JP6544132B2 - 量子干渉装置、原子発振器、および電子機器 - Google Patents

量子干渉装置、原子発振器、および電子機器 Download PDF

Info

Publication number
JP6544132B2
JP6544132B2 JP2015160325A JP2015160325A JP6544132B2 JP 6544132 B2 JP6544132 B2 JP 6544132B2 JP 2015160325 A JP2015160325 A JP 2015160325A JP 2015160325 A JP2015160325 A JP 2015160325A JP 6544132 B2 JP6544132 B2 JP 6544132B2
Authority
JP
Japan
Prior art keywords
light
emitting element
light source
light emitting
quantum interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015160325A
Other languages
English (en)
Other versions
JP2017041662A (ja
JP2017041662A5 (ja
Inventor
暢仁 林
暢仁 林
義之 牧
義之 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015160325A priority Critical patent/JP6544132B2/ja
Priority to CN201610638372.6A priority patent/CN106470035B/zh
Priority to US15/236,714 priority patent/US9935642B2/en
Publication of JP2017041662A publication Critical patent/JP2017041662A/ja
Publication of JP2017041662A5 publication Critical patent/JP2017041662A5/ja
Application granted granted Critical
Publication of JP6544132B2 publication Critical patent/JP6544132B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0126Opto-optical modulation, i.e. control of one light beam by another light beam, not otherwise provided for in this subclass
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B17/00Generation of oscillations using radiation source and detector, e.g. with interposed variable obturator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Optics & Photonics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

本発明は、量子干渉装置、原子発振器、電子機器および移動体に関するものである。
長期的に高精度な発振特性を有する発振器として、ルビジウム、セシウム等のアルカリ金属の原子のエネルギー遷移に基づいて発振する原子発振器が知られている。
一般に、原子発振器の動作原理は、光およびマイクロ波による二重共鳴現象を利用した方式と、波長の異なる2種類の光による量子干渉効果(CPT:Coherent Population Trapping)を利用した方式とに大別される。量子干渉効果を利用した原子発振器は、二重共鳴現象を利用した原子発振器よりも小型化できることから、近年、様々な機器への搭載が期待されている(例えば、特許文献1参照)。
量子干渉効果を利用した原子発振器は、例えば、特許文献1に開示されているように、気体状のアルカリ金属を封入したガスセルと、ガスセル中のアルカリ金属を共鳴させる共鳴光対を出射する光源と、ガスセルを透過した共鳴光対を検出する光検出器(受光部)と、を備えている。そして、このような原子発振器では、2種類の共鳴光の周波数差が特定の値のときに2種類の共鳴光の双方がガスセル内のアルカリ金属に吸収されずに透過する電磁誘起透明化(EIT:Electromagnetically Induced Transparency)現象を生じるが、そのEIT現象に伴って発生する急峻な信号であるEIT信号を光検出器で検出し、そのEIT信号を基準信号として用いる。
特開2014−17824号公報
ここで、短期周波数安定度を高める観点から、EIT信号は、線幅(半値幅)が小さく、かつ、強度が高いことが好ましい。そのため、例えば、特許文献1に係る原子発振器では、EIT信号の強度を向上させる目的で、円偏光している共鳴光対を用いている。
しかし、特許文献1に係る原子発振器では、互いに同方向に円偏光している共鳴光対のみをガスセル中のアルカリ金属に照射するため、当該アルカリ金属の磁気量子数の分布に偏りが生じてしまう。そのため、EITに寄与する所望の磁気量子数の金属原子の数が減少し、その結果、EIT信号の強度を十分に向上させることができない。
本発明の目的は、EIT信号の強度を効果的に向上させることができる量子干渉装置を提供すること、また、かかる量子干渉装置を備える原子発振器、電子機器および移動体を提供することにある。
上記目的は、下記の本発明により達成される。
本発明の量子干渉装置は、金属が封入されている内部空間を有する原子セルと、
第1発光素子を有し、前記第1発光素子からの光を用いて、互いに同方向に円偏光していて前記金属を共鳴させる共鳴光対を含む第1光を生成し、前記第1光を前記内部空間に対して入射させる第1光源部と、
第2発光素子を有し、前記第2発光素子からの光を用いて、前記共鳴光対とは逆方向となる回転方向で円偏光していて前記金属を共鳴させる調整光を含む第2光を生成し、前記第2光を前記内部空間に対して前記第1光と同じ側から入射させる第2光源部と、
前記内部空間と前記第1発光素子および前記第2発光素子との間に配置され、開口を有する絞り部材と、を備えることを特徴とする。
このような量子干渉装置によれば、互いに同方向に円偏光している共鳴光対に加えて、原子セル内において共鳴光対とは逆方向となる回転方向で円偏光している調整光を原子セル内の金属に照射することにより、共鳴光対による磁気量子数の分布の偏りを調整光により相殺または緩和させ、金属の磁気量子数の分布の偏りを低減することができる。そのため、EITに寄与する所望の磁気量子数の金属原子の数を増加させ、その結果、円偏光している共鳴光対を用いることによってEIT信号の強度を向上させる効果を顕著に発現させることができる。よって、EIT信号の強度を効果的に向上させることができる。
ここで、内部空間と第1発光素子および第2発光素子との間に絞り部材が配置されているため、原子セルの内部空間に入射する第1光および第2光の通過領域を互いに一致または近似させることができる。そのため、金属の磁気量子数の分布の偏りを効率的に低減することができる。
本発明の量子干渉装置では、前記第1光源部および前記第2光源部は、前記第1発光素子および前記第2発光素子と前記内部空間との間に配置されている1/4波長板を共通して備えることが好ましい。
これにより、第1光源部および第2光源部を構成する部品点数を少なくしつつ、第1光源部から共鳴光対を含む第1光、第2光源部から調整光を含む第2光をそれぞれ生成することができる。
本発明の量子干渉装置では、前記絞り部材は、前記第1発光素子および前記第2発光素子と前記1/4波長板との間に配置されていることが好ましい。
これにより、絞り部材の開口に入射しない光が1/4波長板で反射して悪影響を及ぼすのを低減することができる。
本発明の量子干渉装置では、前記絞り部材は、前記1/4波長板と前記内部空間との間に配置されていることが好ましい。
これにより、絞り部材と内部空間との間の距離を短くすることができる。そのため、原子セルの内部空間に入射する第1光および第2光の通過領域の形状の調整が容易となる。
本発明の量子干渉装置では、前記絞り部材は、前記1/4波長板上に配置されていることが好ましい。
これにより、絞り部材および1/4波長板を一括して配置することができ、量子干渉装置の製造が容易となる。
本発明の量子干渉装置では、前記絞り部材は、前記原子セル上に配置されていることが好ましい。
これにより、絞り部材および原子セルを一括して配置することができ、量子干渉装置の製造が容易となる。また、原子セルの内部空間に対する絞り部材の開口の位置が変動するのを低減することができる。
本発明の量子干渉装置では、前記第1発光素子および前記第2発光素子と前記絞り部材との間に配置されているレンズを備えることが好ましい。
これにより、原子セルの内部空間に入射する第1光および第2光をそれぞれ平行光とすることができる。そのため、原子セルの内部空間において第1光および第2光のパワー密度が進行方向で変化するのを低減し、EIT信号の線幅の拡がりを抑制するとともに、金属の磁気量子数の分布の偏りを効率的に低減することができる。
本発明の量子干渉装置では、前記第1発光素子および前記第2発光素子は、同一基板上に配置されていることが好ましい。
このような場合、仮に絞り部材を省略すると、原子セルの内部空間において第1光のみまたは第2光のみが通過する領域が大きくなりやすい。したがって、このような場合に、絞り部材を設けることによる効果が顕著となる。
本発明の量子干渉装置では、前記共鳴光対および前記調整光は、一方がD1線であり、他方がD2線であることが好ましい。
これにより、EIT信号の強度を効率的に向上させることができる。
本発明の量子干渉装置では、前記第1発光素子が面発光レーザーであることが好ましい。
これにより、所望の周波数を有する共鳴光対を容易に生成することができる。また、面発光レーザーは所定の放射角をもって拡がる光を出射するため、第1発光素子からの光と第2発光素子からの光とを容易に重ねて絞り部材に入射させることができる。
本発明の量子干渉装置では、前記第2発光素子が面発光レーザーであることが好ましい。
これにより、所望の周波数を有する調整光を容易に生成することができる。また、面発光レーザーは所定の放射角をもって拡がる光を出射するため、第1発光素子からの光と第2発光素子からの光とを容易に重ねて絞り部材に入射させることができる。
本発明の量子干渉装置では、前記第2発光素子が発光ダイオードであることが好ましい。
これにより、調整光の線幅を共鳴光対よりも大きくすることができる。そのため、幅広い速度分布の金属原子に対して調整光を共鳴させることができる。したがって、調整光の中心波長が多少ずれても、所望の速度にある金属原子に対して調整光を共鳴させることができる。その結果、調整光の周波数制御が不要となり、装置構成を簡単化することができる。また、発光ダイオードは所定の放射角をもって拡がる光を出射するため、第1発光素子からの光と第2発光素子からの光とを容易に重ねて絞り部材に入射させることができる。
本発明の原子発振器は、本発明の量子干渉装置を備えることを特徴とする。
これにより、EIT信号の強度を効果的に向上させることができる量子干渉装置を備える原子発振器を提供することができる。
本発明の電子機器は、本発明の量子干渉装置を備えることを特徴とする。
これにより、EIT信号の強度を効果的に向上させることができる量子干渉装置を備える電子機器を提供することができる。
本発明の移動体は、本発明の量子干渉装置を備えることを特徴とする。
これにより、EIT信号の強度を効果的に向上させることができる量子干渉装置を備える移動体を提供することができる。
本発明の第1実施形態に係る原子発振器(量子干渉装置)を示す概略図である。 アルカリ金属原子のエネルギー状態を簡略的に説明するための図である。 光源部から出射される2つの光の周波数差と、受光部で検出される光の強度との関係を示すグラフである。 図1に示す原子発振器が備える光源部、原子セルおよび絞り部材を説明するための概略図である。 セシウム原子のエネルギー状態と共鳴光対(第1共鳴光、第2共鳴光)および調整光(第3共鳴光)との関係の一例を示す図である。 ナトリウム原子の磁気量子数の分布を示す図であって、(a)は、σ円偏光の共鳴光を照射した場合の分布を示す図、(b)は、σ円偏光の共鳴光を照射した場合の分布を示す図である。 本発明の第2実施形態に係る原子発振器が備える光源部、原子セルおよび絞り部材を説明するための概略図である。 本発明の第3実施形態に係る原子発振器が備える光源部、原子セルおよび絞り部材を説明するための概略図である。 GPS衛星を利用した測位システムに本発明の原子発振器を用いた場合の概略構成を示す図である。 本発明の移動体の一例を示す図である。
以下、本発明の量子干渉装置、原子発振器、電子機器および移動体を添付図面に示す実施形態に基づいて詳細に説明する。
1.原子発振器(量子干渉装置)
まず、本発明の原子発振器(本発明の量子干渉装置を備える原子発振器)について説明する。なお、以下では、本発明の量子干渉装置を原子発振器に適用した例を説明するが、本発明の量子干渉装置は、これに限定されず、例えば、磁気センサー、量子メモリー等のデバイスにも適用可能である。
<第1実施形態>
まず、本発明の第1実施形態に係る原子発振器を簡単に説明する。
図1は、本発明の第1実施形態に係る原子発振器(量子干渉装置)を示す概略図である。図2は、アルカリ金属原子のエネルギー状態を簡略的に説明するための図である。図3は、光源部から出射される2つの光の周波数差と、受光部で検出される光の強度との関係を示すグラフである。
図1に示す原子発振器1は、量子干渉効果を利用した原子発振器である。この原子発振器1は、図1に示すように、原子セル2(ガスセル)と、光源部3と、受光部4と、ヒーター5と、温度センサー6と、磁場発生部7と、制御部8と、を備えている。
まず、原子発振器1の原理を簡単に説明する。
図1に示すように、原子発振器1では、光源部3が原子セル2に向けて光LLを出射し、原子セル2を透過した光LLを受光部4が検出する。
原子セル2内には、ガス状のアルカリ金属(金属原子)が封入されている。アルカリ金属は、図2に示すように、2つの基底準位(第1基底準位および第2基底準位)と励起準位とからなる3準位系のエネルギー準位を有する。ここで、第1基底準位は、第2基底準位よりも低いエネルギー状態である。
光源部3から出射された光LLは、周波数の異なる2種の共鳴光として第1共鳴光および第2共鳴光を含んでいる。これら第1共鳴光および第2共鳴光を前述したようなガス状のアルカリ金属に照射したとき、第1共鳴光の周波数ωと第2共鳴光の周波数ωとの差(ω−ω)に応じて、共鳴光1、2のアルカリ金属における光吸収率(光透過率)が変化する。
そして、第1共鳴光の周波数ωと第2共鳴光の周波数ωとの差(ω−ω)が第1基底準位と第2基底準位とのエネルギー差ΔEに相当する周波数に一致したとき、第1基底準位および第2基底準位から励起準位への励起がそれぞれ停止する。このとき、第1共鳴光および第2共鳴光は、いずれも、アルカリ金属に吸収されずに透過する。このような現象をCPT現象または電磁誘起透明化現象(EIT:Electromagnetically Induced Transparency)と呼ぶ。
例えば、光源部3が第1共鳴光の周波数ωを固定し、第2共鳴光の周波数ωを変化させていくと、第1共鳴光の周波数ωと第2共鳴光の周波数ωとの差(ω−ω)が第1基底準位と第2基底準位とのエネルギー差ΔEに相当する周波数ωに一致したとき、受光部4の検出強度は、図3に示すように、急峻に上昇する。このような急峻な信号をEIT信号として検出する。このEIT信号は、アルカリ金属の種類によって決まった固有値をもっている。したがって、このようなEIT信号を基準として用いることにより、高精度な発振器を構成することができる。
以下、原子発振器1の各部を簡単に説明する。
[ガスセル]
原子セル2内には、ガス状のルビジウム、セシウム、ナトリウム等のアルカリ金属が封入されている。また、原子セル2内には、必要に応じて、アルゴン、ネオン等の希ガス、窒素等の不活性ガスが緩衝ガスとしてアルカリ金属ガスとともに封入されていてもよい。
後に詳述するが、原子セル2は、貫通孔を有する胴体部と、この胴体部の貫通孔の開口を塞ぐ1対の窓部とを有し、これにより、気体状のアルカリ金属が封入される内部空間が形成されている。
[光出射部]
光源部3は、原子セル2内のアルカリ金属原子を共鳴させる共鳴光対を構成する前述した第1共鳴光および第2共鳴光を含む光LLを出射する機能を有する。
また、光源部3が出射する光LLは、第1共鳴光および第2共鳴光に加えて、第3共鳴光を含んでいる。
第1共鳴光は、原子セル2内のアルカリ金属原子を前述した第1基底準位から励起準位へ励起する光(probe光)である。一方、第2共鳴光は、原子セル2内のアルカリ金属原子を前述した第2基底準位から励起準位へ励起する光(coupling光)である。ここで、第1共鳴光および第2共鳴光は、互いに同方向に円偏光している。また、第3共鳴光は、原子セル2内のアルカリ金属の磁気量子数を調整する「調整光」(repump光)である。この第3共鳴光は、第1共鳴光および第2共鳴光と逆方向に円偏光している。これにより、原子セル2内のアルカリ金属原子の磁気量子数を調整することができる。なお、光源部3については、後に詳述する。なお、「円偏光」とは、光波の電場成分または磁場成分の、どちらか一方の振動に着目するとき、その振動方向が光の進行方向に対して垂直な面内で光波の周波数で回転し、振幅がその向きによらず一定である光であり、言い換えれば電場(または磁場)の振動が伝播に伴って円を描く光である。
[受光部]
受光部4は、原子セル2内を透過した光LL(特に、第1共鳴光および第2共鳴光で構成された共鳴光対)の強度を検出する機能を有する。
この受光部4としては、上述したような光LLの強度を検出し得るものであれば、特に限定されないが、例えば、受光した光の強度に応じた信号を出力するフォトダイオード等の光検出器(受光素子)を用いることができる。なお、受光部4の構成は、後に詳述する。
[ヒーター]
ヒーター5(加熱部)は、前述した原子セル2(より具体的には原子セル2中のアルカリ金属)を加熱する機能を有する。これにより、原子セル2中のアルカリ金属を適切な濃度のガス状に維持することができる。
このヒーター5は、例えば、通電により発熱する発熱抵抗体を含んで構成されている。この発熱抵抗体は、原子セル2に対して接触して設けられていてもよいし、原子セル2に対して非接触で設けられていてもよい。
より具体的には、例えば、発熱抵抗体を原子セル2に対して接触して設ける場合、原子セル2の1対の窓部にそれぞれ発熱抵抗体を設ける。これにより、原子セル2の窓部にアルカリ金属原子が結露することを防止することができる。その結果、原子発振器1の特性(発振特性)を長期にわたり優れたものとすることができる。このような発熱抵抗体は、光LLに対する透過性を有する材料、具体的には、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、In、SnO、Sb含有SnO、Al含有ZnO等の酸化物等の透明電極材料で構成される。また、このような発熱抵抗体は、例えば、プラズマCVD、熱CVDのような化学蒸着法(CVD)、真空蒸着等の乾式メッキ法、ゾル・ゲル法等を用いて形成することができる。
また、発熱抵抗体を原子セル2に対して非接触で設ける場合、熱伝導性に優れる金属等、セラミックス等の部材を介して発熱抵抗体から原子セル2へ伝熱すればよい。
なお、ヒーター5は、原子セル2を加熱することができるものであれば、前述した形態に限定されず、各種ヒーターを用いることができる。また、ヒーター5に代えて、または、ヒーター5と併用して、ペルチェ素子を用いて、原子セル2を温度調節してもよい。
[温度センサー]
温度センサー6は、ヒーター5または原子セル2の温度を検出する機能を有する。
この温度センサー6は、例えば、ヒーター5または原子セル2に接触して配置される。
温度センサー6としては、それぞれ、特に限定されず、サーミスタ、熱電対等の公知の各種温度センサーを用いることができる。
[磁場発生部]
磁場発生部7は、原子セル2内のアルカリ金属に磁場を印加する機能を有する。これにより、ゼーマン分裂により、原子セル2内のアルカリ金属原子の縮退している異なる複数のエネルギー準位間のギャップを拡げて、分解能を向上させることができる。その結果、原子発振器1の発振周波数の精度を高めることができる。
ここで、磁場発生部7からの磁場は、原子セル2内において、光LLの進行方向に沿っている(ほぼ平行である)。なお、原子セル2内のアルカリ金属に対して共鳴光対および調整光を効率的に作用させる観点から、原子セル2内において、磁場発生部7からの磁場の方向は、光LLの進行方向に対して、0°以上30°以下であることが好ましく、0°以上20°以下であることがより好ましく、0°以上10°以下であることがさらに好ましい。
この磁場発生部7は、ソレノイド型を構成するように原子セル2の外周に沿って巻回して設けられたコイルで構成されている。なお、磁場発生部7は、ヘルムホルツ型を構成するように原子セル2を介して対向して設けられた1対のコイルで構成されていてもよい。
また、磁場発生部7が発生する磁場は、定磁場(直流磁場)であるが、交流磁場が重畳されていてもよい。
[制御部]
制御部8は、光源部3、ヒーター5および磁場発生部7をそれぞれ制御する機能を有する。
この制御部8は、光源部3を制御する光源制御部82と、原子セル2中のアルカリ金属の温度を制御する温度制御部81と、磁場発生部7からの磁場を制御する磁場制御部83とを有する。
光源制御部82は、前述した受光部4の検出結果に基づいて、光源部3から出射される第1共鳴光および第2共鳴光の周波数を制御する機能を有する。より具体的には、光源制御部82は、前述した周波数差(ω−ω)が前述したアルカリ金属固有の周波数ωとなるように、光源部3から出射される第1共鳴光および第2共鳴光の周波数を制御する。なお、光源制御部82の構成については、後に詳述する。
また、温度制御部81は、温度センサー6の検出結果に基づいて、ヒーター5への通電を制御する。これにより、原子セル2を所望の温度範囲内に維持することができる。例えば、原子セル2は、ヒーター5により、例えば、70℃程度に温度調節される。
また、磁場制御部83は、磁場発生部7が発生する磁場が一定となるように、磁場発生部7への通電を制御する。
このような制御部8は、例えば、基板上に実装されたICチップに設けられている。
以上、原子発振器1の構成を簡単に説明した。
(光源部、原子セルおよび絞り部材の詳細な説明)
図4は、図1に示す原子発振器が備える光源部、原子セルおよび絞り部材を説明するための概略図である。
図4に示すように、光源部3は、第1共鳴光および第2共鳴光からなる共鳴光対LL1を第1光として出射する第1光源部31と、第3共鳴光からなる調整光LL2を第2光として出射する第2光源部32と、を備えている。
第1光源部31は、第1光源311(第1発光素子)と、レンズ312と、1/4波長板313と、絞り部材34と、を有している。なお、第1光源部31は、第1光源311と1/4波長板313との間に1/2波長板が配置されていてもよい。この場合、第1光源311を光軸まわりに90°回転させた姿勢で設置すればよい。
第1光源311は、シリコン基板等の基板33上に配置されている。この第1光源311は、直線偏光されている共鳴光対からなる第1光LL1aを出射する機能を有する。ここで、第1光LL1aは、第1光源311から所定の放射角をもって拡がって出射される。この放射角は、特に限定されないが、10°以上40°以下であることが好ましく、15°以上30°以下であることがより好ましい。これにより、共鳴光対LL1を調整光LL2と重ねた状態で原子セル2内に効率的に照射することができる。
この第1光源311は、第1光LL1aを含む光を出射し得るものであれば特に限定されないが、例えば、端面発光レーザー、垂直共振器面発光レーザー(VCSEL)等の半導体レーザーである。なお、「直線偏光」とは、電磁波(光)の振動面が一平面内にある光であり、言い換えれば、電場(または磁場)の振動方向が一定な光である。
レンズ312は、第1光源311と原子セル2との間に配置されている。これにより、第1光源311から所定の放射角をもって拡がって出射される第1光LL1aをその拡がりを小さくして例えば平行光とし、その結果、原子セル2内の共鳴光対LL1を平行光とすることができる。
1/4波長板313は、入射した光の直交する偏光成分間に位相差π/2(90°)を生じさせる複屈折素子である。この1/4波長板313は、第1光源311からの第1光LL1aを直線偏光から円偏光(楕円偏光も含む)の共鳴光対LL1に変換する機能を有する。これにより、前述した第1共鳴光および第2共鳴光で構成された共鳴光対LL1を生成することができる。
絞り部材34は、1/4波長板313の第1光源311側の面上に配置されている。この絞り部材34は、入射した光のうちの一部の領域の光を通過させる開口341を有し、光の幅(径)および形状を調整する機能を有する。第1光源部31において、第1光源311からの第1光LL1aの一部が開口341を通過し、これにより、第1光LL1aの幅および形状が調整される。ここで、絞り部材34の開口341を除く部分は、遮光性を有する。このような絞り部材34の構成材料としては、絞り部材34の開口341を除く部分が遮光性を有することができれば、特に限定されず、例えば、樹脂材料、金属材料等を用いることができるが、絞り部材34の開口341を除く部分が光の反射を防止することができるものが好ましい。また、絞り部材34の形成方法は、特に限定されない。本実施形態の場合、例えば、1/4波長板313上に公知の成膜法を用いて絞り部材34を形成することができる。
以上のように、第1光源部31は、第1光源311からの光を用いて共鳴光対LL1を出射する。
一方、第2光源部32は、第2光源321と、レンズ312と、1/4波長板313と、絞り部材34と、を有している。ここで、レンズ312、1/4波長板313および絞り部材34は、前述した第1光源部31と共通して設けられている。すなわち、レンズ312、1/4波長板313および絞り部材34は、第1光源部31が備えているともいえるし、第2光源部32が備えているともいえる。なお、第2光源部32は、第2光源321と1/4波長板313との間に1/2波長板が配置されていてもよい。この場合、第2光源321を光軸まわりに90°回転させた姿勢で設置すればよい。
第2光源321は、前述した第1光源311と同一の基板33上に配置されている。この第2光源321は、第1光源311の直線偏光の方向と直交する方向に直線偏光されている共鳴光からなる第2光LL2aを出射する機能を有する。ここで、第2光LL2aは、第2光源321から所定の放射角をもって拡がって出射される。この放射角は、特に限定されないが、第1光源311における第1光LL1aの放射角と同等またはそれよりも若干大きいことが好ましく、具体的には、10°以上50°以下であることが好ましく、15°以上40°以下であることがより好ましい。これにより、調整光LL2を共鳴光対LL1と重ねた状態で原子セル2内に効率的に照射することができる。
この第2光源321は、第2光LL2aを含む光を出射し得るものであれば特に限定されないが、例えば、端面発光レーザー、垂直共振器面発光レーザー(VCSEL)等の半導体レーザー、発光ダイオード(LED)、有機エレクトロルミネッセンス(有機EL)素子等の発光素子である。
ここで、第2光源321の出力(第2光LL2aの強度)は、第1光源311の出力(第1光LL1aの強度)よりも小さいことが好ましい。これにより、後述するような調整光による作用を効果的に生じさせることができる。
レンズ312は、第2光源321と原子セル2との間に配置されている。これにより、第2光源321からの第2光LL2aを平行光とし、その結果、原子セル2内の調整光LL2を平行光とすることができる。
1/4波長板313は、第2光源321からの第2光LL2aを直線偏光から円偏光(楕円偏光も含む)の調整光LL2に変換する機能を有する。これにより、前述した第3共鳴光となる調整光LL2を生成することができる。ここで、直線偏光されている第2光LL2aの偏光方向は、直線偏光されている第1光LL1aの偏光方向と異なる方向(直交する方向)である。したがって、1/4波長板313で生成した共鳴光対LL1が右円偏光である場合、1/4波長板313で生成した調整光LL2は左円偏光であり、一方、共鳴光対LL1が左円偏光である場合、調整光LL2は右円偏光である。このような互いに反対方向となる回転方向で円偏光した共鳴光対LL1および調整光LL2を互いに同じ側から原子セル2に照射することにより、原子セル2の窓部22と窓部23とが並ぶ方向に沿って同方向から見たとき、原子セル2内において、調整光LL2の円偏光の回転方向が共鳴光対LL1の円偏光の回転方向に対して逆方向となる。
第2光源部32において、第2光源321からの第2光LL2aの一部が開口341を通過し、これにより、第2光LL2aの幅および形状が調整される。ここで、軸線aに沿った方向から見たとき、絞り部材34に沿った面上において第1光LL1aと第2光LL2aとが重なる領域内に開口341が包含されていることが好ましい。これにより、絞り部材34を通過した第1光LL1aおよび第2光LL2aの通過領域を互いに揃える(一致または近似した領域とする)ことができる。
以上のように、第2光源部32は、第2光源321からの光を用いて調整光LL2を出射する。
以上のように構成された光源部3は、第1光源311が光源制御部82により前述した第1共鳴光および第2共鳴光を出射するように制御される。
光源制御部82は、周波数制御部821と、電圧制御型水晶発振器822(VCXO:Voltage Controlled Crystal Oscillators)と、位相同期回路823(PLL:phase locked loop)と、を有している。
周波数制御部821は、受光部4の受光強度に基づいて原子セル2内のEIT状態を検出し、その検出結果に応じた制御電圧を出力する。これにより、周波数制御部821は、受光部4でEIT信号が検出されるように電圧制御型水晶発振器822を制御する。
電圧制御型水晶発振器822は、周波数制御部821により所望の発振周波数となるように制御され、例えば、数MHz〜数10MHz程度の周波数で発振する。また、電圧制御型水晶発振器822の出力信号は、位相同期回路823に入力されるとともに、原子発振器1の出力信号として出力される。
位相同期回路823は、電圧制御型水晶発振器822からの出力信号を周波数逓倍する。これにより、位相同期回路823は、前述したアルカリ金属原子の2つの異なる2つの基底準位のエネルギー差ΔEに相当する周波数の1/2の周波数で発振する。このように逓倍された信号(高周波信号)は、直流バイアス電流が重畳された上で駆動信号として第1光源部31の第1光源311に入力される。これにより、第1光源311に含まれる半導体レーザー等の発光素子を変調して、周波数差(ω−ω)がωとなる2つの光である第1共鳴光および第2共鳴光を出射させることができる。ここで、直流バイアス電流の電流値は、図示しないバイアス制御部により所定値に制御される。これにより、第1共鳴光および第2共鳴光の中心波長を所望に制御することができる。
なお、第1光源311および第2光源321は、それぞれ、図示しない温度調節素子(発熱抵抗体、ペルチェ素子等)により、所定温度に温度調節される。また、第1光源311および第2光源321の温度を調整することにより、第1光源311および第2光源321からの光の中心波長を制御することもできる。
以上説明したように構成された第1光源部31および第2光源部32からの共鳴光対LL1および調整光LL2は、原子セル2に照射される。
図4に示すように、原子セル2は、胴体部21と、胴体部21を挟んで設けられた1対の窓部22、23とを有している。この原子セル2では、胴体部21が1対の窓部22、23の間に配置されていて、気体状のアルカリ金属が封入されている内部空間Sを胴体部21および1対の窓部22、23が区画形成(構成)している。
より具体的に説明すると、胴体部21は、板状をなしており、この胴体部21には、胴体部21の厚さ方向に貫通している貫通孔211が形成されている。
この胴体部21の構成材料としては、特に限定されず、ガラス材料、水晶、金属材料、樹脂材料、シリコン材料等が挙げられるが、中でも、ガラス材料、水晶、シリコン材料のいずれかを用いることが好ましく、シリコン材料を用いることがより好ましい。これにより、幅や高さが10mm以下となるような小さい原子セル2を形成する場合であっても、エッチング等の微細加工技術を用いて、高精度な胴体部21を容易に形成することができる。特に、シリコンは、エッチングによる微細加工が可能である。したがって、シリコンを用いて胴体部21を構成することにより、原子セル2の小型化を図っても、胴体部21を簡単かつ高精度に形成することができる。また、一般に、窓部22、23はガラスで構成されるが、シリコンはガラスに比べて熱伝導性に優れている。したがって、胴体部21の放熱性を優れたものとすることができる。また、窓部22、23がガラスで構成されている場合、胴体部21と窓部22、23とを陽極接合により簡単に気密的に接合することができ、原子セル2の信頼性を優れたものとすることができる。
このような胴体部21の一方の面には、窓部22が接合され、一方、胴体部21の他方の面には、窓部23が接合されている。これにより、貫通孔211の一端開口が窓部22により封鎖されるとともに、貫通孔211の他端開口が窓部23により封鎖されている。
胴体部21と窓部22、23との接合方法としては、これらの構成材料に応じて決められるものであり、気密的に接合できるものであれば、特に限定されないが、例えば、接着剤による接合方法、直接接合法、陽極接合法、表面活性化接合法等を用いることができるが、直接接合法または陽極接合法を用いることが好ましい。これにより、胴体部21と窓部22、23とを簡単に気密的に接合することができ、原子セル2の信頼性を優れたものとすることができる。
このような胴体部21に接合されている各窓部22、23は、板状をなし、前述した光源部3からの光LLに対する透過性を有している。そして、一方の窓部22は、原子セル2の内部空間S内へ共鳴光対LL1および調整光LL2が入射する入射側窓部であり、一方、他方の窓部23は、原子セル2の内部空間S内から共鳴光対LL1および調整光LL2が出射する出射側窓部である。
窓部22、23の構成材料としては、それぞれ、前述したような光LLに対する透過性を有していれば、特に限定されず、例えば、ガラス材料、水晶等が挙げられるが、ガラス材料を用いることが好ましい。これにより、励起光に対する透過性を有する窓部22、23を実現することができる。また、胴体部21がシリコンで構成されている場合、ガラスを用いて窓部22、23を構成することにより、胴体部21と窓部22、23とを陽極接合により簡単に気密的に接合することができ、原子セル2の信頼性を優れたものとすることができる。なお、窓部22、23の厚さや光LLの強度によっては、窓部22、23をシリコンで構成することもできる。この場合でも、胴体部21と窓部22、23とを直接接合または陽極接合することができる。
このような窓部22、23により封鎖された貫通孔211内の空間である内部空間Sには、主に、気体状のアルカリ金属が収納されている。この内部空間S内に収納されている気体状のアルカリ金属は、光LLによって励起される。ここで、内部空間Sの少なくとも一部は、光LLが通過する「光通過空間」を構成する。
また、このように構成された原子セル2の外周には、磁場発生部7が備えるソレノイドコイルであるコイル71が配置されている。
以上説明したように構成された原子セル2内において、共鳴光対LL1の通過領域は、調整光LL2の通過領域に一致または包含されていることが好ましい。本実施形態では、原子セル2内において、共鳴光対LL1および調整光LL2のそれぞれの光軸は、原子セル2の窓部22と窓部23とが並ぶ方向に沿った軸線aと平行となっている。これにより、絞り部材34を通過した共鳴光対LL1および調整光LL2の通過領域を互いに一致させることができる。なお、原子セル2内において共鳴光対LL1の通過領域を調整光LL2の通過領域に一致または近似させることができれば、共鳴光対LL1および調整光LL2のそれぞれの光軸が軸線aに対して傾斜していてもよい。
ここで、原子セル2の共鳴光対LL1および調整光LL2が出射する側において、軸線aまたはその延長線上には、前述した受光部4が配置されており、原子セル2を通過した共鳴光対LL1が受光部4で受光される。一方、原子セル2を通過した調整光LL2は、受光部4で受光されないことが好ましい。このような観点から、原子セル2と受光部4との間に、共鳴光対LL1の通過を許容しつつ調整光LL2の通過を阻止するフィルターを設けてもよい。かかるフィルターとしては、例えば、1/4波長板、偏光子を原子セル2側から受光部4側へこの順で並べたものが挙げられる。
図5は、セシウム原子のエネルギー状態と共鳴光対(第1共鳴光、第2共鳴光)および調整光(第3共鳴光)との関係の一例を示す図である。図6は、ナトリウム原子の磁気量子数の分布を示す図であって、図6(a)は、σ円偏光の共鳴光を照射した場合の分布を示す図、図6(b)は、σ円偏光の共鳴光を照射した場合の分布を示す図である。以下、図5および図6に基づき、かかる場合の共鳴光対および調整光の作用について説明する。
例えば、原子セル2内にセシウム原子が封入され、そのセシウム原子に対して共鳴光対および調整光を同じ方向から照射する場合、図5に示すように、第1共鳴光および第2共鳴光(共鳴光対)としてσ偏光(左円偏光)しているD1線を用い、第3共鳴光(調整光)としてσ偏光(右円偏光)しているD2線を用いる。なお、第1共鳴光および第2共鳴光がσ偏光、第3共鳴光がσ偏光であってもよいし、また、第1共鳴光および第2共鳴光がD2線、第3共鳴光がD1線であってもよい。
アルカリ金属原子の一種であるセシウム原子は、6S1/2の基底準位と、6P1/2および6P3/2の2つの励起準位と、を有する。また、6S1/2、6P1/2、6P3/2の各準位は、複数のエネルギー準位に分裂した微細構造を有している。具体的には、6S1/2準位はF=3、4の2つの基底準位を有し、6P1/2準位はF’=3、4の2つの励起準位を有し、6P3/2準位はF”=2、3、4、5の4つの励起準位を有している。
6S1/2のF=3の第1基底準位にあるセシウム原子は、D2線を吸収することで、6P3/2のF”=2、3、4のいずれかの励起準位に遷移することができるが、F”=5の励起準位に遷移することはできない。6S1/2のF=4の第2基底準位にあるセシウム原子は、D2線を吸収することで、6P3/2のF”=3、4、5のいずれかの励起準位に遷移することができるが、F”=2の励起準位に遷移することはできない。これらは、電気双極子遷移を仮定した場合の遷移選択則による。逆に、6P3/2のF”=3、4のいずれかの励起準位にあるセシウム原子は、D2線を放出して6S1/2のF=3またはF=4の基底準位(元の基底準位または他方の基底準位のいずれか)に遷移することができる。このような6S1/2のF=3、4の2つの基底準位と6P3/2のF”=3、4のいずれかの励起準位からなる3準位は、D2線の吸収・発光によるΛ型の遷移が可能であることからΛ型3準位と呼ばれる。同様に、6S1/2のF=3、4の2つの基底準位と6P1/2のF’=3、4のいずれかの励起準位からなる3準位も、D1線の吸収・発光によるΛ型の遷移が可能であるからΛ型3準位を形成する。
これに対し、6P3/2のF”=2の励起準位にあるセシウム原子は、D2線を放出して必ず6S1/2のF=3の基底準位(元の基底準位)に遷移し、同様に、6P3/2のF”=5の励起準位にあるセシウム原子は、D2線を放出して必ず6S1/2のF=4の基底準位(元の基底準位)に遷移する。したがって、6S1/2のF=3、4の2つの基底準位と6P3/2のF”=2またはF”=5の励起準位からなる3準位は、D2線の吸収・放出によるΛ型の遷移が不可能であることからΛ型3準位を形成しない。
このようなセシウム原子は、真空中でのD1線の波長が894.593nmであり、真空中でのD2線の波長が852.347nmであり、6S1/2の超微細分裂周波数(ΔE)が9.1926GHzである。
なお、セシウム原子以外のアルカリ金属原子も、同様に、Λ型3準位を形成する2つの基底準位と励起準位を有する。ここで、ナトリウム原子は、真空中でのD1線の波長が589.756nmであり、真空中でのD2線の波長が589.158nmであり、3S1/2の超微細分裂周波数(ΔE)が1.7716GHzである。また、ルビジウム(85Rb)原子は、真空中でのD1線の波長が794.979nmであり、真空中でのD2線の波長が780.241nmであり、5S1/2の超微細分裂周波数(ΔE)が3.0357GHzである。また、ルビジウム(87Rb)原子は、真空中でのD1線の波長が794.979nmであり、真空中でのD2線の波長が780.241nmであり、5S1/2の超微細分裂周波数(ΔE)が6.8346GHzである。
例えば、図6に示すように、アルカリ金属原子の一種であるナトリウム原子は、Λ型3準位を形成する2つの基底準位と励起準位を有し、3S1/2のF=1の第1基底準位は、mF1=−1、0、1の3つの磁気量子数を有し、3S1/2のF=2の第2基底準位は、mF2=−2、−1、0、1、2の5つの磁気量子数を有し、3P1/2のF’=2の励起準位は、mF’=−2、−1、0、1、2の5つの磁気量子数を有する。
F=1またはF=2の基底準位にあるナトリウム原子に対してσ円偏光の共鳴光対を照射すると、図6(a)に示すように、磁気量子数が1増えるという選択則をもって、励起準位に励起される。このとき、F=1またはF=2の基底準位にあるナトリウム原子は、磁気量子数が大きい方に分布が変化する。
一方、F=1またはF=2の基底準位にあるナトリウム原子に対してσ円偏光の共鳴光対を照射すると、図6(b)に示すように、磁気量子数が1減るという選択則をもって、励起準位に励起される。このとき、F=1またはF=2の基底準位にあるナトリウム原子は、磁気量子数が小さい方に分布が変化する。
なお、図6では、説明の便宜上、簡単な構造のナトリウム原子を例に磁気量子数の分布を示しているが、他のアルカリ金属原子においても、基底準位および励起準位のそれぞれは、2F+1個の磁気量子数(磁気副準位)を有し、前述したような選択則をもって磁気量子数の分布が変化する。
以上説明したように、原子セル2内のアルカリ金属に対して共鳴光対および調整光を同じ方向から照射する場合、共鳴光対および調整光の一方を右円偏光とし、他方を左円偏光とすることにより、アルカリ金属の磁気量子数の偏りを低減することができる。
以上説明した原子発振器1では、互いに同方向に円偏光している共鳴光対LL1に加えて、原子セル2内において共鳴光対LL1とは逆方向となる回転方向で円偏光している調整光LL2をアルカリ金属に照射することにより、共鳴光対LL1による磁気量子数の分布の偏りを調整光LL2により相殺または緩和させ、アルカリ金属の磁気量子数の分布の偏りを低減することができる。そのため、EITに寄与する所望の磁気量子数のアルカリ金属原子の数を増加させ、その結果、円偏光している共鳴光対LL1を用いることによってEIT信号の強度を向上させる効果を顕著に発現させ、よって、EIT信号の強度を効果的に向上させることができる。
ここで、内部空間Sと第1光源311(第1発光素子)および第2光源321(第2発光素子)との間に、開口341を有する絞り部材34が配置されているため、原子セル2の内部空間Sに入射する共鳴光対LL1(第1光)および調整光LL2(第2光)の通過領域を互いに一致または近似させることができる。そのため、アルカリ金属の磁気量子数の分布の偏りを効率的に低減することができる。より具体的には、原子セル2内において、共鳴光対LL1および調整光LL2のそれぞれの幅方向での光量密度(パワー密度)の均一化を図るとともに、共鳴光対LL1または調整光LL2のみが通過する領域を低減することができる。そのため、共鳴光対LL1と調整光LL2とのバランスを優れたものとし、EIT信号の線幅を小さくしつつ、EIT信号の強度を向上させることができる。
しかも、本実施形態では、第1光源311および第2光源321と絞り部材34との間にレンズ312が配置されているため、原子セル2の内部空間Sに入射する共鳴光対LL1および調整光LL2をそれぞれ平行光とすることができる。そのため、原子セル2の内部空間Sにおいて共鳴光対LL1および調整光LL2のパワー密度が進行方向(伝播方向)で変化するのを低減し、アルカリ金属の磁気量子数の分布の偏りを効率的に低減することができる。その結果、EIT信号の線幅を狭くしつつ、EIT信号の強度を向上させることができる。
これに対し、仮に絞り部材34を省略すると、第1光源311および第2光源321が同一の基板33上の互いに異なる位置に配置されているため、原子セル2の内部空間Sにおいて共鳴光対LL1のみまたは調整光LL2のみが通過する領域が大きくなりやすい。したがって、第1光源311および第2光源321が同一の基板33上に配置されている場合に、絞り部材34を設けることによる効果が顕著となる。
また、前述したように、第1光源部31および第2光源部32は、第1光源311および第2光源321と内部空間Sとの間に配置されている1/4波長板313を共通して備える。これにより、第1光源部31および第2光源部32を構成する部品点数を少なくしつつ、第1光源部31から共鳴光対LL1、第2光源部32から調整光LL2をそれぞれ生成することができる。
本実施形態では、絞り部材34が第1光源311および第2光源321と1/4波長板313との間に配置されているため、絞り部材34の開口341に入射しない光が1/4波長板313で反射して悪影響を及ぼすのを低減することができる。
また、絞り部材34が1/4波長板313上に配置されているため、絞り部材34および1/4波長板313を一括して配置することができ、原子発振器1の製造が容易となる。
また、共鳴光対LL1および調整光LL2は、一方がD1線であり、他方がD2線である場合、EIT現象を効率よく生じさせ、その結果、EIT信号の強度を効率的に向上させることができる。
また、原子セル2内において調整光LL2の強度(光量子束密度)が共鳴光対LL1よりも小さいことが好ましい。これにより、原子セル2内のアルカリ金属の磁気量子数の偏りを効果的に低減することができる。
また、調整光LL2の強度が強すぎると、原子セル2内のアルカリ金属の磁気量子数の分布が、共鳴光対LL1による磁気量子数の分布の偏りとは反対側に大きく偏ってしまう場合がある。一方、調整光LL2の強度が弱すぎると、共鳴光対LL1による磁気量子数の分布の偏りを調整光LL2により十分に相殺または緩和させることができない場合がある。
このような観点から、原子セル2内の共鳴光対LL1の光量子束密度をD1とし、原子セル2内の調整光LL2の光量子束密度をD2としたとき、D2/D1は、0.1以上0.9以下であることが好ましく、0.2以上0.7以下であることがより好ましく、0.3以上0.5以下であることがさらに好ましい。
また、第1光源311が面発光レーザーである場合、所望の周波数を有する共鳴光対LL1を容易に生成することができる。また、面発光レーザーは所定の放射角をもって拡がる光を出射するため、第1光源311からの光と第2光源321からの光とを容易に重ねて絞り部材34に入射させることができる。
同様に、第2光源321が面発光レーザーである場合、所望の周波数を有する調整光LL2を容易に生成することができる。また、面発光レーザーは所定の放射角をもって拡がる光を出射するため、第1光源311からの光と第2光源321からの光とを容易に重ねて絞り部材34に入射させることができる。
また、第2光源321が発光ダイオードである場合、調整光LL2の線幅を共鳴光対LL1よりも大きくすることができる。そのため、幅広い速度分布のアルカリ金属原子に対して調整光LL2を共鳴させることができる。そのため、調整光LL2の中心波長が多少ずれても、所望の速度にあるアルカリ金属原子に対して調整光LL2を共鳴させることができる。その結果、調整光LL2の周波数制御が不要となり、装置構成を簡単化することができる。また、発光ダイオードは所定の放射角をもって拡がる光を出射するため、第1光源311からの光と第2光源321からの光とを容易に重ねて絞り部材34に入射させることができる。
<第2実施形態>
次に、本発明の第2実施形態について説明する。
図7は、本発明の第2実施形態に係る原子発振器が備える光源部、原子セルおよび絞り部材を説明するための概略図である。
本実施形態は、第1発光素子および第2発光素子と原子セルとの間のレンズを省略した以外は、前述した第1実施形態と同様である。
なお、以下の説明では、第2実施形態に関し、前述した実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図7において、前述した実施形態と同様の構成については、同一符号を付している。
図7に示す原子発振器1Aは、前述した第1実施形態のレンズ312を省略した以外は、第1実施形態の原子発振器1と同様である。すなわち、原子発振器1Aは、第1光源311、1/4波長板313および絞り部材34で構成された第1光源部31Aと、第2光源321、1/4波長板313および絞り部材34で構成された第2光源部32Aと、を備える。
このような原子発振器1Aでは、レンズ312を省略することで、小型化を図ることができる。ここで、第1光源311および第2光源321からの光は、拡がりながら絞り部材34に入射する。また、図示しないが、実際には、共鳴光対LL1および調整光LL2も拡がりながら原子セル2内を通過する。そのため、原子セル2内において、共鳴光対LL1および調整光LL2のパワー密度が進行方向で変化する。このようなパワー密度の変化による影響を低減するには、原子セル2の軸線aに沿った方向での長さを小さくすればよい。
以上説明したような第2実施形態によっても、EIT信号の強度を効果的に向上させることができる。
<第3実施形態>
次に、本発明の第3実施形態について説明する。
図8は、本発明の第3実施形態に係る原子発振器が備える光源部、原子セルおよび絞り部材を説明するための概略図である。
本実施形態は、絞り部材の配置が異なる以外は、前述した第1実施形態と同様である。
なお、以下の説明では、第3実施形態に関し、前述した実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図8において、前述した実施形態と同様の構成については、同一符号を付している。
図8に示す原子発振器1Bは、第1光源311、レンズ312、1/4波長板313および絞り部材34Bで構成された第1光源部31Bと、第2光源321、レンズ312、1/4波長板313および絞り部材34Bで構成された第2光源部32Bと、を備える。
絞り部材34Bは、1/4波長板313と内部空間Sとの間に配置されている。これにより、絞り部材34Bと内部空間Sとの間の距離を短くすることができる。そのため、原子セル2の内部空間Sに入射する共鳴光対LL1および調整光LL2の通過領域の形状の調整が容易となる。
また、絞り部材34Bは、原子セル2上に配置されている。これにより、絞り部材34Bおよび原子セル2を一括して配置することができ、原子発振器1Bの製造が容易となる。また、原子セル2の内部空間Sに対する絞り部材34Bの開口341の位置が変動するのを低減することができる。
以上説明したような第3実施形態によっても、EIT信号の強度を効果的に向上させることができる。
2.電子機器
以上説明したような原子発振器は、各種電子機器に組み込むことができる。
以下、本発明の電子機器について説明する。
図9は、GPS衛星を利用した測位システムに本発明の原子発振器を用いた場合の概略構成を示す図である。
図9に示す測位システム100は、GPS衛星200と、基地局装置300と、GPS受信装置400とで構成されている。
GPS衛星200は、測位情報(GPS信号)を送信する。
基地局装置300は、例えば電子基準点(GPS連続観測局)に設置されたアンテナ301を介してGPS衛星200からの測位情報を高精度に受信する受信装置302と、この受信装置302で受信した測位情報をアンテナ303を介して送信する送信装置304とを備える。
ここで、受信装置302は、その基準周波数発振源として前述した本発明の原子発振器1を備える電子装置である。このような受信装置302は、優れた信頼性を有する。また、受信装置302で受信された測位情報は、リアルタイムで送信装置304により送信される。
GPS受信装置400は、GPS衛星200からの測位情報をアンテナ401を介して受信する衛星受信部402と、基地局装置300からの測位情報をアンテナ403を介して受信する基地局受信部404とを備える。
3.移動体
図10は、本発明の移動体の一例を示す図である。
この図において、移動体1500は、車体1501と、4つの車輪1502とを有しており、車体1501に設けられた図示しない動力源(エンジン)によって車輪1502を回転させるように構成されている。このような移動体1500には、原子発振器1が内蔵されている。
なお、本発明の電子機器は、前述したものに限定されず、例えば、スマートフォン、タブレット端末、時計、携帯電話機、ディジタルスチルカメラ、インクジェット式吐出装置(例えばインクジェットプリンター)、パーソナルコンピューター(モバイル型パーソナルコンピューター、ラップトップ型パーソナルコンピューター)、テレビ、ビデオカメラ、ビデオテープレコーダー、カーナビゲーション装置、ページャー、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、医療機器(例えば電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシミュレーター、地上デジタル放送、携帯電話基地局、GPSモジュール等に適用することができる。
以上、本発明の量子干渉装置、原子発振器、電子機器および移動体について、図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。
また、本発明の各部の構成は、前述した実施形態の同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。また、本発明は、前述した各実施形態の任意の構成同士を組み合わせるようにしてもよい。
1…原子発振器、1A…原子発振器、1B…原子発振器、2…原子セル、3…光源部、4…受光部、5…ヒーター、6…温度センサー、7…磁場発生部、8…制御部、21…胴体部、22…窓部、23…窓部、31…第1光源部、31A…第1光源部、31B…第1光源部、32…第2光源部、32A…第2光源部、32B…第2光源部、33…基板、34…絞り部材、34B…絞り部材、71…コイル、81…温度制御部、82…光源制御部、83…磁場制御部、100…測位システム、200…GPS衛星、211…貫通孔、300…基地局装置、301…アンテナ、302…受信装置、303…アンテナ、304…送信装置、311…第1光源、312…レンズ、313…1/4波長板、321…第2光源、341…開口、400…GPS受信装置、401…アンテナ、402…衛星受信部、403…アンテナ、404…基地局受信部、821…周波数制御部、822…電圧制御型水晶発振器、823…位相同期回路、1500…移動体、1501…車体、1502…車輪、a…軸線、LL…光、LL1…共鳴光対、LL1a…第1光、LL2…調整光、LL2a…第2光、S…内部空間

Claims (13)

  1. 金属が封入されている内部空間を有する原子セルと、
    第1発光素子を有し、前記第1発光素子からの光を用いて、互いに同方向に円偏光していて前記金属を共鳴させる共鳴光対を含む第1光を生成し、前記第1光を前記内部空間に対して入射させる第1光源部と、
    第2発光素子を有し、前記第2発光素子からの光を用いて、前記共鳴光対とは逆方向となる回転方向で円偏光していて前記金属を共鳴させる調整光を含む第2光を生成し、前記第2光を前記内部空間に対して前記第1光と同じ側から入射させる第2光源部と、
    前記原子セルと前記第1発光素子および前記第2発光素子との間に配置され、開口を有する絞り部材と、を備えることを特徴とする量子干渉装置。
  2. 前記第1光源部および前記第2光源部は、前記第1発光素子および前記第2発光素子と前記内部空間との間に配置されている1/4波長板を共通して備える請求項1に記載の量子干渉装置。
  3. 前記絞り部材は、前記第1発光素子および前記第2発光素子と前記1/4波長板との間に配置されている請求項2に記載の量子干渉装置。
  4. 前記絞り部材は、前記1/4波長板と前記内部空間との間に配置されている請求項2に記載の量子干渉装置。
  5. 前記絞り部材は、前記1/4波長板上に配置されている請求項3または4に記載の量子干渉装置。
  6. 前記絞り部材は、前記原子セル上に配置されている請求項4に記載の量子干渉装置。
  7. 前記第1発光素子および前記第2発光素子と前記絞り部材との間に配置されているレンズを備える請求項1ないし6のいずれか1項に記載の量子干渉装置。
  8. 前記第1発光素子および前記第2発光素子は、同一基板上に配置されている請求項1ないし7のいずれか1項に記載の量子干渉装置。
  9. 前記共鳴光対および前記調整光は、一方がD1線であり、他方がD2線である請求項1ないし8のいずれか1項に記載の量子干渉装置。
  10. 前記第2発光素子が面発光レーザーである請求項1ないし9のいずれか1項に記載の量子干渉装置。
  11. 前記第2発光素子が発光ダイオードである請求項1ないし9のいずれか1項に記載の量子干渉装置。
  12. 請求項1ないし11のいずれか1項に記載の量子干渉装置を備えることを特徴とする原子発振器。
  13. 請求項1ないし11のいずれか1項に記載の量子干渉装置を備えることを特徴とする電子機器。
JP2015160325A 2015-08-17 2015-08-17 量子干渉装置、原子発振器、および電子機器 Active JP6544132B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015160325A JP6544132B2 (ja) 2015-08-17 2015-08-17 量子干渉装置、原子発振器、および電子機器
CN201610638372.6A CN106470035B (zh) 2015-08-17 2016-08-05 量子干涉装置、原子振荡器、电子设备
US15/236,714 US9935642B2 (en) 2015-08-17 2016-08-15 Quantum interference device, atomic oscillator, electronic apparatus, and moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160325A JP6544132B2 (ja) 2015-08-17 2015-08-17 量子干渉装置、原子発振器、および電子機器

Publications (3)

Publication Number Publication Date
JP2017041662A JP2017041662A (ja) 2017-02-23
JP2017041662A5 JP2017041662A5 (ja) 2018-09-06
JP6544132B2 true JP6544132B2 (ja) 2019-07-17

Family

ID=58157961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160325A Active JP6544132B2 (ja) 2015-08-17 2015-08-17 量子干渉装置、原子発振器、および電子機器

Country Status (3)

Country Link
US (1) US9935642B2 (ja)
JP (1) JP6544132B2 (ja)
CN (1) CN106470035B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841190B2 (ja) * 2017-08-31 2021-03-10 セイコーエプソン株式会社 周波数信号生成装置および周波数信号生成システム
CN112763794B (zh) * 2020-12-09 2023-08-15 北京无线电计量测试研究所 一种量子功率探测模块
CN114487621A (zh) * 2022-01-22 2022-05-13 山西大学 一种基于里德堡原子AC Stark效应的连续频率电场测量装置和方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303478A (ja) * 1997-04-30 1998-11-13 Nec Corp ルビジウム原子発振器用キャビティ
WO2005054907A2 (en) 2003-11-26 2005-06-16 Kernco, Inc. Improved optically excited atomic frequency standard
KR100559185B1 (ko) * 2004-10-14 2006-03-10 한국표준과학연구원 전자기 유도 투과성을 이용하는 레이저 주파수 안정화방법 및 장치
US7379486B2 (en) * 2005-07-22 2008-05-27 Honeywell International Inc. Technique for optically pumping alkali-metal atoms using CPT resonances
JP2010147967A (ja) * 2008-12-22 2010-07-01 Epson Toyocom Corp 原子発振器およびその周波数安定化方法
US8237514B2 (en) 2009-02-06 2012-08-07 Seiko Epson Corporation Quantum interference device, atomic oscillator, and magnetic sensor
JP5381400B2 (ja) 2009-02-06 2014-01-08 セイコーエプソン株式会社 量子干渉装置、原子発振器、および磁気センサー
EP2498150A1 (fr) * 2011-03-09 2012-09-12 CSEM Centre Suisse D'electronique Et De Microtechnique SA Horloge atomique
JP6346446B2 (ja) * 2013-02-14 2018-06-20 株式会社リコー 原子発振器、cpt共鳴の検出方法及び磁気センサ
US9500725B2 (en) 2013-08-06 2016-11-22 Northrop Grumman Systems Corporation Probe beam frequency stabilization in an atomic sensor system
JP2015082763A (ja) 2013-10-23 2015-04-27 セイコーエプソン株式会社 光学モジュールおよび原子発振器
JP2015089055A (ja) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 光学モジュールおよび原子発振器
JP2015118962A (ja) * 2013-12-16 2015-06-25 セイコーエプソン株式会社 量子干渉装置、原子発振器、電子機器および移動体
JP6337464B2 (ja) * 2013-12-20 2018-06-06 セイコーエプソン株式会社 量子干渉装置、原子発振器、および電子機器
JP6287169B2 (ja) * 2013-12-20 2018-03-07 セイコーエプソン株式会社 量子干渉装置、原子発振器、電子機器および移動体
CN105515580B (zh) * 2014-10-14 2020-07-14 精工爱普生株式会社 量子干涉装置、原子振荡器、电子设备以及移动体
JP5907234B2 (ja) 2014-10-27 2016-04-26 セイコーエプソン株式会社 磁気測定装置および生体状態測定装置

Also Published As

Publication number Publication date
CN106470035B (zh) 2021-07-09
US20170054446A1 (en) 2017-02-23
US9935642B2 (en) 2018-04-03
JP2017041662A (ja) 2017-02-23
CN106470035A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
US10027335B2 (en) Quantum interference device, atomic oscillator, electronic device, and moving object
JP6354151B2 (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2015231053A (ja) 原子セル、量子干渉装置、原子発振器、電子機器および移動体
JP6484922B2 (ja) 原子セル、量子干渉装置、原子発振器および電子機器
JP6682885B2 (ja) 量子干渉装置、原子発振器、および電子機器
JP2015119443A (ja) ガスセル、量子干渉装置、原子発振器、電子機器および移動体
US20160126965A1 (en) Atomic cell manufacturing method, atomic cell, quantum interference device, atomic oscillator, electronic device, and moving object
JP2015070228A (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP6519169B2 (ja) 原子共鳴遷移装置、原子発振器、時計、電子機器および移動体
JP6520039B2 (ja) 量子干渉装置、原子発振器および電子機器
JP6544132B2 (ja) 量子干渉装置、原子発振器、および電子機器
JP2015228461A (ja) 原子共鳴遷移装置、原子発振器、電子機器および移動体
JP6361129B2 (ja) ガスセル、量子干渉装置、原子発振器、電子機器および移動体
JP6743410B2 (ja) 量子干渉装置、原子発振器および電子機器
JP6442969B2 (ja) 量子干渉装置、原子発振器および電子機器
JP6337464B2 (ja) 量子干渉装置、原子発振器、および電子機器
US10326461B2 (en) Quantum interference device, atomic oscillator, electronic apparatus, and moving object
JP6264876B2 (ja) 量子干渉装置、原子発振器、および電子機器
JP6627335B2 (ja) 量子干渉装置、原子発振器、および電子機器
JP6565397B2 (ja) 量子干渉装置、原子発振器および電子機器
JP2015070575A (ja) 原子発振器、原子発振器の周波数調整方法、電子機器および移動体
JP6662061B2 (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2014099728A (ja) 原子発振器、原子発振器の特性調整方法、電子機器および移動体
JP2017022653A (ja) 量子干渉装置、原子発振器、電子機器および移動体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6544132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250