JP6535189B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP6535189B2
JP6535189B2 JP2015055461A JP2015055461A JP6535189B2 JP 6535189 B2 JP6535189 B2 JP 6535189B2 JP 2015055461 A JP2015055461 A JP 2015055461A JP 2015055461 A JP2015055461 A JP 2015055461A JP 6535189 B2 JP6535189 B2 JP 6535189B2
Authority
JP
Japan
Prior art keywords
map
distance
outline
setting area
input value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015055461A
Other languages
English (en)
Other versions
JP2016176357A (ja
Inventor
洋典 湯村
洋典 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2015055461A priority Critical patent/JP6535189B2/ja
Publication of JP2016176357A publication Critical patent/JP2016176357A/ja
Application granted granted Critical
Publication of JP6535189B2 publication Critical patent/JP6535189B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Transmission Device (AREA)
  • Fuel Cell (AREA)

Description

本発明は、制御装置に関し、特に、入力値と制御値との関係を定めたマップを検索して制御値を求める、パワーユニットの制御装置に関する。
車両を駆動する例えばエンジン(パワーユニット)の制御では、運転状態(例えば、エンジン回転数、吸入空気量、スロットル開度等々)を各種センサで検出し、そのセンサ値(入力値)を用いて、予め設定されて記憶されているマップ(センサ値と制御値との関係を定めたマップ(ルックアップテーブル))を検索することにより、エンジンの制御値(例えば、燃料噴射量、点火時期等々)を求める手法が広く用いられている。
ところで、例えば、同一環境下で全運転領域のマップデータを計測(取得)できない場合や、入力値と制御値との関係の非線形性が強い場合など、一つのマップですべての制御値を表現することが困難な場合がある。このような場合に、従来では、一つのマップを複数のマップに分割し、その複数のマップを例えば所定の入力値(パラメータ)に応じて切り替えて使用することが行われている(例えば、特許文献1参照)。
特開平10−109627号公報
しかしながら、従来の技術では、一般的に、上下限値でマップの境界が画定されているため、境界が矩形(軸と平行)になり、例えば所定の入力値(パラメータ)に基づいて、複数のマップの中から最も適したマップを選択しようとした場合に、最近傍でないマップ、すなわち最適でないマップを選択するおそれがあった。特に、例えば、入力値がマップの設定領域の外郭(境界)の外側に位置する場合や、2以上のマップの共有領域内に位置する場合には、複数のマップの中から、最適なマップを必ずしも選択できるとは限らなかった。
また、近年、排気ガス規制(エミッション規制)や燃費向上要求等からエンジンに付加される制御デバイスが増加し、かつ、トレードオフの関係にあるエンジン性能、排気ガス、燃費、信頼性等の間の最適な制御値を求める必要から、制御がますます複雑になってきており、上述したマップも、例えば5次元、6次元といったように多次元化されてきている。そのような状況においては、複数のマップの中から一つのマップを選択する際に、マップの選択に複雑な条件分岐処理などが必要になることがあるため、そのような複雑な条件分岐処理などを要することなく、より適切なマップを選択することのできる技術が要望されていた。
本発明は、上記問題点を解消する為になされたものであり、マップが複数のマップに分割されている場合に、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択することが可能な制御装置を提供することを目的とする。
本発明に係る制御装置は、パワーユニットの運転状態を示すパラメータの入力値を取得する検出手段と、同一のパラメータの入力値と制御値との関係定められ設定領域であって、2次元平面に投影したときの外郭の形状が非線形の設定領域を有する複数のマップを予め記憶する記憶手段と、検出手段により取得されたパラメータの入力値と、記憶手段に記憶されている複数のマップそれぞれの設定領域の外郭との距離を求める距離取得手段と、距離取得手段により取得された距離に基づいて、複数のマップの中から、使用するマップを選択するマップ選択手段と、マップ選択手段により選択されたマップから、パワーユニットの制御値を取得する制御値取得手段とを備え、距離取得手段が、パラメータの入力値と複数のマップそれぞれの設定領域の外郭との距離を求める際に、パラメータの入力値と複数のマップそれぞれの設定領域の外郭との距離に、該設定領域の外郭の内側を「−」、該設定領域の外郭の外側を「+」とする符号を付加した、符号付距離を求め、マップ選択手段が、符号付距離がもっとも小さいマップを選択することを特徴とする。
又は、本発明に係る制御装置は、パワーユニットの運転状態を示すパラメータの入力値を取得する検出手段と、同一のパラメータの入力値と制御値との関係が定められた設定領域であって、2次元平面に投影したときの外郭の形状が非線形の設定領域を有する複数のマップを予め記憶する記憶手段と、検出手段により取得されたパラメータの入力値と、記憶手段に記憶されている複数のマップそれぞれの設定領域の外郭との距離を求める距離取得手段と、距離取得手段により取得された距離に基づいて、複数のマップの中から、使用するマップを選択するマップ選択手段と、マップ選択手段により選択されたマップから、パワーユニットの制御値を取得する制御値取得手段とを備え、距離取得手段が、パラメータの入力値と複数のマップそれぞれの設定領域の外郭との距離を求める際に、パラメータの入力値と複数のマップそれぞれの設定領域の外郭との距離に、該設定領域の外郭の内側を「+」、該設定領域の外郭の外側を「−」とする符号を付加した、符号付距離を求め、マップ選択手段が、符号付距離がもっとも大きいマップを選択することを特徴とする。
本発明に係る制御装置によれば、パラメータの入力値と、予め記憶されている複数のマップそれぞれの設定領域の外郭(境界)との距離が求められる際に、パラメータの入力値と複数のマップそれぞれの設定領域の外郭との距離に、該設定領域の外郭の内側を「−」、該設定領域の外郭の外側を「+」とする符号を付加した、符号付距離が求められ、その符号付距離がもっとも小さいマップが選択される。その結果、マップが複数のマップに分割されている場合に、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択することが可能となる。
又は、本発明に係る制御装置によれば、パラメータの入力値と、予め記憶されている複数のマップそれぞれの設定領域の外郭(境界)との距離が求められる際に、パラメータの入力値と複数のマップそれぞれの設定領域の外郭との距離に、該設定領域の外郭の内側を「+」、該設定領域の外郭の外側を「−」とする符号を付加した、符号付距離が求められ、その符号付距離がもっとも大きいマップが選択される。その結果、マップが複数のマップに分割されている場合に、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択することが可能となる。
特に、本発明に係る制御装置では、検出手段が複数のパラメータの入力値を取得し、記憶手段が、同一の複数のパラメータの入力値と一以上の制御値との関係定められ設定領域であって、2次元平面に投影したときの外郭の形状が非線形の設定領域を有する2次元以上のマップを予め記憶し、距離取得手段が、複数のパラメータの入力値と、複数のマップそれぞれの設定領域の外郭との符号付距離を求めることが好ましい。
この場合、複数のパラメータの入力値(入力ベクトル)と複数のマップそれぞれの設定領域の外郭(境界)との符号付距離が求められるため、各マップが2次元以上の多次元マップであったとしても、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択することができる。
本発明に係る制御装置では、上記複数のマップそれぞれの設定領域の外郭が統計モデルを用いて数式化されていることが好ましい。
この場合、設定領域の外郭(計測領域の境界)が統計モデル化されているため、各マップの外郭が非線形な形状であったとしても、該外郭を適切に画定することができる。よって、入力値と各マップの設定領域の外郭(境界)との距離を正確に求めることができるため、入力値に最も近いマップを的確に選択することができる。
本発明に係る制御装置では、パラメータの入力値が、複数のマップそれぞれの設定領域の外郭の外側に位置している場合、又は複数のマップの共有領域内に位置している場合に、マップ選択手段が、符号付距離に基づいて、パラメータの入力値と複数のマップそれぞれの設定領域の外郭との距離が等しい複数のマップ、又は、最も距離が近いマップ及び2番目に距離が近いマップを選択し、制御値取得手段が、選択された複数のマップそれぞれから制御値を取得するとともに、取得したマップ毎の制御値を、パラメータの入力値と各マップそれぞれの設定領域の外郭との距離の比率に応じた内分点を求めてパワーユニットの制御値を取得することが好ましい。
このようにすれば、一方のマップから他方のマップへ、スムーズにマップ切替えを行うことができ、マップ切替え時の段付き感を低減することができる。
本発明に係る制御装置では、制御値取得手段が、検出手段により取得されたパラメータの入力値が、マップの設定領域の外郭の内側に位置しているか外側に位置しているかを判定するとともに、パラメータの入力値がマップの設定領域の外郭の外側に位置している場合に、パラメータの入力値に対する、マップの設定領域の外郭上の最近傍点の値を取得する最近傍点取得手段と、最近傍点取得手段によりパラメータの入力値がマップの設定領域の外郭の内側に位置していると判定された場合には、パラメータの入力値を選択し、入力値がマップの設定領域の外郭の外側に位置していると判定された場合には、最近傍点の値を選択する入力値選択手段と、入力値選択手段により選択された値を用いてマップを検索し、パワーユニットの制御値を求める制御値探索手段とを備えることが好ましい。
この場合、パラメータの入力値がマップの設定領域の外郭の内側に位置しているか外側に位置しているかが判定され、外側に位置していると判定された場合には、パラメータの入力値に対する、マップの設定領域の外郭上の最近傍点の値が求められる。そして、その値を用いてマップが検索され、制御値が求められる。すなわち、パラメータの入力値がマップの設定領域外になった場合には、予め記憶されているマップの設定領域に含まれ、かつセンサ入力値に対して最も近い制御値が選択される。その結果、入力値がマップの設定領域外になった場合であっても、制御上より適切な制御値を求めることが可能となる。
本発明によれば、マップが複数のマップに分割されている場合に、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択することが可能となる。
実施形態に係る制御装置の構成、及び該制御装置が適用されたエンジンの構成を示す図である。 実施形態に係る制御装置が有する、エンジン吸入空気推定量を求める制御モデルの一例を示す図である。 図2に示された制御モデルを構成する中高負荷モデル(又は低負荷モデル)の一例を示す図である。 エンジン回転数、スロットル開度、吸気バルブタイミング、及びEGRバルブ開度とエンジン吸入空気推定量との関係を定めたマップ(Boundary Model)の一例を示す図である。 図4に示されたマップの散布図行列とBoundary Modelを示す図である。 実施形態に係る制御装置による制御値取得処理(マップ選択処理)の処理手順を示すフローチャートである。 実施形態に係る制御装置による制御値取得処理(マップ選択処理)に含まれる制御値探索処理の処理手順を示すフローチャートである。 入力値がマップの設定領域外になった場合における、実施形態に係る制御装置によるマップ選択結果を説明するための模式図である。
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。
まず、図1〜図3を併せて用いて、実施形態に係る制御装置1の構成について説明する。図1は、制御装置1の構成、及び制御装置1が適用されたエンジン10の構成を示す図である。図2は、制御装置1が有するエンジン吸入空気推定量を求める制御モデルの一例を示す図である。また、図3は、図2に示された制御モデルを構成する中高負荷モデル52a(又は低負荷モデル52b)の一例を示す図である。
エンジン10は、例えば水平対向型の4気筒ガソリンエンジンである。また、エンジン10は、シリンダ内(筒内)に燃料を直接噴射する筒内噴射式のエンジンである。エンジン10では、エアクリーナ16から吸入された空気が、吸気管15に設けられた電子制御式スロットルバルブ(以下、単に「スロットルバルブ」ともいう)13により絞られ、インテークマニホールド11を通り、エンジン10に形成された各気筒に吸入される。ここで、エアクリーナ16から吸入された空気の量は、エアクリーナ16とスロットルバルブ13との間に配置されたエアフローメータ14により検出される。また、インテークマニホールド11を構成するコレクター部(サージタンク)の内部には、インテークマニホールド11内の圧力(吸気マニホールド圧力)を検出するバキュームセンサ30が配設されている。さらに、スロットルバルブ13には、該スロットルバルブ13の開度を検出するスロットル開度センサ31が配設されている。
シリンダヘッドには、気筒毎に吸気ポート22と排気ポート23とが形成されている(図1では片バンクのみ示した)。各吸気ポート22、排気ポート23それぞれには、該吸気ポート22、排気ポート23を開閉する吸気バルブ24、排気バルブ25が設けられている。吸気バルブ24を駆動する吸気カム軸と吸気カムプーリとの間には、吸気カムプーリと吸気カム軸とを相対回動してクランク軸10aに対する吸気カム軸の回転位相(変位角)を連続的に変更して、吸気バルブ24のバルブタイミング(開閉タイミング)を進遅角する可変バルブタイミング機構26が配設されている。この可変バルブタイミング機構26により吸気バルブ24の開閉タイミングがエンジン運転状態に応じて可変設定される。
同様に、排気カム軸と排気カムプーリとの間には、排気カムプーリと排気カム軸とを相対回動してクランク軸10aに対する排気カム軸の回転位相(変位角)を連続的に変更して、排気バルブ25のバルブタイミング(開閉タイミング)を進遅角する可変バルブタイミング機構27が配設されている。この可変バルブタイミング機構27により排気バルブ25の開閉タイミングがエンジン運転状態に応じて可変設定される。
エンジン10の各気筒には、シリンダ内に燃料を噴射するインジェクタ12が取り付けられている。インジェクタ12は、高圧燃料ポンプ(図示省略)により加圧された燃料を各気筒の燃焼室内へ直接噴射する。
また、各気筒のシリンダヘッドには、混合気に点火する点火プラグ17、及び該点火プラグ17に高電圧を印加するイグナイタ内蔵型コイル21が取り付けられている。エンジン10の各気筒では、吸入された空気とインジェクタ12によって噴射された燃料との混合気が点火プラグ17により点火されて燃焼する。燃焼後の排気ガスは排気管18を通して排出される。
排気管18の集合部の下流かつ排気浄化触媒20の上流には、空燃比センサ19が取り付けられている。空燃比センサ19としては、排気ガス中の酸素濃度、未燃ガス濃度に応じた信号(すなわち混合気の空燃比に応じた信号)を出力でき、空燃比をリニアに検出することができるリニア空燃比センサ(LAFセンサ)が用いられる。
LAFセンサ19の下流には排気浄化触媒20が配設されている。排気浄化触媒20は三元触媒であり、排気ガス中の炭化水素(HC)及び一酸化炭素(CO)の酸化と、窒素酸化物(NOx)の還元を同時に行い、排気ガス中の有害ガス成分を無害な二酸化炭素(CO)、水蒸気(HO)及び窒素(N)に清浄化するものである。
排気管18には、エンジン10から排出された排気ガスの一部を、エンジン10のインテークマニホールド11に再循環させる排気ガス再循環装置(以下「EGR(Exhaust Gas Recirculation)装置」という)40が設けられている。EGR装置40は、エンジン10の排気管18とインテークマニホールド11とを連通するEGR配管41、及びEGR配管41上に介装され、排気ガス還流量(EGR流量)を調節するEGRバルブ42を有している。EGRバルブ42は、エンジン10の運転状態に応じて、後述する電子制御装置50によって開度(EGRSTP)が制御される。
上述したエアフローメータ14、LAFセンサ19、バキュームセンサ30、スロットル開度センサ31に加え、エンジン10のカムシャフト近傍には、エンジン10の気筒判別を行うためのカム角センサ32が取り付けられている。また、エンジン10のクランクシャフト10a近傍には、クランクシャフト10aの回転位置を検出するクランク角センサ33が取り付けられている。ここで、クランクシャフト10aの端部には、例えば、2歯欠歯した34歯の突起が10°間隔で形成されたタイミングロータ33aが取り付けられており、クランク角センサ33は、タイミングロータ33aの突起の有無を検出することにより、クランクシャフト10aの回転位置を検出する。カム角センサ32及びクランク角センサ33としては、例えば電磁ピックアップ式のものなどが用いられる。
これらのセンサは、電子制御装置(以下「ECU」という)50に接続されている。さらに、ECU50には、エンジン10の冷却水の温度を検出する水温センサ34、潤滑油の温度を検出する油温センサ35、アクセルペダルの踏み込み量すなわちアクセルペダルの開度を検出するアクセルペダル開度センサ36、及び、車両の速度を検出する車速センサ37等の各種センサも接続されている。なお、エンジン10の運転状態を示すセンサ値(パラメータ値)を取得する上記各種センサは、特許請求の範囲に記載の検出手段として機能する。
ECU50は、演算を行うマイクロプロセッサ、該マイクロプロセッサに各処理を実行させるためのプログラム等を記憶するROM、演算結果などの各種データを記憶するRAM、12Vバッテリによってその記憶内容が保持されるバックアップRAM、及び入出力I/F等を有して構成されている。また、ECU50は、インジェクタ12を駆動するインジェクタドライバ、点火信号を出力する出力回路、及び、電子制御式スロットルバルブ13を開閉する電動モータ13aを駆動するモータドライバ等を備えている。
ECU50では、カム角センサ32の出力から気筒が判別され、クランク角センサ33の出力から回転角速度およびエンジン回転数が求められる。また、ECU50では、上述した各種センサから入力される検出信号に基づいて、吸入空気量、吸気管負圧、アクセルペダル開度、混合気の空燃比、及びエンジン10の水温や油温等の各種情報が取得される。そして、ECU50は、取得したこれらの各種情報に基づいて、燃料噴射量や点火時期、及び、スロットルバルブ13やEGRバルブ42等の各種デバイスを制御することによりエンジン10を総合的に制御する。
特に、ECU50は、制御指示値(制御値)を求める際に、マップが複数のマップに分割されている場合に、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択する機能を有している。そのため、ECU50は、記憶部51、距離取得部52、マップ選択部53、及び制御値取得部54を機能的に備えている。また、制御値取得部54は、最近傍点取得部54a、入力選択部54b、制御値探索部54cを機能的に有している。ECU50では、ROM等に記憶されているプログラムがマイクロプロセッサによって実行されることにより、記憶部51、距離取得部52、マップ選択部53、制御値取得部54、及び、最近傍点取得部54a、入力選択部54b、制御値探索部54cの各機能が実現される。
記憶部51は、上述したROM等により構成され、一又は複数のパラメータの入力値と一以上の制御指示値との関係を定めた複数に分割されたマップ(例えば、後述するエンジンダイナモメータ(EDM)の計測結果を元に生成された中高負荷マップ、及びシャシダイナモメータ(CDM)の計測結果を元に生成された低負荷マップ等)を予め記憶する。すなわち、記憶部51は、特許請求の範囲に記載の記憶手段として機能する。なお、マップとしては、格子点毎に制御指示値が設定されている従来のマップ(ルックアップテーブル)の他、統計モデルや物理モデルなどを用いることができる。また、マップが作成される際に、その設定領域の外郭も画定される。
ここで、記憶部51に記憶されている複数に分割されたマップ(例えば中高負荷マップ及び低負荷マップ)に含まれる一つのマップの例を図4に示す。図4に示されたマップは、エンジン回転数NE(rpm)、スロットル開度THR(deg)、吸気バルブタイミングVTR(deg)、及びEGRバルブ開度EGRSTPとエンジン吸入空気推定量GN’(g/rev)との関係を定めた4次元のマップである。なお、図4では、EGRバルブ開度EGRSTPを固定したときの3次元形状(Boundary Model)を示している。
また、図4に示されたマップの散布図行列とBoundary Modelを図5に示す。図5に示される散布図行列は、EGRバルブ開度EGRSTP、エンジン回転数NE、スロットル開度THR、及び吸気バルブタイミングVTRの中から2つの入力(パラメータ)を選んで、計測点を2次元平面に投影したものである。なお、散布図行列中の黒点は計測点を示している。また、図4、図5に示されるように、このマップの設定領域(計測領域)の外郭(以下、単に「マップの外郭」ともいう)の形状は、矩形ではなく非線形になっている。本実施形態では、マップの設定領域(計測領域)の外郭を統計モデルを用いて数式化した。記憶部51に記憶されている複数のマップは、距離取得部52、マップ選択部53、及び制御値取得部54において利用される。
距離取得部52は、取得された一又は複数のパラメータの入力値(入力点)と、複数のマップそれぞれの設定領域の外郭との距離を求める。その際に、距離取得部52は、入力値とマップの設定領域の外郭との距離に対して、該設定領域の外郭の内側を「−」、該設定領域の外郭の外側を「+」とする符号を付加した、符号付距離を求める。すなわち、距離取得部52は、特許請求の範囲に記載の距離取得手段として機能する。距離取得部52により取得された符号付距離は、マップ選択部53に出力される。
マップ選択部53は、距離取得部52により取得された符号付距離に基づいて、複数のマップの中から、制御に使用するマップを選択する。その際に、マップ選択部53は、符号付距離がもっとも小さいマップを選択する。すなわち、マップ選択部53は、特許請求の範囲に記載のマップ選択手段として機能する。なお、マップ選択部53により選択されたマップは、制御値取得部54に出力される。
制御値取得部54は、マップ選択部53により選択されたマップから、エンジン10の制御指示値を取得する。すなわち、制御値取得部54は、特許請求の範囲に記載の制御値取得手段として機能する。なお、ここで、制御指示値は、マップが選択された後に、その選択されたマップから取得するようにしてもよいし、複数のマップ毎に制御指示値を取得しておき、その後、マップが選択されたときに、選択されたマップの制御指示値を採用する構成としてもよい。
制御値取得部54は、マップから制御指示値を取得するために、最近傍点取得部54a、入力値選択部54b、及び制御値探索部54cを有している。なお、上述したように、複数のマップ毎に制御指示値を取得しておき、その後、マップが選択されたときに、選択されたマップの制御指示値を採用する構成とする場合には、上述した距離取得部52が、最近傍点取得部54a、入力値選択部54b、及び制御値探索部54cを備える構成となる。この場合、距離取得部52は、特許請求の範囲に記載の制御値取得手段としても機能する。
最近傍点取得部54aは、入力値(入力点)が、マップの外郭の内側に位置しているか外側に位置しているかを判定するとともに、該入力値のマップの外郭からの距離を求める。また、最近傍点取得部54aは、該入力値がマップの外郭の外側に位置している場合に、該入力値のマップの外郭からの距離に基づいて、該入力値に対する、マップの外郭上の最近傍点の値を取得する。すなわち、最近傍点取得部54aは、特許請求の範囲に記載の最近傍点取得手段として機能する。
入力値選択部54bは、最近傍点取得部54aにより、入力値がマップの外郭の内側に位置していると判定された場合には、該入力値を選択する。一方、入力値選択部54bは、入力値がマップの外郭の外側に位置していると判定された場合には、マップの外郭上の最近傍点の値を選択する。すなわち、入力値選択部54bは、特許請求の範囲に記載の入力値選択手段として機能する。
制御値探索部54cは、入力値選択部54b選択された値(すなわち、外郭の外側の場合には最近傍点、内側のときには入力値そのまま)を用いてマップを検索し、エンジン10の制御指示値を求める。すなわち、制御値探索部54cは、特許請求の範囲に記載の制御値探索手段として機能する。
また、制御値取得部54は、入力値がマップの設定領域の外郭の外側に位置している場合、又は入力値が複数のマップの共有領域内に位置している場合に、複数のマップから取得した制御値を補間するようにしてもよい。
その際には、上記マップ選択部53は、入力値が、複数のマップそれぞれの設定領域の外郭の外側に位置している場合、又は複数のマップの共有領域内に位置している場合に、距離に応じて、複数のマップを選択する。すなわち、マップ選択部53は、入力値と複数のマップそれぞれとの距離が等しいときには、当該複数のマップを選択する。また、マップ選択部53は、最も距離が近いマップ及び2番目に距離が近いマップを選択するようにしてもよい。
制御値取得部54は、選択された複数のマップそれぞれから制御指示値を取得するとともに、取得したマップ毎の制御指示値(y1,y2)を、例えば、入力値と各マップそれぞれとの距離(d1,d2)の比率に応じ、次式(1)に基づいて補間し、最終的な制御指示値(Y)を取得する。
Y=(d2y1+d1y2)/(d1+d2) ・・・(1)
ただし、(d1>0,d2>0)又は(d1<0,d2<0)
すなわち、距離d1=0,距離d2≠0のときには、制御指示値y1がそのまま選択される。一方、距離d1≠0,距離d2=0のときには、制御指示値y2がそのまま選択される。また、その間の距離にある場合すなわち、入力値が双方のマップの外郭の外側にある場合、又は双方のマップの共有領域内にある場合には、内分点(すなわち補間した値)が取得される。
ここで、図2、図3に示した制御モデルを用いて、例えば、エンジンダイナモメータ(EDM)の計測結果を元に生成された中高負荷マップ、及びシャシダイナモメータ(CDM)の計測結果を元に生成された低負荷マップを択一的に選択する場合を例にして、具体的に説明する。ここで、図2は、ECU50が有する、エンジン吸入空気推定量GN’を求める制御モデルの一例を示す図であり、図3は、図2に示された制御モデルを構成する中高負荷モデル52a(又は低負荷モデル52b)の一例を示す図である。なお、中高負荷モデル52aは、エンジンダイナモメータ(EDM)の計測結果を元に生成された中高負荷マップを有しており、低負荷モデル52bは、シャシダイナモメータ(CDM)の計測結果を元に生成された低負荷マップを有している。
中高負荷モデル52aに、エンジン回転数NE、スロットル開度THR、吸気バルブタイミングVTR、及びEGRバルブ開度EGRSTPそれぞれが入力されると、入力値と中高負荷マップの外郭との符号付距離、及び中高負荷マップに基づく制御指示値(吸入空気推定量GN’)が取得されて出力される。同様に、低負荷モデル52bに、エンジン回転数NE、スロットル開度THR、吸気バルブタイミングVTR、及びEGRバルブ開度EGRSTPそれぞれが入力されると、入力値と低負荷マップの外郭との符号付距離及び低負荷マップに基づく制御指示値(吸入空気推定量GN’)が取得されて出力される。
より具体的には、中高負荷モデル52aは、図3に示される最近傍点取得部54a、入力値選択部(スイッチ)54b、及び制御値探索部54cを有している。なお、中高負荷モデル52aの構成と低負荷モデル52bの構成とは同一であるので、ここでは、主として中高負荷モデル52aについて説明する。
図3に示されるように、最近傍点取得部54aに、エンジン回転数NE、スロットル開度THR、吸気バルブタイミングVTR、及びEGRバルブ開度EGRSTPが入力されると、入力値が中高負荷マップの外郭の内側に位置しているか、外側に位置しているかが判定されるとともに、入力値と中高負荷マップ外郭との距離が求められる。そして、例えば、外側であれば「+」、内側であれば「−」の符号が付加された距離(入力点の外郭からの符号付距離)が距離ポートから出力される。また、マップ外郭(境界)の一番近い点(最近傍点)が取得され最近傍点ポートから出力される。ここで、符号付距離及び最近傍点の値は入力値選択部54bに出力される。なお、符号付距離は、後述する比較ブロック(マップ選択部)53にも出力される。
入力値選択部54bは、距離ポートから出力された距離の符号に応じて、符号が「+」の場合には、中高負荷マップの外郭の外側に位置していると判断し、最近傍点ポートの出力値(最近傍点の値)を選択して出力する。一方、入力値選択部54bは、符号が「−」のときには、内側に位置していると判断し、入力された入力値を選択して出力する。なお、入力値選択部54bにより選択された入力値(各パラメータ値)は、制御値探索部54cに出力される。
制御値探索部54cは、入力値選択部54bによって選択された値(すなわち、外郭の外側の場合には最近傍点、内側のときには入力値そのまま)を用いて中高負荷マップを検索し、エンジン10の制御指示値(吸入空気推定量GN’)を求める。なお、制御値探索部54cによって取得された制御指示値(吸入空気推定量GN’)は、図2に示される選択ブロック(制御値取得部)54に出力される。
図2に戻り、比較ブロック(マップ選択部)53は、中高負荷モデル52aから出力された符号付距離と低負荷モデル52bから出力された符号付距離とを比較し、例えば、中高負荷モデル52aから出力された符号付距離の方が小さい場合には「1」を出力する。一方、比較ブロック53は、低負荷モデル52bから出力された符号付距離の方が小さい場合には「0」を出力する。
選択ブロック(制御値取得部)54には、比較ブロック53の比較結果(「1」又は「0」)、及び、中高負荷モデル(中高負荷マップ)52a、低負荷モデル(低負荷マップ)52bそれぞれの制御指示値(吸入空気推定量GN’)が入力される。選択ブロック54は、比較結果として「1」が入力された場合には、中高負荷モデル(中高負荷マップ)の制御指示値(吸入空気推定量GN’)を出力し、「0」が入力された場合には、低負荷モデル(低負荷マップ)の制御指示値(吸入空気推定量GN’)を出力する。
以上のようにして、制御上より適切な制御指示値(吸入空気推定量GN’)が取得される。なお、求められたエンジン吸入空気推定GN’に基づいて、例えば、スロットルバルブ13の開度を調節することや、エンジン吸入空気推定量GN’の変化を予測して、スロットルバルブ13や、可変バルブタイミング機構26、EGRバルブ42等の最適制御を行うこともできる。また、エアフローメータ14で計測された吸入空気量GNと吸入空気推定量GN’を比較する事で、空気漏れなどの異常検知を行うこともできる。
次に、図6、図7を併せて参照しつつ、制御装置1の動作について説明する。図6は、制御装置1による制御値取得処理(マップ選択処理)の処理手順を示すフローチャートである。また、図7は、制御値取得処理(マップ選択処理)に含まれる制御値探索処理の処理手順を示すフローチャートである。本処理は、ECU50において、所定のタイミングで繰り返して実行される。なお、ここでは、例えば、図4に示されたマップを用いて、図2、図3に示されたようにエンジン吸入空気推定量GN’(吸入空気最適制御の制御指示値として利用する)を求める場合を例にして説明する。
まず、ステップS100では、エンジン10の運転状態を示す複数のパラメータの入力値、図2、図3の例では、エンジン回転数NE(rpm)、スロットル開度THR(deg)、吸気バルブタイミングVTR(deg)、及びEGRバルブ開度EGRSTPそれぞれが入力される。
次に、ステップS102では、入力値と中高負荷マップの設定領域の外郭との距離に対して、該設定領域の外郭の内側を「−」、該設定領域の外郭の外側を「+」とする符号が付加された、符号付距離が求められる。
続いてステップS104では、中高負荷マップの制御指示値を取得する制御値探索処理が実行される。ここで、図7を参照しつつ、この制御値探索処理について説明する。
ステップS200では、ステップS100において入力されたエンジン回転数NE、スロットル開度THR、吸気バルブタイミングVTR、及びEGRバルブ開度EGRSTPの入力値(入力点)が、中高負荷マップの設定領域(計測領域)の外郭の内側に位置しているか、外側に位置しているかが判定されるとともに、入力値と中高負荷マップの外郭との距離(外側であれば「+」、内側であれば「−」の符号が付加された符号付距離)が求められる。また、ステップS200では、入力値が中高負荷マップの外郭の外側に位置している場合に、該入力値に対する、中高負荷マップの外郭上の最近傍点の値が取得される。
続いて、ステップS202では、ステップS200において出力された距離の符号(距離ポートから出力された距離の符号)に応じて、入力値が中高負荷マップの外郭の内側に位置しているか否か(符号が「−」であるか否か)についての判断が行われる。ここで、入力値が中高負荷マップの外郭の内側に位置している場合(符号が「−」の場合)には、ステップS204に処理が移行する。一方、入力値が中高負荷マップの外郭の内側に位置していないとき、すなわち外側に位置しているとき(符号が「+」のとき)には、ステップS206に処理が移行する。
入力値が中高負荷マップの外郭の内側に位置していると判定された場合に、ステップS204では、ステップS100において入力された入力値が選択される。その後、ステップS208に処理が移行する。
一方、入力値が中高負荷マップの外郭の外側に位置していると判定されたときに、ステップS206では、ステップS200において取得されたマップの外郭上の最近傍点の値(最近傍点ポートから出力された値)が選択される。その後、ステップS208に処理が移行する。
ステップS208では、ステップS204又はS206において選択された値(すなわち、外側の場合には最近傍点の値、内側のときには入力値)を用いて中高負荷マップが検索され、エンジン10の制御指示値(吸入空気推定量GN’)が求められる。そして、続くステップS210において、求められた制御指示値(吸入空気推定量GN’)が出力される。その後、図6のステップS106に処理が戻る。
ステップS106では、入力値と低負荷マップの設定領域の外郭との距離に対して、該設定領域の外郭の内側を「−」、該設定領域の外郭の外側を「+」とする符号を付加した、符号付距離が求められる。
続いて、ステップS108では、低負荷マップの制御指示値を取得する制御値探索処理が実行される。なお、制御値探索処理(ステップS200〜S210)は、上述したとおりであるので、ここでは詳細な説明を省略する。
次に、ステップS110では、ステップS102で求められた中高負荷マップの外郭からの符号付距離と、ステップS106で求められた低負荷マップの外郭からの符号付距離とが比較され、符号付距離が小さい方のマップが選択される。
そして、ステップS112において、選択されたマップから得られた制御指示値(吸入空気推定量GN’)が出力される。
以上、詳細に説明したように、本実施形態によれば、図8に実線で模式的に示されるように、入力値(入力点)と、予め記憶されている複数のマップそれぞれの設定領域の外郭(境界)との距離が求められ、その距離に基づいて、使用されるマップが選択される。そのため、例えば、距離が最も近い外郭(境界)を持つマップを選択することができる。その結果、マップが複数のマップに分割されている場合に、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択することが可能となる。なお、なお、従来の技術では、上下限値で境界を設定するため、境界が矩形(軸と平行)になり、図8に破線で示したように、最も近いマップではないマップを、最も近いマップとして、間違って選択してしまうことが起こり得る。
特に、本実施形態によれば、複数のパラメータの入力値(入力ベクトル)と複数のマップそれぞれの設定領域の外郭(境界)との距離が求められるため、各マップが2次元以上の多次元マップであったとしても、複雑な条件分岐処理等を要することなく、複数のマップの中から制御上より適切なマップを選択することができる。また、本実施形態によれば、従来のように、マップを選択するためのしきい値とするパラメータの選定や、しきい値のチューニングが不要となるため、開発工数を劇的に低減することができる。
また、本実施形態によれば、入力値とマップの設定領域の外郭との距離に、該設定領域の外郭の内側を「−」、該設定領域の外郭の外側を「+」とする符号が付加された、符号付距離が求められ、この符号付距離がもっとも小さいマップが選択されるそのため、複数のマップを選択するための複雑な条件分岐処理などを要することなく、入力値と各マップの設定領域の外郭との距離(符号付距離)を求めるだけで、複数のマップの中からより適切なマップを選択することができる。なお、上記に代え、入力値とマップの設定領域の外郭との距離に、該設定領域の外郭の内側を「+」、該設定領域の外郭の外側を「−」とする符号を付加した符号付距離を求め、この符号付距離がもっとも大きいマップを選択するようにしてもよい。
また、本実施形態によれば、マップの設定領域の外郭(計測領域の境界)が統計モデル化されているため、各マップの外郭が非線形な形状であったとしても、該外郭を適切に画定することができる。よって、入力値と各マップの設定領域の外郭(境界)との距離を正確に求めることができるため、入力値に最も近いマップを的確に抽出(選択)することができる。
なお、本実施形態によれば、入力値が、複数のマップそれぞれの設定領域の外郭の外側に位置している場合、又は複数のマップの共有領域内に位置している場合に、距離に応じて、複数のマップを選択し、選択された複数のマップそれぞれから制御指示値を取得するとともに、取得したマップ毎の制御指示値を、入力値と各マップそれぞれとの距離の比率に応じて補間することもできる。このようにすれば、一方のマップから他方のマップへ、スムーズにマップ切替えを行うことができ、マップ切替え時の段付き感を低減することができる。
さらに、本実施形態によれば、入力値がマップの設定領域の外郭の内側に位置しているか外側に位置しているかが判定され、外側に位置していると判定された場合には、入力値に対する、マップの外郭上の最近傍点の値が求められる。そして、その値を用いてマップが検索され、制御指示値が求められる。すなわち、入力値がマップの設定領域外になった場合には、予め記憶されているマップの設定領域に含まれ、かつセンサ入力値に対して最も近い制御指示値が選択される。その結果、入力値がマップの設定領域外になった場合であっても、制御上より適切な制御指示値を求めることが可能となる。
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、本発明をガソリンエンジンの制御装置に適用した場合を例にして説明したが、本発明は、例えば、ディーゼルエンジン、自動変速機、電動モータ、燃料電池等のパワーユニットの制御装置にも適用することができる。
また、上記実施形態では、出力される制御指示値が1つ(エンジン吸入空気推定量GN’)であったが、2つ以上の制御指示値を出力する構成としてもよい。
1 制御装置
10 エンジン
12 インジェクタ
13 電子制御式スロットルバルブ
14 エアフローメータ
17 点火プラグ
26,27 可変バルブタイミング機構
31 スロットル開度センサ
32 カム角センサ
33 クランク角センサ
40 排気ガス再循環装置
42 EGRバルブ
50 ECU
51 記憶部
52 距離取得部
53 マップ選択部
54 制御値取得部
54a 最近傍点取得部
54b 入力値選択部
54c 制御値探索部

Claims (6)

  1. パワーユニットの運転状態を示すパラメータの入力値を取得する検出手段と、
    同一の前記パラメータの入力値と制御値との関係定められ設定領域であって、2次元平面に投影したときの外郭の形状が非線形の設定領域を有する複数のマップを予め記憶する記憶手段と、
    前記検出手段により取得された前記パラメータの入力値と、前記記憶手段に記憶されている複数のマップそれぞれの設定領域の外郭との距離を求める距離取得手段と、
    前記距離取得手段により取得された距離に基づいて、前記複数のマップの中から、使用するマップを選択するマップ選択手段と、
    前記マップ選択手段により選択されたマップから、前記パワーユニットの制御値を取得する制御値取得手段と、を備え
    前記距離取得手段は、前記パラメータの入力値と前記複数のマップそれぞれの設定領域の外郭との距離を求める際に、前記パラメータの入力値と前記複数のマップそれぞれの設定領域の外郭との距離に、該設定領域の外郭の内側を「−」、該設定領域の外郭の外側を「+」とする符号を付加した、符号付距離を求め、
    前記マップ選択手段は、前記符号付距離がもっとも小さいマップを選択することを特徴とする制御装置。
  2. パワーユニットの運転状態を示すパラメータの入力値を取得する検出手段と、
    同一の前記パラメータの入力値と制御値との関係定められ設定領域であって、2次元平面に投影したときの外郭の形状が非線形の設定領域を有する複数のマップを予め記憶する記憶手段と、
    前記検出手段により取得された前記パラメータの入力値と、前記記憶手段に記憶されている複数のマップそれぞれの設定領域の外郭との距離を求める距離取得手段と、
    前記距離取得手段により取得された距離に基づいて、前記複数のマップの中から、使用するマップを選択するマップ選択手段と、
    前記マップ選択手段により選択されたマップから、前記パワーユニットの制御値を取得する制御値取得手段と、を備え
    前記距離取得手段は、前記パラメータの入力値と前記複数のマップそれぞれの設定領域の外郭との距離を求める際に、前記パラメータの入力値と前記複数のマップそれぞれの設定領域の外郭との距離に、該設定領域の外郭の内側を「+」、該設定領域の外郭の外側を「−」とする符号を付加した、符号付距離を求め、
    前記マップ選択手段は、前記符号付距離がもっとも大きいマップを選択することを特徴とする制御装置。
  3. 前記検出手段は、複数のパラメータの入力値を取得し、
    前記記憶手段は、同一の前記複数のパラメータの入力値と一以上の制御値との関係定められ設定領域であって、2次元平面に投影したときの外郭の形状が非線形の設定領域を有する2次元以上のマップを予め記憶し、
    前記距離取得手段は、前記複数のパラメータの入力値と、前記複数のマップそれぞれの設定領域の外郭との前記符号付距離を求めることを特徴とする請求項1又は2に記載の制御装置。
  4. 前記複数のマップそれぞれは、前記設定領域の外郭が統計モデルを用いて数式化されていることを特徴とする請求項1〜のいずれか1項に記載の制御装置。
  5. 前記マップ選択手段は、前記パラメータの入力値が、複数のマップそれぞれの設定領域の外郭の外側に位置している場合、又は複数のマップの共有領域内に位置している場合に、前記符号付距離に基づいて前記パラメータの入力値と前記複数のマップそれぞれの設定領域の外郭との距離が等しい複数のマップ、又は、最も距離が近いマップ及び2番目に距離が近いマップを選択し、
    前記制御値取得手段は、選択された複数のマップそれぞれから制御値を取得するとともに、取得したマップ毎の制御値を、前記パラメータの入力値と各マップそれぞれの設定領域の外郭との距離の比率に応じた内分点を求めて前記パワーユニットの制御値を取得することを特徴とする請求項1〜のいずれか1項に記載の制御装置。
  6. 前記制御値取得手段は、
    前記検出手段により取得された前記パラメータの入力値が、前記マップの設定領域の外郭の内側に位置しているか外側に位置しているかを判定するとともに、前記パラメータの入力値が前記マップの設定領域の外郭の外側に位置している場合に、前記パラメータの入力値に対する、前記マップの設定領域の外郭上の最近傍点の値を取得する最近傍点取得手段と、
    前記最近傍点取得手段により前記パラメータの入力値がマップの設定領域の外郭の内側に位置していると判定された場合には、前記パラメータの入力値を選択し、前記入力値がマップの設定領域の外郭の外側に位置していると判定された場合には、前記最近傍点の値を選択する入力値選択手段と、
    前記入力値選択手段により選択された値を用いて前記マップを検索し、前記パワーユニットの制御値を求める制御値探索手段と、
    を備えることを特徴とする請求項1〜のいずれか1項に記載の制御装置。
JP2015055461A 2015-03-18 2015-03-18 制御装置 Active JP6535189B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055461A JP6535189B2 (ja) 2015-03-18 2015-03-18 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055461A JP6535189B2 (ja) 2015-03-18 2015-03-18 制御装置

Publications (2)

Publication Number Publication Date
JP2016176357A JP2016176357A (ja) 2016-10-06
JP6535189B2 true JP6535189B2 (ja) 2019-06-26

Family

ID=57070486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055461A Active JP6535189B2 (ja) 2015-03-18 2015-03-18 制御装置

Country Status (1)

Country Link
JP (1) JP6535189B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233046B2 (ja) * 1996-09-30 2001-11-26 三菱自動車工業株式会社 ディーゼルエンジンの燃料噴射量制御方法
JPH10109627A (ja) * 1996-10-04 1998-04-28 Denso Corp 自動減速度制御方法、自動減速度制御装置、車間距離制御方法、車間距離制御装置および記憶媒体
US6401457B1 (en) * 2001-01-31 2002-06-11 Cummins, Inc. System for estimating turbocharger compressor outlet temperature
JP4998374B2 (ja) * 2008-05-30 2012-08-15 トヨタ自動車株式会社 車両の制御装置
JP2009293387A (ja) * 2008-06-02 2009-12-17 Toyota Motor Corp 内燃機関の制御装置
JP5445601B2 (ja) * 2011-09-26 2014-03-19 株式会社デンソー 制御装置

Also Published As

Publication number Publication date
JP2016176357A (ja) 2016-10-06

Similar Documents

Publication Publication Date Title
CN102439280B (zh) 内燃机的控制装置
JP5331613B2 (ja) 内燃機関の筒内ガス量推定装置
JP2015007396A (ja) エンジンの制御装置
JP6603158B2 (ja) 制御装置
JP4615501B2 (ja) 内燃機関の制御装置
JP6535189B2 (ja) 制御装置
JP4871307B2 (ja) エンジンの燃料制御装置
JP2007040219A (ja) 内燃機関の制御装置
US20120303240A1 (en) Method for operating an internal combustion engine
JP7319092B2 (ja) 内燃機関の制御装置
JP4462032B2 (ja) 内燃機関の燃料噴射制御装置
JP6573464B2 (ja) 制御装置
JP6267280B2 (ja) 内燃機関の制御装置
JP2015004343A (ja) 筒内噴射エンジンの制御装置
JP4254395B2 (ja) 内燃機関の制御装置
JP6267279B2 (ja) 内燃機関の制御装置
JP6683783B2 (ja) エンジン制御装置
JP5240208B2 (ja) 内燃機関の制御装置
JP2016000970A (ja) 内燃機関の制御装置
JP6002067B2 (ja) エンジンの燃焼変動検出装置、及び、エンジンの燃焼変動検出方法
JP2005273532A (ja) エンジンの空燃比制御装置
JP5282744B2 (ja) 内燃機関の空燃比検出装置
JP4300358B2 (ja) エンジンの吹抜ガス量算出装置及び内部egr量推定装置
JP2015137642A (ja) 内燃機関のNOx量推定方法
JP2014177911A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190531

R150 Certificate of patent or registration of utility model

Ref document number: 6535189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250