置から前記受電装置に無線電力を送電する送電回路を備え、
    前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる、
    請求項2に記載の送電装置。
  6. 前記第1共振器は、無線電力伝送に使用される送電コイルを含み、
    前記発振回路と前記送電コイルとの間の電気的接続を切り替えるスイッチを備え、
    前記無線電力伝送の送電時に、前記スイッチによって、前記発振回路と前記送電コイルとの間の電気的接続を遮断する、
    請求項5に記載の送電装置。
  7. 前記送電装置から前記受電装置に前記無線電力を送電する際に使用される第3コイルを含む第3共振器を、前記第1共振器とは別個に備えた、
    請求項2または5に記載の送電装置。
  8. 前記制御回路は、
    前記無線電力の送電を停止させた後、前記第1共振器に蓄積されたエネルギをグランドに放出する制御を行い、前記第1共振器に対する前記第2共振器の相対位置を前記測定回路に検出させる、
    請求項2に記載の送電装置。
  9. 前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記第1の周波数(f1)及び前記第2の周波数(f2)から前記送電周波数に切り替えて、前記送電装置から前記受電装置に前記無線電力を送電させる、
    請求項2、5、6のいずれか1項に記載の送電装置。
  10. 前記送電コイルに電力を供給する送電回路と、
    前記送電回路および前記発振回路を制御する制御回路と、
    を備え、
    前記制御回路は、前記測定回路の測定結果に応じて前記送電回路を制御し、送電状態を調整する、
    請求項6に記載の送電装置。
  11. 前記制御回路は、前記測定回路による測定結果に応じて送電周波数および送電電圧を決定する、
    請求項10に記載の送電装置。
  12. 前記受電装置は、表示部を有し、
    前記制御回路は、前記第1共振器に対する前記第2共振器の相対位置が、前記送電装置から前記受電装置への前記無線電力の送電が可能な位置であると判断した場合、前記受電装置が前記送電装置から送電可能な領域に位置していることを示す表示情報を前記表示部に表示させるための制御コマンドを、前記受電装置に送出させる制御を行う、
    請求項2、5、6、9、10、11のいずれか1項に記載の送電装置。
  13. 第1コイルを含む第1共振器及び負荷を備え、第2コイル及びキャパシタを含む並列共振回路を有する第2共振器を備えた送電装置の位置を検出する受電装置であって、
    前記第2共振器の共振周波数(fr)よりも低い第1の周波数(f1)及び前記共振周波数(fr)よりも高い第2の周波数(f2)で交流電力を発振する発振回路と、
    前記第1共振器と前記第2共振器とが電磁的に結合しているときに前記第1共振器の入力インダクタンス値を測定する測定回路と、を備え、
    前記測定回路は、前記第1の周波数(f1)で前記発振回路が前記交流電力を発振しているときの前記第1共振器の入力インダクタンス値Lin(f1)と、前記第2の周波数f2で前記発振回路が前記交流電力を発振しているときの前記第1共振器の入力インダクタンス値Lin(f2)を測定し、前記インダクタンス値Lin(f1)と前記インダクタンス値Lin(f2)の比に基づいて前記第1共振器に対する前記第2共振器の相対位置を検出する、
    受電装置。
  14. 請求項1〜12のいずれか1項に記載の送電装置及び請求項13に記載の受電装置を備えた無線電力伝送システム。
JP2018049004A 2013-12-19 2018-03-16 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム Active JP6593661B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013262228 2013-12-19
JP2013262228 2013-12-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014211393A Division JP6315382B2 (ja) 2013-12-19 2014-10-16 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム

Publications (2)

Publication Number Publication Date
JP2018093730A JP2018093730A (ja) 2018-06-14
JP6593661B2 true JP6593661B2 (ja) 2019-10-23

Family

ID=52002841

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014211393A Active JP6315382B2 (ja) 2013-12-19 2014-10-16 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
JP2018049004A Active JP6593661B2 (ja) 2013-12-19 2018-03-16 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014211393A Active JP6315382B2 (ja) 2013-12-19 2014-10-16 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム

Country Status (4)

Country Link
US (2) US9941753B2 (ja)
EP (2) EP3355437B1 (ja)
JP (2) JP6315382B2 (ja)
CN (2) CN106998104B (ja)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10038338B2 (en) 2011-02-01 2018-07-31 Fu Da Tong Technology Co., Ltd. Signal modulation method and signal rectification and modulation device
US10630116B2 (en) 2011-02-01 2020-04-21 Fu Da Tong Technology Co., Ltd. Intruding metal detection method for induction type power supply system and related supplying-end module
US10587153B2 (en) 2011-02-01 2020-03-10 Fu Da Tong Technology Co., Ltd. Intruding metal detection method for induction type power supply system and related supplying-end module
US10574095B2 (en) 2011-02-01 2020-02-25 Fu Da Tong Technology Co., Ltd. Decoding method for signal processing circuit and signal processing circuit using the same
US11128180B2 (en) * 2011-02-01 2021-09-21 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
US10673287B2 (en) 2011-02-01 2020-06-02 Fu Da Tong Technology Co., Ltd. Method and supplying-end module for detecting receiving-end module
US10951063B2 (en) 2011-02-01 2021-03-16 Fu Da Tong Technology Co., Ltd. Supplying-end module of induction type power supply system and signal detection method thereof
US9696358B2 (en) 2012-05-02 2017-07-04 Powerbyproxi Limited Method for detecting and identifying a receiver in an inductive power transfer system
CN110098642A (zh) 2012-11-05 2019-08-06 苹果公司 感应耦合电力传输系统
JP2014168359A (ja) * 2013-02-28 2014-09-11 Nitto Denko Corp 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
ES2707972T3 (es) * 2013-08-06 2019-04-08 Momentum Dynamics Corp Un procedimiento para detectar un error de alineación de la bobina en el campo de la transmisión inalámbrica inductiva de energía, y aparato para ello
TWI584018B (zh) 2014-08-03 2017-05-21 帕戈技術股份有限公司 穿戴式照相機系統與用於將照相機系統或其他電子裝置附接至穿戴式製品之設備及方法
US9635222B2 (en) 2014-08-03 2017-04-25 PogoTec, Inc. Wearable camera systems and apparatus for aligning an eyewear camera
US20160126639A1 (en) * 2014-10-14 2016-05-05 Samsung Electro-Mechanics Co., Ltd. Coil structure and wireless power receiving apparatus including the same
KR20170118054A (ko) 2014-12-23 2017-10-24 포고텍, 인크. 무선 카메라 시스템 및 방법들
CN112564299B (zh) 2015-03-04 2024-03-05 苹果公司 感应功率发射器
JP6857133B2 (ja) 2015-04-02 2021-04-14 アップル インコーポレイテッドApple Inc. 誘導送電器
CA2989077A1 (en) 2015-06-10 2016-12-15 PogoTec, Inc. Eyewear with magnetic track for electronic wearable device
US10481417B2 (en) 2015-06-10 2019-11-19 PogoTec, Inc. Magnetic attachment mechanism for electronic wearable device
US10411524B2 (en) 2015-06-23 2019-09-10 Witricity Corporation Systems, methods and apparatuses for guidance and alignment in electric vehicles wireless inductive charging systems
US10340752B2 (en) * 2015-06-23 2019-07-02 Witricity Corporation Systems, methods and apparatuses for guidance and alignment in electric vehicles wireless inductive charging systems
US10566839B2 (en) * 2015-06-30 2020-02-18 WiTricinity Corporation Systems, methods and apparatus for guidance and alignment between electric vehicles and wireless charging systems
US10826300B2 (en) * 2015-07-17 2020-11-03 Mediatek Inc. Drive circuits for multi-mode wireless power transmitter
CN106451815B (zh) * 2015-08-06 2021-06-11 松下知识产权经营株式会社 送电装置以及无线功率传输系统
JP6278012B2 (ja) * 2015-08-28 2018-02-14 トヨタ自動車株式会社 非接触電力伝送システム及び送電装置
JP6622523B2 (ja) * 2015-09-04 2019-12-18 キヤノン株式会社 移動体装置及び非接触電力伝送システム
US10361565B2 (en) * 2015-09-25 2019-07-23 Intel Corporation Detecting resonant frequencies
US10341787B2 (en) 2015-10-29 2019-07-02 PogoTec, Inc. Hearing aid adapted for wireless power reception
BR112018009532B1 (pt) 2015-11-19 2022-11-01 Apple Inc. Transmissor indutivo de energia
JP6645241B2 (ja) 2016-02-16 2020-02-14 株式会社Ihi 送電装置
US11558538B2 (en) 2016-03-18 2023-01-17 Opkix, Inc. Portable camera system
KR102196897B1 (ko) 2016-04-04 2020-12-31 애플 인크. 유도 전력 송신기
CN109314409B (zh) * 2016-05-23 2020-02-07 日产自动车株式会社 非接触供电系统的线圈位置检测方法和非接触供电系统
JP6752641B2 (ja) * 2016-06-28 2020-09-09 日置電機株式会社 測定装置
KR102436588B1 (ko) * 2016-07-29 2022-08-26 소니 세미컨덕터 솔루션즈 가부시키가이샤 급전 장치
EP3280030B1 (en) * 2016-08-04 2023-08-30 General Electric Company System and method for charging receiver devices
WO2018027590A1 (en) * 2016-08-09 2018-02-15 Zte Corporation Power receiver and power receiving method for wireless power transfer and terminal device using the same
CN106374578B (zh) * 2016-10-28 2019-02-22 北京航空航天大学 无线充电系统及其功率传输控制方法
KR101881658B1 (ko) * 2016-11-07 2018-07-24 울산대학교 산학협력단 전계결합형 무선 전력 전송 장치 및 그 방법
EP3539285A4 (en) 2016-11-08 2020-09-02 Pogotec, Inc. PORTABLE ELECTRONIC DEVICE INTELLIGENT BOX
JP6565943B2 (ja) * 2017-01-23 2019-08-28 トヨタ自動車株式会社 送電装置及び電力伝送システム
EP3364522B1 (en) * 2017-02-17 2020-05-20 Hyundai Motor Company Method and apparatus for position alignment using low-frequency antennas in wireless power transfer system
US10933756B2 (en) * 2017-03-03 2021-03-02 Tdk Corporation Wireless power transmitting device and wireless power transmission system
JP6909027B2 (ja) * 2017-03-23 2021-07-28 東芝テック株式会社 非接触電力伝送装置および送電装置
US10333355B2 (en) 2017-07-21 2019-06-25 Witricity Corporation Wireless charging magnetic parameter determination
US10391875B2 (en) * 2017-07-21 2019-08-27 Witricity Corporation Vehicle alignment for wireless charging
US10230257B1 (en) 2017-09-12 2019-03-12 Video Gaming Technologies, Inc. Electronic gaming machine including a wireless charging apparatus
TWI650633B (zh) * 2017-10-06 2019-02-11 財團法人國家實驗研究院 模組化電子組合裝置
JP7061444B2 (ja) * 2017-10-11 2022-04-28 日東電工株式会社 無線電力伝送システム
CN107834859B (zh) * 2017-11-10 2020-05-08 东南大学 双边lc型电场耦合式wpt系统恒流输出的参数设置方法
CN109818433A (zh) * 2017-11-22 2019-05-28 北京小米移动软件有限公司 无线充电系统及充电对位方法、装置、存储介质
CN109818432A (zh) * 2017-11-22 2019-05-28 北京小米移动软件有限公司 无线充电系统及充电对位方法、装置、存储介质
JP6810084B2 (ja) * 2018-03-28 2021-01-06 古河電気工業株式会社 ワイヤレス給電システム、及びその給電カップラの位置検出方法
JP6965808B2 (ja) * 2018-03-30 2021-11-10 Tdk株式会社 ワイヤレス受電装置、及びワイヤレス電力伝送システム
CN111937272A (zh) 2018-04-19 2020-11-13 通用电气公司 无线电力传输系统的接收器单元
TWI812700B (zh) * 2018-09-07 2023-08-21 美商奇異電器公司 無線電力傳送系統之接收器單元、方法及整合式電子組件
WO2020072362A1 (en) 2018-10-05 2020-04-09 Aristocrat Technologies Australia Pty Limited System and method for changing beacon identifiers for secure mobile communications
US11972659B2 (en) 2018-10-05 2024-04-30 Aristocrat Technologies, Inc. System and method for changing beacon identifiers for secure mobile communications
US11847885B2 (en) 2018-10-05 2023-12-19 Aristocrt Technologies Australia Pty Limited System and method for cashless exchange at smart tables
AU2019240623A1 (en) 2018-10-05 2020-04-23 Aristocrat Technologies Australia Pty Limited System and method for managing digital wallets
US11132862B2 (en) 2018-10-05 2021-09-28 Aristocrat Technologies Australia Pty Limited System and method for ticketing at a gaming table
WO2020102237A1 (en) 2018-11-13 2020-05-22 Opkix, Inc. Wearable mounts for portable camera
CN111355311B (zh) 2018-12-20 2022-10-18 台达电子工业股份有限公司 无线功率传输装置的距离检测方法及系统
US11979038B2 (en) * 2019-03-07 2024-05-07 Google Llc Wireless charging alignment
JP7140041B2 (ja) * 2019-04-18 2022-09-21 株式会社ダイフク 非接触給電システム
CN110146760A (zh) * 2019-05-30 2019-08-20 上海瞳鳗智能科技有限公司 检测无线充电耦合度的方法及系统
US11227466B2 (en) 2019-08-30 2022-01-18 Aristocrat Technologies, Inc. Multi-currency digital wallets and gaming architectures
US11544994B2 (en) 2020-03-27 2023-01-03 Aristocrat Technologies, Inc. Beacon to patron communications for electronic gaming devices
US11276271B2 (en) 2020-04-03 2022-03-15 Aristocrat Technologies, Inc. Systems and methods for securely connecting an electronic gaming machine to an end user device
CN111204238B (zh) * 2020-04-16 2020-07-28 上海纵青新能源科技有限公司 汽车的无线充电对准方法及装置、存储介质、终端
USD968513S1 (en) 2020-05-15 2022-11-01 Aristocrat Technologies, Inc. (ATI) Gaming machine divider
WO2022123789A1 (ja) * 2020-12-11 2022-06-16 パナソニックIpマネジメント株式会社 受電装置、送電装置、電動車両、電力伝送システム、および情報処理方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242638B2 (en) 2006-03-21 2012-08-14 Murata Manufacturing Co., Ltd. Device for transporting energy by partial influence through a dielectric medium
US7989986B2 (en) * 2006-03-23 2011-08-02 Access Business Group International Llc Inductive power supply with device identification
JP5160858B2 (ja) * 2007-10-25 2013-03-13 メレアグロス株式会社 電力伝送装置のコイル、電力伝送装置、電力伝送装置の送電装置、および電力送電装置の受電装置。
JP2009118587A (ja) 2007-11-02 2009-05-28 Meleagros Corp 電力伝送装置
JP5585098B2 (ja) * 2009-03-06 2014-09-10 日産自動車株式会社 非接触電力供給装置及び方法
JP5554937B2 (ja) * 2009-04-22 2014-07-23 パナソニック株式会社 非接触給電システム
JP5478984B2 (ja) * 2009-08-19 2014-04-23 長野日本無線株式会社 送電装置および非接触型電力伝送システム
JP5238884B2 (ja) 2009-09-18 2013-07-17 株式会社東芝 無線電力伝送装置
US8779745B2 (en) * 2010-03-01 2014-07-15 National Semiconductor Corporation Three-quarter bridge power converters for wireless power transfer applications and other applications
JP2011205749A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 判定装置
JP5519367B2 (ja) * 2010-03-29 2014-06-11 パナソニック株式会社 受電装置及び電力伝送システム
JP5657415B2 (ja) * 2011-02-16 2015-01-21 東光株式会社 ワイヤレス電力伝送装置
CN103502845B (zh) * 2011-03-31 2018-04-13 索尼公司 检测器、电力传送器和接收器、电力供给系统及检测方法
US9620995B2 (en) * 2011-04-26 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP2012244763A (ja) * 2011-05-19 2012-12-10 Sony Corp 給電装置、給電システムおよび電子機器
US9577715B2 (en) * 2011-06-17 2017-02-21 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system
JP5794056B2 (ja) * 2011-09-12 2015-10-14 ソニー株式会社 給電装置および給電システム
JP5010061B1 (ja) * 2011-09-21 2012-08-29 パイオニア株式会社 非接触電力送電装置、非接触電力受電装置、及び非接触給電システム
KR20130033867A (ko) * 2011-09-27 2013-04-04 삼성전기주식회사 무선 전력 전송 시스템
US9553485B2 (en) * 2011-10-13 2017-01-24 Integrated Device Technology, Inc. Apparatus, system, and method for detecting a foreign object in an inductive wireless power transfer system based on input power
US9224533B2 (en) * 2011-11-29 2015-12-29 Panasonic Intellectual Property Management Co., Ltd. Wireless electric power transmission apparatus
US9160180B2 (en) * 2011-12-29 2015-10-13 Sony Corporation Charging apparatus for charging a secondary battery with a wireless feeding method
US9230732B2 (en) * 2012-01-17 2016-01-05 Texas Instruments Incorporated Wireless power transfer
US20140021798A1 (en) * 2012-07-17 2014-01-23 Witricity Corporation Wireless energy transfer with repeater resonators
US9331518B2 (en) * 2012-09-28 2016-05-03 Broadcom Corporation Adaptive multi-pathway wireless power transfer
JP6071655B2 (ja) * 2013-03-06 2017-02-01 株式会社東芝 無線電力伝送装置
JP2014204603A (ja) * 2013-04-08 2014-10-27 ソニー株式会社 給電装置および給電システム
JP2014220893A (ja) * 2013-05-07 2014-11-20 株式会社東芝 制御装置、無線電力伝送システムおよび無線電力伝送装置
US10170939B2 (en) * 2014-02-28 2019-01-01 Panasonic Intellectual Property Management Co. Ltd. Foreign object detector, power transmitting device and power receiving device for wireless power transmission, and wireless power transmission system
JP5915953B2 (ja) * 2014-03-05 2016-05-11 パナソニックIpマネジメント株式会社 異物検出装置、送電装置、受電装置、および無線電力伝送システム
CN107257167B (zh) * 2014-05-27 2020-01-21 松下知识产权经营株式会社 送电装置以及无线电力传输系统

Also Published As

Publication number Publication date
EP2887488B1 (en) 2018-05-30
JP2015136281A (ja) 2015-07-27
EP3355437A1 (en) 2018-08-01
CN104734369B (zh) 2017-04-12
CN106998104B (zh) 2019-11-29
US20150180286A1 (en) 2015-06-25
JP2018093730A (ja) 2018-06-14
EP2887488A1 (en) 2015-06-24
US9941753B2 (en) 2018-04-10
JP6315382B2 (ja) 2018-04-25
EP3355437B1 (en) 2021-02-03
US20180191207A1 (en) 2018-07-05
US10886794B2 (en) 2021-01-05
CN104734369A (zh) 2015-06-24
CN106998104A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6593661B2 (ja) 無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
JP6471971B2 (ja) 無線電力伝送システム及び無線電力伝送システムの送電装置
JP6264623B2 (ja) 異物検出装置、無線電力伝送のための送電装置および受電装置ならびに無線電力伝送システム
JP6307756B2 (ja) 異物検出装置、送電装置、受電装置、および無線電力伝送システム
JP6920646B2 (ja) 異物検出装置、無線送電装置、および無線電力伝送システム
KR101543059B1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
JP5516824B2 (ja) 電力伝送システム
KR101428162B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 공진 주파수 검출 방법
KR101896944B1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R151 Written notification of patent or utility model registration

Ref document number: 6593661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151