JP6583600B1 - 真空浸炭処理方法及び浸炭部品の製造方法 - Google Patents
真空浸炭処理方法及び浸炭部品の製造方法 Download PDFInfo
- Publication number
- JP6583600B1 JP6583600B1 JP2019537411A JP2019537411A JP6583600B1 JP 6583600 B1 JP6583600 B1 JP 6583600B1 JP 2019537411 A JP2019537411 A JP 2019537411A JP 2019537411 A JP2019537411 A JP 2019537411A JP 6583600 B1 JP6583600 B1 JP 6583600B1
- Authority
- JP
- Japan
- Prior art keywords
- carburizing
- flow rate
- gas flow
- time
- theoretical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
- C23C8/22—Carburising of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
真空浸炭炉内で鋼材に対して真空浸炭処理を実施する真空浸炭処理方法であって、
前記鋼材を浸炭温度で加熱する加熱工程と、
前記加熱工程後、前記鋼材を前記浸炭温度で均熱する均熱工程と、
前記均熱工程後、アセチレンガスである浸炭ガスを前記真空浸炭炉内に供給しながら、前記鋼材を前記浸炭温度で保持する浸炭工程と、
前記浸炭工程後、前記真空浸炭炉内への前記浸炭ガスの供給を停止し、前記鋼材を前記浸炭温度で保持する拡散工程と、
前記拡散工程後の前記鋼材に対して焼入れを実施する焼入れ工程と、
を備え、
前記浸炭工程において、
実際の前記浸炭ガスの流量を、実際浸炭ガス流量と定義し、
拡散方程式を用いた拡散シミュレーションで得られた前記鋼材の表層の炭素の拡散流束により算出された、前記鋼材の前記真空浸炭処理に必要な前記浸炭ガスの流量を、理論浸炭ガス流量と定義し、
前記浸炭工程の開始後、前記実際浸炭ガス流量が、前記理論浸炭ガス流量と等しくなる時間を交差時間teと定義し、
前記浸炭工程の開始から完了までの時間を浸炭時間taと定義し、
前記浸炭時間taの1/5の時間を基準時間ta/5と定義したとき、
前記浸炭工程は、
前記浸炭工程の開始から前記交差時間teまでの前期浸炭工程と、
前記交差時間teから前記浸炭時間taまでの後期浸炭工程と、
を含み、
前記前期浸炭工程では、
前記実際浸炭ガス流量を、前記浸炭工程の開始から前記基準時間ta/5時点での前記理論浸炭ガス流量以上、かつ、前記浸炭工程の開始から20秒時点での前記理論浸炭ガス流量以下とし、
前記後期浸炭工程では、
前記実際浸炭ガス流量を、前記理論浸炭ガス流量の1.00〜1.20倍の範囲内とする。
前記鋼材に対して、上述の真空浸炭処理方法を実施する工程を備える。
本実施形態の真空浸炭処理方法では、浸炭ガスとしてアセチレンを用いる。アセチレンの分解は、浸炭対象となる鋼材の表面での炭素の拡散により律速される。つまり、鋼材表面から鋼材内部に侵入する炭素の拡散流束が大きいほど、アセチレンの分解量が多くなる。
J=−D(∂C/∂z) (1)
∂C/∂t=−∂J/∂z (2)
ここで、Dは鋼材中の炭素の拡散係数(mm2/s)であり、Cは炭素の質量濃度(質量%)であり、zは鋼材表面からの深さ方向への変位(mm)であり、tは浸炭工程を開始してからの時間(秒)である。∂は偏微分記号である。
J=−mx(∂μ/∂z) (3)
∂x/∂t=−∂J/∂z (4)
ここでmは炭素の易動度(mm2・mol/J・s)であり、xは炭素のモル濃度(mol%)であり、μは炭素の化学ポテンシャル(J/mol)であり、zは深さ方向への変位(mm)、tは時間(秒)である。∂は偏微分記号である。
J=−mC(∂μ/∂z) (5)
式(5)中のCは、炭素濃度(質量%)である。
始めに、真空浸炭処理の対象となる鋼材の表層を複数のセルで区分したメッシュデータを作成する。各セルのサイズは周知のサイズで足りる。セルのサイズはたとえば、1〜500μmである。セルのサイズは鋼材の表面から深さ方向に徐々に拡大してもよい。その場合、隣り合うセルのサイズの比は0.80〜1.25であり、好ましくは0.90〜1.10である。ただし、セルのサイズはこれに限定されない。拡散シミュレーションを行う対象は一次元としてよい。鋼材の形状が丸棒又は円筒である場合、メッシュデータを円筒座標系とすることで一次元として取り扱うことが出来る。さらに、鋼材(丸棒又は円筒)の直径が拡散距離の50倍以上であれば、平面と同じ取扱いをしてよい。ここでいう拡散距離とは√Dtである。拡散係数Dは鋼材の炭素濃度と浸炭温度とから計算する。時間t(秒)は浸炭時間である。真空浸炭処理において、浸炭工程と拡散工程を2回ずつ以上行う場合、時間tは、最初の浸炭工程を開始してから最後の浸炭工程が終了するまでの時間(浸炭工程が1回のみの場合、浸炭工程の開始から完了までの時間)である。たとえば、JIS G 4053(2008)に規定されたSCM415を用い、浸炭温度が950℃で浸炭時間が51分の場合、拡散距離√Dtは0.20mmとなる。この場合、鋼材の直径が10mm以上であれば、平面と同じ取扱いをしてよい。なお、JIS G 4053(2008)に規定されたSCM420を用い、浸炭温度が950℃で浸炭時間が51分の場合、拡散距離√Dtは0.21mmとなる。また、拡散シミュレーションの解析時間(ステップ時間)を設定する。ステップ時間は特に限定されないが、たとえば、0.001〜1.0秒とする。
D=4.7×10-5×exp(−1.6×C−(37000−6600×C)/1.987/T)
ここで、式中の「C」はオーステナイト中の固溶C濃度(質量%)であり、Tは浸炭温度(K)である。
m=1.54×10-15exp(−1.61×C−(17300−2920×C)/T)
(A)各セルでの炭素濃度と、熱力学計算結果とに基づいて、浸炭温度での各セルでのオーステナイト中の固溶C濃度(つまり、拡散するCの濃度)を特定する。このとき、セメンタイト中のCは固定され、オーステナイト中の固溶Cのみが拡散すると仮定する。
(B)各セルにおいて、特定した固溶C濃度に基づいて、式(1)、式(3)又は式(5)を用いて、差分法により、各セルでの拡散流束Jを求める。このとき、上述のとおり、鋼材表面の固溶炭素濃度は、黒鉛と平衡状態時の固溶限界の固溶炭素濃度(Csat)とする。鋼材表面からの拡散流束J0に基づいて、浸炭効率を100%として、アセチレン流量を求める。求めたアセチレン流量を、そのステップ時間での理論浸炭ガス流量と定義する。
(C)求めた各セルでの拡散流束Jに基づいて、そのステップ時間経過時点での各セルのC濃度を決定する。
(D)熱力学計算結果に基づいて、平衡相としてセメンタイトが生成するか判断する。なお、セメンタイトの生成に必要な時間は無視する(つまり、次のステップ時間での(A)を決定する)。
(E)浸炭工程を2回以上行う場合、浸炭工程の間の拡散工程のシミュレーションを行ない、その後浸炭工程のシミュレーションを行う。拡散工程においては、鋼材表面からの拡散流束J0をゼロとして、(A)〜(D)の計算を行なう。
F=A/√t (6)
ここで、Aは、式(7)で定義される1m2あたりの浸炭ガス流量(NL/分)であり、tは浸炭開始時からの時間(分)を示す。
A=a×T2+b×T+c (7)
式(6)中のa、b及びcは鋼材の化学組成によって決まる定数であり、Tは浸炭温度(℃)である。たとえば、JIS G 4053(2008)に規定されたSCM420の場合、上述の拡散シミュレーションで求めると、a=8.52×10-5であり、b=−0.140であり、c=58.2である。JIS G 4053(2008)に規定されたSCM415の場合、上述の拡散シミュレーションで求めると、a=8.64×10-5であり、b=−0.141、c=59.0である。
真空浸炭処理時における実際の浸炭ガスの流量を「実際浸炭ガス流量」FRと定義する。本発明者らは、図1に示すような、浸炭時間における理論浸炭ガス流量FTの関係から大きく外れた実際浸炭ガス流量FRを用いた場合に想定される事象について、調査及び検討を行った。
流量差ΔF=FR−FT(ta/5)
[1]の真空浸炭処理方法は、
真空浸炭炉内で鋼材に対して真空浸炭処理を実施する真空浸炭処理方法であって、
前記鋼材を浸炭温度で加熱する加熱工程と、
前記加熱工程後、前記鋼材を前記浸炭温度で均熱する均熱工程と、
前記均熱工程後、アセチレンガスである浸炭ガスを前記真空浸炭炉内に供給しながら、前記鋼材を前記浸炭温度で保持する浸炭工程と、
前記浸炭工程後、前記真空浸炭炉内への前記浸炭ガスの供給を停止し、前記鋼材を前記浸炭温度で保持する拡散工程と、
前記拡散工程後の前記鋼材に対して焼入れを実施する焼入れ工程と、
を備え、
前記浸炭工程において、
実際の前記浸炭ガスの流量を、実際浸炭ガス流量と定義し、
拡散方程式を用いた拡散シミュレーションで得られた前記鋼材の表層の炭素の拡散流束により算出された、前記鋼材の前記真空浸炭処理に必要な前記浸炭ガスの流量を、理論浸炭ガス流量と定義し、
前記浸炭工程の開始後、前記実際浸炭ガス流量が、前記理論浸炭ガス流量と等しくなる時間を交差時間teと定義し、
前記浸炭工程の開始から完了までの時間を浸炭時間taと定義し、
前記浸炭時間taの1/5の時間を基準時間ta/5と定義したとき、
前記浸炭工程は、
前記浸炭工程の開始から前記交差時間teまでの前期浸炭工程と、
前記交差時間teから前記浸炭時間taまでの後期浸炭工程と、
を含み、
前記前期浸炭工程では、
前記実際浸炭ガス流量を、前記浸炭工程の開始から前記基準時間ta/5時点での前記理論浸炭ガス流量以上、かつ、前記浸炭工程の開始から20秒時点での前記理論浸炭ガス流量以下とし、
前記後期浸炭工程では、
前記実際浸炭ガス流量を、前記理論浸炭ガス流量の1.00〜1.20倍の範囲内とする。
前記前期浸炭工程では、
前記浸炭時間taの1/10の時間を時間ta/10と定義したとき、
前記実際浸炭ガス流量を、前記浸炭工程の開始から前記時間ta/10時点での理論浸炭ガス流量以上とする。
前記前期浸炭工程では、
前記浸炭時間taの1/30の時間を時間ta/30と定義したとき、
前記実際浸炭ガス流量を、前記浸炭工程の開始から前記時間ta/30時点での理論浸炭ガス流量以上とする。
前記前期浸炭工程では、
前記実際浸炭ガス流量を一定とする。
鋼材に対して、[1]〜[4]のいずれか1項に記載の真空浸炭処理方法を実施する工程を備える。
図6は、本実施形態の真空浸炭処理方法のヒートパターンの一例を示す図である。図6を参照して、本実施形態の真空浸炭処理方法は、加熱工程(S10)と、均熱工程(S20)と、浸炭工程(S30)と、拡散工程(S40)と、焼入れ工程(S50)とを備える。以下、各工程の詳細を説明する。
加熱工程(S10)では、鋼材を浸炭温度で加熱する。真空浸炭処理の対象となる鋼材は、第三者から提供されたものであってもよいし、真空浸炭処理方法を実施する者が製造したものであってもよい。鋼材の化学組成は特に限定されない。浸炭処理が実施される周知の鋼材を用いれば足りる。鋼材はたとえば、JIS G 4053(2008)で規定された、機械構造用合金鋼鋼材である。より具体的には、JIS G 4053(2008)で規定された、SCr415、SCr420及びSCM415等である。
均熱工程(S20)では、浸炭温度Tcで鋼材を所定時間保持する。以下、均熱工程(S20)での保持時間を均熱時間ともいう。均熱工程(S20)は、真空浸炭処理方法では周知の工程である。均熱時間は、鋼材の形状及び/又はサイズにより、適宜調整可能である。好ましくは、均熱時間は10分以上である。より具体的には、鋼材の長手方向に垂直な断面を円に換算した場合、好ましい均熱時間は、円相当径25mm当たり30分以上である。たとえば、円相当径が30mmである場合、均熱時間は36分以上が好ましい。均熱時間の好ましい上限は、好ましくは120分であり、さらに好ましくは60分である。
浸炭工程(S30)では、浸炭開始前に、予め真空浸炭炉内を低圧又は真空とする。低圧又は真空とはたとえば、10Pa以下である。真空浸炭炉内が低圧であれば、浸炭ガスの分子同士が衝突する頻度が少なくなる。つまり、雰囲気で浸炭ガスが分解する頻度が少なくなる。したがって、低圧でなるべく早く鋼材表面に噴射すれば、煤やタールの発生を抑制できる。その結果、鋼材の表面炭素濃度を迅速に上昇させることができる。なお浸炭開始から浸炭終了(時間ta)までの浸炭中においては、炉内を1〜1000Paとする。
本実施形態では、真空浸炭処理方法の浸炭工程にて使用する浸炭ガスは、アセチレンガスである。
浸炭工程(S30)は、上述のとおり、前期浸炭工程(S1)と、後期浸炭工程(S2)とを含む。前期浸炭工程(S1)は、浸炭工程開始(t=0)から、交差時間t=teまでの期間での工程である。後期浸炭工程(S2)は、交差時間teから浸炭時間taまでの期間での工程である。
真空浸炭処理方法を実施する前に、事前準備として、上述の拡散方程式を用いた拡散シミュレーションを実施して、対象となる鋼材に応じた理論浸炭ガス流量FTを算出し、図1に示すような、浸炭工程(S30)の浸炭時間taでの理論浸炭ガス流量FTの経時変化を求めておく。
図5に示すとおり、前期浸炭工程(S1)では、実際浸炭ガス流量FRを、浸炭工程の開始(t=0)から基準時間(ta/5)時点での理論浸炭ガス流量FT(ta/5)以上とし、かつ、浸炭工程の開始(t=0)から20秒時点での理論浸炭ガス流量FT(20s)以下とする。
後期浸炭工程(S2)では、実際浸炭ガス流量FRを、理論浸炭ガス流量FTの1.00〜1.20倍の範囲内とする。図5に示すとおり、実際浸炭ガス流量FRが、理論浸炭ガス流量曲線C1.00と理論浸炭ガス流量曲線C1.20との間の範囲内に位置するように、実際浸炭ガス流量FRを調整する。これにより、後期浸炭工程(S2)において、過剰な浸炭ガスが真空浸炭炉内に残存するのを抑制することができる。その結果、煤やタールの発生を低減でき、真空浸炭処理方法を実施した後の浸炭部品(鋼材)の浸炭ばらつきを抑制できる。
浸炭工程(S30)における浸炭ガスの圧力(浸炭ガス圧)は特に限定されない。好ましくは、前期浸炭工程(S1)での浸炭ガス圧を、後期浸炭工程(S2)での浸炭ガス圧よりも高くする。この場合、後期浸炭工程(S2)において、煤の発生がさらに抑制される。さらに好ましくは、後期浸炭工程(S2)での浸炭ガス圧を、時間の経過にともない低下する。浸炭工程(S30)での好ましい浸炭ガス圧は1kPa以下である。
浸炭工程(S30)の開始(t=0)から完了するまでの時間である浸炭時間taは、真空浸炭処理工程後の鋼材の表層の目標とする炭素濃度に応じて適宜設定される。浸炭時間taは、拡散方程式を用いた上述の拡散シミュレーションにより決定してもよい。浸炭時間taは、事前に真空拡散処理試験を実施して、実験データから決定してもよい。浸炭時間taは長い方が好ましい。浸炭時間taが長い方が、理論浸炭ガス流量FTの曲線C1.00の傾きが緩やかになる。そのため、実際浸炭ガス流量FRの調整が容易になる。上述のとおり、浸炭時間taの好ましい下限は3分であり、さらに好ましくは3.5分である。浸炭時間taの好ましい上限は120分であり、さらに好ましくは60分である。
拡散工程(S40)は、真空浸炭処理方法において周知の工程である。拡散工程(S40)では、真空浸炭炉への浸炭ガスの供給を停止し、浸炭温度Tcで鋼材を所定時間保持する。拡散工程(S40)では、浸炭工程により鋼材に侵入した炭素を、鋼材内部に拡散させる。これにより、浸炭工程で高くなった表層の炭素濃度が低下し、所定の深さの炭素濃度が上昇する。拡散工程(S40)においても、真空浸炭炉内を窒素ガスの導入と真空ポンプによる真空排気とを行なって、1000Pa以下の窒素雰囲気としてもよいし、又は真空とする。真空とはたとえば、10Pa以下である。真空浸炭炉内を1000Pa以下の窒素雰囲気又は真空状態とすることにより、鋼材表面からの炭素の侵入かつ脱離を抑制する。
焼入れ工程(S50)では、浸炭工程(S30)及び拡散工程(S40)が完了した鋼材を、焼入れ温度(Ts)で所定時間保持し、その後、急冷(焼入れ)する。これにより、C濃度が高まった鋼材表層部分がマルテンサイトに変態して硬化層を形成する。焼入れ工程(S50)は、真空浸炭処理方法で周知の工程である。
本実施形態の浸炭部品の製造方法は、鋼材に対して、上述の真空浸炭処理方法を実施して浸炭部品を製造する工程を備える。以上の工程により製造された浸炭部品では、浸炭ばらつきを抑制することができる。
鋼材表面積=鋼管1個あたりの表面積×鋼管個数+丸棒1個あたりの表面積×丸棒個数
得られた鋼材表面積を表1に示す。試験番号1〜4、9〜13、16及び17では、248本の鋼管と、3本の丸棒とを用いた。試験番号5では、496本の鋼管と、3本の丸棒とを用いた。試験番号6及び7では、124本の鋼管と、3本の丸棒とを用いた。試験番号8、14及び15では、62本の鋼管と、3本の丸棒とを用いた。
m=1.54×10-15exp(−1.61×C−(17300−2920×C)/T)
ここで、式中のCはオーステナイト中の固溶C濃度(質量%)であり、Tは浸炭温度(K)である。
FT=A/√t (6)
ここで、Aは、式(7)で定義される1m2あたりの浸炭ガス流量(NL/分)であり、tは浸炭開始時からの時間(分)を示す。
A=a×T2+b×T+c (7)
本実施例(SCM415)の場合、a=8.64×10-5であり、b=−0.141であり、c=59.0であった。
流量比=実際浸炭ガス流量/理論浸炭ガス流量
各試験番号の浸炭部品(丸棒)の表層の炭素濃度と、炭素濃度が0.40質量%となる深さ(以下、浸炭深さという)とを測定して、浸炭ばらつきを評価した。
真空浸炭炉に挿入した状態の各試験番号の浸炭部品(丸棒)において、上端面から浸炭部品の長手方向に20mmの範囲、及び、下端面から浸炭部品の長手方向に5mmの範囲を切断した。以下、上端面から20mmの範囲を「上端面試験片」と称し、下端面から5mm範囲の部分を「下端部分」という。
上述の上端面試験片を用いて、円周面の表層部の炭素濃度を測定した。具体的には、上端面試験片の上端面から20mm位置の横断面(上端面試験片の長手方向に垂直な断面)の炭素濃度を、表面から2mm深さ位置から表面に向かって径方向に測定した。具体的には、EPMA(電子線マイク口アナライザ)による線分析を実施して、径方向(深さ方向)の炭素濃度を測定した。測定結果に基づいて、3つの上端面試験片のそれぞれについて、炭素濃度が0.40質量%以上となる領域の深さ(以下、浸炭深さという)を求めた。各上端面試験片で得られた浸炭深さの最大値と最小値との差の平均を、「0.40質量%深さ差」(mm)と定義した。得られた結果を表1の「0.40質量%深さ差(mm)」欄に記載する。
表1を参照して、表層炭素濃度差が0.030質量%以下、かつ、炭素濃度が0.40質量%深さ差が0.05mm以下であるものを、浸炭ばらつきが小さい真空浸炭処理方法として優れていると評価した。
Claims (5)
- 真空浸炭炉内で鋼材に対して真空浸炭処理を実施する真空浸炭処理方法であって、
前記鋼材を浸炭温度で加熱する加熱工程と、
前記加熱工程後、前記鋼材を前記浸炭温度で均熱する均熱工程と、
前記均熱工程後、アセチレンガスである浸炭ガスを前記真空浸炭炉内に供給しながら、前記鋼材を前記浸炭温度で保持する浸炭工程と、
前記浸炭工程後、前記真空浸炭炉内への前記浸炭ガスの供給を停止し、前記鋼材を前記浸炭温度で保持する拡散工程と、
前記拡散工程後の前記鋼材に対して焼入れを実施する焼入れ工程と、
を備え、
前記浸炭工程において、
実際の前記浸炭ガスの流量を、実際浸炭ガス流量と定義し、
拡散方程式を用いた拡散シミュレーションで得られた前記鋼材の表層の炭素の拡散流束により算出された、前記鋼材の前記真空浸炭処理に必要な前記浸炭ガスの流量を、理論浸炭ガス流量と定義し、
前記浸炭工程の開始後、前記実際浸炭ガス流量が、前記理論浸炭ガス流量と等しくなる時間を交差時間teと定義し、
前記浸炭工程の開始から完了までの時間を浸炭時間taと定義し、
前記浸炭時間taの1/5の時間を基準時間ta/5と定義したとき、
前記浸炭工程は、
前記浸炭工程の開始から前記交差時間teまでの前期浸炭工程と、
前記交差時間teから前記浸炭時間taまでの後期浸炭工程と、
を含み、
前記前期浸炭工程では、
前記実際浸炭ガス流量を、前記浸炭工程の開始から前記基準時間ta/5時点での前記理論浸炭ガス流量以上、かつ、前記浸炭工程の開始から20秒時点での前記理論浸炭ガス流量以下とし、
前記後期浸炭工程では、
前記実際浸炭ガス流量を、前記理論浸炭ガス流量の1.00〜1.20倍の範囲内とする、
真空浸炭処理方法。 - 請求項1に記載の真空浸炭処理方法であって、
前記前期浸炭工程では、
前記浸炭時間taの1/10の時間を時間ta/10と定義したとき、
前記実際浸炭ガス流量を、前記浸炭工程の開始から前記時間ta/10時点での理論浸炭ガス流量以上とする、
真空浸炭処理方法。 - 請求項2に記載の真空浸炭処理方法であって、
前記前期浸炭工程では、
前記浸炭時間taの1/30の時間を時間ta/30と定義したとき、
前記実際浸炭ガス流量を、前記浸炭工程の開始から前記時間ta/30時点での理論浸炭ガス流量以上とする、
真空浸炭処理方法。 - 請求項1〜請求項3のいずれか1項に記載の真空浸炭処理方法であって、
前記前期浸炭工程では、
前記実際浸炭ガス流量を一定とする、
真空浸炭処理方法。 - 浸炭部品の製造方法であって、
鋼材に対して、請求項1〜請求項4のいずれか1項に記載の真空浸炭処理方法を実施する工程を備える、
浸炭部品の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053903 | 2018-03-22 | ||
JP2018053903 | 2018-03-22 | ||
PCT/JP2019/012211 WO2019182140A1 (ja) | 2018-03-22 | 2019-03-22 | 真空浸炭処理方法及び浸炭部品の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6583600B1 true JP6583600B1 (ja) | 2019-10-02 |
JPWO2019182140A1 JPWO2019182140A1 (ja) | 2020-04-30 |
Family
ID=67987372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019537411A Active JP6583600B1 (ja) | 2018-03-22 | 2019-03-22 | 真空浸炭処理方法及び浸炭部品の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6583600B1 (ja) |
CN (1) | CN111868292B (ja) |
WO (1) | WO2019182140A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024090229A1 (ja) * | 2022-10-27 | 2024-05-02 | 山陽特殊製鋼株式会社 | 炭素濃度分布の解析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001081543A (ja) * | 1999-09-14 | 2001-03-27 | Chugai Ro Co Ltd | 真空浸炭方法 |
JP2005350729A (ja) * | 2004-06-10 | 2005-12-22 | Ishikawajima Harima Heavy Ind Co Ltd | 真空浸炭方法 |
JP2007113045A (ja) * | 2005-10-19 | 2007-05-10 | Ishikawajima Harima Heavy Ind Co Ltd | 真空浸炭の品質管理方法及び真空浸炭炉 |
US20080149225A1 (en) * | 2006-12-26 | 2008-06-26 | Karen Anne Connery | Method for oxygen free carburization in atmospheric pressure furnaces |
US20080149226A1 (en) * | 2006-12-26 | 2008-06-26 | Karen Anne Connery | Method of optimizing an oxygen free heat treating process |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4306918A (en) * | 1980-04-22 | 1981-12-22 | Air Products And Chemicals, Inc. | Process for carburizing ferrous metals |
CN101988180B (zh) * | 2009-08-03 | 2013-06-12 | 四川中力伟业多元合金科技有限公司 | 智能化控制气体多元共渗炉及其控制方法 |
JP5429500B2 (ja) * | 2011-07-19 | 2014-02-26 | 株式会社Ihi | 真空浸炭の品質管理方法と装置及び真空浸炭炉 |
CN102828143A (zh) * | 2012-08-30 | 2012-12-19 | 天津创真金属科技有限公司 | 工件高温渗碳工艺 |
-
2019
- 2019-03-22 WO PCT/JP2019/012211 patent/WO2019182140A1/ja active Application Filing
- 2019-03-22 JP JP2019537411A patent/JP6583600B1/ja active Active
- 2019-03-22 CN CN201980020012.1A patent/CN111868292B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001081543A (ja) * | 1999-09-14 | 2001-03-27 | Chugai Ro Co Ltd | 真空浸炭方法 |
JP2005350729A (ja) * | 2004-06-10 | 2005-12-22 | Ishikawajima Harima Heavy Ind Co Ltd | 真空浸炭方法 |
JP2007113045A (ja) * | 2005-10-19 | 2007-05-10 | Ishikawajima Harima Heavy Ind Co Ltd | 真空浸炭の品質管理方法及び真空浸炭炉 |
US20080149225A1 (en) * | 2006-12-26 | 2008-06-26 | Karen Anne Connery | Method for oxygen free carburization in atmospheric pressure furnaces |
US20080149226A1 (en) * | 2006-12-26 | 2008-06-26 | Karen Anne Connery | Method of optimizing an oxygen free heat treating process |
Also Published As
Publication number | Publication date |
---|---|
CN111868292B (zh) | 2022-03-29 |
WO2019182140A1 (ja) | 2019-09-26 |
JPWO2019182140A1 (ja) | 2020-04-30 |
CN111868292A (zh) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103290419B (zh) | 齿轮处理方法 | |
US20090266449A1 (en) | Method of carburizing and quenching a steel member | |
JP2008520839A (ja) | 完全硬化耐熱鋼から成る部品を熱処理する方法及び完全硬化耐熱鋼から成る部品 | |
JP5658934B2 (ja) | 浸炭焼入方法 | |
JP4876668B2 (ja) | 鋼部材の熱処理方法 | |
Kula et al. | FineCarb-the flexible system for low pressure carburizing. New options and performance | |
JP6583600B1 (ja) | 真空浸炭処理方法及び浸炭部品の製造方法 | |
Grosch | Fundamentals of carburising and toughness of carburised components | |
JP2016023346A (ja) | 歯車の浸炭処理方法 | |
JP7201092B2 (ja) | 真空浸炭処理方法及び浸炭部品の製造方法 | |
Dychtoń et al. | Process temperature effect on surface layer of vacuum carburized low-alloy steel gears | |
JP6587886B2 (ja) | 窒化鋼部材の製造方法 | |
JP2015025161A (ja) | 鉄または鉄合金の表面硬化方法及び装置、鉄または鉄合金の表面硬化構造 | |
JP6237459B2 (ja) | 鋼管の熱処理方法およびそれを用いる軸受用鋼管の製造方法 | |
JP5408465B2 (ja) | 鋼の浸炭処理方法 | |
KR101738503B1 (ko) | 냉간가공 제품 변형 저감 열처리 방법 | |
Easton et al. | Effects of Forming Route and Heat Treatment on the Distortion Behavior of Case-Hardened Martensitic Steel type S156 | |
KR100592757B1 (ko) | 가스 침탄 방법 | |
EP3168314A1 (en) | Method for heat treating metallic work pieces | |
KR20170052485A (ko) | 저온 진공침탄방법 | |
JPH0737645B2 (ja) | 高炭素クロム軸受鋼の脱炭抑制方法 | |
JP2009299122A (ja) | 浸窒焼入れ方法、浸窒焼入れ用ヒーター、および浸窒焼入れ装置 | |
JP2009270155A (ja) | 浸窒焼入れ方法および浸窒焼入れ品 | |
JPH03126858A (ja) | 高炭素クロム軸受鋼の浸炭・熱処理方法 | |
JP4858071B2 (ja) | 鋼材の表面処理方法及び表面処理された鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190710 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190710 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190819 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6583600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |